1
|
Hong Y, Gao Z, Wei H, Wei Y, Qiu Z, Xiao J, Huang W. Bi-directional association of body size and composition with heart failure: A Mendelian randomization study. Int J Cardiol 2024; 407:132069. [PMID: 38642721 DOI: 10.1016/j.ijcard.2024.132069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE The effect of obesity on the development of heart failure (HF) has received attention, and this study intends to further explore the bidirectional association between body size or composition and HF by using Mendelian Randomization (MR) approach. DESIGN We performed a two-sample bidirectional MR study to investigate the association between body size or composition and the risk of HF using aggregated data from genome-wide association studies. Univariable MR analysis was used to investigate the causal relationship, and multivariable MR analysis was used to explore the mediating role of general and central obesity in the relationship between body size or composition and HF. RESULTS This forward MR study found that body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), fat mass (FM) and fat-free mass (FFM) were risk factors for the development of HF with the strength of causal association BMI > FM > WC > FFM > WHR. After adjusting for BMI, the observed associations between the remaining indicators and heart failure attenuated to null. After adjusting for WC, only BMI (OR = 1.59, 95%CI: 1.32-1.92, P = 9.53E-07) and FM (OR = 1.39, 95%CI: 1.20-1.62, P = 1.35E-0.5) kept significantly related to the risk of HF. Reverse MR analysis showed no association of changes in body size or composition with the onset of HF. CONCLUSION The two-sample bidirectional MR study found that general obesity, measured by BMI, was an independent indicator of the development of HF, while other related indicators were associated with HF incidence dependent on BMI, besides, no association was observed between HF diagnosis and the body size or composites.
Collapse
Affiliation(s)
- Yuqi Hong
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ziting Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Hongye Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yajing Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ziyi Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Xiao
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Fujian Provincial Clinical Research Center for Cardiovascular Diseases Heart Center of Fujian Medical University, Fuzhou, Fujian, China.
| | - Wuqing Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Huang W, Yang X, Zhang N, Chen K, Xiao J, Qiu Z, You S, Gao Z, Ji J, Chen L. PDE5 inhibition mitigates heart failure in hyperlipidemia. Biomed Pharmacother 2024; 175:116710. [PMID: 38713942 DOI: 10.1016/j.biopha.2024.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024] Open
Abstract
PDE5 inhibitors was reported to play a protective role in both regulating lipid metabolism and reducing heart failure (HF). This study aimed to clarify the effectiveness of PDE5 inhibitors against hyperlipidemia-related HF by combining evidence from population-based study and animal models. The nationwide cohort study found that post-diagnostic use of PDE5 inhibitors was associated with a significantly lower risk of HF compared with patients who used alprostadil, especially among individuals with hyperlipidemia (adjusted HR = 0.56, 95% CI = 0.40-0.78). In animal models, sildenafil significantly recovered the cardiac structure and function induced by AAB surgery, as well as reversed liver dysfunction and ameliorated hyperlipidemia induced by HFD via reducing the level of ALT, AST and serum lipids. Lipidomic analysis identified four lipid metabolites involved in sildenafil administration, including FA 16:3, LPC O-18:1, DG24:0_18:0 and SE28:1/20:4. This study revealed the protective effect of PDE5 inhibitors against HF in hyperlipidemia, indicating the potential of being repurposed as an adjuvant for HF prevention in patients with hyperlipidemia if these findings can be further confirmed in clinical trials.
Collapse
Affiliation(s)
- Wuqing Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| | - Xi Yang
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Naiqi Zhang
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden; Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Keyuan Chen
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jun Xiao
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhihuang Qiu
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Sujun You
- Department of Echocardiography, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Ziting Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden.
| | - Liangwan Chen
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Papapetropoulos A, Lefer DJ. sGC Stimulation Saves the Diabetic Heart: Red Blood Cells to the Rescue. JACC Basic Transl Sci 2023; 8:919-921. [PMID: 37719422 PMCID: PMC10504393 DOI: 10.1016/j.jacbts.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Affiliation(s)
- Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - David J. Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
4
|
El‐Battrawy I, Demmer J, Abumayyaleh M, Crack C, Pilsinger C, Zhou X, Mügge A, Akin I, Aweimer A. The impact of sacubitril/valsartan on outcome in patients suffering from heart failure with a concomitant diabetes mellitus. ESC Heart Fail 2023; 10:943-954. [PMID: 36479630 PMCID: PMC10053359 DOI: 10.1002/ehf2.14239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Guidelines classify sacubitril/valsartan as a significant part of medical treatment of heart failure with reduced ejection fraction (HFrEF). Data have shown that the HbA1c levels in patients with diabetes mellitus could be impacted by sacubitril/valsartan. A possible positive effect in diabetes patients treated with sacubitril/valsartan on outcome and echocardiography parameters is not well studied yet. AIMS The aim of the present study was to compare the impact of sacubitril/valsartan on life-threatening arrhythmias, atrial fibrillation, different echocardiography parameters and congestion rate in patients suffering from HFrEF according to the diagnosis diabetes mellitus or no diabetes mellitus. METHODS AND RESULTS Consecutive 240 patients with HFrEF from 2016 to 2020 were treated with sacubitril/valsartan and separated to concomitant diabetes mellitus (n = 87, median age 68 years interquartile range (IQR) [32-87]) or no diabetes mellitus (n = 153, median age 66 year IQR [34-89]). Different comorbidities and outcome data were evaluated over a follow-up period of 24 months. Arterial hypertension (87% vs. 64%; P < 0.01) and coronary artery disease (74% vs. 60%; P = 0.03) were more often documented in patients with diabetes mellitus compared with patients without diabetes mellitus. Over the follow-up of 24 months several changes were noted in both subgroups: Median left ventricular ejection fraction (EF) increased significantly in non-diabetes (27% IQR [3-44] at baseline to 35% IQR [13-64]; P < 0.001), but not in diabetic patients (29% IQR [10-65] at baseline to 30% IQR [13-55]; P = 0.11). Accordingly, NT-proBNP and troponin-I levels decreased significantly in non-diabetes patients (NT-brain natriuretic peptide [NT-proBNP] from median 1445 pg/mL IQR [12.6-74 676] to 491 pg/mL IQR [13-4571]; P < 0.001, troponin-I levels from 0.099 ng/mL IQR [0.009-138.69] to 0.023 ng/mL IQR [0.006-0.635]; P < 0.001), but not in diabetic patients (NT-proBNP from 1395 pg/mL IQR [100-29 924] to 885 pg/mL IQR [159-4331]; P = 0.06, troponin-I levels from 0.05 ng/mL IQR [0.013-103.0] to 0.020 ng/mL IQR [0.015-0.514]; P = 0.27). No significant change of laboratory parameters e. g. glomerular filtration rate, potassium level and creatinine levels were found in diabetes or non-diabetes patients. Comparing further echocardiography data, left atrial surface area, right atrial surface area, E/A ratio did not show a significant change either in the diabetes or non-diabetes group. However, the tricuspid annular plane systolic excursion was significantly increased in non-diabetes mellitus patients (from 17 mm IQR [3-31] to 18 mm [2.5-31]; P = 0.04), and not in diabetic s patients (17.5 mm IQR [8-30] to 18 mm IQR [14-31]; P = 0.70); the systolic pulmonary artery pressure remained unchanged in both groups. During follow-up, a similar rate of ventricular tachyarrhythmias was observed in both groups. The congestion rate decreased significantly in both groups, in diabetes patients (44.4% before sacubitril/valsartan and 13.5% after 24 months treatment; P = 0.0009) and in non-diabetic patients (28.4% before sacubitril/valsartan and 8.4% after 24 months treatment; P = 0.0004). The all-cause mortality rate was higher in patients with diabetes mellitus as compared with those without diabetes (25% vs. 8.1%; P < 0.01). CONCLUSIONS Sacubitril/valsartan reverses cardiac remodelling in non-diabetes patients. However, it reduces the congestion rate in diabetes and non-diabetes patients. The rates of ventricular tachyarrhythmias were similar in DM compared with non-DM over follow-up. The mortality rate remained to be over follow-up higher in diabetes patients compared with non-diabetes; however, it was lower compared with published data on diabetes and concomitant HFrEF not treated with sacubitril/valsartan.
Collapse
Affiliation(s)
- Ibrahim El‐Battrawy
- Department of Cardiology and Angiology, Bergmannsheil University HospitalsRuhr University of Bochum44789BochumGermany
| | | | | | | | | | | | - Andreas Mügge
- Department of Cardiology and Angiology, Bergmannsheil University HospitalsRuhr University of Bochum44789BochumGermany
| | | | - Assem Aweimer
- Department of Cardiology and Angiology, Bergmannsheil University HospitalsRuhr University of Bochum44789BochumGermany
| |
Collapse
|
5
|
Jing G, Xia Z, Lei Q. Co-expression of soluble guanylyl cyclase subunits and PDE5A shRNA to elevate cellular cGMP level: A potential gene therapy for myocardial cell death. Technol Health Care 2022; 31:901-910. [PMID: 36442224 DOI: 10.3233/thc-220333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: Genetic manipulation on the NO-sGC-cGMP pathway has been rarely achieved, partially due to complexity of the soluble guanylyl cyclase (sGC) enzyme. OBJECTIVE: We aim to develop gene therapy directly targeting the pathway to circumvent cytotoxicity and tolerance after prolonged use of NO-donors and the insufficiency of PDE inhibitors. METHODS: In this study, we constructed lentivirus vectors expressing GUCY1A3 and GUCY1B3 genes, which encoded the α1 and β1 subunits of soluble guanylyl cyclase (sGC), respectively, to enhance cGMP synthesis. We also constructed lentiviral vector harboring PDE5A shRNA to alleviate phosphodiesterase activity and cGMP degradation. RESULTS: Transductions of human HEK293 cells with the constructs were successful, as indicated by the fluorescent signal and altered gene expression produced by each vector. Overexpression of GUCY1A3 and GUCY1B3 resulted in increased sGC enzyme activity and elevated cGMP level in the cells. Expression of PDE5A shRNA resulted in decreased PDE5A expression and elevated cGMP level. Co-transduction of the three lentiviral vectors resulted in a more significant elevation of cGMP in HEK293 cells without obvious cytotoxicity. CONCLUSION: To the best of our knowledge, this is the first study to show that co-expression of exogenous subunits of the soluble guanylyl cyclase could form functional enzyme and increase cellular cGMP level in mammalian cells. Simultaneous expression of PDE5A shRNA could alleviate feedback up-regulation on PDE5A caused by cGMP elevation. Further studies are required to evaluate the effects of these constructs in vivo.
