1
|
Meng X, Ford RC. Investigation of F508del CFTR unfolding and a search for stabilizing small molecules. Arch Biochem Biophys 2024; 758:110050. [PMID: 38876247 DOI: 10.1016/j.abb.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 06/16/2024]
Abstract
Mutation of phenylalanine at position 508 in the cystic fibrosis transmembrane conductance regulator (F508del CFTR) yields a protein unstable at physiological temperatures that is rapidly degraded in the cell. This mutation is present in about 90% of cystic fibrosis patients, hence there is great interest in compounds reversing its instability. We have previously reported the expression of the mutated protein at low temperature and its purification in detergent. Here we describe the use of the protein to screen compounds present in a library of Federal Drug Administration (FDA) - approved drugs and also in a small natural product library. The kinetics of unfolding of F508del CFTR at 37 °C were probed by the increase in solvent-exposed cysteine residues accessible to a fluorescent reporter molecule. This occurred in a bi-exponential manner with a major (≈60%) component of half-life around 5 min and a minor component of around 60 min. The faster kinetics match those observed for loss of channel activity of F508del CFTR in cells at 37 °C. Most compounds tested had no effect on the fluorescence increase, but some were identified that significantly slowed the kinetics. The general properties of these compounds, and any likely mechanisms for inducing stability in purified CFTR are discussed. These experimental data may be useful for artificial intelligence - aided design of CFTR-specific drugs and in the identification of stabilizing additives for membrane proteins (in general).
Collapse
Affiliation(s)
- Xin Meng
- University of Manchester, School of Biological Sciences, Oxford Road, Manchester, M13 9PL, UK; The Francis Crick Institute, Cellular Degradation Systems Lab, 1 Midland Road, London, NW1 1AT, UK
| | - Robert C Ford
- University of Manchester, School of Biological Sciences, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
2
|
Velloso JPL, de Sá AGC, Pires DEV, Ascher DB. Engineering G protein-coupled receptors for stabilization. Protein Sci 2024; 33:e5000. [PMID: 38747401 PMCID: PMC11094779 DOI: 10.1002/pro.5000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
G protein-coupled receptors (GPCRs) are one of the most important families of targets for drug discovery. One of the limiting steps in the study of GPCRs has been their stability, with significant and time-consuming protein engineering often used to stabilize GPCRs for structural characterization and drug screening. Unfortunately, computational methods developed using globular soluble proteins have translated poorly to the rational engineering of GPCRs. To fill this gap, we propose GPCR-tm, a novel and personalized structurally driven web-based machine learning tool to study the impacts of mutations on GPCR stability. We show that GPCR-tm performs as well as or better than alternative methods, and that it can accurately rank the stability changes of a wide range of mutations occurring in various types of class A GPCRs. GPCR-tm achieved Pearson's correlation coefficients of 0.74 and 0.46 on 10-fold cross-validation and blind test sets, respectively. We observed that the (structural) graph-based signatures were the most important set of features for predicting destabilizing mutations, which points out that these signatures properly describe the changes in the environment where the mutations occur. More specifically, GPCR-tm was able to accurately rank mutations based on their effect on protein stability, guiding their rational stabilization. GPCR-tm is available through a user-friendly web server at https://biosig.lab.uq.edu.au/gpcr_tm/.
Collapse
Affiliation(s)
- João Paulo L. Velloso
- School of Chemistry and Molecular Biosciences, The Australian Centre for EcogenomicsThe University of QueenslandBrisbaneQueenslandAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Alex G. C. de Sá
- School of Chemistry and Molecular Biosciences, The Australian Centre for EcogenomicsThe University of QueenslandBrisbaneQueenslandAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Douglas E. V. Pires
- School of Computing and Information SystemsThe University of MelbourneParkvilleVictoriaAustralia
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, The Australian Centre for EcogenomicsThe University of QueenslandBrisbaneQueenslandAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Bedini A, Boutin JA, Legros C, Zlotos DP, Spadoni G. Industrial and academic approaches to the search for alternative melatonin receptor ligands: An historical survey. J Pineal Res 2024; 76:e12953. [PMID: 38682544 DOI: 10.1111/jpi.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024]
Abstract
The search for melatonin receptor agonists formed the main part of melatonin medicinal chemistry programs for the last three decades. In this short review, we summarize the two main aspects of these programs: the development of all the necessary tools to characterize the newly synthesized ligands at the two melatonin receptors MT1 and MT2, and the medicinal chemist's approaches to find chemically diverse ligands at these receptors. Both strategies are described. It turns out that the main source of tools were industrial laboratories, while the medicinal chemistry was mainly carried out in academia. Such complete accounts are interesting, as they delineate the spirits in which the teams were working demonstrating their strength and innovative character. Most of the programs were focused on nonselective agonists and few of them reached the market. In contrast, discovery of MT1-selective agonists and melatonergic antagonists with proven in vivo activity and MT1 or MT2-selectivity is still in its infancy, despite the considerable interest that subtype selective compounds may bring in the domain, as the physiological respective roles of the two subtypes of melatonin receptors, is still poorly understood. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
MESH Headings
- Ligands
- Humans
- Animals
- Receptor, Melatonin, MT2/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptors, Melatonin/metabolism
- Receptors, Melatonin/agonists
- Melatonin/metabolism
- History, 20th Century
Collapse
Affiliation(s)
- Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Jean A Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, Rouen, France
| | | | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Egypt
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
4
|
Khorn PA, Luginina AP, Pospelov VA, Dashevsky DE, Khnykin AN, Moiseeva OV, Safronova NA, Belousov AS, Mishin AV, Borshchevsky VI. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: A Structural Biology Perspective. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:747-764. [PMID: 38831510 DOI: 10.1134/s0006297924040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
G protein-coupled receptors (GPCRs) play a key role in the transduction of extracellular signals to cells and regulation of many biological processes, which makes these membrane proteins one of the most important targets for pharmacological agents. A significant increase in the number of resolved atomic structures of GPCRs has opened the possibility of developing pharmaceuticals targeting these receptors via structure-based drug design (SBDD). SBDD employs information on the structure of receptor-ligand complexes to search for selective ligands without the need for an extensive high-throughput experimental ligand screening and can significantly expand the chemical space for ligand search. In this review, we describe the process of deciphering GPCR structures using X-ray diffraction analysis and cryoelectron microscopy as an important stage in the rational design of drugs targeting this receptor class. Our main goal was to present modern developments and key features of experimental methods used in SBDD of GPCR-targeting agents to a wide range of specialists.
Collapse
Affiliation(s)
- Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| | - Valentin I Borshchevsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Moscow Region, 141980, Russia
| |
Collapse
|
5
|
Dutagaci B, Duan B, Qiu C, Kaplan CD, Feig M. Characterization of RNA polymerase II trigger loop mutations using molecular dynamics simulations and machine learning. PLoS Comput Biol 2023; 19:e1010999. [PMID: 36947548 PMCID: PMC10069792 DOI: 10.1371/journal.pcbi.1010999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/03/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Catalysis and fidelity of multisubunit RNA polymerases rely on a highly conserved active site domain called the trigger loop (TL), which achieves roles in transcription through conformational changes and interaction with NTP substrates. The mutations of TL residues cause distinct effects on catalysis including hypo- and hyperactivity and altered fidelity. We applied molecular dynamics simulation (MD) and machine learning (ML) techniques to characterize TL mutations in the Saccharomyces cerevisiae RNA Polymerase II (Pol II) system. We did so to determine relationships between individual mutations and phenotypes and to associate phenotypes with MD simulated structural alterations. Using fitness values of mutants under various stress conditions, we modeled phenotypes along a spectrum of continual values. We found that ML could predict the phenotypes with 0.68 R2 correlation from amino acid sequences alone. It was more difficult to incorporate MD data to improve predictions from machine learning, presumably because MD data is too noisy and possibly incomplete to directly infer functional phenotypes. However, a variational auto-encoder model based on the MD data allowed the clustering of mutants with different phenotypes based on structural details. Overall, we found that a subset of loss-of-function (LOF) and lethal mutations tended to increase distances of TL residues to the NTP substrate, while another subset of LOF and lethal substitutions tended to confer an increase in distances between TL and bridge helix (BH). In contrast, some of the gain-of-function (GOF) mutants appear to cause disruption of hydrophobic contacts among TL and nearby helices.
