1
|
Dey H, Perez-Hurtado M, Heidelberger R. Syntaxin 3B: A SNARE Protein Required for Vision. Int J Mol Sci 2024; 25:10665. [PMID: 39408994 PMCID: PMC11476516 DOI: 10.3390/ijms251910665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Syntaxin 3 is a member of a large protein family of syntaxin proteins that mediate fusion between vesicles and their target membranes. Mutations in the ubiquitously expressed syntaxin 3A splice form give rise to a serious gastrointestinal disorder in humans called microvillus inclusion disorder, while mutations that additionally involve syntaxin 3B, a splice form that is expressed primarily in retinal photoreceptors and bipolar cells, additionally give rise to an early onset severe retinal dystrophy. In this review, we discuss recent studies elucidating the roles of syntaxin 3B and the regulation of syntaxin 3B functionality in membrane fusion and neurotransmitter release in the vertebrate retina.
Collapse
Affiliation(s)
| | | | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.D.)
| |
Collapse
|
2
|
Nair AG, Bollmohr N, Schökle L, Keim J, Melero JMM, Müller M. Presynaptic quantal size enhancement counteracts post-tetanic release depression. J Physiol 2024. [PMID: 39183664 DOI: 10.1113/jp286176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Repetitive synaptic stimulation can induce different forms of synaptic plasticity but may also limit the robustness of synaptic transmission by exhausting key resources. Little is known about how synaptic transmission is stabilized after high-frequency stimulation. In the present study, we observed that tetanic stimulation of the Drosophila neuromuscular junction (NMJ) decreases quantal content, release-ready vesicle pool size and synaptic vesicle density for minutes after stimulation. This was accompanied by a pronounced increase in quantal size. Interestingly, action potential-evoked synaptic transmission remained largely unchanged. EPSC amplitude fluctuation analysis confirmed the post-tetanic increase in quantal size and the decrease in quantal content, suggesting that the quantal size increase counteracts release depression to maintain evoked transmission. The magnitude of the post-tetanic quantal size increase and release depression correlated with stimulation frequency and duration, indicating activity-dependent stabilization of synaptic transmission. The post-tetanic quantal size increase persisted after genetic ablation of the glutamate receptor subunits GluRIIA or GluRIIB, and glutamate receptor calcium permeability, as well as blockade of postsynaptic calcium channels. By contrast, it was strongly attenuated by pharmacological or presynaptic genetic perturbation of the GTPase dynamin. Similar observations were made after inhibition of the H+-ATPase, suggesting that the quantal size increase is presynaptically driven. Additionally, dynamin and H+-ATPase perturbation resulted in a post-tetanic decrease in evoked amplitudes. Finally, we observed an increase in synaptic vesicle diameter after tetanic stimulation. Thus, a presynaptically-driven quantal size increase, likely mediated by larger synaptic vesicles, counterbalances post-tetanic release depression, thereby conferring robustness to synaptic transmission on the minute time scale. KEY POINTS: Many synapses transmit robustly after sustained activity despite the limitation of key resources, such as release-ready synaptic vesicles. We report robust synaptic transmission after sustained high-frequency stimulation of the Drosophila neuromuscular junction despite a reduction in release-ready vesicle number. An increased postsynaptic response to individual vesicles, likely driven by an increase in vesicle size due to endocytosis defects, stabilizes synaptic efficacy for minutes after sustained activity. Our study provides novel insights into the mechanisms governing synaptic stability after sustained neural activity.
Collapse
Affiliation(s)
- Anu G Nair
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Present address: Roche Pharma Research and Early Development, Basel, Switzerland
| | - Nasrin Bollmohr
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Levin Schökle
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jennifer Keim
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Present address: AbbVie AG, Cham, Switzerland
| | | | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Chen JJ, Kaufmann WA, Chen C, Arai I, Kim O, Shigemoto R, Jonas P. Developmental transformation of Ca 2+ channel-vesicle nanotopography at a central GABAergic synapse. Neuron 2024; 112:755-771.e9. [PMID: 38215739 DOI: 10.1016/j.neuron.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/12/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
The coupling between Ca2+ channels and release sensors is a key factor defining the signaling properties of a synapse. However, the coupling nanotopography at many synapses remains unknown, and it is unclear how it changes during development. To address these questions, we examined coupling at the cerebellar inhibitory basket cell (BC)-Purkinje cell (PC) synapse. Biophysical analysis of transmission by paired recording and intracellular pipette perfusion revealed that the effects of exogenous Ca2+ chelators decreased during development, despite constant reliance of release on P/Q-type Ca2+ channels. Structural analysis by freeze-fracture replica labeling (FRL) and transmission electron microscopy (EM) indicated that presynaptic P/Q-type Ca2+ channels formed nanoclusters throughout development, whereas docked vesicles were only clustered at later developmental stages. Modeling suggested a developmental transformation from a more random to a more clustered coupling nanotopography. Thus, presynaptic signaling developmentally approaches a point-to-point configuration, optimizing speed, reliability, and energy efficiency of synaptic transmission.
Collapse
Affiliation(s)
- Jing-Jing Chen
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Walter A Kaufmann
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chong Chen
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Itaru Arai
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Olena Kim
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
4
|
Masilamoni GJ, Kelly H, Swain AJ, Pare JF, Villalba RM, Smith Y. Structural Plasticity of GABAergic Pallidothalamic Terminals in MPTP-Treated Parkinsonian Monkeys: A 3D Electron Microscopic Analysis. eNeuro 2024; 11:ENEURO.0241-23.2024. [PMID: 38514185 PMCID: PMC10957232 DOI: 10.1523/eneuro.0241-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.
Collapse
Affiliation(s)
- G J Masilamoni
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - H Kelly
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - A J Swain
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - J F Pare
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - R M Villalba
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - Y Smith
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
- Department of Neurology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
5
|
Abstract
Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
6
|
Gordleeva S, Dembitskaya Y, Kazantsev V, Postnikov EB. Estimation of cumulative amplitude distributions of miniature postsynaptic currents allows characterising their multimodality, quantal size and variability. Sci Rep 2023; 13:15660. [PMID: 37731019 PMCID: PMC10511413 DOI: 10.1038/s41598-023-42882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
A miniature postsynaptic current (mPSC) is a small, rare, and highly variable spontaneous synaptic event that is generally caused by the spontaneous release of single vesicles. The amplitude and variability of mPSCs are key measures of the postsynaptic processes and are taken as the main characteristics of an elementary unit (quantal size) in traditional quantal analysis of synaptic transmission. Due to different sources of biological and measurement noise, recordings of mPSCs exhibit high trial-to-trial heterogeneity, and experimental measurements of mPSCs are usually noisy and scarce, making their analysis demanding. Here, we present a sequential procedure for precise analysis of mPSC amplitude distributions for the range of small currents. To illustrate the developed approach, we chose previously obtained experimental data on the effect of the extracellular matrix on synaptic plasticity. The proposed statistical technique allowed us to identify previously unnoticed additional modality in the mPSC amplitude distributions, indicating the formation of new immature synapses upon ECM attenuation. We show that our approach can reliably detect multimodality in the distributions of mPSC amplitude, allowing for accurate determination of the size and variability of the quantal synaptic response. Thus, the proposed method can significantly expand the informativeness of both existing and newly obtained experimental data. We also demonstrated that mPSC amplitudes around the threshold of microcurrent excitation follow the Gumbel distribution rather than the binomial statistics traditionally used for a wide range of currents, either for a single synapse or when taking into consideration small influences of the adjacent synapses. Such behaviour is argued to originate from the theory of extreme processes. Specifically, recorded mPSCs represent instant random current fluctuations, among which there are relatively larger spikes (extreme events). They required more level of coherence that can be provided by different mechanisms of network or system level activation including neuron circuit signalling and extrasynaptic processes.
Collapse
Affiliation(s)
- Susanna Gordleeva
- Scientific-Educational Mathematical Center "Mathematics of Future Technologies", Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
- Neuroscience Research Institute, Samara State Medical University, Samara, Russia, 443079.
| | - Yulia Dembitskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997
| | - Victor Kazantsev
- Scientific-Educational Mathematical Center "Mathematics of Future Technologies", Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience Research Institute, Samara State Medical University, Samara, Russia, 443079
| | | |
Collapse
|
7
|
Rodrigues YE, Tigaret CM, Marie H, O'Donnell C, Veltz R. A stochastic model of hippocampal synaptic plasticity with geometrical readout of enzyme dynamics. eLife 2023; 12:e80152. [PMID: 37589251 PMCID: PMC10435238 DOI: 10.7554/elife.80152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/22/2023] [Indexed: 08/18/2023] Open
Abstract
Discovering the rules of synaptic plasticity is an important step for understanding brain learning. Existing plasticity models are either (1) top-down and interpretable, but not flexible enough to account for experimental data, or (2) bottom-up and biologically realistic, but too intricate to interpret and hard to fit to data. To avoid the shortcomings of these approaches, we present a new plasticity rule based on a geometrical readout mechanism that flexibly maps synaptic enzyme dynamics to predict plasticity outcomes. We apply this readout to a multi-timescale model of hippocampal synaptic plasticity induction that includes electrical dynamics, calcium, CaMKII and calcineurin, and accurate representation of intrinsic noise sources. Using a single set of model parameters, we demonstrate the robustness of this plasticity rule by reproducing nine published ex vivo experiments covering various spike-timing and frequency-dependent plasticity induction protocols, animal ages, and experimental conditions. Our model also predicts that in vivo-like spike timing irregularity strongly shapes plasticity outcome. This geometrical readout modelling approach can be readily applied to other excitatory or inhibitory synapses to discover their synaptic plasticity rules.