Collapse
Affiliation(s)
- Gao Jing
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
- Family Medicine Clinic, Tianjin United Family Healthcare, Tianjin, China
| | - Zhang Xia
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Quan Lei
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
6
|
Mak VW, Patel AM, Yen R, Hanisak J, Lim YH, Bao J, Zheng R, Seganish WM, Yu Y, Healy DR, Ogawa A, Ren Z, Soriano A, Ermakov GP, Beaumont M, Metwally E, Cheng AC, Verras A, Fischmann T, Zebisch M, Silvestre HL, McEwan PA, Barker J, Rearden P, Greshock TJ. Optimization and Mechanistic Investigations of Novel Allosteric Activators of PKG1α. J Med Chem 2022; 65:10318-10340. [PMID: 35878399 DOI: 10.1021/acs.jmedchem.1c02109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of PKG1α is a compelling strategy for the treatment of cardiovascular diseases. As the main effector of cyclic guanosine monophosphate (cGMP), activation of PKG1α induces smooth muscle relaxation in blood vessels, lowers pulmonary blood pressure, prevents platelet aggregation, and protects against cardiac stress. The development of activators has been mostly limited to cGMP mimetics and synthetic peptides. Described herein is the optimization of a piperidine series of small molecules to yield activators that demonstrate in vitro phosphorylation of vasodilator-stimulated phosphoprotein as well as antiproliferative effects in human pulmonary arterial smooth muscle cells. Hydrogen/deuterium exchange mass spectrometry experiments with the small molecule activators revealed a mechanism of action consistent with cGMP-induced activation, and an X-ray co-crystal structure with a construct encompassing the regulatory domains illustrated a binding mode in an allosteric pocket proximal to the low-affinity cyclic nucleotide-binding domain.
Collapse
Affiliation(s)
- Victor W Mak
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Akash M Patel
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Rose Yen
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jennifer Hanisak
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yeon-Hee Lim
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jianming Bao
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States.,Ionova Life Science, Shenzhen 518122, Guangdong, China
| | - Rong Zheng
- IDSU, Wuxi AppTec Co., Ltd, Shanghai 200131, China
| | - W Michael Seganish
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Yang Yu
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - David R Healy
- Discovery Biology, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Aimie Ogawa
- Quantitative Biosciences, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Zhao Ren
- Quantitative Biosciences, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Aileen Soriano
- Mass Spectrometry and Biophysics, Computation and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Grigori P Ermakov
- PPDM Discovery Bioanalytics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Maribel Beaumont
- PPDM Discovery Bioanalytics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Essam Metwally
- Computational and Structural Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Alan C Cheng
- Computational and Structural Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Andreas Verras
- Schrodinger Inc., 120 West 45th Street, 17th Floor, New York, New York 10036-4041, United States.,Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Thierry Fischmann
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Matthias Zebisch
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - H Leonardo Silvestre
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Paul A McEwan
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - John Barker
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Paul Rearden
- DMPK, Recursion Pharmaceuticals, Salt Lake City, Utah 84101, United States.,PPDM, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Thomas J Greshock
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Petraina A, Nogales C, Krahn T, Mucke H, Lüscher TF, Fischmeister R, Kass DA, Burnett JC, Hobbs AJ, Schmidt HHHW. Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovasc Res 2022; 118:2085-2102. [PMID: 34270705 PMCID: PMC9302891 DOI: 10.1093/cvr/cvab240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanism-based therapy centred on the molecular understanding of disease-causing pathways in a given patient is still the exception rather than the rule in medicine, even in cardiology. However, recent successful drug developments centred around the second messenger cyclic guanosine-3'-5'-monophosphate (cGMP), which is regulating a number of cardiovascular disease modulating pathways, are about to provide novel targets for such a personalized cardiovascular therapy. Whether cGMP breakdown is inhibited or cGMP synthesis is stimulated via guanylyl cyclases or their upstream regulators in different cardiovascular disease phenotypes, the outcomes seem to be so far uniformly protective. Thus, a network of cGMP-modulating drugs has evolved that act in a mechanism-based, possibly causal manner in a number of cardiac conditions. What remains a challenge is the detection of cGMPopathy endotypes amongst cardiovascular disease phenotypes. Here, we review the growing clinical relevance of cGMP and provide a glimpse into the future on how drugs interfering with this pathway may change how we treat and diagnose cardiovascular diseases altogether.
Collapse
Affiliation(s)
- Alexandra Petraina
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Thomas Krahn
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hermann Mucke
- H.M. Pharma Consultancy, Enenkelstrasse 28/32, A-1160, Vienna, Austria
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospitals, Heart Division and National Heart and Lung Institute, Guy Scadding Building, Imperial College, Dovehouse Street London SW3 6LY, United Kingdom
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistreet 12, CH-8952 Schlieren, Switzerland
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Faculty of Pharmacy, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - David A Kass
- Division of Cardiology, Department of Medicine, Ross Research Building, Rm 858, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - John C Burnett
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
The Role of Mitochondria in Metabolic Syndrome–Associated Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9196232. [PMID: 35783195 PMCID: PMC9246605 DOI: 10.1155/2022/9196232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022]
Abstract
With the rapid development of society, the incidence of metabolic syndrome (MS) is increasing rapidly. Evidence indicated that patients diagnosed with MS usually suffered from cardiomyopathy, called metabolic syndrome–associated cardiomyopathy (MSC). The clinical characteristics of MSC included cardiac hypertrophy and diastolic dysfunction, followed by heart failure. Despite many studies on this topic, the detailed mechanisms are not clear yet. As the center of cellular metabolism, mitochondria are crucial for maintaining heart function, while mitochondria dysfunction plays a vital role through mechanisms such as mitochondrial energy deprivation, calcium disorder, and ROS (reactive oxygen species) imbalance during the development of MSC. Accordingly, in this review, we will summarize the characteristics of MSC and especially focus on the mechanisms related to mitochondria. In addition, we will update new therapeutic strategies in this field.
Collapse
|
9
|
Chunduri P, Patel SA, Levick SP. Relaxin/serelaxin for cardiac dysfunction and heart failure in hypertension. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:183-211. [PMID: 35659372 DOI: 10.1016/bs.apha.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pregnancy related hormone relaxin is produced throughout the reproductive system. However, relaxin also has important cardiovascular effects as part of the adaptation that the cardiovascular system undergoes in response to the extra demands of pregnancy. These effects are primarily mediated by the relaxin family peptide receptor 1, which is one of four known relaxin receptors. The effects of relaxin on the cardiovascular system during pregnancy, as well as its anti-fibrotic and anti-inflammatory properties, have led to extensive studies into the potential of relaxin therapy as an approach to treat heart failure. Cardiomyocytes, cardiac fibroblasts, and endothelial cells all possess relaxin family peptide receptor 1, allowing for direct effects of therapeutic relaxin on the heart. Many pre-clinical animal studies have demonstrated a beneficial effect of exogenous relaxin on adverse cardiac remodeling including inflammation, fibrosis, cardiomyocyte hypertrophy and apoptosis, as well as effects on cardiac contractile function. Despite this, clinical studies have yielded disappointing results for the synthetic seralaxin, even though seralaxin was well tolerated. This article will provide background on relaxin in the context of normal physiology, as well as the role of relaxin in pregnancy-related adaptations of the cardiovascular system. We will also present evidence from pre-clinical animal studies that demonstrate the potential benefits of relaxin therapy, as well as discussing the results from clinical trials. Finally, we will discuss possible reasons for the failure of these clinical trials as well as steps being taken to potentially improve relaxin therapy for heart failure.
Collapse
Affiliation(s)
- Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shrey A Patel
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Scott P Levick
- Physiology and Pharmacology, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
10
|
Lukowski R, Feil R. Recent developments in cGMP research: From mechanisms to medicines and back. Br J Pharmacol 2022; 179:2321-2327. [PMID: 35332531 DOI: 10.1111/bph.15824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
A Real-Time, Plate-Based BRET Assay for Detection of cGMP in Primary Cells. Int J Mol Sci 2022; 23:ijms23031908. [PMID: 35163827 PMCID: PMC8837005 DOI: 10.3390/ijms23031908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP) is a second messenger involved in the regulation of numerous physiological processes. The modulation of cGMP is important in many diseases, but reliably assaying cGMP in live cells in a plate-based format with temporal resolution is challenging. The Förster/fluorescence resonance energy transfer (FRET)-based biosensor cGES-DE5 has a high temporal resolution and high selectivity for cGMP over cAMP, so we converted it to use bioluminescence resonance energy transfer (BRET), which is more compatible with plate-based assays. This BRET variant, called CYGYEL (cyclic GMP sensor using YFP-PDE5-Rluc8), was cloned into a lentiviral vector for use across different mammalian cell types. CYGYEL was characterised in HEK293T cells using the nitric oxide donor diethylamine NONOate (DEA), where it was shown to be dynamic, reversible, and able to detect cGMP with or without the use of phosphodiesterase inhibitors. In human primary vascular endothelial and smooth muscle cells, CYGYEL successfully detected cGMP mediated through either soluble or particulate guanylate cyclase using DEA or C-type natriuretic peptide, respectively. Notably, CYGYEL detected differences in kinetics and strength of signal both between ligands and between cell types. CYGYEL remained selective for cGMP over cAMP, but this selectivity was reduced compared to cGES-DE5. CYGYEL streamlines the process of cGMP detection in plate-based assays and can be used to detect cGMP activity across a range of cell types.
