1
|
Somogyi P, Horie S, Lukacs I, Hunter E, Sarkany B, Viney T, Livermore J, Plaha P, Stacey R, Ansorge O, El Mestikawy S, Zhao Q. Synaptic Targets and Cellular Sources of CB1 Cannabinoid Receptor and Vesicular Glutamate Transporter-3 Expressing Nerve Terminals in Relation to GABAergic Neurons in the Human Cerebral Cortex. Eur J Neurosci 2025; 61:e16652. [PMID: 39810425 PMCID: PMC11733414 DOI: 10.1111/ejn.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025]
Abstract
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3. Of the CB1-immunopositive GABAergic terminals, 25% were vesicular-glutamate-transporter-3 (VGLUT3)-immunoreactive, suggesting GABAergic/glutamatergic co-transmission on dendritic shafts. In vitro recorded and labelled VGLUT3 or CB1-positive GABAergic interneurons expressed cholecystokinin, vasoactive-intestinal-polypeptide and calretinin, had diverse firing, axons and dendrites, and included rosehip, neurogliaform and basket cells, but not double bouquet or axo-axonic cells. CB1-positive interneurons innervated pyramidal cells and GABAergic interneurons. Glutamatergic synaptic terminals formed type-1 synapses and some were positive for CB1 receptor with a distribution that appeared different from that in GABAergic terminals. From the sampled VGLUT3-positive terminals, 60% formed type-1 synapses with dendritic spines (80%) or shafts (20%) and 52% were also positive for VGLUT1, suggesting intracortical origin. Some VGLUT3-positive terminals were immunopositive for vesicular-monoamine-transporter-2, suggesting 5-HT/glutamate co-transmission. Overall, the results show that CB1 regulates GABA release mainly to dendritic shafts of both pyramidal cells and interneurons and predict CB1-regulated co-release of GABA and glutamate from single cortical interneurons. We also demonstrate the co-existence of multiple vesicular glutamate transporters in a select population of terminals probably originating from cortical neurons and innervating dendritic spines in the human cerebral cortex.
Collapse
Affiliation(s)
- Peter Somogyi
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Sawa Horie
- Department of PharmacologyUniversity of OxfordOxfordUK
- Kawasaki Medical SchoolOkayamaJapan
- Department of Anatomy and NeurobiologyNational Defense Medical CollegeSaitamaJapan
| | - Istvan Lukacs
- Department of PharmacologyUniversity of OxfordOxfordUK
- Institute of Experimental MedicineBudapestHungary
| | - Emily Hunter
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | - James Livermore
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
- Department of NeurosurgeryLeeds General InfirmaryLeedsUK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniv. OxfordOxfordUK
| | - Salah El Mestikawy
- Douglas Research CentreMcGill University and the Montreal West Island IUHSSCMontréalCanada
| | - Qianru Zhao
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Chemical Biology, School of Pharmaceutical SciencesSouth‐Central Minzu UniversityWuhanChina
| |
Collapse
|
2
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
3
|
Nagy-Pál P, Veres JM, Fekete Z, Karlócai MR, Weisz F, Barabás B, Reéb Z, Hájos N. Structural Organization of Perisomatic Inhibition in the Mouse Medial Prefrontal Cortex. J Neurosci 2023; 43:6972-6987. [PMID: 37640552 PMCID: PMC10586541 DOI: 10.1523/jneurosci.0432-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Perisomatic inhibition profoundly controls neural function. However, the structural organization of inhibitory circuits giving rise to the perisomatic inhibition in the higher-order cortices is not completely known. Here, we performed a comprehensive analysis of those GABAergic cells in the medial prefrontal cortex (mPFC) that provide inputs onto the somata and proximal dendrites of pyramidal neurons. Our results show that most GABAergic axonal varicosities contacting the perisomatic region of superficial (layer 2/3) and deep (layer 5) pyramidal cells express parvalbumin (PV) or cannabinoid receptor type 1 (CB1). Further, we found that the ratio of PV/CB1 GABAergic inputs is larger on the somatic membrane surface of pyramidal tract neurons in comparison with those projecting to the contralateral hemisphere. Our morphologic analysis of in vitro labeled PV+ basket cells (PVBC) and CCK/CB1+ basket cells (CCKBC) revealed differences in many features. PVBC dendrites and axons arborized preferentially within the layer where their soma was located. In contrast, the axons of CCKBCs expanded throughout layers, although their dendrites were found preferentially either in superficial or deep layers. Finally, using anterograde trans-synaptic