Collapse
Affiliation(s)
- Yuri Elias Rodrigues
- Université Côte d’AzurNiceFrance
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRSValbonneFrance
- Inria Center of University Côte d’Azur (Inria)Sophia AntipolisFrance
| | - Cezar M Tigaret
- Neuroscience and Mental Health Research Innovation Institute, Division of Psychological Medicine and Clinical Neurosciences,School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Hélène Marie
- Université Côte d’AzurNiceFrance
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRSValbonneFrance
| | - Cian O'Donnell
- School of Computing, Engineering, and Intelligent Systems, Magee Campus, Ulster UniversityLondonderryUnited Kingdom
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of BristolBristolUnited Kingdom
| | - Romain Veltz
- Inria Center of University Côte d’Azur (Inria)Sophia AntipolisFrance
| |
Collapse
|
8
|
Medalla M, Zikopoulos B. Laminar Excitatory Inputs to the Dorsolateral Prefrontal Cortex: Implications for Periadolescent Synaptic Plasticity and Circuit Pathology. Biol Psychiatry 2023; 94:280-282. [PMID: 37495330 DOI: 10.1016/j.biopsych.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Affiliation(s)
- Maria Medalla
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts; Center for Systems Neuroscience, Boston University, Boston, Massachusetts.
| | - Basilis Zikopoulos
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts; Department of Health Sciences, Boston University, Boston, Massachusetts; Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
9
|
Lumeij LB, van Huijstee AN, Cappaert NLM, Kessels HW. Variance analysis as a method to predict the locus of plasticity at populations of non-uniform synapses. Front Cell Neurosci 2023; 17:1232541. [PMID: 37528963 PMCID: PMC10388551 DOI: 10.3389/fncel.2023.1232541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Our knowledge on synaptic transmission in the central nervous system has often been obtained by evoking synaptic responses to populations of synapses. Analysis of the variance in synaptic responses can be applied as a method to predict whether a change in synaptic responses is a consequence of altered presynaptic neurotransmitter release or postsynaptic receptors. However, variance analysis is based on binomial statistics, which assumes that synapses are uniform. In reality, synapses are far from uniform, which questions the reliability of variance analysis when applying this method to populations of synapses. To address this, we used an in silico model for evoked synaptic responses and compared variance analysis outcomes between populations of uniform versus non-uniform synapses. This simulation revealed that variance analysis produces similar results irrespectively of the grade of uniformity of synapses. We put this variance analysis to the test with an electrophysiology experiment using a model system for which the loci of plasticity are well established: the effect of amyloid-β on synapses. Variance analysis correctly predicted that postsynaptically produced amyloid-β triggered predominantly a loss of synapses and a minor reduction of postsynaptic currents in remaining synapses with little effect on presynaptic release probability. We propose that variance analysis can be reliably used to predict the locus of synaptic changes for populations of non-uniform synapses.
Collapse
|
10
|
Ogunmowo TH, Jing H, Raychaudhuri S, Kusick GF, Imoto Y, Li S, Itoh K, Ma Y, Jafri H, Dalva MB, Chapman ER, Ha T, Watanabe S, Liu J. Membrane compression by synaptic vesicle exocytosis triggers ultrafast endocytosis. Nat Commun 2023; 14:2888. [PMID: 37210439 PMCID: PMC10199930 DOI: 10.1038/s41467-023-38595-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
Compensatory endocytosis keeps the membrane surface area of secretory cells constant following exocytosis. At chemical synapses, clathrin-independent ultrafast endocytosis maintains such homeostasis. This endocytic pathway is temporally and spatially coupled to exocytosis; it initiates within 50 ms at the region immediately next to the active zone where vesicles fuse. However, the coupling mechanism is unknown. Here, we demonstrate that filamentous actin is organized as a ring, surrounding the active zone at mouse hippocampal synapses. Assuming the membrane area conservation is due to this actin ring, our theoretical model suggests that flattening of fused vesicles exerts lateral compression in the plasma membrane, resulting in rapid formation of endocytic pits at the border between the active zone and the surrounding actin-enriched region. Consistent with model predictions, our data show that ultrafast endocytosis requires sufficient compression by exocytosis of multiple vesicles and does not initiate when actin organization is disrupted, either pharmacologically or by ablation of the actin-binding protein Epsin1. Our work suggests that membrane mechanics underlie the rapid coupling of exocytosis to endocytosis at synapses.
Collapse
Affiliation(s)
- Tyler H Ogunmowo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Haoyuan Jing
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Sumana Raychaudhuri
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Grant F Kusick
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Yuuta Imoto
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Shuo Li
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA, US
| | - Kie Itoh
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Ye Ma
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Haani Jafri
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
- Department of Cell and Molecular Biology and the Tulane Brain Institute, Tulane University, New Orleans, LA, US
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, US
- Howard Hughes Medical Institute, Madison, WI, US
| | - Taekjip Ha
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, US
- Howard Hughes Medical Institute, Baltimore, MD, US
| | - Shigeki Watanabe
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| | - Jian Liu
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| |
Collapse
|
11
|
Martínez San Segundo P, Terni B, Llobet A. Multivesicular release favors short term synaptic depression in hippocampal autapses. Front Cell Neurosci 2023; 17:1057242. [PMID: 37265578 PMCID: PMC10230035 DOI: 10.3389/fncel.2023.1057242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/10/2023] [Indexed: 06/03/2023] Open
Abstract
Presynaptic terminals of the central nervous system can support univesicular and multivesicular synchronous release of neurotransmitters, however, the functional implications of the prevalence of one mechanism over the other are yet unresolved. Here, we took advantage of the expression of SF-iGluSnFR.S72A in the astrocytic feeder layer of autaptic hippocampal neuronal cultures to associate the liberation of glutamate to excitatory postsynaptic currents. The presence of the glutamate sensor in glial cells avoided any interference with the function of endogenous postsynaptic receptors. It was possible to optically detect changes in neurotransmitter release probability, which was heterogeneous among synaptic boutons studied. For each neuron investigated, the liberation of neurotransmitters occurred through a predominant mechanism. The prevalence of multivesicular over univesicular release increased synaptic strength and enhanced short-term synaptic depression. These results show that the preference of hippocampal boutons to synchronously release one or more vesicles determines the strength and low pass filtering properties of the synapses established.
Collapse
Affiliation(s)
- Pablo Martínez San Segundo
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Beatrice Terni
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Artur Llobet
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
12
|
Malagon G, Myeong J, Klyachko VA. Two forms of asynchronous release with distinctive spatiotemporal dynamics in central synapses. eLife 2023; 12:e84041. [PMID: 37166282 PMCID: PMC10174687 DOI: 10.7554/elife.84041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Asynchronous release is a ubiquitous form of neurotransmitter release that persists for tens to hundreds of milliseconds after an action potential. How asynchronous release is organized and regulated at the synaptic active zone (AZ) remains debatable. Using nanoscale-precision imaging of individual release events in rat hippocampal synapses, we observed two spatially distinct subpopulations of asynchronous events, ~75% of which occurred inside the AZ and with a bias towards the AZ center, while ~25% occurred outside of the functionally defined AZ, that is, ectopically. The two asynchronous event subpopulations also differed from each other in temporal properties, with ectopic events occurring at significantly longer time intervals from synchronous events than the asynchronous events inside the AZ. Both forms of asynchronous release did not, to a large extent, utilize the same release sites as synchronous events. The two asynchronous event subpopulations also differ from synchronous events in some aspects of exo-endocytosis coupling, particularly in the contribution from the fast calcium-dependent endocytosis. These results identify two subpopulations of asynchronous release events with distinctive organization and spatiotemporal dynamics.
Collapse
Affiliation(s)
- Gerardo Malagon
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
13
|
James B, Piekarz P, Moya-Díaz J, Lagnado L. The Impact of Multivesicular Release on the Transmission of Sensory Information by Ribbon Synapses. J Neurosci 2022; 42:9401-9414. [PMID: 36344266 PMCID: PMC9794368 DOI: 10.1523/jneurosci.0717-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
The statistics of vesicle release determine how synapses transfer information, but the classical Poisson model of independent release does not always hold at the first stages of vision and hearing. There, ribbon synapses also encode sensory signals as events comprising two or more vesicles released simultaneously. The implications of such coordinated multivesicular release (MVR) for spike generation are not known. Here we investigate how MVR alters the transmission of sensory information compared with Poisson synapses using a pure rate-code. We used leaky integrate-and-fire models incorporating the statistics of release measured experimentally from glutamatergic synapses of retinal bipolar cells in zebrafish (both sexes) and compared these with models assuming Poisson inputs constrained to operate at the same average rates. We find that MVR can increase the number of spikes generated per vesicle while reducing interspike intervals and latency to first spike. The combined effect was to increase the efficiency of information transfer (bits per vesicle) over a range of conditions mimicking target neurons of different size. MVR was most advantageous in neurons with short time constants and reliable synaptic inputs, when less convergence was required to trigger spikes. In the special case of a single input driving a neuron, as occurs in the auditory system of mammals, MVR increased information transfer whenever spike generation required more than one vesicle. This study demonstrates how presynaptic integration of vesicles by MVR can increase the efficiency with which sensory information is transmitted compared with a rate-code described by Poisson statistics.SIGNIFICANCE STATEMENT Neurons communicate by the stochastic release of vesicles at the synapse and the statistics of this process will determine how information is represented by spikes. The classical model is that vesicles are released independently by a Poisson process, but this does not hold at ribbon-type synapses specialized to transmit the first electrical signals in vision and hearing, where two or more vesicles can fuse in a single event by a process termed coordinated multivesicular release. This study shows that multivesicular release can increase the number of spikes generated per vesicle and the efficiency of information transfer (bits per vesicle) over a range of conditions found in the retina and peripheral auditory system.