Collapse
|
12
|
Freitas GN, Silva CDO. Cardioprotector effect of Phosphodiesterase 5 inhibitors in experimental model for Diabetes Mellitus. ABCS HEALTH SCIENCES 2021. [DOI: 10.7322/abcshs.2019164.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Diabetes mellitus (DM) is considered a 21st century pandemic and is often associated with cardiovascular disease (CVD). The aim of this integrative review was to analyze the cardioprotective effects of phosdodiesterase-5 (PDE5i) inhibitors in experimental diabetes models. The articles were selected from the PubMed, SciElo and LILACS databases from 2014 to 2019. The following descriptors were used in combination with the Boolean operators: Diabetes mellitus experimental AND Phosphodiesterase 5 inhibitors; Diabetic cardiomyopathies AND Phosphodiesterase 5 inhibitors. An initial sample of 155 articles was obtained, of which six met the criteria for the synthesis of the review. The studies analyzed showed that treatment with PDE5i in experimental models, resulted in positive effects on cardiac function and metabolic parameters. Similar results have also been seen in humans. The reduction in cardiac hypertrophy, apoptosis of cardiomyocytes, pro-inflammatory factors and oxidative stress and the modulation of transcription factors involved in diabetes homeostasis, were prevalent among studies. The mechanisms of action involved in cardioprotection have not yet been fully elucidated, however the restoration of the activated cyclic guanosine monofate (cGMP) pathway by soluble guanylate cyclase (sGC) via nitric oxide (NO) was a common mechanism among the studies.
Collapse
|
13
|
Hofmann F. The cGMP system: components and function. Biol Chem 2021; 401:447-469. [PMID: 31747372 DOI: 10.1515/hsz-2019-0386] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) signaling system is one of the most prominent regulators of a variety of physiological and pathophysiological processes in many mammalian and non-mammalian tissues. Targeting this pathway by increasing cGMP levels has been a very successful approach in pharmacology as shown for nitrates, phosphodiesterase (PDE) inhibitors and stimulators of nitric oxide-guanylyl cyclase (NO-GC) and particulate GC (pGC). This is an introductory review to the cGMP signaling system intended to introduce those readers to this system, who do not work in this area. This article does not intend an in-depth review of this system. Signal transduction by cGMP is controlled by the generating enzymes GCs, the degrading enzymes PDEs and the cGMP-regulated enzymes cyclic nucleotide-gated ion channels, cGMP-dependent protein kinases and cGMP-regulated PDEs. Part A gives a very concise introduction to the components. Part B gives a very concise introduction to the functions modulated by cGMP. The article cites many recent reviews for those who want a deeper insight.
Collapse
Affiliation(s)
- Franz Hofmann
- Pharmakologisches Institut, Technische Universität München, Biedersteiner Str. 29, D-80802 München, Germany
| |
Collapse
|
14
|
Lukowski R, Cruz Santos M, Kuret A, Ruth P. cGMP and mitochondrial K + channels-Compartmentalized but closely connected in cardioprotection. Br J Pharmacol 2021; 179:2344-2360. [PMID: 33991427 DOI: 10.1111/bph.15536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
The 3',5'-cGMP pathway triggers cytoprotective responses and improves cardiomyocyte survival during myocardial ischaemia and reperfusion (I/R) injury. These beneficial effects were attributed to NO-sensitive GC induced cGMP production leading to activation of cGMP-dependent protein kinase I (cGKI). cGKI in turn phosphorylates many substrates, which eventually facilitate opening of mitochondrial ATP-sensitive potassium channels (mitoKATP ) and Ca2+ -activated potassium channels of the BK type (mitoBK). Accordingly, agents activating mitoKATP or mitoBK provide protection against I/R-induced damages. Here, we provide an up-to-date summary of the infarct-limiting actions exhibited by the GC/cGMP axis and discuss how mitoKATP and mitoBK, which are present at the inner mitochondrial membrane, confer mito- and cytoprotective effects on cardiomyocytes exposed to I/R injury. In view of this, we believe that the functional connection between the cGMP cascade and mitoK+ channels should be exploited further as adjunct to reperfusion therapy in myocardial infarction.
Collapse
Affiliation(s)
- Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
15
|
Feil R, Lehners M, Stehle D, Feil S. Visualising and understanding cGMP signals in the cardiovascular system. Br J Pharmacol 2021; 179:2394-2412. [PMID: 33880767 DOI: 10.1111/bph.15500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
cGMP is an important signalling molecule in humans. Fluorescent cGMP biosensors have emerged as powerful tools for the sensitive analysis of cGMP pathways at the single-cell level. Here, we briefly outline cGMP's multifaceted role in (patho)physiology and pharmacotherapy. Then we summarise what new insights cGMP imaging has provided into endogenous cGMP signalling and drug action, with a focus on the cardiovascular system. Indeed, the use of cGMP biosensors has led to several conceptual advances, such as the discovery of local, intercellular and mechanosensitive cGMP signals. Importantly, single-cell imaging can provide valuable information about the heterogeneity of cGMP signals within and between individual cells of an isolated cell population or tissue. We also discuss current challenges and future directions of cGMP imaging, such as the direct visualisation of cGMP microdomains, simultaneous monitoring of cGMP and other signalling molecules and, ultimately, cGMP imaging in tissues and animals under close-to-native conditions.
Collapse
Affiliation(s)
- Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Moritz Lehners
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Abstract
The 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type I (cGKI aka PKGI) is a major cardiac effector acting downstream of nitric oxide (NO)-sensitive soluble guanylyl cyclase and natriuretic peptides (NPs), which signal through transmembrane guanylyl cyclases. Consistent with the wide distribution of the cGMP-generating guanylyl cyclases, cGKI, which usually elicits its cellular effects by direct phosphorylation of its targets, is present in multiple cardiac cell types including cardiomyocytes (CMs). Although numerous targets of cGMP/cGKI in heart were identified in the past, neither their exact patho-/physiological functions nor cell-type specific roles are clear. Herein, we inform about the current knowledge on the signal transduction downstream of CM cGKI. We believe that better insights into the specific actions of cGMP and cGKI in these cells will help to guide future studies in the search for predictive biomarkers for the response to pharmacological cGMP pathway modulation. In addition, targets downstream of cGMP/cGKI may be exploited for refined and optimized diagnostic and therapeutic strategies in different types of heart disease and their causes. Importantly, key functions of these proteins and particularly sites of regulatory phosphorylation by cGKI should, at least in principle, remain intact, although upstream signaling through the second messenger cGMP is impaired or dysregulated in a stressed or diseased heart state.
Collapse
|
17
|
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is the key second messenger molecule in nitric oxide signaling. Its rapid generation and fate, but also its role in mediating acute cellular functions has been extensively studied. In the past years, genetic studies suggested an important role for cGMP in affecting the risk of chronic cardiovascular diseases, for example, coronary artery disease and myocardial infarction. Here, we review the role of cGMP in atherosclerosis and other cardiovascular diseases and discuss recent genetic findings and identified mechanisms. Finally, we highlight open questions and promising research topics.
Collapse
|
18
|
Khan MS, Felker GM, Piña IL, Camacho A, Bapat D, Ibrahim NE, Maisel AS, Prescott MF, Ward JH, Solomon SD, Januzzi JL, Butler J. Reverse Cardiac Remodeling Following Initiation of Sacubitril/Valsartan in Patients With Heart Failure With and Without Diabetes. JACC-HEART FAILURE 2020; 9:137-145. [PMID: 33309581 DOI: 10.1016/j.jchf.2020.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study sought to determine whether patients with heart failure and reduced ejection fraction (HFrEF) with type 2 diabetes mellitus (T2DM) have similar reverse cardiac remodeling with sacubitril/valsartan as patients without T2DM. BACKGROUND Sacubitril/valsartan promotes reverse cardiac remodeling and improves outcomes in patients with HFrEF. Patients with HFrEF with T2DM have worse prognosis than those without T2DM. METHODS In this post hoc analysis of PROVE-HF (Prospective Study of Biomarkers, Symptom Improvement, and Ventricular Remodeling During Sacubitril/Valsartan Therapy for Heart Failure), we examined changes in N-terminal pro-b-type natriuretic peptide (NT-proBNP), measures of cardiac remodeling, and Kansas City Cardiomyopathy Questionnaire Overall Summary (KCCQ-OS) scores from baseline to 12 months following initiation of sacubitril/valsartan between patients with HFrEF with and without T2DM. Using latent growth curve modeling, we evaluated the longitudinal association between changes in NT-proBNP, left ventricular ejection fraction, and KCCQ-OS. RESULTS Among 794 patients enrolled, 361 (45.5%) had T2DM. NT-proBNP concentrations were modestly higher at baseline among patients with T2DM but were reduced after initiation of sacubitril/valsartan. Cross-sectional improvement was observed in left ventricular ejection fraction (T2DM: 28.3% at baseline and 37% at 12 months vs. non-T2DM: 28.1% at baseline and 38.3% at 12 months) and KCCQ-OS (T2DM: 71 at baseline and 83 at 12 months vs. non-T2DM: 76 at baseline and 88 at 12 months). Similar changes were also observed for other echocardiographic measures. In longitudinal analyses, the average NT-proBNP change was similar in patients with T2DM (-5.6% vs. -7.1% per 90-day interval; p = 0.64), whereas improvements in KCCQ-OS scores were slightly smaller (2.1 vs. 3.46 per 90-day interval; p = 0.07). CONCLUSIONS Sacubitril/valsartan favorably affects natriuretic peptide levels, reverse cardiac remodeling, and health status in patients with HFrEF with and without T2DM. (Effects of Sacubitril/Valsartan Therapy on Biomarkers, Myocardial Remodeling and Outcomes [PROVE-HF]; NCT02887183).