Collapse
Affiliation(s)
- Bercem Dutagaci
- Department of Molecular and Cell Biology, University of California Merced, Merced, California, United States of America
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
6
|
Dixon AD, Inoue A, Robson SA, Culhane KJ, Trinidad JC, Sivaramakrishnan S, Bumbak F, Ziarek JJ. Effect of Ligands and Transducers on the Neurotensin Receptor 1 Conformational Ensemble. J Am Chem Soc 2022; 144:10241-10250. [PMID: 35647863 PMCID: PMC9936889 DOI: 10.1021/jacs.2c00828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Using a discrete, intracellular 19F nuclear magnetic resonance (NMR) probe on transmembrane helix 6 of the neurotensin receptor 1 (NTS1), we aim to understand how ligands and transducers modulate the receptor's structural ensemble in a solution. For apo NTS1, 19F NMR spectra reveal an ensemble of at least three conformational substates (one inactive and two active-like) in equilibrium that exchange on the millisecond to second timescale. Dynamic NMR experiments reveal that these substates follow a linear three-site exchange process that is both thermodynamically and kinetically remodeled by orthosteric ligands. As previously observed in other G protein-coupled receptors (GPCRs), the full agonist is insufficient to completely stabilize the active-like state. The inactive substate is abolished upon coupling to β-arrestin-1 (βArr1) or the C-terminal helix of Gαq, which comprises ≳60% of the GPCR/G protein interface surface area. Whereas βArr1 exclusively selects for pre-existing active-like substates, the Gαq peptide induces a new substate. Both transducer molecules promote substantial line broadening of active-like states, suggesting contributions from additional microsecond to millisecond exchange processes. Together, our study suggests that (i) the NTS1 allosteric activation mechanism may be alternatively dominated by induced fit or conformational selection depending on the coupled transducer, and (ii) the available static structures do not represent the entire conformational ensemble observed in a solution.
Collapse
Affiliation(s)
- Austin D. Dixon
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578 Miyagi, Japan
| | - Scott A. Robson
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kelly J. Culhane
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States,Present Address: Department of Chemistry, Lawrence University, Appleton, Wisconsin, 54911, United States
| | - Jonathan C. Trinidad
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Fabian Bumbak
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States,Present Address: Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua J. Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Shepherd C, Robinson S, Berizzi A, Thompson LEJ, Bird L, Culurgioni S, Varzandeh S, Rawlins PB, Olsen RHJ, Navratilova IH. Surface Plasmon Resonance Screening to Identify Active and Selective Adenosine Receptor Binding Fragments. ACS Med Chem Lett 2022; 13:1172-1181. [DOI: 10.1021/acsmedchemlett.2c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Claire Shepherd
- University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
- Kinetic Discovery Ltd., The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
| | - Sean Robinson
- Exscientia plc, The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
| | - Alice Berizzi
- Exscientia plc, The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
| | - Laura E. J. Thompson
- Exscientia plc, The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
| | - Louise Bird
- Kinetic Discovery Ltd., The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
- Exscientia plc, The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
| | - Simone Culurgioni
- Kinetic Discovery Ltd., The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
- Exscientia plc, The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
| | - Simon Varzandeh
- Exscientia plc, The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
| | - Philip B. Rawlins
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Reid H. J. Olsen
- Exscientia plc, The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
| | - Iva Hopkins Navratilova
- University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
- Kinetic Discovery Ltd., The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
- Exscientia plc, The Schrödinger
Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, United Kingdom
| |
Collapse
|
8
|
Yeast-based directed-evolution for high-throughput structural stabilization of G protein-coupled receptors (GPCRs). Sci Rep 2022; 12:8657. [PMID: 35606532 PMCID: PMC9126886 DOI: 10.1038/s41598-022-12731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
The immense potential of G protein-coupled receptors (GPCRs) as targets for drug discovery is not fully realized due to the enormous difficulties associated with structure elucidation of these profoundly unstable membrane proteins. The existing methods of GPCR stability-engineering are cumbersome and low-throughput; in addition, the scope of GPCRs that could benefit from these techniques is limited. Here, we present a yeast-based screening platform for a single-step isolation of GRCR variants stable in the presence of short-chain detergents, a feature essential for their successful crystallization using vapor diffusion method. The yeast detergent-resistant cell wall presents a unique opportunity for compartmentalization, to physically link the receptor's phenotype to its encoding DNA, and thus enable discovery of stable GPCR variants with unprecedent efficiency. The scope of mutations identified by the method reveals a surprising amenability of the GPCR scaffold to stabilization, and suggests an intriguing possibility of amending the stability properties of GPCR by varying the structural status of the C-terminus.
Collapse
|
9
|
Ghosh S, de March CA, Branciamore S, Kaleem S, Matsunami H, Vaidehi N. Sequence coevolution and structure stabilization modulate olfactory receptor expression. Biophys J 2022; 121:830-840. [PMID: 35065915 PMCID: PMC8947990 DOI: 10.1016/j.bpj.2022.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Olfactory receptors (ORs) belong to class A G-protein coupled receptors (GPCRs) and are activated by a variety of odorants. To date, there is no three-dimensional structure of an OR available. One of the major bottlenecks in obtaining purified protein for structural studies of ORs is their poor expression in heterologous cells. To design mutants that enhance expression and thereby enable protein purification, we first identified computable physical properties that recapitulate OR and class A GPCR expression and further conducted an iterative computational prediction-experimental test cycle and generated human OR mutants that express as high as biogenic amine receptors for which structures have been solved. In the process of developing the computational method to recapitulate the expression of ORs in membranes, we identified properties, such as amino acid sequence coevolution, and the strength of the interactions between intracellular loop 1 (ICL1) and the helix 8 region of ORs, to enhance their heterologous expression. We identified mutations that are directly located in these regions as well as other mutations not located in these regions but allosterically strengthen the ICL1-helix 8 enhance expression. These mutants also showed functional responses to known odorants. This method to enhance heterologous expression of mammalian ORs will facilitate high-throughput "deorphanization" of ORs, and enable OR purification for biochemical and structural studies to understand odorant-OR interactions.
Collapse
Affiliation(s)
- Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Sahar Kaleem
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, USA.
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
10
|
Wiseman DN, Samra N, Román Lara MM, Penrice SC, Goddard AD. The Novel Application of Geometric Morphometrics with Principal Component Analysis to Existing G Protein-Coupled Receptor (GPCR) Structures. Pharmaceuticals (Basel) 2021; 14:953. [PMID: 34681177 PMCID: PMC8541025 DOI: 10.3390/ph14100953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
The G protein-coupled receptor (GPCR) superfamily is a large group of membrane proteins which, because of their vast involvement in cell signalling pathways, are implicated in a plethora of disease states and are therefore considered to be key drug targets. Despite advances in techniques to study these receptors, current prophylaxis is often limited due to the challenging nature of their dynamic, complex structures. Greater knowledge and understanding of their intricate structural rearrangements will therefore undoubtedly aid structure-based drug design against GPCRs. Disciplines such as anthropology and palaeontology often use geometric morphometrics to measure variation between shapes and we have therefore applied this technique to analyse GPCR structures in a three-dimensional manner, using principal component analysis. Our aim was to create a novel system able to discriminate between GPCR structures and discover variation between them, correlated with a variety of receptor characteristics. This was conducted by assessing shape changes at the extra- and intracellular faces of the transmembrane helix bundle, analysing the XYZ coordinates of the amino acids at those positions. We have demonstrated that GPCR structures can be classified based on characteristics such as activation state, bound ligands and fusion proteins, with the most significant results focussed at the intracellular face. Conversely, our analyses provide evidence that thermostabilising mutations do not cause significant differences when compared to non-mutated GPCRs. We believe that this is the first time geometric morphometrics has been applied to membrane proteins on this scale, and believe it can be used as a future tool in sense-checking newly resolved structures and planning experimental design.
Collapse
Affiliation(s)
- Daniel N. Wiseman
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (D.N.W.); (N.S.); (M.M.R.L.)
| | - Nikita Samra
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (D.N.W.); (N.S.); (M.M.R.L.)
| | - María Monserrat Román Lara
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (D.N.W.); (N.S.); (M.M.R.L.)
| | - Samantha C. Penrice
- School of Technology, BPP University, BPP House, Aldine Place, 142-144 Uxbridge Road, London W12 8AA, UK;
| | - Alan D. Goddard
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (D.N.W.); (N.S.); (M.M.R.L.)
| |
Collapse
|
11
|
Morimoto K. [Activation Mechanism of Prostanoid Receptors -X-ray Crystallography of EP3 Receptor]. YAKUGAKU ZASSHI 2021; 141:473-479. [PMID: 33790113 DOI: 10.1248/yakushi.20-00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostanoids [prostaglandins (PGs) and thromboxanes (TXs)] are a series of bioactive lipid metabolites that function in an autacoid manner via activation of cognate G protein-coupled receptors (GPCRs). The nine subtypes of prostanoid receptors (DP1, DP2, EP1, EP2, EP3, EP4, FP, IP, TP) are involved in a wide range of functions, including inflammation, immune response, reproduction, and homeostasis of the intestinal mucosa and cardiovascular system. Among the prostanoid receptors, the structure of antagonist-bound DP2, which belongs to the chemoattractant receptor family, was previously determined. However, the mechanisms of prostanoid recognition and receptor activation remained elusive. To address this issue, we determined the crystal structures of antagonist-bound EP4 and PGE2-bound EP3. The EP3-PGE2 complex exhibits an active-like conformation, including outward movement of the cytoplasmic end of transmembrane (TM) 6 relative to the cytoplasmic end of TM6 of the EP4 complex. The carboxyl moiety of PGE2 is recognized through three hydrogen bonds formed by highly conserved residues: Y1142.65, T206Extracelluar loop 2 (ECL2), and R3337.40 (superscripts denote Ballesteros-Weinstein numbering). In addition, the ω-chain of PGE2 orients toward TM6, which appears to contribute to receptor activation. The structure reveals important insights into the activation mechanism of prostanoid receptors and provides a molecular basis for the binding modes of endogenous ligands. These findings should facilitate the development of subtype-selective and non-PG-like ligands.