Collapse
Affiliation(s)
- Ben James
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Pawel Piekarz
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - José Moya-Díaz
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Leon Lagnado
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| |
Collapse
|
14
|
Myeong J, Klyachko VA. Rapid astrocyte-dependent facilitation amplifies multi-vesicular release in hippocampal synapses. Cell Rep 2022; 41:111820. [PMID: 36516768 PMCID: PMC9805313 DOI: 10.1016/j.celrep.2022.111820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Synaptic facilitation is a major form of short-term plasticity typically driven by an increase in residual presynaptic calcium. Using near-total internal reflection fluorescence (near-TIRF) imaging of single vesicle release in cultured hippocampal synapses, we demonstrate a distinctive, release-dependent form of facilitation in which probability of vesicle release is higher following a successful glutamate release event than following a failure. This phenomenon has an onset of ≤500 ms and lasts several seconds, resulting in clusters of successful release events. The release-dependent facilitation requires neuronal contact with astrocytes and astrocytic glutamate uptake by EAAT1. It is not observed in neurons grown alone or in the presence of astrocyte-conditioned media. This form of facilitation dynamically amplifies multi-vesicular release. Facilitation-evoked release events exhibit spatial clustering and have a preferential localization toward the active zone center. These results uncover a rapid astrocyte-dependent form of facilitation acting via modulation of multi-vesicular release and displaying distinctive spatiotemporal properties.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63132, USA
| | - Vitaly A. Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63132, USA,Lead contact,Correspondence:
| |
Collapse
|
15
|
Dürst CD, Wiegert JS, Schulze C, Helassa N, Török K, Oertner TG. Vesicular release probability sets the strength of individual Schaffer collateral synapses. Nat Commun 2022; 13:6126. [PMID: 36253353 PMCID: PMC9576736 DOI: 10.1038/s41467-022-33565-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Information processing in the brain is controlled by quantal release of neurotransmitters, a tightly regulated process. From ultrastructural analysis, it is known that presynaptic boutons along single axons differ in the number of vesicles docked at the active zone. It is not clear whether the probability of these vesicles to get released (pves) is homogenous or also varies between individual boutons. Here, we optically measure evoked transmitter release at individual Schaffer collateral synapses at different calcium concentrations, using the genetically encoded glutamate sensor iGluSnFR. Fitting a binomial model to measured response amplitude distributions allowed us to extract the quantal parameters N, pves, and q. We find that Schaffer collateral boutons typically release single vesicles under low pves conditions and switch to multivesicular release in high calcium saline. The potency of individual boutons is highly correlated with their vesicular release probability while the number of releasable vesicles affects synaptic output only under high pves conditions.
Collapse
Affiliation(s)
- Céline D Dürst
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
- Department of Basic Neurosciences, Center for Neurosciences (CMU), University of Geneva, 1211, Geneva, Switzerland
| | - J Simon Wiegert
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
| | - Christian Schulze
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
| | - Nordine Helassa
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, SW17 0RE, UK
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Katalin Török
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany.
| |
Collapse
|
16
|
Ge L, Shin W, Arpino G, Wei L, Chan CY, Bleck CKE, Zhao W, Wu LG. Sequential compound fusion and kiss-and-run mediate exo- and endocytosis in excitable cells. SCIENCE ADVANCES 2022; 8:eabm6049. [PMID: 35714180 PMCID: PMC9205584 DOI: 10.1126/sciadv.abm6049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Vesicle fusion at preestablished plasma membrane release sites releases transmitters and hormones to mediate fundamental functions like neuronal network activities and fight-or-flight responses. This half-a-century-old concept-fusion at well-established release sites in excitable cells-needs to be modified to include the sequential compound fusion reported here-vesicle fusion at previously fused Ω-shaped vesicular membrane. With superresolution STED microscopy in excitable neuroendocrine chromaffin cells, we real-time visualized sequential compound fusion pore openings and content releases in generating multivesicular and asynchronous release from single release sites, which enhances exocytosis strength and dynamic ranges in excitable cells. We also visualized subsequent compound fusion pore closure, a new mode of endocytosis termed compound kiss-and-run that enhances vesicle recycling capacity. These results suggest modifying current exo-endocytosis concepts by including rapid release-site assembly at fused vesicle membrane, where sequential compound fusion and kiss-and-run take place to enhance exo-endocytosis capacity and dynamic ranges.
Collapse
Affiliation(s)
- Lihao Ge
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Wonchul Shin
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Lisi Wei
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | | | - Weidong Zhao
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Yu W, Lin L. Modeling and Evaluation of Vesicle Release Mechanisms in Neuro-Spike Communication. IEEE Trans Nanobioscience 2022; 21:416-424. [PMID: 35436195 DOI: 10.1109/tnb.2022.3168027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuro-spike communication (NSC) is a communication method that includes electrical communication process and molecular communication process, which has been investigated extensively in recent years. The vesicle release process has a great influence on the accuracy of NSC systems. So the modeling of the vesicle release process has become a hot spot. There exist different vesicle release mechanisms, including univesicular release (UVR) case, multivesicular release (MVR) case and hybrid vesicle release (HVR) case. When a spike arrives, the UVR case refers to that at most one vesicle can be released. The MVR case refers to that more than one vesicle can be released. The HVR case is a mixed case of the UVR and MVR cases. This paper proposes the modeling of these three vesicle release cases. The theoretical analysis is conducted to compare them in terms of efficiency. Simulations are performed to evaluate the impacts of main vesicle releasing parameters on signal transmission accuracy. The simulation results show that the HVR model can effectively improve the transmission accuracy compared with UVR and MVR models under some conditions.
Collapse
|
18
|
Wang CS, Chanaday NL, Monteggia LM, Kavalali ET. Probing the segregation of evoked and spontaneous neurotransmission via photobleaching and recovery of a fluorescent glutamate sensor. eLife 2022; 11:e76008. [PMID: 35420542 PMCID: PMC9129874 DOI: 10.7554/elife.76008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Synapses maintain both action potential-evoked and spontaneous neurotransmitter release; however, organization of these two forms of release within an individual synapse remains unclear. Here, we used photobleaching properties of iGluSnFR, a fluorescent probe that detects glutamate, to investigate the subsynaptic organization of evoked and spontaneous release in primary hippocampal cultures. In nonneuronal cells and neuronal dendrites, iGluSnFR fluorescence is intensely photobleached and recovers via diffusion of nonphotobleached probes with a time constant of ~10 s. After photobleaching, while evoked iGluSnFR events could be rapidly suppressed, their recovery required several hours. In contrast, iGluSnFR responses to spontaneous release were comparatively resilient to photobleaching, unless the complete pool of iGluSnFR was activated by glutamate perfusion. This differential effect of photobleaching on different modes of neurotransmission is consistent with a subsynaptic organization where sites of evoked glutamate release are clustered and corresponding iGluSnFR probes are diffusion restricted, while spontaneous release sites are broadly spread across a synapse with readily diffusible iGluSnFR probes.
Collapse
Affiliation(s)
- Camille S Wang
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
| | - Natali L Chanaday
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
19
|
Three small vesicular pools in sequence govern synaptic response dynamics during action potential trains. Proc Natl Acad Sci U S A 2022; 119:2114469119. [PMID: 35101920 PMCID: PMC8812539 DOI: 10.1073/pnas.2114469119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Short-term changes in the strength of synaptic connections underlie many brain functions. The strength of a synapse in response to subsequent stimulation is largely determined by the remaining number of synaptic vesicles available for release. We developed a methodological approach to measure the dynamics of various vesicle pools following synaptic activity. We find that the readily releasable pool, which comprises vesicles that are docked or tethered to release sites, is fed by a small-sized pool containing approximately one to four vesicles per release site at rest. This upstream pool is significantly depleted even after a short stimulation train. Therefore, regulation of the size of the upstream pool emerges as a key factor in determining synaptic strength during and after sustained stimulation. During prolonged trains of presynaptic action potentials (APs), synaptic release reaches a stable level that reflects the speed of replenishment of the readily releasable pool (RRP). Determining the size and filling dynamics of vesicular pools upstream of the RRP has been hampered by a lack of precision of synaptic output measurements during trains. Using the recent technique of tracking vesicular release in single active zone synapses, we now developed a method that allows the sizes of the RRP and upstream pools to be followed in time. We find that the RRP is fed by a small-sized pool containing approximately one to four vesicles per docking site at rest. This upstream pool is significantly depleted by short AP trains, and reaches a steady, depleted state for trains of >10 APs. We conclude that a small, highly dynamic vesicular pool upstream of the RRP potently controls synaptic strength during sustained stimulation.