Collapse
Affiliation(s)
| | - G Michael Felker
- Duke University Medical Center and Duke Clinical Research Institute, Durham, North Carolina, USA
| | | | | | - Devavrat Bapat
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Alan S Maisel
- University of California-San Diego School of Medicine, San Diego, California, USA
| | | | | | | | | | - Javed Butler
- University of Mississippi, Jackson, Mississippi, USA.
| |
Collapse
|
19
|
Wu T, Wang H, Xin X, Yang J, Hou Y, Fang M, Lu X, Xu Y. An MRTF-A-Sp1-PDE5 Axis Mediates Angiotensin-II-Induced Cardiomyocyte Hypertrophy. Front Cell Dev Biol 2020; 8:839. [PMID: 33015041 PMCID: PMC7509415 DOI: 10.3389/fcell.2020.00839] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiac hypertrophy is a critical intermediate step in the pathogenesis of heart failure. A myriad of signaling networks converge on cardiomyocytes to elicit hypertrophic growth in response to various injurious stimuli. In the present study, we investigated the cardiomyocyte-specific role of myocardin-related transcription factor A (MRTF-A) in angiotensin-II (Ang-II)-induced cardiac hypertrophy and the underlying mechanism. We report that conditional MRTF-A deletion in cardiomyocytes attenuated Ang-II-induced cardiac hypertrophy in mice. Similarly, MRTF-A knockdown or inhibition suppressed Ang-II-induced prohypertrophic response in cultured cardiomyocytes. Of note, Ang II treatment upregulated expression of phosphodiesterase 5 (PDE5), a known mediator of cardiac hypertrophy and heart failure, in cardiomyocytes, which was blocked by MRTF-A depletion or inhibition. Mechanistically, MRTF-A activated expression of specificity protein 1 (Sp1), which in turn bound to the PDE5 promoter and upregulated PDE5 transcription to promote hypertrophy of cardiomyocytes in response to Ang II stimulation. Therefore, our data unveil a novel MRTF-A–Sp1–PDE5 axis that mediates Ang-II-induced hypertrophic response in cardiomyocytes. Targeting this newly identified MRTF-A–Sp1–PDE5 axis may yield novel interventional solutions against heart failure.
Collapse
Affiliation(s)
- Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huidi Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaojun Xin
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yannan Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Laboratory Center for Experimental Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
20
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17:585-607. [PMID: 32080423 PMCID: PMC7849055 DOI: 10.1038/s41569-020-0339-2] [Citation(s) in RCA: 419] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- The Second Affiliated Hospital Center of Chinese-American Research Institute for Diabetic Complications, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
21
|
cGMP signalling in cardiomyocyte microdomains. Biochem Soc Trans 2020; 47:1327-1339. [PMID: 31652306 DOI: 10.1042/bst20190225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) is one of the major second messengers critically involved in the regulation of cardiac electrophysiology, hypertrophy, and contractility. Recent molecular and cellular studies have significantly advanced our understanding of the cGMP signalling cascade, its local microdomain-specific regulation and its role in protecting the heart from pathological stress. Here, we summarise recent findings on cardiac cGMP microdomain regulation and discuss their potential clinical significance.
Collapse
|
22
|
Shvedova M, Litvak MM, Roberts JD, Fukumura D, Suzuki T, Şencan İ, Li G, Reventun P, Buys ES, Kim HH, Sakadžić S, Ayata C, Huang PL, Feil R, Atochin DN. cGMP-dependent protein kinase I in vascular smooth muscle cells improves ischemic stroke outcome in mice. J Cereb Blood Flow Metab 2019; 39:2379-2391. [PMID: 31423931 PMCID: PMC6893979 DOI: 10.1177/0271678x19870583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 11/15/2022]
Abstract
Recent works highlight the therapeutic potential of targeting cyclic guanosine monophosphate (cGMP)-dependent pathways in the context of brain ischemia/reperfusion injury (IRI). Although cGMP-dependent protein kinase I (cGKI) has emerged as a key mediator of the protective effects of nitric oxide (NO) and cGMP, the mechanisms by which cGKI attenuates IRI remain poorly understood. We used a novel, conditional cGKI knockout mouse model to study its role in cerebral IRI. We assessed neurological deficit, infarct volume, and cerebral perfusion in tamoxifen-inducible vascular smooth muscle cell-specific cGKI knockout mice and control animals. Stroke experiments revealed greater cerebral infarct volume in smooth muscle cell specific cGKI knockout mice (males: 96 ± 16 mm3; females: 93 ± 12 mm3, mean±SD) than in all control groups: wild type (males: 66 ± 19; females: 64 ± 14), cGKI control (males: 65 ± 18; females: 62 ± 14), cGKI control with tamoxifen (males: 70 ± 8; females: 68 ± 10). Our results identify, for the first time, a protective role of cGKI in vascular smooth muscle cells during ischemic stroke injury. Moreover, this protective effect of cGKI was found to be independent of gender and was mediated via improved reperfusion. These results suggest that cGKI in vascular smooth muscle cells should be targeted by therapies designed to protect brain tissue against ischemic stroke.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Maxim M Litvak
- Tomsk Polytechnic University, RASA Center, Tomsk, Russian Federation
| | - Jesse D Roberts
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dai Fukumura
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Tomoaki Suzuki
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - İkbal Şencan
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ge Li
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paula Reventun
- Department of Biology Systems, School of Medicine, University of Alcalá, Madrid, Spain
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hyung-Hwan Kim
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paul L Huang
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
23
|
Shea CM, Price GM, Liu G, Sarno R, Buys ES, Currie MG, Masferrer JL. Soluble guanylate cyclase stimulator praliciguat attenuates inflammation, fibrosis, and end-organ damage in the Dahl model of cardiorenal failure. Am J Physiol Renal Physiol 2019; 318:F148-F159. [PMID: 31608671 DOI: 10.1152/ajprenal.00247.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reduced nitric oxide (NO) and a decrease in cGMP signaling mediated by soluble guanylate cyclase (sGC) has been linked to the development of several cardiorenal diseases. Stimulation of sGC is a potential means for enhancing cGMP production in conditions of reduced NO bioavailability. The purpose of our studies was to determine the effects of praliciguat, a clinical-stage sGC stimulator, in a model of cardiorenal failure. Dahl salt-sensitive rats fed a high-salt diet to induce hypertension and organ damage were treated with the sGC stimulator praliciguat to determine its effects on hemodynamics, biomarkers of inflammation, fibrosis, tissue function, and organ damage. Praliciguat treatment reduced blood pressure, improved cardiorenal damage, and attenuated the increase in circulating markers of inflammation and fibrosis. Notably, praliciguat affected markers of renal damage at a dose that had minimal effect on blood pressure. In addition, liver fibrosis and circulating markers of tissue damage were attenuated in praliciguat-treated rats. Stimulation of the NO-sGC-cGMP pathway by praliciguat attenuated or normalized indicators of chronic inflammation, fibrosis, and tissue dysfunction in the Dahl salt-sensitive rat model. Stimulation of sGC by praliciguat may present an effective mechanism for treating diseases linked to NO deficiency, particularly those associated with cardiac and renal failure. Praliciguat is currently being evaluated in patients with diabetic nephropathy and heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
| | | | - Guang Liu
- Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Renee Sarno
- Cyclerion Therapeutics, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
24
|
Frankenreiter S, Groneberg D, Kuret A, Krieg T, Ruth P, Friebe A, Lukowski R. Cardioprotection by ischemic postconditioning and cyclic guanosine monophosphate-elevating agents involves cardiomyocyte nitric oxide-sensitive guanylyl cyclase. Cardiovasc Res 2019; 114:822-829. [PMID: 29438488 DOI: 10.1093/cvr/cvy039] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 02/08/2018] [Indexed: 01/21/2023] Open
Abstract
Aims It has been suggested that the nitric oxide-sensitive guanylyl cyclase (NO-GC)/cyclic guanosine monophosphate (cGMP)-dependent signalling pathway affords protection against cardiac damage during acute myocardial infarction (AMI). It is, however, not clear whether the NO-GC/cGMP system confers its favourable effects through a mechanism located in cardiomyocytes (CMs). The aim of this study was to evaluate the infarct-limiting effects of the endogenous NO-GC in CMs in vivo. Methods and results Ischemia/reperfusion (I/R) injury was evaluated in mice with a CM-specific deletion of NO-GC (CM NO-GC KO) and in control siblings (CM NO-GC CTR) subjected to an in vivo model of AMI. Lack of CM NO-GC resulted in a mild increase in blood pressure but did not affect basal infarct sizes after I/R. Ischemic postconditioning (iPost), administration of the phosphodiesterase-5 inhibitors sildenafil and tadalafil as well as the NO-GC activator cinaciguat significantly reduced the amount of infarction in control mice but not in CM NO-GC KO littermates. Interestingly, NS11021, an opener of the large-conductance and Ca2+-activated potassium channel (BK), an important downstream effector of cGMP/cGKI in the cardiovascular system, protects I/R-exposed hearts of CM NO-GC proficient and deficient mice. Conclusions These findings demonstrate an important role of CM NO-GC for the cardioprotective signalling following AMI in vivo. CM NO-GC function is essential for the beneficial effects on infarct size elicited by iPost and pharmacological elevation of cGMP; however, lack of CM NO-GC does not seem to disrupt the cardioprotection mediated by the BK opener NS11021.