Collapse
Affiliation(s)
- Kazushi Morimoto
- Department of Cell Biology, Graduate School of Medicine, Kyoto University
| |
Collapse
|
12
|
Fine Sampling of Sequence Space for Membrane Protein Structural Biology. J Mol Biol 2021; 433:167055. [PMID: 34022208 DOI: 10.1016/j.jmb.2021.167055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
We describe an enhancement of traditional genomics-based approaches to improve the success of structure determination of membrane proteins. Following a broad screen of sequence space to identify initial expression-positive targets, we employ a second step to select orthologs with closely related sequences to these hits. We demonstrate that a greater percentage of these latter targets express well and are stable in detergent, increasing the likelihood of identifying candidates that will ultimately yield structural information.
Collapse
|
13
|
Yokoi S, Mitsutake A. Molecular Dynamics Simulations for the Determination of the Characteristic Structural Differences between Inactive and Active States of Wild Type and Mutants of the Orexin2 Receptor. J Phys Chem B 2021; 125:4286-4298. [PMID: 33885321 DOI: 10.1021/acs.jpcb.0c10985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The orexin2 receptor (OX2R), which is classified as a class A G protein-coupled receptor (GPCR), is the target of our study. We performed over 20 several-microsecond-scale molecular dynamics simulations of the wild type and mutants of OX2R to extract the characteristics of the structural changes taking place in the active state. We introduced mutations that exhibited the stable inactive state and the constitutively active state in class A GPCRs. In these simulations, significant characteristic structural changes were observed in the V3096.40Y mutant, which corresponded to a constitutively active mutant. These conformational changes include the outward movement of the transmembrane helix 6 (TM6) and the inward movement of TM7, which are common structural changes in the activation of GPCRs. In addition, we extracted a suitable index for the quantitative evaluation of the active and inactive states of GPCRs, namely, the inter-atomic distance of Cα atoms between x(3.46) and Y(7.53). The structures of the inactive and active states solved by X-ray crystallography and cryo-electron microscopy can be classified using the inter-atomic distance. Furthermore, we clarified that the inward movement of TM7 requires the swapping of M3056.36 on TM6 and L3677.56 on TM7. Finally, we discussed the structural advantages of TM7 inward movement for GPCR activation.
Collapse
Affiliation(s)
- Shun Yokoi
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
14
|
Knight KM, Ghosh S, Campbell SL, Lefevre TJ, Olsen RHJ, Smrcka AV, Valentin NH, Yin G, Vaidehi N, Dohlman HG. A universal allosteric mechanism for G protein activation. Mol Cell 2021; 81:1384-1396.e6. [PMID: 33636126 DOI: 10.1016/j.molcel.2021.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/01/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
G proteins play a central role in signal transduction and pharmacology. Signaling is initiated by cell-surface receptors, which promote guanosine triphosphate (GTP) binding and dissociation of Gα from the Gβγ subunits. Structural studies have revealed the molecular basis of subunit association with receptors, RGS proteins, and downstream effectors. In contrast, the mechanism of subunit dissociation is poorly understood. We use cell signaling assays, molecular dynamics (MD) simulations, and biochemistry and structural analyses to identify a conserved network of amino acids that dictates subunit release. In the presence of the terminal phosphate of GTP, a glycine forms a polar network with an arginine and glutamate, putting torsional strain on the subunit binding interface. This "G-R-E motif" secures GTP and, through an allosteric link, discharges the Gβγ dimer. Replacement of network residues prevents subunit dissociation regardless of agonist or GTP binding. These findings reveal the molecular basis of the final committed step of G protein activation.
Collapse
Affiliation(s)
- Kevin M Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tyler J Lefevre
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalie H Valentin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guowei Yin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Errasti-Murugarren E, Bartoccioni P, Palacín M. Membrane Protein Stabilization Strategies for Structural and Functional Studies. MEMBRANES 2021; 11:membranes11020155. [PMID: 33671740 PMCID: PMC7926488 DOI: 10.3390/membranes11020155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
- Correspondence: (E.E.-M.); (M.P.)
| | - Paola Bartoccioni
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
| | - Manuel Palacín
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (E.E.-M.); (M.P.)
| |
Collapse
|
16
|
Nikte SV, Sonar K, Tandale A, Joshi M, Sengupta D. Loss of a water-mediated network results in reduced agonist affinity in a β 2-adrenergic receptor clinical variant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140605. [PMID: 33453412 DOI: 10.1016/j.bbapap.2021.140605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
The β2-adrenergic receptor (β2AR) is a member of the G protein-coupled receptor (GPCR) family that is an important drug target for asthma and COPD. Clinical studies coupled with biochemical data have identified a critical receptor variant, Thr164Ile, to have a reduced response to agonist-based therapy, although the molecular mechanism underlying this seemingly "non-deleterious" substitution is not clear. Here, we couple molecular dynamics simulations with network analysis and free-energy calculations to identify the molecular determinants underlying the differential drug response. We are able to identify hydration sites in the transmembrane domain that are essential to maintain the integrity of the binding site but are absent in the variant. The loss of these hydration sites in the variant correlates with perturbations in the intra-protein interaction network and rearrangements in the orthosteric ligand binding site. In conjunction, we observe an altered binding and reduced free energy of a series of agonists, in line with experimental trends. Our work identifies a functional allosteric pathway connected by specific hydration sites in β2AR that has not been reported before and provides insight into water-mediated networks in GPCRs in general. Overall, the work is one of the first step towards developing variant-specific potent and selective agonists.
Collapse
Affiliation(s)
- Siddhanta V Nikte
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Krushna Sonar
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India
| | - Aditi Tandale
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India
| | - Manali Joshi
- Bioinformatics Centre, S. P. University, Pune 411 007, India.
| | - Durba Sengupta
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
17
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
18
|
Jones AJY, Gabriel F, Tandale A, Nietlispach D. Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches. Molecules 2020; 25:E4729. [PMID: 33076366 PMCID: PMC7587580 DOI: 10.3390/molecules25204729] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the vast amount of information generated through structural and biophysical studies of GPCRs has provided unprecedented mechanistic insight into the complex signalling behaviour of these receptors. With this recent information surge, it has also become increasingly apparent that in order to reproduce the various effects that lipids and membranes exert on the biological function for these allosteric receptors, in vitro studies of GPCRs need to be conducted under conditions that adequately approximate the native lipid bilayer environment. In the first part of this review, we assess some of the more general effects that a membrane environment exerts on lipid bilayer-embedded proteins such as GPCRs. This is then followed by the consideration of more specific effects, including stoichiometric interactions with specific lipid subtypes. In the final section, we survey a range of different membrane mimetics that are currently used for in vitro studies, with a focus on NMR applications.
Collapse
Affiliation(s)
| | | | | | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (A.J.Y.J.); (F.G.); (A.T.)
| |
Collapse
|
19
|
IMPROvER: the Integral Membrane Protein Stability Selector. Sci Rep 2020; 10:15165. [PMID: 32938971 PMCID: PMC7495477 DOI: 10.1038/s41598-020-71744-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 08/04/2020] [Indexed: 01/20/2023] Open
Abstract
Identifying stabilising variants of membrane protein targets is often required for structure determination. Our new computational pipeline, the Integral Membrane Protein Stability Selector (IMPROvER) provides a rational approach to variant selection by employing three independent approaches: deep-sequence, model-based and data-driven. In silico tests using known stability data, and in vitro tests using three membrane protein targets with 7, 11 and 16 transmembrane helices provided measures of success. In vitro, individual approaches alone all identified stabilising variants at a rate better than expected by random selection. Low numbers of overlapping predictions between approaches meant a greater success rate was achieved (fourfold better than random) when approaches were combined and selections restricted to the highest ranked sites. The mix of information IMPROvER uses can be extracted for any helical membrane protein. We have developed the first general-purpose tool for selecting stabilising variants of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha$$\end{document}α-helical membrane proteins, increasing efficiency and reducing workload. IMPROvER can be accessed at http://improver.ddns.net/IMPROvER/.