tracing we observed that PVBCs are preferentially innervated by thalamic and basal amygdala afferents in layers 5a and 5b, respectively. Thus, our results suggest that PVBCs can control the local circuit operation in a layer-specific manner via their characteristic arborization, whereas CCKBCs rather provide cross-layer inhibition in the mPFC.SIGNIFICANCE STATEMENT Inhibitory cells in cortical circuits are crucial for the precise control of local network activity. Nevertheless, in higher-order cortical areas that are involved in cognitive functions like decision-making, working memory, and cognitive flexibility, the structural organization of inhibitory cell circuits is not completely understood. In this study we show that perisomatic inhibitory control of excitatory cells in the medial prefrontal cortex is performed by two types of basket cells endowed with different morphologic properties that provide inhibitory inputs with distinct layer specificity on cells projecting to disparate areas. Revealing this difference in innervation strategy of the two basket cell types is a key step toward understanding how they fulfill their distinct roles in cortical network operations.
Collapse
Affiliation(s)
- Petra Nagy-Pál
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Judit M Veres
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsuzsanna Fekete
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Mária R Karlócai
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Filippo Weisz
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bence Barabás
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Reéb
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Norbert Hájos
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, Indiana 47405
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana 47405
| |
Collapse
|
4
|
Koukouli F, Montmerle M, Aguirre A, De Brito Van Velze M, Peixoto J, Choudhary V, Varilh M, Julio-Kalajzic F, Allene C, Mendéz P, Zerlaut Y, Marsicano G, Schlüter OM, Rebola N, Bacci A, Lourenço J. Visual-area-specific tonic modulation of GABA release by endocannabinoids sets the activity and coordination of neocortical principal neurons. Cell Rep 2022; 40:111202. [PMID: 36001978 PMCID: PMC9433882 DOI: 10.1016/j.celrep.2022.111202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
Perisomatic inhibition of pyramidal neurons (PNs) coordinates cortical network activity during sensory processing, and this role is mainly attributed to parvalbumin-expressing basket cells (BCs). However, cannabinoid receptor type 1 (CB1)-expressing interneurons are also BCs, but the connectivity and function of these elusive but prominent neocortical inhibitory neurons are unclear. We find that their connectivity pattern is visual area specific. Persistently active CB1 signaling suppresses GABA release from CB1 BCs in the medial secondary visual cortex (V2M), but not in the primary visual cortex (V1). Accordingly, in vivo, tonic CB1 signaling is responsible for higher but less coordinated PN activity in the V2M than in the V1. These differential firing dynamics in the V1 and V2M can be captured by a computational network model that incorporates visual-area-specific properties. Our results indicate a differential CB1-mediated mechanism controlling PN activity, suggesting an alternative connectivity scheme of a specific GABAergic circuit in different cortical areas. CB1+ basket cells exhibit visual-area-specific morphology and connectivity patterns Tonic CB1 signaling underlies high pyramidal neurons (PN) activity in V2M but not V1 Tonic CB1 signaling differentially modulates PN-correlated activity in V1 and V2M Numerical simulations capture specific CB1-dependent firing dynamics of V1 and V2M
Collapse
Affiliation(s)
- Fani Koukouli
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Martin Montmerle
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Andrea Aguirre
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Jérémy Peixoto
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Vikash Choudhary
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Marjorie Varilh
- INSERM, U1215 NeuroCentre Magendie, University of Bordeaux, 33077 Bordeaux, France
| | | | - Camille Allene
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Yann Zerlaut
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, University of Bordeaux, 33077 Bordeaux, France
| | - Oliver M Schlüter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nelson Rebola
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Alberto Bacci
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France.