Collapse
|
20
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
21
|
Reconstruction of the Hippocampus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:261-283. [DOI: 10.1007/978-3-030-89439-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe hippocampus is a widely studied brain region thought to play an important role in higher cognitive functions such as learning, memory, and navigation. The amount of data on this region increases every day and delineates a complex and fragmented picture, but an integrated understanding of hippocampal function remains elusive. Computational methods can help to move the research forward, and reconstructing a full-scale model of the hippocampus is a challenging yet feasible task that the research community should undertake.In this chapter, we present strategies for reconstructing a large-scale model of the hippocampus. Based on a previously published approach to reconstruct and simulate brain tissue, which is also explained in Chap. 10, we discuss the characteristics of the hippocampus in the light of its special anatomical and physiological features, data availability, and existing large-scale hippocampus models. A large-scale model of the hippocampus is a compound model of several building blocks: ion channels, morphologies, single cell models, connections, synapses. We discuss each of those building blocks separately and discuss how to merge them back and simulate the resulting network model.
Collapse
|
22
|
Maynard S, Rostaing P, Schaefer N, Gemin O, Candat A, Dumoulin A, Villmann C, Triller A, Specht CG. Identification of a stereotypic molecular arrangement of endogenous glycine receptors at spinal cord synapses. eLife 2021; 10:74441. [PMID: 34878402 PMCID: PMC8752092 DOI: 10.7554/elife.74441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
Precise quantitative information about the molecular architecture of synapses is essential to understanding the functional specificity and downstream signaling processes at specific populations of synapses. Glycine receptors (GlyRs) are the primary fast inhibitory neurotransmitter receptors in the spinal cord and brainstem. These inhibitory glycinergic networks crucially regulate motor and sensory processes. Thus far, the nanoscale organization of GlyRs underlying the different network specificities has not been defined. Here, we have quantitatively characterized the molecular arrangement and ultra-structure of glycinergic synapses in spinal cord tissue using quantitative super-resolution correlative light and electron microscopy. We show that endogenous GlyRs exhibit equal receptor-scaffold occupancy and constant packing densities of about 2000 GlyRs µm-2 at synapses across the spinal cord and throughout adulthood, even though ventral horn synapses have twice the total copy numbers, larger postsynaptic domains, and more convoluted morphologies than dorsal horn synapses. We demonstrate that this stereotypic molecular arrangement is maintained at glycinergic synapses in the oscillator mouse model of the neuromotor disease hyperekplexia despite a decrease in synapse size, indicating that the molecular organization of GlyRs is preserved in this hypomorph. We thus conclude that the morphology and size of inhibitory postsynaptic specializations rather than differences in GlyR packing determine the postsynaptic strength of glycinergic neurotransmission in motor and sensory spinal cord networks.
Collapse
Affiliation(s)
- Stephanie Maynard
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Philippe Rostaing
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Olivier Gemin
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Adrien Candat
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Andréa Dumoulin
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Antoine Triller
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Christian G Specht
- Diseases and Hormones of the Nervous System (DHNS), Inserm U1195, Université Paris-Saclay, Paris, France
| |
Collapse
|
23
|
Satake SI, Konishi S. Topographical distance between presynaptic Ca 2+ channels and exocytotic Ca 2+ sensors contributes to differential facilitatory actions of roscovitine on neurotransmitter release at cerebellar glutamatergic and GABAergic synapses. Eur J Neurosci 2021; 54:7048-7062. [PMID: 34622493 DOI: 10.1111/ejn.15487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
Calcium influx into presynaptic terminals through voltage-gated Ca2+ channels triggers univesicular or multivesicular release of neurotransmitters depending on the characteristics of the release machinery. However, the mechanisms underlying multivesicular release (MVR) and its regulation remain unclear. Previous studies showed that in rat cerebellum, the cyclin-dependent kinase inhibitor roscovitine profoundly increases excitatory postsynaptic current (EPSC) amplitudes at granule cell (GC)-Purkinje cell (PC) synapses by enhancing the MVR of glutamate. This compound can also moderately augment the amplitude and prolong the decay time of inhibitory postsynaptic currents (IPSCs) at molecular layer interneuron (MLI)-PC synapses via MVR enhancement and GABA spillover, thus allowing for persistent activation of perisynaptic GABA receptors. The enhanced MVR may depend on the driving force for Cav 2.1 channel-mediated Ca2+ influx. To determine whether the distinct spatiotemporal dynamics of presynaptic Ca2+ influence MVR, we compared the effects of slow and fast Ca2+ chelators, that is, EGTA and BAPTA, respectively, on roscovitine-induced actions at GC-PC and MLI-PC synapses. Membrane-permeable EGTA-AM decreased GC-PC EPSC and MLI-PC IPSC amplitudes to a similar extent but suppressed the roscovitine-induced enhancement of EPSCs. In contrast, BAPTA-AM attenuated the effects of roscovitine on IPSCs. These results suggest that roscovitine augmented glutamate release by activating the release machinery located distally from the Cav 2.1 channel clusters, while it enhanced GABA release in a manner less dependent on those at distal sites. Therefore, the spatial relationships among Ca2+ channels, buffers, and sensors are critical determinants of the differential facilitatory actions of roscovitine on glutamatergic and GABAergic synapses in the cerebellar cortex.
Collapse
Affiliation(s)
- Shin' Ichiro Satake
- Brain Research Support Center, National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Shiro Konishi
- Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| |
Collapse
|
24
|
Quantum propensities in the brain cortex and free will. Biosystems 2021; 208:104474. [PMID: 34242745 DOI: 10.1016/j.biosystems.2021.104474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022]
Abstract
Capacity of conscious agents to perform genuine choices among future alternatives is a prerequisite for moral responsibility. Determinism that pervades classical physics, however, forbids free will, undermines the foundations of ethics, and precludes meaningful quantification of personal biases. To resolve that impasse, we utilize the characteristic indeterminism of quantum physics and derive a quantitative measure for the amount of free will manifested by the brain cortical network. The interaction between the central nervous system and the surrounding environment is shown to perform a quantum measurement upon the neural constituents, which actualize a single measurement outcome selected from the resulting quantum probability distribution. Inherent biases in the quantum propensities for alternative physical outcomes provide varying amounts of free will, which can be quantified with the expected information gain from learning the actual course of action chosen by the nervous system. For example, neuronal electric spikes evoke deterministic synaptic vesicle release in the synapses of sensory or somatomotor pathways, with no free will manifested. In cortical synapses, however, vesicle release is triggered indeterministically with probability of 0.35 per spike. This grants the brain cortex, with its over 100 trillion synapses, an amount of free will exceeding 96 terabytes per second. Although reliable deterministic transmission of sensory or somatomotor information ensures robust adaptation of animals to their physical environment, unpredictability of behavioral responses initiated by decisions made by the brain cortex is evolutionary advantageous for avoiding predators. Thus, free will may have a survival value and could be optimized through natural selection.
Collapse
|
25
|
Silva M, Tran V, Marty A. Calcium-dependent docking of synaptic vesicles. Trends Neurosci 2021; 44:579-592. [PMID: 34049722 DOI: 10.1016/j.tins.2021.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
The concentration of calcium ions in presynaptic terminals regulates transmitter release, but underlying mechanisms have remained unclear. Here we review recent studies that shed new light on this issue. Fast-freezing electron microscopy and total internal reflection fluorescence microscopy studies reveal complex calcium-dependent vesicle movements including docking on a millisecond time scale. Recordings from so-called 'simple synapses' indicate that calcium not only triggers exocytosis, but also modifies synaptic strength by controlling a final, rapid vesicle maturation step before release. Molecular studies identify several calcium-sensitive domains on Munc13 and on synaptotagmin-1 that are likely involved in bringing the vesicular and plasma membranes closer together in response to calcium elevation. Together, these results suggest that calcium-dependent vesicle docking occurs in a wide range of time domains and plays a crucial role in several phenomena including synaptic facilitation, post-tetanic potentiation, and neuromodulator-induced potentiation.
Collapse
Affiliation(s)
- Melissa Silva
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France
| | - Van Tran
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France
| | - Alain Marty
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France.
| |
Collapse
|
26
|
Aksoy-Aksel A, Gall A, Seewald A, Ferraguti F, Ehrlich I. Midbrain dopaminergic inputs gate amygdala intercalated cell clusters by distinct and cooperative mechanisms in male mice. eLife 2021; 10:e63708. [PMID: 34028352 PMCID: PMC8143799 DOI: 10.7554/elife.63708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
Dopaminergic signaling plays an important role in associative learning, including fear and extinction learning. Dopaminergic midbrain neurons encode prediction error-like signals when threats differ from expectations. Within the amygdala, GABAergic intercalated cell (ITC) clusters receive one of the densest dopaminergic projections, but their physiological consequences are incompletely understood. ITCs are important for fear extinction, a function thought to be supported by activation of ventromedial ITCs that inhibit central amygdala fear output. In mice, we reveal two distinct novel mechanisms by which mesencephalic dopaminergic afferents control ITCs. Firstly, they co-release GABA to mediate rapid, direct inhibition. Secondly, dopamine suppresses inhibitory interactions between distinct ITC clusters via presynaptic D1 receptors. Early extinction training augments both GABA co-release onto dorsomedial ITCs and dopamine-mediated suppression of dorso- to ventromedial inhibition between ITC clusters. These findings provide novel insights into dopaminergic mechanisms shaping the activity balance between distinct ITC clusters that could support their opposing roles in fear behavior.