Collapse
|
20
|
Hothersall JD, Jones AY, Dafforn TR, Perrior T, Chapman KL. Releasing the technical 'shackles' on GPCR drug discovery: opportunities enabled by detergent-free polymer lipid particle (PoLiPa) purification. Drug Discov Today 2020; 25:S1359-6446(20)30337-8. [PMID: 32835806 DOI: 10.1016/j.drudis.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/04/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptor (GPCR) drug research is presently hindered by the technical challenges associated with generating purified receptors. Consequently, the application of critical modern discovery technologies has been limited, and the vast untapped opportunity for new GPCR-directed medicines is not being realised. A simple but transformative solution is to purify receptors without removing them from their native phospholipid environment by using polymer lipid particle (PoLiPa) technology, with reagents such as styrene-maleic acid co-polymer (SMA). Compared with contemporary detergent-based and stabilising mutagenesis methods, the PoLiPa approach is simple and generic and, therefore, offers huge advantages, with the potential to revolutionise GPCR research by facilitating the availability of the purified receptors that are required for structural biology, biophysical, and panning technologies.
Collapse
Affiliation(s)
- J Daniel Hothersall
- Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, CB10 1XL, UK.
| | - Andrew Y Jones
- Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, CB10 1XL, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Trevor Perrior
- Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, CB10 1XL, UK
| | - Kathryn L Chapman
- Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, CB10 1XL, UK
| |
Collapse
|
21
|
Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nat Commun 2020; 11:4121. [PMID: 32807782 PMCID: PMC7431577 DOI: 10.1038/s41467-020-17933-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vasoactive intestinal polypeptide receptor (VIP1R) is a widely expressed class B G protein-coupled receptor and a drug target for the treatment of neuronal, metabolic, and inflammatory diseases. However, our understanding of its mechanism of action and the potential of drug discovery targeting this receptor is limited by the lack of structural information of VIP1R. Here we report a cryo-electron microscopy structure of human VIP1R bound to PACAP27 and Gs heterotrimer, whose complex assembly is stabilized by a NanoBiT tethering strategy. Comparison with other class B GPCR structures reveals that PACAP27 engages VIP1R with its N-terminus inserting into the ligand binding pocket at the transmembrane bundle of the receptor, which subsequently couples to the G protein in a receptor-specific manner. This structure has provided insights into the molecular basis of PACAP27 binding and VIP receptor activation. The methodology of the NanoBiT tethering may help to provide structural information of unstable complexes. Vasoactive intestinal polypeptide receptor (VIP1R) is a widely expressed class B G protein-coupled receptor and a drug target for the treatment of inflammatory diseases. Here authors report a cryoelectron microscopy structure of human VIP1R bound to PACAP27 and Gs heterotrimer, which provides insights into PACAP27 binding and VIP receptor activation.
Collapse
|
22
|
Duan J, Lupyan D, Wang L. Improving the Accuracy of Protein Thermostability Predictions for Single Point Mutations. Biophys J 2020; 119:115-127. [PMID: 32533939 DOI: 10.1016/j.bpj.2020.05.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 01/17/2023] Open
Abstract
Accurately predicting the protein thermostability changes upon single point mutations in silico is a challenge that has implications for understanding diseases as well as industrial applications of protein engineering. Free energy perturbation (FEP) has been applied to predict the effect of single point mutations on protein stability for over 40 years and emerged as a potentially reliable prediction method with reasonable throughput. However, applications of FEP in protein stability calculations in industrial settings have been hindered by a number of limitations, including the inability to model mutations to and from prolines in which the bonded topology of the backbone is modified and the complexity in modeling charge-changing mutations. In this study, we have extended the FEP+ protocol to enable the accurate modeling of the effects on protein stability from proline mutations and from charge-changing mutations. We also evaluated the influence of the unfolded model in the stability calculations using increasingly longer peptides with native sequence and conformations. With the abovementioned improvements, the accuracy of FEP predictions of protein stability over a data set of 87 mutations on five different proteins has drastically improved compared with previous studies, with a mean unsigned error of 0.86 kcal/mol and root mean square error of 1.11 kcal/mol, comparable with the accuracy of previously published state-of-the-art small-molecule relative binding affinity calculations, which have been shown to be capable of driving discovery projects.
Collapse
|
23
|
Yao H, Cai H, Li D. Thermostabilization of Membrane Proteins by Consensus Mutation: A Case Study for a Fungal Δ8-7 Sterol Isomerase. J Mol Biol 2020; 432:5162-5183. [PMID: 32105736 DOI: 10.1016/j.jmb.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 11/15/2022]
Abstract
Membrane proteins are generally challenging to work with because of their notorious instability. Protein engineering has been used increasingly to thermostabilize labile membrane proteins such as G-protein-coupled receptors for structural and functional studies in recent years. Two major strategies exist. Scanning mutagenesis systematically eliminates destabilizing residues, whereas the consensus approach assembles mutants with the most frequent residues among selected homologs, bridging sequence conservation with stability. Here, we applied the consensus concept to stabilize a fungal homolog of the human sterol Δ8-7 isomerase, a 26.4 kDa protein with five transmembrane helices. The isomerase is also called emopamil-binding protein (EBP), as it binds this anti-ischemic drug with high affinity. The wild-type had an apparent melting temperature (Tm) of 35.9 °C as measured by the fluorescence-detection size-exclusion chromatography-based thermostability assay. A total of 87 consensus mutations sourced from 22 homologs gained expression level and thermostability, increasing the apparent Tm to 69.9 °C at the cost of partial function loss. Assessing the stability and activity of several systematic chimeric constructs identified a construct with an apparent Tm of 79.8 °C and two regions for function rescue. Further back-mutations of the chimeric construct in the two target regions yielded the final construct with similar apparent activity to the wild-type and an elevated Tm of 88.8 °C, totaling an increase of 52.9 °C. The consensus approach is effective and efficient because it involves fewer constructs compared with scanning mutagenesis. Our results should encourage more use of the consensus strategy for membrane protein thermostabilization.
Collapse
Affiliation(s)
- Hebang Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Hongmin Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China.
| |
Collapse
|
24
|
Gose T, Shafi T, Fukuda Y, Das S, Wang Y, Allcock A, Gavan McHarg A, Lynch J, Chen T, Tamai I, Shelat A, Ford RC, Schuetz JD. ABCG2 requires a single aromatic amino acid to "clamp" substrates and inhibitors into the binding pocket. FASEB J 2020; 34:4890-4903. [PMID: 32067270 DOI: 10.1096/fj.201902338rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette sub-family G member 2 (ABCG2) is a homodimeric ATP-binding cassette (ABC) transporter that not only has a key role in helping cancer cells to evade the cytotoxic effects of chemotherapy, but also in protecting organisms from multiple xeno- and endobiotics. Structural studies indicate that substrate and inhibitor (ligands) binding to ABCG2 can be differentiated quantitatively by the number of amino acid contacts, with inhibitors displaying more contacts. Although binding is the obligate initial step in the transport cycle, there is no empirical evidence for one amino acid being primarily responsible for ligand binding. By mutagenesis and biochemical studies, we demonstrated that the phylogenetically conserved amino acid residue, F439, was critical for both transport and the binding of multiple substrates and inhibitors. Structural modeling implied that the π-π interactions from each F439 monomer mediated the binding of a surprisingly diverse array of structurally unrelated substrates and inhibitors and that this symmetrical π-π interaction "clamps" the ligand into the binding pocket. Key molecular features of diverse ABCG2 ligands using the π-π clamp along with structural studies created a pharmacophore model. These novel findings have important therapeutic implications because key properties of ligands interacting with ABCG2 have been disovered. Furthermore, mechanistic insights have been revealed by demonstrating that for ABCG2 a single amino acid is essential for engaging and initiating transport of multiple drugs and xenobiotics.