| | - Joana Lourenço
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France.
| |
Collapse
|
5
|
Modulation of Coordinated Activity across Cortical Layers by Plasticity of Inhibitory Synapses. Cell Rep 2021; 30:630-641.e5. [PMID: 31968242 PMCID: PMC6988114 DOI: 10.1016/j.celrep.2019.12.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 11/25/2022] Open
Abstract
In the neocortex, synaptic inhibition shapes all forms of spontaneous and sensory evoked activity. Importantly, inhibitory transmission is highly plastic, but the functional role of inhibitory synaptic plasticity is unknown. In the mouse barrel cortex, activation of layer (L) 2/3 pyramidal neurons (PNs) elicits strong feedforward inhibition (FFI) onto L5 PNs. We find that FFI involving parvalbumin (PV)-expressing cells is strongly potentiated by postsynaptic PN burst firing. FFI plasticity modifies the PN excitation-to-inhibition (E/I) ratio, strongly modulates PN gain, and alters information transfer across cortical layers. Moreover, our LTPi-inducing protocol modifies firing of L5 PNs and alters the temporal association of PN spikes to γ-oscillations both in vitro and in vivo. All of these effects are captured by unbalancing the E/I ratio in a feedforward inhibition circuit model. Altogether, our results indicate that activity-dependent modulation of perisomatic inhibitory strength effectively influences the participation of single principal cortical neurons to cognition-relevant network activity. Feedforward inhibition (FFI) of layer 5 pyramidal neurons (PNs) is highly plastic Long-term potentiation of FFI modulates spiking activity of layer 5 PNs LTPi affects information transfer across cortical layers The strength of LTPi determines the phase locking of PN firing to γ-oscillations
Collapse
|
6
|
A Model for the Origin of Motion Direction Selectivity in Visual Cortex. J Neurosci 2020; 41:89-102. [PMID: 33203740 DOI: 10.1523/jneurosci.1362-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Motion perception is a vital part of our sensory repertoire in that it contributes to navigation, awareness of moving objects, and communication. Motion sense in carnivores and primates originates with primary visual cortical neurons selective for motion direction. More than 60 years after the discovery of these neurons, there is still no consensus on the mechanism underlying direction selectivity. This paper describes a model of the cat's visual system in which direction selectivity results from the well-documented orientation selectivity of inhibitory neurons: inhomogeneities in the orientation preference map for inhibitory neurons leads to spatially asymmetric inhibition, and thus to direction selectivity. Stimulation of the model with a drifting grating shows that direction selectivity results from the relative timing of excitatory and inhibitory inputs to a neuron. Using a stationary contrast-reversing grating reveals that the inhibitory input is spatially displaced in the preferred direction relative to the excitatory input, and that this asymmetry leads to the timing difference. More generally, the model yields physiologically realistic estimates of the direction selectivity index, and it reproduces the critical finding with contrast-reversing gratings that response phase advances with grating spatial phase. It is concluded that a model based on intracortical inhibition can account well for the known properties of direction selectivity in carnivores and primates.SIGNIFICANCE STATEMENT Motion perception is vital for navigation, communication, and the awareness of moving objects. Motion sense depends on cortical neurons that are selective for motion direction, and this paper describes a model for the physiological mechanism underlying cortical direction selectivity. The essence of the model is that intracortical inhibition of a direction-selective cell is spatially inhomogeneous and therefore depends on whether a stimulus generates inhibition before or after reaching the cell's receptive field: the response is weaker in the former than in the latter case. If the model is correct, it will contribute to the understanding of motion processing in carnivores and primates.