Collapse
Affiliation(s)
- Sandra Frankenreiter
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Dieter Groneberg
- Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Friebe
- Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Davidson SM, Yellon DM. Cardioprotection - is no the answer? A renewed look at nitric oxide signalling in cardiomyocytes. Cardiovasc Res 2019; 114:773-775. [PMID: 29584817 DOI: 10.1093/cvr/cvy073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
26
|
Wang Z, Jiang X, Zhang X, Tian G, Yang R, Wu J, Zou X, Liu Z, Yang X, Wu C, Shi J, Li J, Suo J, Wang Y, Zhang R, Xu Z, Gong X, He Y, Zhu W, Aisa HA, Jiang H, Xu Y, Shen J. Pharmacokinetics-Driven Optimization of 4(3 H)-Pyrimidinones as Phosphodiesterase Type 5 Inhibitors Leading to TPN171, a Clinical Candidate for the Treatment of Pulmonary Arterial Hypertension. J Med Chem 2019; 62:4979-4990. [PMID: 31021628 DOI: 10.1021/acs.jmedchem.9b00123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors are first-line therapy for pulmonary arterial hypertension (PAH) and erectile dysfunction. As a continuing work to improve the terminal half-lives and oral bioavailabilities of our previously reported 4(3 H)-pyrimidones, a pharmacokinetics-driven optimization focusing on the terminal substituent is described. Two major congeneric series of 4(3 H)-pyrimidones, the aminosulfonylphenylpyrimidones and acylaminophenylpyrimidones, were designed, synthesized, and pharmacologically assessed in vitro and in vivo. Among them, compound 15 (TPN171) with subnanomolar potency for PDE5 and good selectivity over PDE6 was finally recognized as a potential drug candidate, and its pharmacokinetic profiles in rats and dogs are significantly improved compared to the starting compound (3). Moreover, TPN171 was proven to exert a longer lasting effect than sildenafil in animal models, providing a foundation for a once-daily oral administration for its clinical use. TPN171 is currently being investigated in a phase II clinical trial for the treatment of PAH.
Collapse
Affiliation(s)
- Zhen Wang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xiangrui Jiang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xianglei Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guanghui Tian
- Vigonvita Life Science Co., Ltd. , Suzhou 215123 , China
| | - Rulei Yang
- Vigonvita Life Science Co., Ltd. , Suzhou 215123 , China
| | - Jianzhong Wu
- Vigonvita Life Science Co., Ltd. , Suzhou 215123 , China
| | - Xiaoli Zou
- Vigonvita Life Science Co., Ltd. , Suzhou 215123 , China
| | - Zheng Liu
- Topharman Shanghai Co., Ltd. , Shanghai 201203 , China
| | - Xiaojun Yang
- Topharman Shanghai Co., Ltd. , Shanghai 201203 , China
| | - Chunhui Wu
- Topharman Shanghai Co., Ltd. , Shanghai 201203 , China
| | - Jing Shi
- Topharman Shanghai Co., Ltd. , Shanghai 201203 , China
| | - Jianfeng Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Jin Suo
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yu Wang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Rongxia Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xudong Gong
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,Key Laboratory of Plant Resources and Chemistry in Arid Regions , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| | - Yang He
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry in Arid Regions , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| | - Hualiang Jiang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
27
|
Wang X, Du W, Li M, Zhang Y, Li H, Sun K, Liu J, Dong P, Meng X, Yi W, Yang L, Zhao R, Hu J. The β subunit of soluble guanylyl cyclase GUCY1B3 exerts cardioprotective effects against ischemic injury via the PKCε/Akt pathway. J Cell Biochem 2018; 120:3071-3081. [PMID: 30485489 DOI: 10.1002/jcb.27479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaomin Wang
- Translational Medicine Center, Baotou Central Hospital Baotou China
| | - Wei Du
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Meng Li
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Yong Zhang
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Hongyu Li
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Kai Sun
- Translational Medicine Center, Baotou Central Hospital Baotou China
| | - Jianping Liu
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Pengxia Dong
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Xianda Meng
- Department of Cardiology Dalian (Municipal) Friendship Hospital Dalian China
| | - Wensi Yi
- Department of Institution of Interventional and Vascular Surgery Tongji University Shanghai China
| | - Liu Yang
- Department of Institution of Interventional and Vascular Surgery Tongji University Shanghai China
| | - Ruiping Zhao
- Translational Medicine Center, Baotou Central Hospital Baotou China
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Jiang Hu
- Translational Medicine Center, Baotou Central Hospital Baotou China
| |
Collapse
|
28
|
Cuello F, Eaton P. Cysteine-Based Redox Sensing and Its Role in Signaling by Cyclic Nucleotide-Dependent Kinases in the Cardiovascular System. Annu Rev Physiol 2018; 81:63-87. [PMID: 30216743 DOI: 10.1146/annurev-physiol-020518-114417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidant molecules are produced in biological systems and historically have been considered causal mediators of damage and disease. While oxidants may contribute to the pathogenesis of disease, evidence continues to emerge that shows these species also play important regulatory roles in health. A major mechanism of oxidant sensing and signaling involves their reaction with reactive cysteine thiols within proteins, inducing oxidative posttranslational modifications that can couple to altered function to enable homeostatic regulation. Protein kinase A and protein kinase G are regulated by oxidants in this way, and this review focuses on our molecular-level understanding of these events and their role in regulating cardiovascular physiology during health and disease.
Collapse
Affiliation(s)
- Friederike Cuello
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Philip Eaton
- King's College London, School of Cardiovascular Medicine and Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom;
| |
Collapse
|
29
|
Hofmann F. A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology. Basic Res Cardiol 2018; 113:31. [PMID: 29934662 DOI: 10.1007/s00395-018-0690-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022]
Abstract
The underlying cause of cardiac hypertrophy, fibrosis, and heart failure has been investigated in great detail using different mouse models. These studies indicated that cGMP and cGMP-dependent protein kinase type I (cGKI) may ameliorate these negative phenotypes in the adult heart. Recently, evidence has been published that cardiac mitochondrial BKCa channels are a target for cGKI and that activation of mitoBKCa channels may cause some of the positive effects of conditioning in ischemia/reperfusion injury. It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure. However, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802, Munich, Germany.
| |
Collapse
|
30
|
cGMP at the centre of attention: emerging strategies for activating the cardioprotective PKG pathway. Basic Res Cardiol 2018; 113:24. [PMID: 29766323 PMCID: PMC5954070 DOI: 10.1007/s00395-018-0679-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
The nitric oxide (NO)-protein kinase G (PKG) pathway has been known for some time to be an important target for cardioprotection against ischaemia/reperfusion injury and heart failure. While many approaches for reducing infarct size in patients have failed in the past, the advent of novel drugs that modulate cGMP and its downstream targets shows very promising results in recent preclinical and clinical studies. Here, we review main aspects of the NO-PKG pathway in light of recent drug development and summarise potential cardioprotective strategies in which cGMP is the main player.
Collapse
|
31
|
Roles of PDE1 in Pathological Cardiac Remodeling and Dysfunction. J Cardiovasc Dev Dis 2018; 5:jcdd5020022. [PMID: 29690591 PMCID: PMC6023290 DOI: 10.3390/jcdd5020022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
Pathological cardiac hypertrophy and dysfunction is a response to various stress stimuli and can result in reduced cardiac output and heart failure. Cyclic nucleotide signaling regulates several cardiac functions including contractility, remodeling, and fibrosis. Cyclic nucleotide phosphodiesterases (PDEs), by catalyzing the hydrolysis of cyclic nucleotides, are critical in the homeostasis of intracellular cyclic nucleotide signaling and hold great therapeutic potential as drug targets. Recent studies have revealed that the inhibition of the PDE family member PDE1 plays a protective role in pathological cardiac remodeling and dysfunction by the modulation of distinct cyclic nucleotide signaling pathways. This review summarizes recent key findings regarding the roles of PDE1 in the cardiac system that can lead to a better understanding of its therapeutic potential.
Collapse
|
32
|
Bork NI, Nikolaev VO. cGMP Signaling in the Cardiovascular System-The Role of Compartmentation and Its Live Cell Imaging. Int J Mol Sci 2018. [PMID: 29534460 PMCID: PMC5877662 DOI: 10.3390/ijms19030801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system.