Collapse
Affiliation(s)
- Tomoka Gose
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Talha Shafi
- School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yao Wang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alice Allcock
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ailsa Gavan McHarg
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ikumi Tamai
- Department of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert C Ford
- School of Biological Sciences, The University of Manchester, Manchester, UK
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
25
|
Bridging non-overlapping reads illuminates high-order epistasis between distal protein sites in a GPCR. Nat Commun 2020; 11:690. [PMID: 32019920 PMCID: PMC7000732 DOI: 10.1038/s41467-020-14495-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/06/2020] [Indexed: 11/09/2022] Open
Abstract
Epistasis emerges when the effects of an amino acid depend on the identities of interacting residues. This phenomenon shapes fitness landscapes, which have the power to reveal evolutionary paths and inform evolution of desired functions. However, there is a need for easily implemented, high-throughput methods to capture epistasis particularly at distal sites. Here, we combine deep mutational scanning (DMS) with a straightforward data processing step to bridge reads in distal sites within genes (BRIDGE). We use BRIDGE, which matches non-overlapping reads to their cognate templates, to uncover prevalent epistasis within the binding pocket of a human G protein-coupled receptor (GPCR) yielding variants with 4-fold greater affinity to a target ligand. The greatest functional improvements in our screen result from distal substitutions and substitutions that are deleterious alone. Our results corroborate findings of mutational tolerance in GPCRs, even in conserved motifs, but reveal inherent constraints restricting tolerated substitutions due to epistasis. Epistasis effects among amino acids at distal sites within binding pockets can have important impacts on protein fitness landscapes. Here the authors present BRIDGE, which matches non-overlapping sequence reads with their cognate DNA templates.
Collapse
|
26
|
Stauch B, Johansson LC, Cherezov V. Structural insights into melatonin receptors. FEBS J 2019; 287:1496-1510. [PMID: 31693784 DOI: 10.1111/febs.15128] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
The long-anticipated high-resolution structures of the human melatonin G protein-coupled receptors MT1 and MT2 , involved in establishing and maintaining circadian rhythm, were obtained in complex with two melatonin analogs and two approved anti-insomnia and antidepression drugs using X-ray free-electron laser serial femtosecond crystallography. The structures shed light on the overall conformation and unusual structural features of melatonin receptors, as well as their ligand binding sites and the melatonergic pharmacophore, thereby providing insights into receptor subtype selectivity. The structures revealed an occluded orthosteric ligand binding site with a membrane-buried channel for ligand entry in both receptors, and an additional putative ligand entry path in MT2 from the extracellular side. This unexpected ligand entry mode contributes to facilitating the high specificity with which melatonin receptors bind their cognate ligand and exclude structurally similar molecules such as serotonin, the biosynthetic precursor of melatonin. Finally, the MT2 structure allowed accurate mapping of type 2 diabetes-related single-nucleotide polymorphisms, where a clustering of residues in helices I and II on the protein-membrane interface was observed which could potentially influence receptor oligomerization. The role of receptor oligomerization is further discussed in light of the differential interaction of MT1 and MT2 with GPR50, a regulatory melatonin coreceptor. The melatonin receptor structures will facilitate design of selective tool compounds to further dissect the specific physiological function of each receptor subtype as well as provide a structural basis for next-generation sleeping aids and other drugs targeting these receptors with higher specificity and fewer side effects.
Collapse
Affiliation(s)
- Benjamin Stauch
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Linda C Johansson
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Muk S, Ghosh S, Achuthan S, Chen X, Yao X, Sandhu M, Griffor MC, Fennell KF, Che Y, Shanmugasundaram V, Qiu X, Tate CG, Vaidehi N. Machine Learning for Prioritization of Thermostabilizing Mutations for G-Protein Coupled Receptors. Biophys J 2019; 117:2228-2239. [PMID: 31703801 DOI: 10.1016/j.bpj.2019.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 01/01/2023] Open
Abstract
Although the three-dimensional structures of G-protein coupled receptors (GPCRs), the largest superfamily of drug targets, have enabled structure-based drug design, there are no structures available for 87% of GPCRs. This is due to the stiff challenge in purifying the inherently flexible GPCRs. Identifying thermostabilized mutant GPCRs via systematic alanine scanning mutations has been a successful strategy in stabilizing GPCRs, but it remains a daunting task for each GPCR. We developed a computational method that combines sequence-, structure-, and dynamics-based molecular properties of GPCRs that recapitulate GPCR stability, with four different machine learning methods to predict thermostable mutations ahead of experiments. This method has been trained on thermostability data for 1231 mutants, the largest publicly available data set. A blind prediction for thermostable mutations of the complement factor C5a receptor 1 retrieved 36% of the thermostable mutants in the top 50 prioritized mutants compared to 3% in the first 50 attempts using systematic alanine scanning.
Collapse
Affiliation(s)
- Sanychen Muk
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California
| | - Srisairam Achuthan
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California
| | | | - XiaoJie Yao
- Discovery Sciences, Pfizer, Groton, Connecticut
| | - Manbir Sandhu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California
| | | | | | - Ye Che
- Discovery Sciences, Pfizer, Groton, Connecticut
| | | | - Xiayang Qiu
- Discovery Sciences, Pfizer, Groton, Connecticut
| | | | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California.
| |
Collapse
|
28
|
Jana S, Ghosh S, Muk S, Levy B, Vaidehi N. Prediction of Conformation Specific Thermostabilizing Mutations for Class A G Protein-Coupled Receptors. J Chem Inf Model 2019; 59:3744-3754. [PMID: 31408606 PMCID: PMC6944194 DOI: 10.1021/acs.jcim.9b00175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
G protein-coupled receptors (GPCRs) are highly flexible and prone to denaturation during protein extraction in detergents and purification. This poses a huge challenge to purify a conformationally homogeneous solution of GPCRs. Thermostabilizing mutations have been used widely to purify and obtain crystal structures of several GPCRs. However, identifying thermostabilizing mutations for GPCRs remains a tedious and expensive task as they are not transferable even among closely related GPCRs. Additionally, the mutations stabilizing one conformational state of a GPCR do not always stabilize other conformational state(s) of the same GPCR. Previously we developed a computational method, LiticonDesign, for rapid prediction of thermostabilizing mutations for a specific GPCR conformation. In this study, we have used LiticonDesign to predict thermostabilizing mutations for the agonist bound active-intermediate state of the human adenosine receptor (A2AR) using the structure of the inactive state of the same GPCR and vice versa. Our study shows that the thermostable mutation predictions using LiticonDesign, for an active-intermediate state of a GPCR (A2AR in our case), requires a homology model that is derived from an active/active-intermediate state GPCR structure as a template. Similarly, the homology models derived from inactive state GPCR conformations are better in predicting the thermostable mutations for the inactive state of A2AR. Overall, LiticonDesign method is not only efficient in predicting thermostabilizing mutations for a given GPCR sequence but also can recover conformation specific mutations for a state of interest, if a suitable starting structure of desired conformation is chosen.
Collapse
Affiliation(s)
- Suvamay Jana
- Department of Computation and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
| | - Soumadwip Ghosh
- Department of Computation and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
| | - Sanychen Muk
- Department of Computation and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
| | - Benjamin Levy
- Department of Computation and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
| | - Nagarajan Vaidehi
- Department of Computation and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
| |
Collapse
|
29
|
Kwan TOC, Reis R, Siligardi G, Hussain R, Cheruvara H, Moraes I. Selection of Biophysical Methods for Characterisation of Membrane Proteins. Int J Mol Sci 2019; 20:E2605. [PMID: 31137900 PMCID: PMC6566885 DOI: 10.3390/ijms20102605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/01/2023] Open
Abstract
Over the years, there have been many developments and advances in the field of integral membrane protein research. As important pharmaceutical targets, it is paramount to understand the mechanisms of action that govern their structure-function relationships. However, the study of integral membrane proteins is still incredibly challenging, mostly due to their low expression and instability once extracted from the native biological membrane. Nevertheless, milligrams of pure, stable, and functional protein are always required for biochemical and structural studies. Many modern biophysical tools are available today that provide critical information regarding to the characterisation and behaviour of integral membrane proteins in solution. These biophysical approaches play an important role in both basic research and in early-stage drug discovery processes. In this review, it is not our objective to present a comprehensive list of all existing biophysical methods, but a selection of the most useful and easily applied to basic integral membrane protein research.
Collapse
Affiliation(s)
- Tristan O C Kwan
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| | - Rosana Reis
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Harish Cheruvara
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Isabel Moraes
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| |
Collapse
|
30
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
31
|
Bostock MJ, Solt AS, Nietlispach D. The role of NMR spectroscopy in mapping the conformational landscape of GPCRs. Curr Opin Struct Biol 2019; 57:145-156. [PMID: 31075520 DOI: 10.1016/j.sbi.2019.03.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 11/26/2022]
Abstract
Over recent years, nuclear magnetic resonance (NMR) spectroscopy has developed into a powerful mechanistic tool for the investigation of G protein-coupled receptors (GPCRs). NMR provides insights which underpin the dynamic nature of these important receptors and reveals experimental evidence for a complex conformational energy landscape that is explored during receptor activation resulting in signalling. NMR studies have highlighted both the dynamic properties of different receptor states as well as the exchange pathways and intermediates formed during activation, extending the static view of GPCRs obtained from other techniques. NMR studies can be undertaken in realistic membrane-like phospholipid environments and an ever-increasing choice of labelling strategies provides comprehensive, receptor-wide information. Combined with other structural methods, NMR is contributing to our understanding of allosteric signal propagation and the interaction of GPCRs with intracellular binding partners (IBP), crucial to explaining cellular signalling.