Collapse
|
7
|
Lourenço J, Koukouli F, Bacci A. Synaptic inhibition in the neocortex: Orchestration and computation through canonical circuits and variations on the theme. Cortex 2020; 132:258-280. [PMID: 33007640 DOI: 10.1016/j.cortex.2020.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| | - Fani Koukouli
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France
| | - Alberto Bacci
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
8
|
Lakatos P, O'Connell MN, Barczak A, McGinnis T, Neymotin S, Schroeder CE, Smiley JF, Javitt DC. The Thalamocortical Circuit of Auditory Mismatch Negativity. Biol Psychiatry 2020; 87:770-780. [PMID: 31924325 PMCID: PMC7103554 DOI: 10.1016/j.biopsych.2019.10.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) is an extensively validated biomarker of cognitive function across both normative and clinical populations and has previously been localized to supratemporal auditory cortex. MMN is thought to represent a comparison of the features of the present stimulus versus a mnemonic template formed by the prior stimuli. METHODS We used concurrent thalamic and primary auditory cortical (A1) laminar recordings in 7 macaques to evaluate the relative contributions of core (lemniscal) and matrix (nonlemniscal) thalamic afferents to MMN generation. RESULTS We demonstrated that deviance-related activity is observed mainly in matrix regions of auditory thalamus, MMN generators are most prominent in layer 1 of cortex as opposed to sensory responses that activate layer 4 first and sequentially all cortical layers, and MMN is elicited independent of the frequency tuning of A1 neuronal ensembles. Consistent with prior reports, MMN-related thalamocortical activity was strongly inhibited by ketamine. CONCLUSIONS Taken together, our results demonstrate distinct matrix versus core thalamocortical circuitry underlying the generation of a higher-order brain response (MMN) versus sensory responses.
Collapse
Affiliation(s)
- Peter Lakatos
- Translational Neuroscience Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; Department of Psychiatry, New York University School of Medicine, New York, New York.
| | - Monica N O'Connell
- Translational Neuroscience Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Annamaria Barczak
- Translational Neuroscience Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Tammy McGinnis
- Translational Neuroscience Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Samuel Neymotin
- Translational Neuroscience Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Charles E Schroeder
- Translational Neuroscience Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; Department of Neurosurgery, Columbia University College of Physicians and Surgeons, New York, New York; Department of Neurosurgery, Columbia University College of Physicians and Surgeons, New York, New York
| | - John F Smiley
- Translational Neuroscience Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; Department of Psychiatry, New York University School of Medicine, New York, New York
| | - Daniel C Javitt
- Translational Neuroscience Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; Department of Neurosurgery, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
9
|
Gandolfi D, Bigiani A, Porro CA, Mapelli J. Inhibitory Plasticity: From Molecules to Computation and Beyond. Int J Mol Sci 2020; 21:E1805. [PMID: 32155701 PMCID: PMC7084224 DOI: 10.3390/ijms21051805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Synaptic plasticity is the cellular and molecular counterpart of learning and memory and, since its first discovery, the analysis of the mechanisms underlying long-term changes of synaptic strength has been almost exclusively focused on excitatory connections. Conversely, inhibition was considered as a fixed controller of circuit excitability. Only recently, inhibitory networks were shown to be finely regulated by a wide number of mechanisms residing in their synaptic connections. Here, we review recent findings on the forms of inhibitory plasticity (IP) that have been discovered and characterized in different brain areas. In particular, we focus our attention on the molecular pathways involved in the induction and expression mechanisms leading to changes in synaptic efficacy, and we discuss, from the computational perspective, how IP can contribute to the emergence of functional properties of brain circuits.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
- Department of Brain and behavioral sciences, University of Pavia, 27100 Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| | - Carlo Adolfo Porro
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| |
Collapse
|
10
|
Deleuze C, Bhumbra GS, Pazienti A, Lourenço J, Mailhes C, Aguirre A, Beato M, Bacci A. Strong preference for autaptic self-connectivity of neocortical PV interneurons facilitates their tuning to γ-oscillations. PLoS Biol 2019; 17:e3000419. [PMID: 31483783 PMCID: PMC6726197 DOI: 10.1371/journal.pbio.3000419] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/05/2019] [Indexed: 12/23/2022] Open
Abstract
Parvalbumin (PV)-positive interneurons modulate cortical activity through highly specialized connectivity patterns onto excitatory pyramidal neurons (PNs) and other inhibitory cells. PV cells are autoconnected through powerful autapses, but the contribution of this form of fast disinhibition to cortical function is unknown. We found that autaptic transmission represents the most powerful inhibitory input of PV cells in neocortical layer V. Autaptic strength was greater than synaptic strength onto PNs as a result of a larger quantal size, whereas autaptic and heterosynaptic PV-PV synapses differed in the number of release sites. Overall, single-axon autaptic transmission contributed to approximately 40% of the global inhibition (mostly perisomatic) that PV interneurons received. The strength of autaptic transmission modulated the coupling of PV-cell firing with optogenetically induced γ-oscillations, preventing high-frequency bursts of spikes. Autaptic self-inhibition represents an exceptionally large and fast disinhibitory mechanism, favoring synchronization of PV-cell firing during cognitive-relevant cortical network activity. Parvalbumin-positive interneurons modulate cortical activity via highly specialized connections to excitatory pyramidal neurons and other inhibitory cells. However, this study shows that fast autaptic self-inhibition is the major output of parvalbumin-positive basket cells in the neocortex and serves to modulate phase-locking of these interneurons during gamma-oscillations.