Collapse
Affiliation(s)
- Ayla Aksoy-Aksel
- Hertie Institute for Clinical Brain ResearchTübingenGermany
- Centre for Integrative NeuroscienceTübingenGermany
- Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgartGermany
| | - Andrea Gall
- Hertie Institute for Clinical Brain ResearchTübingenGermany
- Centre for Integrative NeuroscienceTübingenGermany
- Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgartGermany
| | - Anna Seewald
- Department of Pharmacology, Medical University of InnsbruckInnsbruckAustria
| | | | - Ingrid Ehrlich
- Hertie Institute for Clinical Brain ResearchTübingenGermany
- Centre for Integrative NeuroscienceTübingenGermany
- Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgartGermany
| |
Collapse
|
27
|
Karlocai MR, Heredi J, Benedek T, Holderith N, Lorincz A, Nusser Z. Variability in the Munc13-1 content of excitatory release sites. eLife 2021; 10:67468. [PMID: 33904397 PMCID: PMC8116053 DOI: 10.7554/elife.67468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 01/15/2023] Open
Abstract
The molecular mechanisms underlying the diversity of cortical glutamatergic synapses are still incompletely understood. Here, we tested the hypothesis that presynaptic active zones (AZs) are constructed from molecularly uniform, independent release sites (RSs), the number of which scales linearly with the AZ size. Paired recordings between hippocampal CA1 pyramidal cells and fast-spiking interneurons in acute slices from adult mice followed by quantal analysis demonstrate large variability in the number of RSs (N) at these connections. High-resolution molecular analysis of functionally characterized synapses reveals variability in the content of one of the key vesicle priming factors – Munc13-1 – in AZs that possess the same N. Replica immunolabeling also shows a threefold variability in the total Munc13-1 content of AZs of identical size and a fourfold variability in the size and density of Munc13-1 clusters within the AZs. Our results provide evidence for quantitative molecular heterogeneity of RSs and support a model in which the AZ is built up from variable numbers of molecularly heterogeneous, but independent RSs.
Collapse
Affiliation(s)
- Maria Rita Karlocai
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Judit Heredi
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tünde Benedek
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Noemi Holderith
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Andrea Lorincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
28
|
Maschi D, Gramlich MW, Klyachko VA. Myosin V Regulates Spatial Localization of Different Forms of Neurotransmitter Release in Central Synapses. Front Synaptic Neurosci 2021; 13:650334. [PMID: 33935678 PMCID: PMC8081987 DOI: 10.3389/fnsyn.2021.650334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/03/2021] [Indexed: 11/18/2022] Open
Abstract
Synaptic active zone (AZ) contains multiple specialized release sites for vesicle fusion. The utilization of release sites is regulated to determine spatiotemporal organization of the two main forms of synchronous release, uni-vesicular (UVR) and multi-vesicular (MVR). We previously found that the vesicle-associated molecular motor myosin V regulates temporal utilization of release sites by controlling vesicle anchoring at release sites in an activity-dependent manner. Here we show that acute inhibition of myosin V shifts preferential location of vesicle docking away from AZ center toward periphery, and results in a corresponding spatial shift in utilization of release sites during UVR. Similarly, inhibition of myosin V also reduces preferential utilization of central release sites during MVR, leading to more spatially distributed and temporally uniform MVR that occurs farther away from the AZ center. Using a modeling approach, we provide a conceptual framework that unites spatial and temporal functions of myosin V in vesicle release by controlling the gradient of release site release probability across the AZ, which in turn determines the spatiotemporal organization of both UVR and MVR. Thus myosin V regulates both temporal and spatial utilization of release sites during two main forms of synchronous release.
Collapse
Affiliation(s)
- Dario Maschi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
29
|
Structure and function of a neocortical synapse. Nature 2021; 591:111-116. [PMID: 33442056 DOI: 10.1038/s41586-020-03134-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/24/2020] [Indexed: 01/29/2023]
Abstract
In 1986, electron microscopy was used to reconstruct by hand the entire nervous system of a roundworm, the nematode Caenorhabditis elegans1. Since this landmark study, high-throughput electron-microscopic techniques have enabled reconstructions of much larger mammalian brain circuits at synaptic resolution2,3. Nevertheless, it remains unknown how the structure of a synapse relates to its physiological transmission strength-a key limitation for inferring brain function from neuronal wiring diagrams. Here we combine slice electrophysiology of synaptically connected pyramidal neurons in the mouse somatosensory cortex with correlated light microscopy and high-resolution electron microscopy of all putative synaptic contacts between the recorded neurons. We find a linear relationship between synapse size and strength, providing the missing link in assigning physiological weights to synapses reconstructed from electron microscopy. Quantal analysis also reveals that synapses contain at least 2.7 neurotransmitter-release sites on average. This challenges existing release models and provides further evidence that neocortical synapses operate with multivesicular release4-6, suggesting that they are more complex computational devices than thought, and therefore expanding the computational power of the canonical cortical microcircuitry.
Collapse
|
30
|
Li S, Raychaudhuri S, Lee SA, Brockmann MM, Wang J, Kusick G, Prater C, Syed S, Falahati H, Ramos R, Bartol TM, Hosy E, Watanabe S. Asynchronous release sites align with NMDA receptors in mouse hippocampal synapses. Nat Commun 2021; 12:677. [PMID: 33514725 PMCID: PMC7846561 DOI: 10.1038/s41467-021-21004-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Neurotransmitter is released synchronously and asynchronously following an action potential. Our recent study indicates that the release sites of these two phases are segregated within an active zone, with asynchronous release sites enriched near the center in mouse hippocampal synapses. Here we demonstrate that synchronous and asynchronous release sites are aligned with AMPA receptor and NMDA receptor clusters, respectively. Computational simulations indicate that this spatial and temporal arrangement of release can lead to maximal membrane depolarization through AMPA receptors, alleviating the pore-blocking magnesium leading to greater activation of NMDA receptors. Together, these results suggest that release sites are likely organized to activate NMDA receptors efficiently.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biological and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Stephen Alexander Lee
- Neurobiology Course, The Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
| | - Jing Wang
- ThermoFisher Scientific, Hillsboro, OR, USA
| | - Grant Kusick
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Christine Prater
- Neurobiology Course, The Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sarah Syed
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Hanieh Falahati
- Neurobiology Course, The Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Raul Ramos
- Neurobiology Course, The Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Tomas M Bartol
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Eric Hosy
- Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Carvalhais LG, Martinho VC, Ferreiro E, Pinheiro PS. Unraveling the Nanoscopic Organization and Function of Central Mammalian Presynapses With Super-Resolution Microscopy. Front Neurosci 2021; 14:578409. [PMID: 33584169 PMCID: PMC7874199 DOI: 10.3389/fnins.2020.578409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
The complex, nanoscopic scale of neuronal function, taking place at dendritic spines, axon terminals, and other minuscule structures, cannot be adequately resolved using standard, diffraction-limited imaging techniques. The last couple of decades saw a rapid evolution of imaging methods that overcome the diffraction limit imposed by Abbe's principle. These techniques, including structured illumination microscopy (SIM), stimulated emission depletion (STED), photo-activated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM), among others, have revolutionized our understanding of synapse biology. By exploiting the stochastic nature of fluorophore light/dark states or non-linearities in the interaction of fluorophores with light, by using modified illumination strategies that limit the excitation area, these methods can achieve spatial resolutions down to just a few tens of nm or less. Here, we review how these advanced imaging techniques have contributed to unprecedented insight into the nanoscopic organization and function of mammalian neuronal presynapses, revealing new organizational principles or lending support to existing views, while raising many important new questions. We further discuss recent technical refinements and newly developed tools that will continue to expand our ability to delve deeper into how synaptic function is orchestrated at the nanoscopic level.
Collapse
Affiliation(s)
- Lia G Carvalhais
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Vera C Martinho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paulo S Pinheiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Mochida S. Neurotransmitter Release Site Replenishment and Presynaptic Plasticity. Int J Mol Sci 2020; 22:ijms22010327. [PMID: 33396919 PMCID: PMC7794938 DOI: 10.3390/ijms22010327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022] Open
Abstract
An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
33
|
Georgiev DD. Quantum information theoretic approach to the mind–brain problem. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 158:16-32. [DOI: 10.1016/j.pbiomolbio.2020.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022]
|
34
|
Synaptic vesicles transiently dock to refill release sites. Nat Neurosci 2020; 23:1329-1338. [PMID: 32989294 PMCID: PMC8054220 DOI: 10.1038/s41593-020-00716-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
Synaptic vesicles fuse with the plasma membrane to release neurotransmitter following an action potential, after which new vesicles must ‘dock’ to refill vacated release sites. To capture synaptic vesicle exocytosis at cultured mouse hippocampal synapses, we induced single action potentials by electrical field stimulation then subjected neurons to high-pressure freezing to examine their morphology by electron microscopy. During synchronous release, multiple vesicles can fuse at a single active zone. Fusions during synchronous release are distributed throughout the active zone, whereas fusions during asynchronous release are biased toward the center of the active zone. After stimulation, the total number of docked vesicles across all synapses decreases by ~40%. Within 14 ms, new vesicles are recruited and fully replenish the docked pool, but this docking is transient and they either undock or fuse within 100 ms. These results demonstrate that recruitment of synaptic vesicles to release sites is rapid and reversible.