Collapse
Affiliation(s)
- Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg 20246, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg 20246, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg 20246, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg 20246, Germany.
| |
Collapse
|
33
|
Wu Y, Liu Y, Cai Z, Qin H, Li H, Su W, Wang Y, Qian H, Jiang L, Wu M, Pang J, Chen Y. Protein Kinases Type II (PKG II) Combined with L-Arginine Significantly Ameliorated Xenograft Tumor Development: Is L-Arginine a Potential Alternative in PKG II Activation? Med Sci Monit 2018; 24:736-742. [PMID: 29401205 PMCID: PMC5810367 DOI: 10.12659/msm.906213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The mammalian cyclic guanosine monophosphate (cGMP)-dependent protein kinases type II (PKG II) plays critical physiological or pathological functions in different tissues. However, the biological effects of PKG II are dependent on cGMP. Published data indicated that L-arginine (L-Arg) promoted NO production, NO can activate soluble guanylate cyclase (sGC), and catalyzes guanosine triphosphate (GTP) into cGMP, which suggested L-Arg could activate PKG II. Therefore, the present work was performed to address: (i) whether L-Arg could be a potential alternative in PKG II activation, and (ii) whether L-Arg also contributes to PKG II against cancer. MATERIAL AND METHODS Nude BALB/c mice were inoculated with human MCF-7, HepG2, and SW480 cell lines via subcutaneous (s.c.) injecting. After 7 days of inoculation, Ad-PKG II was injected into the cancer tissues every 4 days, and the next day 10 μmol/mouse L-Arg was administered. Western blotting and immunohistochemistry were used to assess protein expression. RESULTS Our results demonstrated that L-Arg significantly activated PKG II and effectively ameliorated xenograft tumor development through inhibiting cancer growth, angiogenesis, and metastasis, which was partially dependent on blocking of epidermal growth factor receptor (EGFR) activity, as well as downstream signaling pathways such as Erk1/2. CONCLUSIONS Our results provide an exciting new insight: L-Arg is a potential alternative to PKG II activation.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland).,The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Ying Liu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Zhensheng Cai
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Huijuan Qin
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Hongfan Li
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Wenbin Su
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Ying Wang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Hai Qian
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Lu Jiang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Min Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Ji Pang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| |
Collapse
|
34
|
Wu Y, Yuan M, Su W, Zhu M, Yao X, Wang Y, Qian H, Jiang L, Tao Y, Wu M, Pang J, Chen Y. The constitutively active PKG II mutant effectively inhibits gastric cancer development via a blockade of EGF/EGFR-associated signalling cascades. Ther Adv Med Oncol 2018; 10:1758834017751635. [PMID: 29434677 PMCID: PMC5802699 DOI: 10.1177/1758834017751635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022] Open
Abstract
Type II cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG II) is a membrane-anchored enzyme expressed mainly in the intestinal mucosa and the brain, and is associated with various physiological or pathological processes. Upregulation of PKG II is known to induce apoptosis and inhibit proliferation and metastasis of cancer cells. The inhibitory effect of PKG II has been shown to be dependent on the inhibition of the activation of epidermal growth factor receptor (EGFR) and blockade of EGFR downstream signal transduction in vitro. However, it remains unclear whether similar phenomena/mechanisms exist in vivo and whether these effects are independent of cGMP or cGMP analogues. In the present work, nude mice with transplanted orthotopic tumours were infected with adenovirus encoding cDNA of constitutively active PKG II mutant (Ad-a-PKG II) and the effect of constitutively active PKG II (a-PKG II) on tumour development was detected. The results showed that a-PKG II effectively ameliorated gastric tumour development through delaying the growth, inducing the apoptosis, and inhibiting the metastasis and angiogenesis. The effect was related to blockade of EGFR activation and abrogation of the downstream signalling cascades. These findings provide novel insight which will benefit the development of new cancer therapies.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University. 301 Xuefu Road; and The Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Miaomiao Yuan
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Wenbin Su
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Miaolin Zhu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Xiaoyuan Yao
- Department of Basic Medicine, Changchun Medical College, Changchun, China
| | - Ying Wang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Hai Qian
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Lu Jiang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Yan Tao
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Min Wu
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Ji Pang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University. 301 Xuefu Road; Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
35
|
Frankenreiter S, Bednarczyk P, Kniess A, Bork NI, Straubinger J, Koprowski P, Wrzosek A, Mohr E, Logan A, Murphy MP, Gawaz M, Krieg T, Szewczyk A, Nikolaev VO, Ruth P, Lukowski R. cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels. Circulation 2017; 136:2337-2355. [PMID: 29051185 DOI: 10.1161/circulationaha.117.028723] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/02/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The nitric oxide-sensitive guanylyl cyclase/cGMP-dependent protein kinase type I signaling pathway can afford protection against the ischemia/reperfusion injury that occurs during myocardial infarction. Reportedly, voltage and Ca2+-activated K+ channels of the BK type are stimulated by cGMP/cGMP-dependent protein kinase type I, and recent ex vivo studies implicated that increased BK activity favors the survival of the myocardium at ischemia/reperfusion. It remains unclear, however, whether the molecular events downstream of cGMP involve BK channels present in cardiomyocytes or in other cardiac cell types. METHODS Gene-targeted mice with a cardiomyocyte- or smooth muscle cell-specific deletion of the BK (CMBK or SMBK knockouts) were subjected to the open-chest model of myocardial infarction. Infarct sizes of the conditional mutants were compared with litter-matched controls, global BK knockout, and wild-type mice. Cardiac damage was assessed after mechanical conditioning or pharmacological stimulation of the cGMP pathway and by using direct modulators of BK. Long-term outcome was studied with respect to heart functions and cardiac fibrosis in a chronic myocardial infarction model. RESULTS Global BK knockouts and CMBK knockouts, in contrast with SMBK knockouts, exhibited significantly larger infarct sizes compared with their respective controls. Ablation of CMBK resulted in higher serum levels of cardiac troponin I and elevated amounts of reactive oxygen species, lower phosphorylated extracellular receptor kinase and phosphorylated AKT levels and an increase in myocardial apoptosis. Moreover, CMBK was required to allow beneficial effects of both nitric oxide-sensitive guanylyl cyclase activation and inhibition of the cGMP-degrading phosphodiesterase-5, ischemic preconditioning, and postconditioning regimens. To this end, after 4 weeks of reperfusion, fibrotic tissue increased and myocardial strain echocardiography was significantly compromised in CMBK-deficient mice. CONCLUSIONS Lack of CMBK channels renders the heart more susceptible to ischemia/reperfusion injury, whereas the pathological events elicited by ischemia/reperfusion do not involve BK in vascular smooth muscle cells. BK seems to permit the protective effects triggered by cinaciguat, riociguat, and different phosphodiesterase-5 inhibitors and beneficial actions of ischemic preconditioning and ischemic postconditioning by a mechanism stemming primarily from cardiomyocytes. This study establishes mitochondrial CMBK channels as a promising target for limiting acute cardiac damage and adverse long-term events that occur after myocardial infarction.
Collapse
Affiliation(s)
- Sandra Frankenreiter
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences, Poland (P.B.)
| | - Angelina Kniess
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| | - Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (N.I.B., V.O.N.)
| | - Julia Straubinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland (P.K., A.W., A.S.)
| | - Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland (P.K., A.W., A.S.)
| | - Eva Mohr
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| | | | | | - Meinrad Gawaz
- University of Cambridge, Cambridge Biomedical Campus, United Kingdom. Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tuebingen, Germany (M.G.)
| | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland (P.K., A.W., A.S.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (N.I.B., V.O.N.)
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| |
Collapse
|
36
|
Campolo F, Zevini A, Cardarelli S, Monaco L, Barbagallo F, Pellegrini M, Cornacchione M, Di Grazia A, De Arcangelis V, Gianfrilli D, Giorgi M, Lenzi A, Isidori AM, Naro F. Identification of murine phosphodiesterase 5A isoforms and their functional characterization in HL-1 cardiac cell line. J Cell Physiol 2017; 233:325-337. [PMID: 28247930 DOI: 10.1002/jcp.25880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/27/2017] [Indexed: 01/13/2023]
Abstract
Phosphodiesterase 5A (PDE5A) specifically degrades the ubiquitous second messenger cGMP and experimental and clinical data highlight its important role in cardiac diseases. To address PDE5A role in cardiac physiology, three splice variants of the PDE5A were cloned for the first time from mouse cDNA library (mPde5a1, mPde5a2, and mPde5a3). The predicted amino acidic sequences of the three murine isoforms are different in the N-terminal regulatory domain. mPDE5A isoforms were transfected in HEK293T cells and they showed high affinity for cGMP and similar sensitivity to sildenafil inhibition. RT-PCR analysis showed that mPde5a1, mPde5a2, and mPde5a3 had differential tissue distribution. In the adult heart, mPde5a1 and mPde5a2 were expressed at different levels whereas mPde5a3 was undetectable. Overexpression of mPDE5As induced an increase of HL-1 number cells which progress into cell cycle. mPDE5A1 and mPDE5A3 overexpression increased the number of polyploid and binucleated cells, mPDE5A3 widened HL-1 areas, and modulated hypertrophic markers more efficiently respect to the other mPDE5A isoforms. Moreover, mPDE5A isoforms had differential subcellular localization: mPDE5A1 was mainly localized in the cytoplasm, mPDE5A2 and mPDE5A3 were also nuclear localized. These results demonstrate for the first time the existence of three PDE5A isoforms in mouse and highlight their potential role in the induction of hypertrophy.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Alessandra Zevini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Manuela Pellegrini
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Marisa Cornacchione
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - Antonio Di Grazia
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - Valeria De Arcangelis
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, Rome, Italy
| | | | - Mauro Giorgi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, Rome, Italy
| |
Collapse
|
37
|
Bedioune I, Bobin P, Leroy J, Fischmeister R, Vandecasteele G. Cyclic Nucleotide Phosphodiesterases and Compartmentation in Normal and Diseased Heart. MICRODOMAINS IN THE CARDIOVASCULAR SYSTEM 2017. [DOI: 10.1007/978-3-319-54579-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Altara R, Giordano M, Nordén ES, Cataliotti A, Kurdi M, Bajestani SN, Booz GW. Targeting Obesity and Diabetes to Treat Heart Failure with Preserved Ejection Fraction. Front Endocrinol (Lausanne) 2017; 8:160. [PMID: 28769873 PMCID: PMC5512012 DOI: 10.3389/fendo.2017.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major unmet medical need that is characterized by the presence of multiple cardiovascular and non-cardiovascular comorbidities. Foremost among these comorbidities are obesity and diabetes, which are not only risk factors for the development of HFpEF, but worsen symptoms and outcome. Coronary microvascular inflammation with endothelial dysfunction is a common denominator among HFpEF, obesity, and diabetes that likely explains at least in part the etiology of HFpEF and its synergistic relationship with obesity and diabetes. Thus, pharmacological strategies to supplement nitric oxide and subsequent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling may have therapeutic promise. Other potential approaches include exercise and lifestyle modifications, as well as targeting endothelial cell mineralocorticoid receptors, non-coding RNAs, sodium glucose transporter 2 inhibitors, and enhancers of natriuretic peptide protective NO-independent cGMP-initiated and alternative signaling, such as LCZ696 and phosphodiesterase-9 inhibitors. Additionally, understanding the role of adipokines in HFpEF may lead to new treatments. Identifying novel drug targets based on the shared underlying microvascular disease process may improve the quality of life and lifespan of those afflicted with both HFpEF and obesity or diabetes, or even prevent its occurrence.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Raffaele Altara,
| | - Mauro Giordano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Einar S. Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Mazen Kurdi
- Faculty of Sciences, Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon
| | - Saeed N. Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
39
|
Chekol R, Gheysens O, Ahamed M, Cleynhens J, Pokreisz P, Vanhoof G, Janssens S, Verbruggen A, Bormans G. Carbon-11 and Fluorine-18 Radiolabeled Pyridopyrazinone Derivatives for Positron Emission Tomography (PET) Imaging of Phosphodiesterase-5 (PDE5). J Med Chem 2016; 60:486-496. [PMID: 28009175 DOI: 10.1021/acs.jmedchem.6b01666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) specific phosphodiesterase type 5 (PDE5) plays an important role in various pathologies including pulmonary arterial hypertension and cardiomyopathy. PDE5 represents an important therapeutic and/or prognostic target, but noninvasive assessment of PDE5 expression is lacking. The purpose of this study was to develop and evaluate pyridopyrazinone derivatives labeled with carbon-11 or fluorine-18 as PDE5-specific PET tracers. In biodistribution studies, highest PDE5-specific retention was observed for [11C]-12 and [18F]-17 in the lungs of wild-type mice and in the myocardium of transgenic mice with cardiomyocyte-specific PDE5 overexpression at 30 min postinjection. In vivo dynamic microPET images in rats revealed that both tracers crossed the blood-brain barrier but brain retention was not PDE5-specific. Both [11C]-12 and [18F]-17 showed specific binding to PDE5 in myocardium of transgenic mice; however [18F]-17 showed significantly higher PDE5-specific inhibitable binding than [11C]-12.