Collapse
Affiliation(s)
- Charlotte Deleuze
- ICM-Institut du Cerveau et de la Moelle épinière, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Gary S Bhumbra
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | | | - Joana Lourenço
- ICM-Institut du Cerveau et de la Moelle épinière, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Caroline Mailhes
- ICM-Institut du Cerveau et de la Moelle épinière, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Andrea Aguirre
- ICM-Institut du Cerveau et de la Moelle épinière, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Marco Beato
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Alberto Bacci
- ICM-Institut du Cerveau et de la Moelle épinière, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| |
Collapse
|
11
|
Mederos S, Perea G. GABAergic-astrocyte signaling: A refinement of inhibitory brain networks. Glia 2019; 67:1842-1851. [PMID: 31145508 PMCID: PMC6772151 DOI: 10.1002/glia.23644] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
Abstract
Interneurons play a critical role in precise control of network operation. Indeed, higher brain capabilities such as working memory, cognitive flexibility, attention, or social interaction rely on the action of GABAergic interneurons. Evidence from excitatory neurons and synapses has revealed astrocytes as integral elements of synaptic transmission. However, GABAergic interneurons can also engage astrocyte signaling; therefore, it is tempting to speculate about different scenarios where, based on particular interneuron cell type, GABAergic‐astrocyte interplay would be involved in diverse outcomes of brain function. In this review, we will highlight current data supporting the existence of dynamic GABAergic‐astrocyte communication and its impact on the inhibitory‐regulated brain responses, bringing new perspectives on the ways astrocytes might contribute to efficient neuronal coding.
Collapse
Affiliation(s)
- Sara Mederos
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
12
|
Berger JI, Coomber B, Hill S, Alexander SPH, Owen W, Palmer AR, Wallace MN. Effects of the cannabinoid CB 1 agonist ACEA on salicylate ototoxicity, hyperacusis and tinnitus in guinea pigs. Hear Res 2017; 356:51-62. [PMID: 29108871 PMCID: PMC5714060 DOI: 10.1016/j.heares.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 11/25/2022]
Abstract
Cannabinoids have been suggested as a therapeutic target for a variety of brain disorders. Despite the presence of their receptors throughout the auditory system, little is known about how cannabinoids affect auditory function. We sought to determine whether administration of arachidonyl-2′-chloroethylamide (ACEA), a highly-selective CB1 agonist, could attenuate a variety of auditory effects caused by prior administration of salicylate, and potentially treat tinnitus. We recorded cortical resting-state activity, auditory-evoked cortical activity and auditory brainstem responses (ABRs), from chronically-implanted awake guinea pigs, before and after salicylate + ACEA. Salicylate-induced reductions in click-evoked ABR amplitudes were smaller in the presence of ACEA, suggesting that the ototoxic effects of salicylate were less severe. ACEA also abolished salicylate-induced changes in cortical alpha band (6–10 Hz) oscillatory activity. However, salicylate-induced increases in cortical evoked activity (suggestive of the presence of hyperacusis) were still present with salicylate + ACEA. ACEA administered alone did not induce significant changes in either ABR amplitudes or oscillatory activity, but did increase cortical evoked potentials. Furthermore, in two separate groups of non-implanted animals, we found no evidence that ACEA could reverse behavioural identification of salicylate- or noise-induced tinnitus. Together, these data suggest that while ACEA may be potentially otoprotective, selective CB1 agonists are not effective in diminishing the presence of tinnitus or hyperacusis. CB1 agonist (ACEA) effects were assessed in awake guinea pigs following salicylate. Salicylate-induced decreases in brainstem response amplitudes were tempered by ACEA. Decreases in alpha band oscillations were not evident following salicylate + ACEA. ACEA did not eliminate salicylate-induced increases in cortical evoked potentials. ACEA failed to prevent or reverse salicylate- or noise-induced tinnitus behaviour.