Collapse
|
35
|
Mechanisms Underlying Enhancement of Spontaneous Glutamate Release by Group I mGluRs at a Central Auditory Synapse. J Neurosci 2020; 40:7027-7042. [PMID: 32801152 DOI: 10.1523/jneurosci.2771-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
One emerging concept in neuroscience states that synaptic vesicles and the molecular machinery underlying spontaneous transmitter release are different from those underlying action potential-driven synchronized transmitter release. Differential neuromodulation of these two distinct release modes by metabotropic glutamate receptors (mGluRs) constitutes critical supporting evidence. However, the mechanisms underlying such a differential modulation are not understood. Here, we investigated the mechanisms of the modulation by group I mGluRs (mGluR Is) on spontaneous glutamate release in the medial nucleus of the trapezoid body (MNTB), an auditory brainstem nucleus critically involved in sound localization. Whole-cell patch recordings from brainstem slices of mice of both sexes were performed. Activation of mGluR I by 3,5-dihydroxyphenylglycine (3,5-DHPG; 200 μm) produced an inward current at -60 mV and increased spontaneous glutamate release in MNTB neurons. Pharmacological evidence indicated involvement of both mGluR1 and mGluR5, which was further supported for mGluR5 by immunolabeling results. The modulation was eliminated by blocking NaV channels (tetrodotoxin, 1 μm), persistent Na+ current (I NaP; riluzole, 10 μm), or CaV channels (CdCl2, 100 μm). Presynaptic calyx recordings revealed that 3,5-DHPG shifted the activation of I NaP to more hyperpolarized voltages and increased I NaP at resting membrane potential. Our data indicate that mGluR I enhances spontaneous glutamate release via regulation of I NaP and subsequent Ca2+-dependent processes under resting condition.SIGNIFICANCE STATEMENT For brain cells to communicate with each other, neurons release chemical messengers, termed neurotransmitters, in response to action potential invasion (evoked release). Neurons also release neurotransmitters spontaneously. Recent work has revealed different release machineries underlying these two release modes, and their different roles in synaptic development and plasticity. Our recent work discovered differential neuromodulation of these two release modes, but the mechanisms are not well understood. The present study showed that activation of group I metabotropic glutamate receptors enhanced spontaneous glutamate release in an auditory brainstem nucleus, while suppressing evoked release. The modulation is dependent on a persistent Na+ current and involves subsequent Ca2+ signaling, providing insight into the mechanisms underlying the different release modes in auditory processing.
Collapse
|
36
|
Feldmeyer D, Wesseling JF, Sjöström PJ. Editorial: Methods for Synaptic Interrogation. Front Synaptic Neurosci 2020; 12:23. [PMID: 32587510 PMCID: PMC7298142 DOI: 10.3389/fnsyn.2020.00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Dirk Feldmeyer
- Institute of Neuroscience and Medicine 10 (INM-10), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University Hospital, Aachen, Germany
| | - John F Wesseling
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, Spain
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
37
|
Goel P, Nishimura S, Chetlapalli K, Li X, Chen C, Dickman D. Distinct Target-Specific Mechanisms Homeostatically Stabilize Transmission at Pre- and Post-synaptic Compartments. Front Cell Neurosci 2020; 14:196. [PMID: 32676010 PMCID: PMC7333441 DOI: 10.3389/fncel.2020.00196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons must establish and stabilize connections made with diverse targets, each with distinct demands and functional characteristics. At Drosophila neuromuscular junctions (NMJs), synaptic strength remains stable in a manipulation that simultaneously induces hypo-innervation on one target and hyper-innervation on the other. However, the expression mechanisms that achieve this exquisite target-specific homeostatic control remain enigmatic. Here, we identify the distinct target-specific homeostatic expression mechanisms. On the hypo-innervated target, an increase in postsynaptic glutamate receptor (GluR) abundance is sufficient to compensate for reduced innervation, without any apparent presynaptic adaptations. In contrast, a target-specific reduction in presynaptic neurotransmitter release probability is reflected by a decrease in active zone components restricted to terminals of hyper-innervated targets. Finally, loss of postsynaptic GluRs on one target induces a compartmentalized, homeostatic enhancement of presynaptic neurotransmitter release called presynaptic homeostatic potentiation (PHP) that can be precisely balanced with the adaptations required for both hypo- and hyper-innervation to maintain stable synaptic strength. Thus, distinct anterograde and retrograde signaling systems operate at pre- and post-synaptic compartments to enable target-specific, homeostatic control of neurotransmission.
Collapse
|
38
|
Sinha R. Shining Light on the Mode and Mechanism of Vesicular Release at Rod Photoreceptor Synapse. Biophys J 2020; 118:785-787. [PMID: 32101707 DOI: 10.1016/j.bpj.2019.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022] Open
Affiliation(s)
- Raunak Sinha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin; McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
39
|
Maschi D, Klyachko VA. Spatiotemporal dynamics of multi-vesicular release is determined by heterogeneity of release sites within central synapses. eLife 2020; 9:55210. [PMID: 32026806 PMCID: PMC7060041 DOI: 10.7554/elife.55210] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/23/2022] Open
Abstract
A synaptic active zone (AZ) can release multiple vesicles in response to an action potential. This multi-vesicular release (MVR) occurs at most synapses, but its spatiotemporal properties are unknown. Nanoscale-resolution detection of individual release events in hippocampal synapses revealed unprecedented heterogeneity among vesicle release sites within a single AZ, with a gradient of release probability decreasing from AZ center to periphery. Parallel to this organization, MVR events preferentially overlap with uni-vesicular release (UVR) events at sites closer to an AZ center. Pairs of fusion events comprising MVR are also not perfectly synchronized, and the earlier event tends to occur closer to AZ center. The spatial features of release sites and MVR events are similarly tightened by buffering intracellular calcium. These observations revealed a marked heterogeneity of release site properties within individual AZs, which determines the spatiotemporal features of MVR events and is controlled, in part, by non-uniform calcium elevation across the AZ.
Collapse
Affiliation(s)
- Dario Maschi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
40
|
Barros-Zulaica N, Rahmon J, Chindemi G, Perin R, Markram H, Muller E, Ramaswamy S. Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex. Front Synaptic Neurosci 2019; 11:29. [PMID: 31680928 PMCID: PMC6813366 DOI: 10.3389/fnsyn.2019.00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Previous studies based on the 'Quantal Model' for synaptic transmission suggest that neurotransmitter release is mediated by a single release site at individual synaptic contacts in the neocortex. However, recent studies seem to contradict this hypothesis and indicate that multi-vesicular release (MVR) could better explain the synaptic response variability observed in vitro. In this study we present a novel method to estimate the number of release sites per synapse, also known as the size of the readily releasable pool (NRRP), from paired whole-cell recordings of connections between layer 5 thick tufted pyramidal cell (L5_TTPC) in the juvenile rat somatosensory cortex. Our approach extends the work of Loebel et al. (2009) by leveraging a recently published data-driven biophysical model of neocortical tissue. Using this approach, we estimated NRRP to be between two to three for synaptic connections between L5_TTPCs. To constrain NRRP values for other connections in the microcircuit, we developed and validated a generalization approach using published data on the coefficient of variation (CV) of the amplitudes of post-synaptic potentials (PSPs) from literature and comparing them against in silico experiments. Our study predicts that transmitter release at synaptic connections in the neocortex could be mediated by MVR and provides a data-driven approach to constrain the MVR model parameters in the microcircuit.
Collapse
Affiliation(s)
| | - John Rahmon
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Giuseppe Chindemi
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Rodrigo Perin
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eilif Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
41
|
Hays CL, Grassmeyer JJ, Wen X, Janz R, Heidelberger R, Thoreson WB. Simultaneous Release of Multiple Vesicles from Rods Involves Synaptic Ribbons and Syntaxin 3B. Biophys J 2019; 118:967-979. [PMID: 31653448 DOI: 10.1016/j.bpj.2019.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
First proposed as a specialized mode of release at sensory neurons possessing ribbon synapses, multivesicular release has since been described throughout the central nervous system. Many aspects of multivesicular release remain poorly understood. We explored mechanisms underlying simultaneous multivesicular release at ribbon synapses in salamander retinal rod photoreceptors. We assessed spontaneous release presynaptically by recording glutamate transporter anion currents (IA(glu)) in rods. Spontaneous IA(glu) events were correlated in amplitude and kinetics with simultaneously measured miniature excitatory postsynaptic currents in horizontal cells. Both measures indicated that a significant fraction of events is multiquantal, with an analysis of IA(glu) revealing that multivesicular release constitutes ∼30% of spontaneous release events. IA(glu) charge transfer increased linearly with event amplitude showing that larger events involve greater glutamate release. The kinetics of large and small IA(glu) events were identical as were rise times of large and small miniature excitatory postsynaptic currents, indicating that the release of multiple vesicles during large events is highly synchronized. Effects of exogenous Ca2+ buffers suggested that multiquantal, but not uniquantal, release occurs preferentially near Ca2+ channels clustered beneath synaptic ribbons. Photoinactivation of ribbons reduced the frequency of spontaneous multiquantal events without affecting uniquantal release frequency, showing that spontaneous multiquantal release requires functional ribbons. Although both occur at ribbon-style active zones, the absence of cross-depletion indicates that evoked and spontaneous multiquantal release from ribbons involve different vesicle pools. Introducing an inhibitory peptide into rods to interfere with the SNARE protein, syntaxin 3B, selectively reduced multiquantal event frequency. These results support the hypothesis that simultaneous multiquantal release from rods arises from homotypic fusion among neighboring vesicles on ribbons and involves syntaxin 3B.