Collapse
Affiliation(s)
- Mark J Bostock
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Andras S Solt
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
32
|
Popov P, Kozlovskii I, Katritch V. Computational design for thermostabilization of GPCRs. Curr Opin Struct Biol 2019; 55:25-33. [PMID: 30909106 DOI: 10.1016/j.sbi.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
GPCR superfamily is the largest clinically relevant family of targets in human genome; however, low thermostability and high conformational plasticity of these integral membrane proteins make them notoriously hard to handle in biochemical, biophysical, and structural experiments. Here, we describe the recent advances in computational approaches to design stabilizing mutations for GPCR that take advantage of the structural and sequence conservation properties of the receptors, and employ machine learning on accumulated mutation data for the superfamily. The fast and effective computational tools can provide a viable alternative to existing experimental mutation screening and are poised for further improvements with expansion of thermostability datasets for training the machine learning models. The rapidly growing practical applications of computational stability design streamline GPCR structure determination and may contribute to more efficient drug discovery.
Collapse
Affiliation(s)
- Petr Popov
- Skolkovo Institute of Science and Technology, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Igor Kozlovskii
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vsevolod Katritch
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Martínez-Archundia M, Correa-Basurto J, Montaño S, Rosas-Trigueros JL. Studying the collective motions of the adenosine A2A receptor as a result of ligand binding using principal component analysis. J Biomol Struct Dyn 2019; 37:4685-4700. [DOI: 10.1080/07391102.2018.1564700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Marlet Martínez-Archundia
- Laboratorio de Modelado Molecular y Bioinformática, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Bioinformática, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sarita Montaño
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan, Sinaloa, Mexico
| | - Jorge L. Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Cómputo, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
34
|
|
35
|
Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nat Chem Biol 2018; 15:18-26. [DOI: 10.1038/s41589-018-0131-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 07/26/2018] [Indexed: 01/18/2023]
|
36
|
Kleist AB, Peterson F, Tyler RC, Gustavsson M, Handel TM, Volkman BF. Solution NMR spectroscopy of GPCRs: Residue-specific labeling strategies with a focus on 13C-methyl methionine labeling of the atypical chemokine receptor ACKR3. Methods Cell Biol 2018; 149:259-288. [PMID: 30616824 DOI: 10.1016/bs.mcb.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The past decade has witnessed remarkable progress in the determination of G protein-coupled receptor (GPCR) structures, profoundly expanding our understanding of how GPCRs recognize ligands, become activated, and interact with intracellular signaling components. In recent years, numerous studies have used solution nuclear magnetic resonance (NMR) spectroscopy to investigate GPCRs, providing fundamental insights into GPCR conformational changes, allostery, dynamics, and other facets of GPCR function are challenging to study using other structural techniques. Despite these advantages, NMR-based studies of GPCRs are few relative to the number of published structures, due in part to the challenges and limitations of NMR for the characterization of large membrane proteins. Several studies have circumvented these challenges using a variety of isotopic labeling strategies, including side chain derivatization and metabolic incorporation of NMR-active nuclei. In this chapter, we provide an overview of different isotopic labeling strategies and describe an in-depth protocol for the expression, purification, and NMR studies of the chemokine GPCR atypical chemokine receptor 3 (ACKR3) via 13CH3-methionine incorporation. The goal of this chapter is to provide a resource to the GPCR community for those interested in pursuing NMR studies of GPCRs.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Francis Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert C Tyler
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
37
|
Structural insights into the subtype-selective antagonist binding to the M 2 muscarinic receptor. Nat Chem Biol 2018; 14:1150-1158. [PMID: 30420692 PMCID: PMC6462224 DOI: 10.1038/s41589-018-0152-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 09/14/2018] [Indexed: 11/23/2022]
Abstract
Human muscarinic receptor, M2 is one of the five subtypes of muscarinic receptors belonging to the family of G protein-coupled receptors. Muscarinic receptors are targets for multiple neurodegenerative diseases. The challenge has been designing subtype selective ligands against one of the five muscarinic receptors. We report high resolution structures of a thermostabilized mutant M2 receptor bound to a subtype selective antagonist AF-DX 384 and a non-selective antagonist NMS. The thermostabilizing mutation S110R in M2 was predicted using a theoretical strategy previously developed in our group. Comparison of the crystal structures and pharmacological properties of the M2 receptor shows that the Arg in the S110R mutant mimics the stabilizing role of the sodium cation, that is known to allosterically stabilize inactive state(s) of class A GPCRs. Molecular Dynamics simulations reveal that tightening of the ligand-residue contacts in M2 receptor compared to M3 receptor leads to subtype selectivity of AF-DX 384.
Collapse
|
38
|
Ghosh S, Bierig T, Lee S, Jana S, Löhle A, Schnapp G, Tautermann CS, Vaidehi N. Engineering Salt Bridge Networks between Transmembrane Helices Confers Thermostability in G-Protein-Coupled Receptors. J Chem Theory Comput 2018; 14:6574-6585. [PMID: 30359017 DOI: 10.1021/acs.jctc.8b00602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction of specific point mutations has been an effective strategy in enhancing the thermostability of G-protein-coupled receptors (GPCRs). Our previous work showed that a specific residue position on transmembrane helix 6 (TM6) in class A GPCRs consistently yields thermostable mutants. The crystal structure of human chemokine receptor CCR5 also showed increased thermostability upon mutation of two positions, A233D6.33 and K303E7.59. With the goal of testing the transferability of these two thermostabilizing mutations in other chemokine receptors, we tested the mutations A237D6.33 and R307E7.59 in human CCR3 for thermostability and aggregation properties in detergent solution. Interestingly, the double mutant exhibited a 6-10-fold decrease in the aggregation propensity of the wild-type protein. This is in stark contrast to the two single mutants whose aggregation properties resemble the wild type (WT). Moreover, unlike in CCR5, the two single mutants separately showed no increase in thermostability compared to the wild-type CCR3, while the double-mutant A237D6.33/R307E7.59 confers an increase of 2.6 °C in the melting temperature compared to the WT. Extensive all-atom molecular dynamics (MD) simulations in detergent micelles show that a salt bridge network between transmembrane helices TM3, TM6, and TM7 that is absent in the two single mutants confers stability in the double mutant. The free energy surface of the double mutant shows conformational homogeneity compared to the single mutants. An annular n-dodecyl maltoside detergent layer packs tighter to the hydrophobic surface of the double-mutant CCR3 compared to the single mutants providing additional stability. The purification of other C-C chemokine receptors lacking such stabilizing residues may benefit from the incorporation of these two point mutations.
Collapse
Affiliation(s)
- Soumadwip Ghosh
- Department of Molecular Imaging and Therapy , Beckman Research Institute of the City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Tobias Bierig
- Department of Medicinal Chemistry , Boehringer Ingelheim Pharma GmbH & Company KG , Birkendorfer Strasse 65 , D-88397 Biberach an der Riss , Germany
| | | | | | | | - Gisela Schnapp
- Department of Medicinal Chemistry , Boehringer Ingelheim Pharma GmbH & Company KG , Birkendorfer Strasse 65 , D-88397 Biberach an der Riss , Germany
| | - Christofer S Tautermann
- Department of Medicinal Chemistry , Boehringer Ingelheim Pharma GmbH & Company KG , Birkendorfer Strasse 65 , D-88397 Biberach an der Riss , Germany
| | - Nagarajan Vaidehi
- Department of Molecular Imaging and Therapy , Beckman Research Institute of the City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| |
Collapse
|
39
|
Membrane protein engineering to the rescue. Biochem Soc Trans 2018; 46:1541-1549. [PMID: 30381335 DOI: 10.1042/bst20180140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
The inherent hydrophobicity of membrane proteins is a major barrier to membrane protein research and understanding. Their low stability and solubility in aqueous environments coupled with poor expression levels make them a challenging area of research. For many years, the only way of working with membrane proteins was to optimise the environment to suit the protein, through the use of different detergents, solubilising additives, and other adaptations. However, with innovative protein engineering methodologies, the membrane proteins themselves are now being adapted to suit the environment. This mini-review looks at the types of adaptations which are applied to membrane proteins from a variety of different fields, including water solubilising fusion tags, thermostabilising mutation screening, scaffold proteins, stabilising protein chimeras, and isolating water-soluble domains.