Collapse
Affiliation(s)
- Joel I Berger
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - Ben Coomber
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Samantha Hill
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Steve P H Alexander
- School of Life Sciences, Medical School, The University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - William Owen
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Mark N Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
13
|
Sánchez-Ramón S, Faure F. The Thymus/Neocortex Hypothesis of the Brain: A Cell Basis for Recognition and Instruction of Self. Front Cell Neurosci 2017; 11:340. [PMID: 29163052 PMCID: PMC5663735 DOI: 10.3389/fncel.2017.00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
The recognition of internal and external sources of stimuli, the self from non-self, seems to be an intrinsic property to the adequate functioning of the immune system and the nervous system, both complex network systems that have evolved to safeguard the self biological identity of the organism. The mammalian brain development relies on dynamic and adaptive processes that are now well described. However, the rules dictating this highly constrained developmental process remain elusive. Here we hypothesize that there is a cellular basis for brain selfhood, based on the analogy of the global mechanisms that drive the self/non-self recognition and instruction by the immune system. In utero education within the thymus by multi-step selection processes discard overly low and high affinity T-lymphocytes to self stimuli, thus avoiding expendable or autoreactive responses that might lead to harmful autoimmunity. We argue that the self principle is one of the chief determinants of neocortical brain neurogenesis. According to our hypothesis, early-life education on self at the subcortical plate of the neocortex by selection processes might participate in the striking specificity of neuronal repertoire and assure efficiency and self tolerance. Potential implications of this hypothesis in self-reactive neurological pathologies are discussed, particularly involving consciousness-associated pathophysiological conditions, i.e., epilepsy and schizophrenia, for which we coined the term autophrenity.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Microbiology I, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Florence Faure
- PSL Research University, INSERM U932, Institut Curie, Paris, France
| |
Collapse
|
14
|
Characteristic and intermingled neocortical circuits encode different visual object discriminations. Behav Brain Res 2017; 331:261-275. [PMID: 28511982 DOI: 10.1016/j.bbr.2017.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 12/28/2022]
Abstract
Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place.
Collapse
|
15
|
Does Size Really Matter? The Role of Tonotopic Map Area Dynamics for Sound Learning in Mouse Auditory Cortex. eNeuro 2017; 4:eN-COM-0002-17. [PMID: 28197554 PMCID: PMC5307296 DOI: 10.1523/eneuro.0002-17.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/21/2022] Open
Abstract
This commentary centers on the novel findings by Shepard et al. (2016) published in eNeuro. The authors interrogated tonotopic map dynamics in auditory cortex (ACtx) by employing a natural sound-learning paradigm, where mothers learn the importance of pup ultrasonic vocalizations (USVs), allowing Shepard et al. to probe the role of map area expansion for auditory learning. They demonstrate that auditory learning in this paradigm does not rely on map expansion but is facilitated by increased inhibition of neurons tuned to low-frequency sounds. Here, we discuss the findings in light of the emerging enthusiasm for cortical inhibitory interneurons for circuit function and hypothesize how a particular interneuron type might be causally involved for the intriguing results obtained by Shepard et al.