Collapse
Affiliation(s)
- Cassandra L Hays
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Justin J Grassmeyer
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Xiangyi Wen
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska; West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Roger Janz
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; The University of Texas MD Anderson Cancer Center University of Texas Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; The University of Texas MD Anderson Cancer Center University of Texas Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
42
|
Nolte M, Reimann MW, King JG, Markram H, Muller EB. Cortical reliability amid noise and chaos. Nat Commun 2019; 10:3792. [PMID: 31439838 PMCID: PMC6706377 DOI: 10.1038/s41467-019-11633-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/23/2019] [Indexed: 02/01/2023] Open
Abstract
Typical responses of cortical neurons to identical sensory stimuli appear highly variable. It has thus been proposed that the cortex primarily uses a rate code. However, other studies have argued for spike-time coding under certain conditions. The potential role of spike-time coding is directly limited by the internally generated variability of cortical circuits, which remains largely unexplored. Here, we quantify this internally generated variability using a biophysical model of rat neocortical microcircuitry with biologically realistic noise sources. We find that stochastic neurotransmitter release is a critical component of internally generated variability, causing rapidly diverging, chaotic recurrent network dynamics. Surprisingly, the same nonlinear recurrent network dynamics can transiently overcome the chaos in response to weak feed-forward thalamocortical inputs, and support reliable spike times with millisecond precision. Our model shows that the noisy and chaotic network dynamics of recurrent cortical microcircuitry are compatible with stimulus-evoked, millisecond spike-time reliability, resolving a long-standing debate.
Collapse
Affiliation(s)
- Max Nolte
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland.
| | - Michael W Reimann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - James G King
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Eilif B Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland.
| |
Collapse
|
43
|
Soares C, Trotter D, Longtin A, Béïque JC, Naud R. Parsing Out the Variability of Transmission at Central Synapses Using Optical Quantal Analysis. Front Synaptic Neurosci 2019; 11:22. [PMID: 31474847 PMCID: PMC6702664 DOI: 10.3389/fnsyn.2019.00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Properties of synaptic release dictates the core of information transfer in neural circuits. Despite decades of technical and theoretical advances, distinguishing bona fide information content from the multiple sources of synaptic variability remains a challenging problem. Here, we employed a combination of computational approaches with cellular electrophysiology, two-photon uncaging of MNI-Glutamate and imaging at single synapses. We describe and calibrate the use of the fluorescent glutamate sensor iGluSnFR and found that its kinetic profile is close to that of AMPA receptors, therefore providing several distinct advantages over slower methods relying on NMDA receptor activation (i.e., chemical or genetically encoded calcium indicators). Using an array of statistical methods, we further developed, and validated on surrogate data, an expectation-maximization algorithm that, by biophysically constraining release variability, extracts the quantal parameters n (maximum number of released vesicles) and p (unitary probability of release) from single-synapse iGluSnFR-mediated transients. Together, we present a generalizable mathematical formalism which, when applied to optical recordings, paves the way to an increasingly precise investigation of information transfer at central synapses.
Collapse
Affiliation(s)
- Cary Soares
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Trotter
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - André Longtin
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Richard Naud
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
44
|
Vaden JH, Banumurthy G, Gusarevich ES, Overstreet-Wadiche L, Wadiche JI. The readily-releasable pool dynamically regulates multivesicular release. eLife 2019; 8:47434. [PMID: 31364987 PMCID: PMC6716946 DOI: 10.7554/elife.47434] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023] Open
Abstract
The number of neurotransmitter-filled vesicles released into the synaptic cleft with each action potential dictates the reliability of synaptic transmission. Variability of this fundamental property provides diversity of synaptic function across brain regions, but the source of this variability is unclear. The prevailing view is that release of a single (univesicular release, UVR) or multiple vesicles (multivesicular release, MVR) reflects variability in vesicle release probability, a notion that is well-supported by the calcium-dependence of release mode. However, using mouse brain slices, we now demonstrate that the number of vesicles released is regulated by the size of the readily-releasable pool, upstream of vesicle release probability. Our results point to a model wherein protein kinase A and its vesicle-associated target, synapsin, dynamically control release site occupancy to dictate the number of vesicles released without altering release probability. Together these findings define molecular mechanisms that control MVR and functional diversity of synaptic signaling. Our nervous system allows us to rapidly sense and respond to the world around us via cells called neurons that relay electrical signals around the brain and body. When an electrical impulse travelling along one neuron reaches a junction – called a synapse – with a neighboring neuron, it stimulates small containers known as vesicles from the first cell to release their contents into the synapse. These contents then travel across to the neighboring cell and may generate a new electrical impulse. The number of vesicles at a synapse that are ready to be released varies from one to ten. The more vesicles the neuron releases, the more likely the second cell will produce an electrical signal of its own. However, not all electrical signals reaching a synapse stimulate vesicles to be released and some signals only release a single vesicle. What determines how many vesicles are released by a single electrical signal? Some vesicles have a higher likelihood of being released than others, but this “eagerness” does not always predict how many vesicles an individual synapse will actually discharge. Now, Vaden et al. have used brain tissue from mice to test an alternative possibility: the simple idea that the number of vesicles available at the synapse affects how many vesicles are released without altering their eagerness for release. Vaden et al. found that activating an enzyme called protein kinase A increased the number of vesicles released from synapses without changing how likely individual vesicles were to be released. Inhibiting protein kinase A also did not change individual vesicle’s eagerness to be released, but did decrease the number of vesicles that were discharged. Further experiments found that protein kinase A modifies a molecule on the surface of vesicles, known as synapsin, which controls the number of vesicles that are available for release. These findings show that the number of vesicles released at a synapse is controlled by two independently regulated parameters: the number of vesicles that are available, as well as how eager individual vesicles are to be released. The ability of neurons to communicate with each other is disrupted in autism spectrum disorders, Alzheimer’s disease and many other diseases. Learning how neurons communicate in healthy brains will help us understand what happens in the neurons of individuals with these conditions.
Collapse
Affiliation(s)
- Jada H Vaden
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | | | - Eugeny S Gusarevich
- Department of Fundamental and Applied Physics, Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| | | | - Jacques I Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
45
|
James B, Darnet L, Moya-Díaz J, Seibel SH, Lagnado L. An amplitude code transmits information at a visual synapse. Nat Neurosci 2019; 22:1140-1147. [DOI: 10.1038/s41593-019-0403-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
|
46
|
Heck J, Parutto P, Ciuraszkiewicz A, Bikbaev A, Freund R, Mitlöhner J, Andres-Alonso M, Fejtova A, Holcman D, Heine M. Transient Confinement of Ca V2.1 Ca 2+-Channel Splice Variants Shapes Synaptic Short-Term Plasticity. Neuron 2019; 103:66-79.e12. [PMID: 31104951 DOI: 10.1016/j.neuron.2019.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 01/12/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
The precision and reliability of synaptic information transfer depend on the molecular organization of voltage-gated calcium channels (VGCCs) within the presynaptic membrane. Alternative splicing of exon 47 affects the C-terminal structure of VGCCs and their affinity to intracellular partners and synaptic vesicles (SVs). We show that hippocampal synapses expressing VGCCs either with exon 47 (CaV2.1+47) or without (CaV2.1Δ47) differ in release probability and short-term plasticity. Tracking single channels revealed transient visits (∼100 ms) of presynaptic VGCCs in nanodomains (∼80 nm) that were controlled by neuronal network activity. Surprisingly, despite harboring prominent binding sites to scaffold proteins, CaV2.1+47 persistently displayed higher mobility within nanodomains. Synaptic accumulation of CaV2.1 was accomplished by optogenetic clustering, but only CaV2.1+47 increased transmitter release and enhanced synaptic short-term depression. We propose that exon 47-related alternative splicing of CaV2.1 channels controls synapse-specific release properties at the level of channel mobility-dependent coupling between VGCCs and SVs.