Collapse
Affiliation(s)
- Rufael Chekol
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Olivier Gheysens
- Department of Imaging and Pathology, KU Leuven , and Nuclear Medicine, UZ Leuven, BE-300 Leuven Belgium
| | - Muneer Ahamed
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Jan Cleynhens
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Peter Pokreisz
- Department of Cardiovascular Sciences, UZ Leuven, KU Leuven , 3000 Leuven, Belgium
| | - Greet Vanhoof
- Discovery Sciences, Janssen Pharmaceutica, R&D , B-2340 Beerse, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Sciences, UZ Leuven, KU Leuven , 3000 Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Guy Bormans
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| |
Collapse
|
40
|
El-Naa MM, Othman M, Younes S. Sildenafil potentiates the antitumor activity of cisplatin by induction of apoptosis and inhibition of proliferation and angiogenesis. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3661-3672. [PMID: 27895461 PMCID: PMC5117873 DOI: 10.2147/dddt.s107490] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sildenafil is the first phosphodiesterase-5 inhibitor used for the treatment of erectile dysfunction. However, recent studies have been suggesting an antitumor effect of sildenafil. The current study assessed the aforementioned activity of sildenafil in vivo and in vitro in solid-tumor-bearing mice and in a human cell line MCF-7, respectively. Moreover, we investigated the impact of sildenafil on cisplatin antitumor activity. The solid tumor was induced by inoculation of Ehrlich ascites carcinoma cells in female mice. The tumor-bearing mice were assigned randomly to control (saline), sildenafil (sildenafil 5 mg/kg/d, PO daily for 15 days), cisplatin (cisplatin 7.5 mg/kg, IP once on the 12th day of Ehrlich ascites carcinoma inoculation), and combination therapy (cisplatin and sildenafil) groups. The tumor volume was measured at the end of the treatment period along with the following parameters: angiogenin, vascular endothelial growth factor, tumor necrosis factor-α, Ki-67, caspase-3, DNA-flow cytometry analysis, and histopathological examination. The study results showed that sildenafil has significantly decreased the tumor volume by 30.4%, angiogenin and tumor necrosis factor-α contents, as well as vascular endothelial growth factor expression. Additionally, caspase-3 level significantly increased with sildenafil treatment, whereas Ki-67 expression failed to show any significant changes. Furthermore, the cell cycle analysis revealed that sildenafil was capable of improving the category of tumor activity from moderate to low proliferative. Sildenafil induced necrosis in the tumor. Moreover, the drug of interest showed cytotoxic activity against MCF-7 in vitro as well as potentiated cisplatin antitumor activity in vivo and in vitro. These findings shed light on the antitumor activity of sildenafil and its possible impact on potentiating the antitumor effect of conventional chemotherapeutic agents such as cisplatin. These effects might be related to antiangiogenic, antiproliferative, and apoptotic activities of sildenafil.
Collapse
Affiliation(s)
- Mona Mohamed El-Naa
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October City, Egypt
| | - Mohamed Othman
- Preparatory Year College, University of Hail, Hail, Kingdom of Saudi Arabia; Faculty of Biotechnology, October University for Modern Science and Arts (MSA), 6 October City, Egypt
| | - Sheren Younes
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt; College of Medicine, Princess Nora Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Voznesensky I, DeLay KJ, Hellstrom WJG. Advances in pharmacotherapy for erectile dysfunction and associated cardiac impact. Expert Opin Pharmacother 2016; 17:2281-2289. [DOI: 10.1080/14656566.2016.1241766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Suzuki T, Saiki Y, Horii A, Fukushige S, Kawamoto S, Adachi O, Akiyama M, Ito K, Masaki N, Saiki Y. Atrial natriuretic peptide induces peroxisome proliferator activated receptor γ during cardiac ischemia–reperfusion in swine heart. Gen Thorac Cardiovasc Surg 2016; 65:85-95. [DOI: 10.1007/s11748-016-0704-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/01/2016] [Indexed: 02/08/2023]
|
43
|
Bautista-Niño PK, Portilla-Fernandez E, Vaughan DE, Danser AHJ, Roks AJM. DNA Damage: A Main Determinant of Vascular Aging. Int J Mol Sci 2016; 17:E748. [PMID: 27213333 PMCID: PMC4881569 DOI: 10.3390/ijms17050748] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (cGMP) signaling, phosphodiesterase (PDE) 1 and 5, transcription factor NF-E2-related factor-2 (Nrf2), and diet restriction.
Collapse
Affiliation(s)
- Paula K Bautista-Niño
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Eliana Portilla-Fernandez
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Douglas E Vaughan
- Department of Medicine & Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
44
|
Bobin P, Belacel-Ouari M, Bedioune I, Zhang L, Leroy J, Leblais V, Fischmeister R, Vandecasteele G. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Arch Cardiovasc Dis 2016; 109:431-43. [PMID: 27184830 DOI: 10.1016/j.acvd.2016.02.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) degrade the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), thereby regulating multiple aspects of cardiac and vascular muscle functions. This highly diverse class of enzymes encoded by 21 genes encompasses 11 families that are not only responsible for the termination of cyclic nucleotide signalling, but are also involved in the generation of dynamic microdomains of cAMP and cGMP, controlling specific cell functions in response to various neurohormonal stimuli. In the myocardium and vascular smooth muscle, the PDE3 and PDE4 families predominate, degrading cAMP and thereby regulating cardiac excitation-contraction coupling and smooth muscle contractile tone. PDE3 inhibitors are positive inotropes and vasodilators in humans, but their use is limited to acute heart failure and intermittent claudication. PDE5 is particularly important for the degradation of cGMP in vascular smooth muscle, and PDE5 inhibitors are used to treat erectile dysfunction and pulmonary hypertension. There is experimental evidence that these PDEs, as well as other PDE families, including PDE1, PDE2 and PDE9, may play important roles in cardiac diseases, such as hypertrophy and heart failure, as well as several vascular diseases. After a brief presentation of the cyclic nucleotide pathways in cardiac and vascular cells, and the major characteristics of the PDE superfamily, this review will focus on the current use of PDE inhibitors in cardiovascular diseases, and the recent research developments that could lead to better exploitation of the therapeutic potential of these enzymes in the future.
Collapse
Affiliation(s)
- Pierre Bobin
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Milia Belacel-Ouari
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ibrahim Bedioune
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Liang Zhang
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jérôme Leroy
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Rodolphe Fischmeister
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Grégoire Vandecasteele
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
45
|
Lux A, Pokreisz P, Swinnen M, Caluwe E, Gillijns H, Szelid Z, Merkely B, Janssens SP. Concomitant Phosphodiesterase 5 Inhibition Enhances Myocardial Protection by Inhaled Nitric Oxide in Ischemia-Reperfusion Injury. ACTA ACUST UNITED AC 2015; 356:284-92. [DOI: 10.1124/jpet.115.227850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
|
46
|
Mátyás C, Németh BT, Oláh A, Hidi L, Birtalan E, Kellermayer D, Ruppert M, Korkmaz-Icöz S, Kökény G, Horváth EM, Szabó G, Merkely B, Radovits T. The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus. Cardiovasc Diabetol 2015; 14:145. [PMID: 26520063 PMCID: PMC4628236 DOI: 10.1186/s12933-015-0309-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/24/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) leads to the development of diabetic cardiomyopathy, which is associated with altered nitric oxide (NO)--soluble guanylate cyclase (sGC)--cyclic guanosine monophosphate (cGMP) signalling. Cardioprotective effects of elevated intracellular cGMP-levels have been described in different heart diseases. In the current study we aimed at investigating the effects of pharmacological activation of sGC in diabetic cardiomyopathy. METHODS Type-1 DM was induced in rats by streptozotocin. Animals were treated either with the sGC activator cinaciguat (10 mg/kg/day) or with placebo orally for 8 weeks. Left ventricular (LV) pressure-volume (P-V) analysis was used to assess cardiac performance. Additionally, gene expression (qRT-PCR) and protein expression analysis (western blot) were performed. Cardiac structure, markers of fibrotic remodelling and DNA damage were examined by histology, immunohistochemistry and TUNEL assay, respectively. RESULTS DM was associated with deteriorated cGMP signalling in the myocardium (elevated phosphodiesterase-5 expression, lower cGMP-level and impaired PKG activity). Cardiomyocyte hypertrophy, fibrotic remodelling and DNA fragmentation were present in DM that was associated with impaired LV contractility (preload recruitable stroke work (PRSW): 49.5 ± 3.3 vs. 83.0 ± 5.5 mmHg, P < 0.05) and diastolic function (time constant of LV pressure decay (Tau): 17.3 ± 0.8 vs. 10.3 ± 0.3 ms, P < 0.05). Cinaciguat treatment effectively prevented DM related molecular, histological alterations and significantly improved systolic (PRSW: 66.8 ± 3.6 mmHg) and diastolic (Tau: 14.9 ± 0.6 ms) function. CONCLUSIONS Cinaciguat prevented structural, molecular alterations and improved cardiac performance of the diabetic heart. Pharmacological activation of sGC might represent a new therapy approach for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Balázs Tamás Németh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - László Hidi
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Ede Birtalan
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Dalma Kellermayer
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Sevil Korkmaz-Icöz
- Experimental Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University of Heidelberg, INF 326. OG 2, 69120, Heidelberg, Germany.