Collapse
|
16
|
Lourenço J, Bacci A. Human-Specific Cortical Synaptic Connections and Their Plasticity: Is That What Makes Us Human? PLoS Biol 2017; 15:e2001378. [PMID: 28103228 PMCID: PMC5245906 DOI: 10.1371/journal.pbio.2001378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
One outstanding difference between Homo sapiens and other mammals is the ability to perform highly complex cognitive tasks and behaviors, such as language, abstract thinking, and cultural diversity. How is this accomplished? According to one prominent theory, cognitive complexity is proportional to the repetition of specific computational modules over a large surface expansion of the cerebral cortex (neocortex). However, the human neocortex was shown to also possess unique features at the cellular and synaptic levels, raising the possibility that expanding the computational module is not the only mechanism underlying complex thinking. In a study published in PLOS Biology, Szegedi and colleagues analyzed a specific cortical circuit from live postoperative human tissue, showing that human-specific, very powerful excitatory connections between principal pyramidal neurons and inhibitory neurons are highly plastic. This suggests that exclusive plasticity of specific microcircuits might be considered among the mechanisms endowing the human neocortex with the ability to perform highly complex cognitive tasks.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7225, Inserm U1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Alberto Bacci
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7225, Inserm U1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| |
Collapse
|
17
|
Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks. Neural Plast 2016; 2016:1478684. [PMID: 26885400 PMCID: PMC4738930 DOI: 10.1155/2016/1478684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/11/2015] [Indexed: 12/14/2022] Open
Abstract
Functional and effective connectivity of cortical areas are essential for normal brain function under different behavioral states. Appropriate cortical activity during sleep and wakefulness is ensured by the balanced activity of excitatory and inhibitory circuits. Ultimately, fast, millisecond cortical rhythmic oscillations shape cortical function in time and space. On a much longer time scale, brain function also depends on prior sleep-wake history and circadian processes. However, much remains to be established on how the brain operates at the neuronal level in humans during sleep and wakefulness. A key limitation of human neuroscience is the difficulty in isolating neuronal excitation/inhibition drive in vivo. Therefore, computational models are noninvasive approaches of choice to indirectly access hidden neuronal states. In this review, we present a physiologically driven in silico approach, Dynamic Causal Modelling (DCM), as a means to comprehend brain function under different experimental paradigms. Importantly, DCM has allowed for the understanding of how brain dynamics underscore brain plasticity, cognition, and different states of consciousness. In a broader perspective, noninvasive computational approaches, such as DCM, may help to puzzle out the spatial and temporal dynamics of human brain function at different behavioural states.
Collapse
|
18
|
Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, Patel S, Tolias AS. Principles of connectivity among morphologically defined cell types in adult neocortex. Science 2015; 350:aac9462. [PMID: 26612957 DOI: 10.1126/science.aac9462] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the work of Ramón y Cajal in the late 19th and early 20th centuries, neuroscientists have speculated that a complete understanding of neuronal cell types and their connections is key to explaining complex brain functions. However, a complete census of the constituent cell types and their wiring diagram in mature neocortex remains elusive. By combining octuple whole-cell recordings with an optimized avidin-biotin-peroxidase staining technique, we carried out a morphological and electrophysiological census of neuronal types in layers 1, 2/3, and 5 of mature neocortex and mapped the connectivity between more than 11,000 pairs of identified neurons. We categorized 15 types of interneurons, and each exhibited a characteristic pattern of connectivity with other interneuron types and pyramidal cells. The essential connectivity structure of the neocortical microcircuit could be captured by only a few connectivity motifs.
Collapse
Affiliation(s)
- Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Shan Shen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Cathryn R Cadwell
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Philipp Berens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA. Bernstein Centre for Computational Neuroscience, Tübingen, Germany. Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany. Werner Reichardt Center for Integrative Neuroscience and Institute of Theoretical Physics, University of Tübingen, Tübingen, Germany
| | - Fabian Sinz
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Alexander S Ecker
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA. Bernstein Centre for Computational Neuroscience, Tübingen, Germany. Werner Reichardt Center for Integrative Neuroscience and Institute of Theoretical Physics, University of Tübingen, Tübingen, Germany. Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Saumil Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA. Bernstein Centre for Computational Neuroscience, Tübingen, Germany.
| |
Collapse
|