Collapse
Affiliation(s)
- Jennifer Heck
- Research Group Molecular Physiology, Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany; Research Group Functional Neurobiology at the Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Pierre Parutto
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
| | - Anna Ciuraszkiewicz
- Research Group Molecular Physiology, Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany
| | - Arthur Bikbaev
- Research Group Molecular Physiology, Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany; Research Group Functional Neurobiology at the Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Romy Freund
- Research Group Molecular Physiology, Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Jessica Mitlöhner
- Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Maria Andres-Alonso
- Research Group Presynaptic Plasticity, Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Anna Fejtova
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany; Research Group Presynaptic Plasticity, Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - David Holcman
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France; Churchill College, University of Cambridge, Cambridge CB3 0DS, UK.
| | - Martin Heine
- Research Group Molecular Physiology, Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany; Research Group Functional Neurobiology at the Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
47
|
Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope. J Neurosci 2019; 39:4077-4099. [PMID: 30867259 DOI: 10.1523/jneurosci.1801-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Phase locking of auditory-nerve-fiber (ANF) responses to the fine structure of acoustic stimuli is a hallmark of the auditory system's temporal precision and is important for many aspects of hearing. Period histograms from phase-locked ANF responses to low-frequency tones exhibit spike-rate and temporal asymmetries, but otherwise retain an approximately sinusoidal shape as stimulus level increases, even beyond the level at which the mean spike rate saturates. This is intriguing because apical cochlear mechanical vibrations show little compression, and mechanoelectrical transduction in the receptor cells is thought to obey a static sigmoidal nonlinearity, which might be expected to produce peak clipping at moderate and high stimulus levels. Here we analyze phase-locked responses of ANFs from cats of both sexes. We show that the lack of peak clipping is due neither to ANF refractoriness nor to spike-rate adaptation on time scales longer than the stimulus period. We demonstrate that the relationship between instantaneous pressure and instantaneous rate is well described by an exponential function whose slope decreases with increasing stimulus level. Relatively stereotyped harmonic distortions in the input to the exponential can account for the temporal asymmetry of the period histograms, including peak splitting. We show that the model accounts for published membrane-potential waveforms when assuming a power-of-three, but not a power-of-one, relationship to exocytosis. Finally, we demonstrate the relationship between the exponential transfer functions and the sigmoidal pseudotransducer functions obtained in the literature by plotting the maxima and minima of the voltage responses against the maxima and minima of the stimuli.SIGNIFICANCE STATEMENT Phase locking of auditory-nerve-fiber responses to the temporal fine structure of acoustic stimuli is important for many aspects of hearing, but the mechanisms underlying phase locking are not fully understood. Intriguingly, period histograms retain an approximately sinusoidal shape across sound levels, even when the mean rate has saturated. We find that neither refractoriness nor spike-rate adaptation is responsible for this behavior. Instead, the peripheral auditory system operates as though it contains an exponential transfer function whose slope changes with stimulus level. The underlying mechanism is distinct from the comparatively weak cochlear mechanical compression in the cochlear apex, and likely resides in the receptor cells.
Collapse
|
48
|
Gustafsson B, Ma R, Hanse E. The Small and Dynamic Pre-primed Pool at the Release Site; A Useful Concept to Understand Release Probability and Short-Term Synaptic Plasticity? Front Synaptic Neurosci 2019; 11:7. [PMID: 30899219 PMCID: PMC6416800 DOI: 10.3389/fnsyn.2019.00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/20/2019] [Indexed: 11/23/2022] Open
Abstract
Advanced imaging techniques have revealed that synapses contain nanomodules in which pre- and post-synaptic molecules are brought together to form an integrated subsynaptic component for vesicle release and transmitter reception. Based on data from an electrophysiological study of ours in which release from synapses containing a single nanomodule was induced by brief 50 Hz trains using minimal stimulation, and on data from such imaging studies, we present a possible modus operandi of such a nanomodule. We will describe the techniques and tools used to obtain and analyze the electrophysiological data from single CA3–CA1 hippocampal synapses from the neonatal rat brain. This analysis leads to the proposal that a nanomodule, despite containing a number of release locations, operates as a single release site, releasing at most a single vesicle at a time. In this nanomodule there appears to be two separate sets of release locations, one set that is responsible for release in response to the first few action potentials and another set that produces the release thereafter. The data also suggest that vesicles at the first set of release locations are primed by synaptic inactivity lasting seconds, this synaptic inactivity also resulting in a large heterogeneity in the values for vesicle release probability among the synapses. The number of vesicles being primed at this set of release locations prior to the arrival of an action potential is small (0–3) and varies from train to train. Following the first action potential, this heterogeneity in vesicle release probability largely vanishes in a release-independent manner, shaping a variation in paired-pulse plasticity among the synapses. After the first few action potentials release is produced from the second set of release locations, and is given by vesicles that have been recruited after the onset of synaptic activity. This release depends on the number of such release locations and the recruitment to such a location. The initial heterogeneity in vesicle release probability, its disappearance after a single action potential, and variation in the recruitment to the second set of release locations are instrumental in producing the heterogeneity in short-term synaptic plasticity among these synapses, and can be seen as means to create differential dynamics within a synapse population.
Collapse
Affiliation(s)
- Bengt Gustafsson
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rong Ma
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eric Hanse
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Individual synaptic vesicles mediate stimulated exocytosis from cochlear inner hair cells. Proc Natl Acad Sci U S A 2018; 115:12811-12816. [PMID: 30463957 PMCID: PMC6294930 DOI: 10.1073/pnas.1811814115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Synaptic transmission is codetermined by presynaptic and postsynaptic neurons. Therefore, to understand how the inner hair cell (IHC) signals to spiral ganglion neurons at the first synapse in the auditory pathway, here we directly studied individual membrane fusion events by making cell-attached membrane capacitance recordings from IHCs, for which the quantal size is debated. The observed fusion steps in membrane capacitance are consistent with the quantal hypothesis of synaptic transmission in which individual synaptic vesicles undergo exocytosis independently from each other. This finding, in conjunction with previous work, raises the exciting possibility that action potential generation can be triggered by the release of a single vesicle at the IHC synapse. Spontaneous excitatory postsynaptic currents (sEPSCs) measured from the first synapse in the mammalian auditory pathway reach a large mean amplitude with a high level of variance (CV between 0.3 and 1). This has led some to propose that each inner hair cell (IHC) ribbon-type active zone (AZ), on average, releases ∼6 synaptic vesicles (SVs) per sEPSC in a coordinated manner. If true, then the predicted change in membrane capacitance (Cm) for such multivesicular fusion events would equate to ∼300 attofarads (aF). Here, we performed cell-attached Cm measurements to directly examine the size of fusion events at the basolateral membrane of IHCs where the AZs are located. The frequency of events depended on the membrane potential and the expression of Cav1.3, the principal Ca2+-channel type of IHCs. Fusion events averaged 40 aF, which equates to a normal-sized SV with an estimated diameter of 37 nm. The calculated SV volumes showed a high degree of variance (CV > 0.6). These results indicate that SVs fused individually with the plasma membrane during spontaneous and evoked release and SV volume may contribute more variability in EPSC amplitude than previously assumed.
Collapse
|
50
|
Rollenhagen A, Ohana O, Sätzler K, Hilgetag CC, Kuhl D, Lübke JHR. Structural Properties of Synaptic Transmission and Temporal Dynamics at Excitatory Layer 5B Synapses in the Adult Rat Somatosensory Cortex. Front Synaptic Neurosci 2018; 10:24. [PMID: 30104970 PMCID: PMC6077225 DOI: 10.3389/fnsyn.2018.00024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022] Open
Abstract
Cortical computations rely on functionally diverse and highly dynamic synapses. How their structural composition affects synaptic transmission and plasticity and whether they support functional diversity remains rather unclear. Here, synaptic boutons on layer 5B (L5B) pyramidal neurons in the adult rat barrel cortex were investigated. Simultaneous patch-clamp recordings from synaptically connected L5B pyramidal neurons revealed great heterogeneity in amplitudes, coefficients of variation (CVs), and failures (F%) of EPSPs. Quantal analysis indicated multivesicular release as a likely source of this variability. Trains of EPSPs decayed with fast and slow time constants, presumably representing release from small readily releasable (RRP; 5.40 ± 1.24 synaptic vesicles) and large recycling (RP; 74 ± 21 synaptic vesicles) pools that were independent and highly variable at individual synaptic contacts (RRP range 1.2–12.8 synaptic vesicles; RP range 3.4–204 synaptic vesicles). Most presynaptic boutons (~85%) had a single, often perforated active zone (AZ) with a ~2 to 5-fold larger pre- (0.29 ± 0.19 μm2) and postsynaptic density (0.31 ± 0.21 μm2) when compared with even larger CNS synaptic boutons. They contained 200–3400 vesicles (mean ~800). At the AZ, ~4 and ~12 vesicles were located within a perimeter of 10 and 20 nm, reflecting docked and readily releasable vesicles of a putative RRP. Vesicles (~160) at 60–200 nm constituting the structural estimate of the presumed RP were ~2-fold larger than our functional estimate of the RP although both with a high variability. The remaining constituted a presumed large resting pool. Multivariate analysis revealed two clusters of L5B synaptic boutons distinguished by the size of their resting pool. Our functional and ultrastructural analyses closely link stationary properties, temporal dynamics and endurance of synaptic transmission to vesicular content and distribution within the presynaptic boutons suggesting that functional diversity of L5B synapses is enhanced by their structural heterogeneity.
Collapse
Affiliation(s)
- Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-2, INM-10, Research Centre Jülich GmbH, Jülich, Germany
| | - Ora Ohana
- Institute of Molecular and Cellular Cognition, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dietmar Kuhl
- Institute of Molecular and Cellular Cognition, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-2, INM-10, Research Centre Jülich GmbH, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Medical University Aachen, Aachen, Germany.,JARA-Brain Medicine, Aachen, Germany
| |
Collapse
|