| | - Gábor Kökény
- Institute of Pathophysiology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary.
| | - Eszter Mária Horváth
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47., Budapest, 1094, Hungary.
| | - Gábor Szabó
- Experimental Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University of Heidelberg, INF 326. OG 2, 69120, Heidelberg, Germany.
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary. .,Experimental Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University of Heidelberg, INF 326. OG 2, 69120, Heidelberg, Germany.
| |
Collapse
|
47
|
Lundberg JO, Gladwin MT, Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 2015; 14:623-41. [PMID: 26265312 DOI: 10.1038/nrd4623] [Citation(s) in RCA: 391] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a key signalling molecule in the cardiovascular, immune and central nervous systems, and crucial steps in the regulation of NO bioavailability in health and disease are well characterized. Although early approaches to therapeutically modulate NO bioavailability failed in clinical trials, an enhanced understanding of fundamental subcellular signalling has enabled a range of novel therapeutic approaches to be identified. These include the identification of: new pathways for enhancing NO synthase activity; ways to amplify the nitrate-nitrite-NO pathway; novel classes of NO-donating drugs; drugs that limit NO metabolism through effects on reactive oxygen species; and ways to modulate downstream phosphodiesterases and soluble guanylyl cyclases. In this Review, we discuss these latest developments, with a focus on cardiovascular disease.
Collapse
Affiliation(s)
- Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Mark T Gladwin
- Vascular Medicine Institute, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pennsylvania 15213, USA
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| |
Collapse
|
48
|
Straubinger J, Schöttle V, Bork N, Subramanian H, Dünnes S, Russwurm M, Gawaz M, Friebe A, Nemer M, Nikolaev VO, Lukowski R. Sildenafil Does Not Prevent Heart Hypertrophy and Fibrosis Induced by Cardiomyocyte Angiotensin II Type 1 Receptor Signaling. J Pharmacol Exp Ther 2015; 354:406-16. [PMID: 26157043 DOI: 10.1124/jpet.115.226092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/07/2015] [Indexed: 12/25/2022] Open
Abstract
Analyses of several mouse models imply that the phosphodiesterase 5 (PDE5) inhibitor sildenafil (SIL), via increasing cGMP, affords protection against angiotensin II (Ang II)-stimulated cardiac remodeling. However, it is unclear which cell types are involved in these beneficial effects, because Ang II may exert its adverse effects by modulating multiple renovascular and cardiac functions via Ang II type 1 receptors (AT1Rs). To test the hypothesis that SIL/cGMP inhibit cardiac stress provoked by amplified Ang II/AT1R directly in cardiomyocytes (CMs), we studied transgenic mice with CM-specific overexpression of the AT1R under the control of the α-myosin heavy chain promoter (αMHC-AT1R(tg/+)). The extent of cardiac growth was assessed in the absence or presence of SIL and defined by referring changes in heart weight to body weight or tibia length. Hypertrophic marker genes, extracellular matrix-regulating factors, and expression patterns of fibrosis markers were examined in αMHC-AT1R(tg/+) ventricles (with or without SIL) and corroborated by investigating different components of the natriuretic peptide/PDE5/cGMP pathway as well as cardiac functions. cGMP levels in heart lysates and intact CMs were measured by competitive immunoassays and Förster resonance energy transfer. We found higher cardiac and CM cGMP levels and upregulation of the cGMP-dependent protein kinase type I with AT1R overexpression. However, even a prolonged SIL treatment regimen did not limit the progressive CM growth, fibrosis, or decline in cardiac functions in the αMHC-AT1R(tg/+) model, suggesting that SIL does not interfere with the pathogenic actions of amplified AT1R signaling in CMs. Hence, the cardiac/noncardiac cells involved in the cross-talk between SIL-sensitive PDE activity and Ang II/AT1R still need to be identified.
Collapse
Affiliation(s)
- Julia Straubinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| | - Verena Schöttle
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| | - Nadja Bork
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| | - Hariharan Subramanian
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| | - Sarah Dünnes
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| | - Michael Russwurm
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| | - Meinrad Gawaz
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| | - Andreas Friebe
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| | - Mona Nemer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| | - Viacheslav O Nikolaev
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (J.S., V.S., N.B., R.L.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.S., V.O.N.); Physiologisches Institut I, Universität Würzburg, Würzburg, Germany (S.D., A.F.); Institut für Pharmakologie und Toxikologie, Ruhr-Universität Bochum, Bochum, Germany (M.R.); Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Tübingen, Germany (M.G.); Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (M.N.); and Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada (M.N.)
| |
Collapse
|
49
|
Phosphodiesterase 1 regulation is a key mechanism in vascular aging. Clin Sci (Lond) 2015; 129:1061-75. [PMID: 26464516 DOI: 10.1042/cs20140753] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/25/2015] [Indexed: 12/31/2022]
Abstract
Reduced nitric oxide (NO)/cGMP signalling is observed in age-related vascular disease. We hypothesize that this disturbed signalling involves effects of genomic instability, a primary causal factor in aging, on vascular smooth muscle cells (VSMCs) and that the underlying mechanism plays a role in human age-related vascular disease. To test our hypothesis, we combined experiments in mice with genomic instability resulting from the defective nucleotide excision repair gene ERCC1 (Ercc1(d/-) mice), human VSMC cultures and population genome-wide association studies (GWAS). Aortic rings of Ercc1(d/-) mice showed 43% reduced responses to the soluble guanylate cyclase (sGC) stimulator sodium nitroprusside (SNP). Inhibition of phosphodiesterase (PDE) 1 and 5 normalized SNP-relaxing effects in Ercc1(d/-) to wild-type (WT) levels. PDE1C levels were increased in lung and aorta. cGMP hydrolysis by PDE in lungs was higher in Ercc1(d/-) mice. No differences in activity or levels of cGMP-dependent protein kinase 1 or sGC were observed in Ercc1(d/-) mice compared with WT. Senescent human VSMC showed elevated PDE1A and PDE1C and PDE5 mRNA levels (11.6-, 9- and 2.3-fold respectively), which associated with markers of cellular senescence. Conversely, PDE1 inhibition lowered expression of these markers. Human genetic studies revealed significant associations of PDE1A single nucleotide polymorphisms with diastolic blood pressure (DBP; β=0.28, P=2.47×10(-5)) and carotid intima-media thickness (cIMT; β=-0.0061, P=2.89×10(-5)). In summary, these results show that genomic instability and cellular senescence in VSMCs increase PDE1 expression. This might play a role in aging-related loss of vasodilator function, VSMC senescence, increased blood pressure and vascular hypertrophy.
Collapse
|
50
|
Divorty N, Mackenzie AE, Nicklin SA, Milligan G. G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease. Front Pharmacol 2015; 6:41. [PMID: 25805994 PMCID: PMC4354270 DOI: 10.3389/fphar.2015.00041] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/13/2015] [Indexed: 01/13/2023] Open
Abstract
G protein-coupled receptor 35 (GPR35) is an orphan receptor, discovered in 1998, that has garnered interest as a potential therapeutic target through its association with a range of diseases. However, a lack of pharmacological tools and the absence of convincingly defined endogenous ligands have hampered the understanding of function necessary to exploit it therapeutically. Although several endogenous molecules can activate GPR35 none has yet been confirmed as the key endogenous ligand due to reasons that include lack of biological specificity, non-physiologically relevant potency and species ortholog selectivity. Recent advances have identified several highly potent synthetic agonists and antagonists, as well as agonists with equivalent potency at rodent and human orthologs, which will be useful as tool compounds. Homology modeling and mutagenesis studies have provided insight into the mode of ligand binding and possible reasons for the species selectivity of some ligands. Advances have also been made in determining the role of the receptor in disease. In the past, genome-wide association studies have associated GPR35 with diseases such as inflammatory bowel disease, type 2 diabetes, and coronary artery disease. More recent functional studies have implicated it in processes as diverse as heart failure and hypoxia, inflammation, pain transduction and synaptic transmission. In this review, we summarize the progress made in understanding the molecular pharmacology, downstream signaling and physiological function of GPR35, and discuss its emerging potential applications as a therapeutic target.
Collapse
Affiliation(s)
- Nina Divorty
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK ; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| | - Amanda E Mackenzie
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| |
Collapse
|