Collapse
|
40
|
Nji E, Chatzikyriakidou Y, Landreh M, Drew D. An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins. Nat Commun 2018; 9:4253. [PMID: 30315156 PMCID: PMC6185904 DOI: 10.1038/s41467-018-06702-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Membrane bilayers are made up of a myriad of different lipids that regulate the functional activity, stability, and oligomerization of many membrane proteins. Despite their importance, screening the structural and functional impact of lipid–protein interactions to identify specific lipid requirements remains a major challenge. Here, we use the FSEC-TS assay to show cardiolipin-dependent stabilization of the dimeric sodium/proton antiporter NhaA, demonstrating its ability to detect specific protein-lipid interactions. Based on the principle of FSEC-TS, we then engineer a simple thermal-shift assay (GFP-TS), which facilitates the high-throughput screening of lipid- and ligand- interactions with membrane proteins. By comparing the thermostability of medically relevant eukaryotic membrane proteins and a selection of bacterial counterparts, we reveal that eukaryotic proteins appear to have evolved to be more dependent to the presence of specific lipids. Membrane bilayers are made up of a myriad of different lipids that affect membrane proteins, but identifying those specific lipid requirements remains a challenge. Here authors present an engineered thermal-shift screen which reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins.
Collapse
Affiliation(s)
- Emmanuel Nji
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Yurie Chatzikyriakidou
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Michael Landreh
- SciLifeLab and Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
41
|
Majumder P, Mallela AK, Penmatsa A. Transporters through the looking glass. An insight into the mechanisms of ion-coupled transport and methods that help reveal them. J Indian Inst Sci 2018; 98:283-300. [PMID: 30686879 PMCID: PMC6345361 DOI: 10.1007/s41745-018-0081-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022]
Abstract
Cell membranes, despite providing a barrier to protect intracellular constituents, require selective gating for influx of important metabolites including ions, sugars, amino acids, neurotransmitters and efflux of toxins and metabolic end-products. The machinery involved in carrying out this gating process comprises of integral membrane proteins that use ionic electrochemical gradients or ATP hydrolysis, to drive concentrative uptake or efflux. The mechanism through which ion-coupled transporters function is referred to as alternating-access. In the recent past, discrete modes of alternating-access have been described with the elucidation of new transporter structures and their snapshots in altered conformational states. Despite X-ray structures being the primary sources of mechanistic information, other biophysical methods provide information related to the structural dynamics of these transporters. Methods including EPR and smFRET, have extensively helped validate or clarify ion-coupled transport mechanisms, in a near-native environment. This review seeks to highlight the mechanistic details of ion-coupled transport and delve into the biophysical tools and methods that help in understanding these fascinating molecules.
Collapse
Affiliation(s)
- Puja Majumder
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012 India
| | | | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
42
|
Lenoir G, Dieudonné T, Lamy A, Lejeune M, Vazquez-Ibar JL, Montigny C. Screening of Detergents for Stabilization of Functional Membrane Proteins. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2018; 93:e59. [PMID: 30021058 DOI: 10.1002/cpps.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane protein studies usually require use of detergents to extract and isolate proteins from membranes and manipulate them in a soluble context for their functional or structural characterization. However, solubilization with detergent may interfere with MP stability and may directly affect MP function or structure. Moreover, detergent properties can be affected such as critical micellar concentration (CMC) can be affected by the experimental conditions. Consequently, the experimenter must pay attention to both the protein and the behavior of the detergent. This article provides a convenient protocol for estimating the CMC of detergents in given experimental conditions. Then, it presents two protocols aimed at monitoring the function of a membrane protein in the presence of detergent. Such experiments may help to test various detergents for their inactivating or stabilizing effects on long incubation times, ranging from few hours to some days. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Thibaud Dieudonné
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Anaïs Lamy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Maylis Lejeune
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - José-Luis Vazquez-Ibar
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| |
Collapse
|
43
|
Keri D, Barth P. Reprogramming G protein coupled receptor structure and function. Curr Opin Struct Biol 2018; 51:187-194. [PMID: 30055347 DOI: 10.1016/j.sbi.2018.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Abstract
The prominence of G protein-coupled receptors (GPCRs) in human physiology and disease has resulted in their intense study in various fields of research ranging from neuroscience to structural biology. With over 800 members in the human genome and their involvement in a myriad of diseases, GPCRs are the single largest family of drug targets, and an ever-present interest exists in further drug discovery and structural characterization efforts. However, low GPCR expression and stability outside the natural lipid environments have challenged these efforts. In vivo functional studies of GPCR signaling are complicated not only by the need for specific spatiotemporal activation, but also by downstream effector promiscuity. In this review, we summarize the present and emerging GPCR engineering methods that have been employed to overcome the challenges involved in receptor characterization, and to better understand the functional role of these receptors.
Collapse
Affiliation(s)
- D Keri
- Swiss Federal Institute of Technology (EPFL), Interfaculty Institute of Bioengineering, 1015 Lausanne, Switzerland
| | - P Barth
- Swiss Federal Institute of Technology (EPFL), Interfaculty Institute of Bioengineering, 1015 Lausanne, Switzerland; Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Popov P, Peng Y, Shen L, Stevens RC, Cherezov V, Liu ZJ, Katritch V. Computational design of thermostabilizing point mutations for G protein-coupled receptors. eLife 2018; 7:34729. [PMID: 29927385 PMCID: PMC6013254 DOI: 10.7554/elife.34729] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/05/2018] [Indexed: 12/02/2022] Open
Abstract
Engineering of GPCR constructs with improved thermostability is a key for successful structural and biochemical studies of this transmembrane protein family, targeted by 40% of all therapeutic drugs. Here we introduce a comprehensive computational approach to effective prediction of stabilizing mutations in GPCRs, named CompoMug, which employs sequence-based analysis, structural information, and a derived machine learning predictor. Tested experimentally on the serotonin 5-HT2C receptor target, CompoMug predictions resulted in 10 new stabilizing mutations, with an apparent thermostability gain ~8.8°C for the best single mutation and ~13°C for a triple mutant. Binding of antagonists confers further stabilization for the triple mutant receptor, with total gains of ~21°C as compared to wild type apo 5-HT2C. The predicted mutations enabled crystallization and structure determination for the 5-HT2C receptor complexes in inactive and active-like states. While CompoMug already shows high 25% hit rate and utility in GPCR structural studies, further improvements are expected with accumulation of structural and mutation data. The trillions of cells in the human body rely on receptors that sit in their cell membranes to communicate with each other. Hundreds of different receptors belong to the G protein-coupled receptor superfamily (called GPCRs for short) and play vital roles in the all organs and bodily systems. Indeed, GPCRs are the targets for almost 40% of therapeutic drugs. As such, deciphering the shape and activity of GPCRs is key to understanding the normal workings of the human biology and could help scientists discover new treatments for various diseases, from depression to high blood pressure to cancer. These receptors, however, are notoriously flimsy and unstable, making them difficult to work with in the laboratory. Different approaches have been developed to make GPCRs more stable, usually by swapping one or a few of the amino acid building blocks in the protein for other amino acids. Currently, this requires a costly and slow trial-and-error approach in which each amino acid out of 300-400 in the protein is mutated and tested experimentally. To speed up and reduce the cost of the process, Popov et al. asked if a computer could predict which mutations in the protein would stabilize it, meaning that fewer proteins would actually need to be tested. Four computer algorithms based on four different principles were developed and verified. The first one compares the target GPCR to other closely related receptors, trying to detect variations that cause the instability. The second tries to build in specific stabilizing interactions, or “bridges”, between different parts of the receptor. The third algorithm searches the known structures of other GPCRs for useful mutations. Finally, the fourth one uses accumulated data on the stability of hundreds of mutations in different GPCRs to train a machine learning predictor to recognize stabilizing mutations. All four algorithms produced useful predictions in a real-life project. Indeed, when combined in one computational tool, named CompoMug, the algorithms made it possible to detect optimal mutations in a human GPCR called 5-HT2C. This made the protein much easier to work with in the laboratory, and ultimately helped to solve its three-dimensional structure (which was reported in a separate study, published earlier in 2018) The 5-HT2C receptor is involved in regulating, among other things, mood and appetite. Details of its structure might therefore help researchers to design new antidepressants and obesity treatments. Moreover, CompoMug is already helping structural biologists to solve the structures of other GPCRs, which will further facilitate many aspects of GPCR drug discovery.
Collapse
Affiliation(s)
- Petr Popov
- Department of Biological Sciences, University of Southern California, Los Angeles, Los Angeles, United States.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Yao Peng
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ling Shen
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Raymond C Stevens
- Department of Biological Sciences, University of Southern California, Los Angeles, Los Angeles, United States.,iHuman Institute, ShanghaiTech University, Shanghai, China.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, United States.,Bridge Institute, University of Southern California, Los Angeles, Los Angeles, United States
| | - Vadim Cherezov
- Department of Biological Sciences, University of Southern California, Los Angeles, Los Angeles, United States.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, United States.,Bridge Institute, University of Southern California, Los Angeles, Los Angeles, United States
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Insititute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Vsevolod Katritch
- Department of Biological Sciences, University of Southern California, Los Angeles, Los Angeles, United States.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, United States.,Bridge Institute, University of Southern California, Los Angeles, Los Angeles, United States
| |
Collapse
|
45
|
Abstract
G protein-coupled receptors (GPCRs) represent a large superfamily of membrane proteins that mediate cell signaling and regulate a variety of physiological processes in the human body. Structure-function studies of this superfamily were enabled a decade ago by multiple breakthroughs in technology that included receptor stabilization, crystallization in a membrane environment, and microcrystallography. The recent emergence of X-ray free-electron lasers (XFELs) has further accelerated structural studies of GPCRs and other challenging proteins by overcoming radiation damage and providing access to high-resolution structures and dynamics using micrometer-sized crystals. Here, we summarize key technology advancements and major milestones of GPCR research using XFELs and provide a brief outlook on future developments in the field.
Collapse
Affiliation(s)
- Benjamin Stauch
- Department of Chemistry and Bridge Institute, University of Southern California, Los Angeles, California 90089, USA; ,
| | - Vadim Cherezov
- Department of Chemistry and Bridge Institute, University of Southern California, Los Angeles, California 90089, USA; ,
| |
Collapse
|
46
|
Membrane properties that shape the evolution of membrane enzymes. Curr Opin Struct Biol 2018; 51:80-91. [PMID: 29597094 DOI: 10.1016/j.sbi.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Spectacular recent progress in structural biology has led to determination of the structures of many integral membrane enzymes that catalyze reactions in which at least one substrate also is membrane bound. A pattern of results seems to be emerging in which the active site chemistry of these enzymes is usually found to be analogous to what is observed for water soluble enzymes catalyzing the same reaction types. However, in light of the chemical, structural, and physical complexity of cellular membranes plus the presence of transmembrane gradients and potentials, these enzymes may be subject to membrane-specific regulatory mechanisms that are only now beginning to be uncovered. We review the membrane-specific environmental traits that shape the evolution of membrane-embedded biocatalysts.
Collapse
|
47
|
Bumbak F, Keen AC, Gunn NJ, Gooley PR, Bathgate RAD, Scott DJ. Optimization and 13CH 3 methionine labeling of a signaling competent neurotensin receptor 1 variant for NMR studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1372-1383. [PMID: 29596791 DOI: 10.1016/j.bbamem.2018.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/19/2018] [Accepted: 03/21/2018] [Indexed: 01/16/2023]
Abstract
Neurotensin is a 13-residue peptide that acts as a neuromodulator of classical neurotransmitters such as dopamine and glutamate in the mammalian central nervous system, mainly by activating the G protein-coupled receptor (GPCR), neurotensin receptor 1 (NTS1). Agonist binding to GPCRs shifts the conformational equilibrium of the transmembrane helices towards distinct, thermodynamically favorable conformations that favor effector protein interactions and promotes cell signaling. The introduction of site specific labels for NMR spectroscopy has proven useful for investigating this dynamic process, but the low expression levels and poor stability of GPCRs is a hindrance to solution NMR experiments. Several thermostabilized mutants of NTS1 have been engineered to circumvent this, with the crystal structures of four of these published. The conformational dynamics of NTS1 however, has not been thoroughly investigated with NMR. It is generally accepted that stabilized GPCRs exhibit attenuated signaling, thus we thoroughly characterized the signaling characteristics of several thermostabilized NTS1 variants to identify an optimal variant for protein NMR studies. A variant termed enNTS1 exhibited the best combination of signaling capability and stability upon solubilization with detergents. enNTS1 was subsequently labeled with 13CH3-methionine in E. coli and purified to homogeneity in the absence of bound ligands. Using solution NMR spectroscopy we observed several well dispersed 13CH3-methionine resonances, many of which exhibited chemical shift changes upon the addition of the high affinity agonist peptide, NT8-13. Thus, enNTS1 represents a novel tool for investigating ligand induced conformational changes in NTS1 to gain insights into the molecular mechanisms underlying neurotensin signaling.
Collapse
Affiliation(s)
- Fabian Bumbak
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair C Keen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Natalie J Gunn
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia; IBM Research Australia, Southbank, Victoria 3053, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
48
|
Abstract
G protein-coupled receptors (GPCRs), which mediate processes as diverse as olfaction and maintenance of metabolic homeostasis, have become the single most effective class of therapeutic drug targets. As a result, understanding the molecular basis for their activity is of paramount importance. Recent technological advances have made GPCR structural biology increasingly tractable, offering views of these receptors in unprecedented atomic detail. Structural and biophysical data have shown that GPCRs function as complex allosteric machines, communicating ligand-binding events through conformational change. Changes in receptor conformation lead to activation of effector proteins, such as G proteins and arrestins, which are themselves conformational switches. Here, we review how structural biology has illuminated the agonist-induced cascade of conformational changes that culminate in a cellular response to GPCR activation.
Collapse
Affiliation(s)
- Sarah C Erlandson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
49
|
Yang Z, Hildebrandt E, Jiang F, Aleksandrov AA, Khazanov N, Zhou Q, An J, Mezzell AT, Xavier BM, Ding H, Riordan JR, Senderowitz H, Kappes JC, Brouillette CG, Urbatsch IL. Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1193-1204. [PMID: 29425673 DOI: 10.1016/j.bbamem.2018.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is an ABC transporter containing two transmembrane domains forming a chloride ion channel, and two nucleotide binding domains (NBD1 and NBD2). CFTR has presented a formidable challenge to obtain monodisperse, biophysically stable protein. Here we report a comprehensive study comparing effects of single and multiple NBD1 mutations on stability of both the NBD1 domain alone and on purified full length human CFTR. Single mutations S492P, A534P, I539T acted additively, and when combined with M470V, S495P, and R555K cumulatively yielded an NBD1 with highly improved structural stability. Strategic combinations of these mutations strongly stabilized the domain to attain a calorimetric Tm > 70 °C. Replica exchange molecular dynamics simulations on the most stable 6SS-NBD1 variant implicated fluctuations, electrostatic interactions and side chain packing as potential contributors to improved stability. Progressive stabilization of NBD1 directly correlated with enhanced structural stability of full-length CFTR protein. Thermal unfolding of the stabilized CFTR mutants, monitored by changes in intrinsic fluorescence, demonstrated that Tm could be shifted as high as 67.4 °C in 6SS-CFTR, more than 20 °C higher than wild-type. H1402S, an NBD2 mutation, conferred CFTR with additional thermal stability, possibly by stabilizing an NBD-dimerized conformation. CFTR variants with NBD1-stabilizing mutations were expressed at the cell surface in mammalian cells, exhibited ATPase and channel activity, and retained these functions to higher temperatures. The capability to produce enzymatically active CFTR with improved structural stability amenable to biophysical and structural studies will advance mechanistic investigations and future cystic fibrosis drug development.
Collapse
Affiliation(s)
- Zhengrong Yang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ellen Hildebrandt
- Department of Cell Biology and Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA
| | - Fan Jiang
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA
| | - Andrei A Aleksandrov
- Department of Biochemistry and Biophysics and Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Qingxian Zhou
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianli An
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew T Mezzell
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA
| | - Bala M Xavier
- Department of Cell Biology and Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA
| | - John R Riordan
- Department of Biochemistry and Biophysics and Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA; Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | | | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA.
| |
Collapse
|
50
|
Abstract
G protein-coupled receptors (GPCRs) are critical regulators of human physiology and make up the largest single class of therapeutic drug targets. Although GPCRs regulate highly diverse physiology, they share a common signaling mechanism whereby extracellular stimuli induce conformational changes in the receptor that enable activation of heterotrimeric G proteins and other intracellular effectors. Advances in GPCR structural biology have made it possible to examine ligand-induced GPCR activation at an unprecedented level of detail. Here, we review the structural basis for family A GPCR activation, with a focus on GPCRs for which structures are available in both active or active-like states and inactive states. Crystallographic and other biophysical data show how chemically diverse ligands stabilize highly conserved conformational changes on the intracellular side of the receptors, allowing many different extracellular stimuli to utilize shared downstream signaling molecules. Finally, we discuss the remaining challenges in understanding GPCR activation and signaling and highlight new technologies that may allow unanswered questions to be resolved.
Collapse
Affiliation(s)
- Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94158, United States
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|