1
|
Weaver SR, Torres HM, Arnold KM, Zars EL, Peralta-Herrera E, Taylor EL, Yu K, Marron Fernandez de Velasco E, Wickman K, McGee-Lawrence ME, Bradley EW, Westendorf JJ. Girk3 deletion increases osteoblast maturation and bone mass accrual in adult male mice. JBMR Plus 2024; 8:ziae108. [PMID: 39228688 PMCID: PMC11370632 DOI: 10.1093/jbmrpl/ziae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
Osteoporosis and other metabolic bone diseases are prevalent in the aging population. While bone has the capacity to regenerate throughout life, bone formation rates decline with age and contribute to reduced bone density and strength. Identifying mechanisms and pathways that increase bone accrual in adults could prevent fractures and accelerate healing. G protein-gated inwardly rectifying K+ (GIRK) channels are key effectors of G protein-coupled receptor signaling. Girk3 was recently shown to regulate endochondral ossification. Here, we demonstrate that deletion of Girk3 increases bone mass after 18 weeks of age. Male 24-week-old Girk3 -/- mice have greater trabecular bone mineral density and bone volume fraction than wildtype (WT) mice. Osteoblast activity is moderately increased in 24-week-old Girk3 -/- mice compared to WT mice. In vitro, Girk3-/- bone marrow stromal cells (BMSCs) are more proliferative than WT BMSCs. Calvarial osteoblasts and BMSCs from Girk3 -/- mice are also more osteogenic than WT cells, with altered expression of genes that regulate the wingless-related integration site (Wnt) family. Wnt inhibition via Dickkopf-1 (Dkk1) or β-catenin inhibition via XAV939 prevents enhanced mineralization, but not proliferation, in Girk3 -/- BMSCs and slows these processes in WT cells. Finally, selective ablation of Girk3 from cells expressing Cre recombinase from the 2.3 kb-Col1a1 promoter, including osteoblasts and osteocytes, is sufficient to increase bone mass and bone strength in male mice at 24 weeks of age. Taken together, these data demonstrate that Girk3 regulates progenitor cell proliferation, osteoblast differentiation, and bone mass accrual in adult male mice.
Collapse
Affiliation(s)
- Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | - Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | - Elizabeth L Zars
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | | | | | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| | - Elizabeth W Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
2
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Li J, Mei S, Mao X, Wan L, Wang H, Xiao B, Song Y, Gu W, Liu Y, Long L. De novo variants in KCNJ3 are associated with early-onset epilepsy. J Med Genet 2024; 61:319-324. [PMID: 37963718 DOI: 10.1136/jmg-2023-109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND KCNJ3 encodes a subunit of G-protein-coupled inwardly rectifying potassium channels, which are important for cellular excitability and inhibitory neurotransmission. However, the genetic basis of KCNJ3 in epilepsy has not been determined. This study aimed to identify the pathogenic KCNJ3 variants in patients with epilepsy. METHODS Trio exome sequencing was performed to determine potential variants of epilepsy. Individuals with KCNJ3 variants were recruited for this study. Detailed clinical information and genetic data were obtained and systematically reviewed. Whole-cell patch-clamp recordings were performed to evaluate the functional consequences of the identified variants. RESULTS Two de novo missense variants (c.998T>C (p.Leu333Ser) and c.938G>A (p. Arg313Gln)) in KCNJ3 were identified in two unrelated families with epilepsy. The variants were absent from the gnomAD database and were assumed to be damaging or probably damaging using multiple bioinformatics tools. They were both located in the C-terminal domain. The amino acid residues were highly conserved among various species. Clinically, the seizures occurred at a young age and were under control after combined treatment. Electrophysiological analysis revealed that the KCNJ3 Leu333Ser and Arg313Gln variants significantly compromised the current activities and exhibited loss-of-function (LOF) effects. CONCLUSION Our findings suggest that de novo LOF variants in KCNJ3 are associated with early-onset epilepsy. Genetic testing of KCNJ3 in patients with epilepsy may serve as a strategy for precision medicine.
Collapse
Affiliation(s)
- Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, China
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Mao
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Lily Wan
- Department of Anatomy & Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Children's Hospital, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, China
| | - Yanmin Song
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd, Beijing, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Popova D, Sun J, Chow HM, Hart RP. A critical review of ethanol effects on neuronal firing: A metabolic perspective. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:450-458. [PMID: 38217065 DOI: 10.1111/acer.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Ethanol metabolism is relatively understudied in neurons, even though changes in neuronal metabolism are known to affect their activity. Recent work demonstrates that ethanol is preferentially metabolized over glucose as a source of carbon and energy, and it reprograms neurons to a state of reduced energy potential and diminished capacity to utilize glucose once ethanol is exhausted. Ethanol intake has been associated with changes in neuronal firing and specific brain activity (EEG) patterns have been linked with risk for alcohol use disorder (AUD). Furthermore, a haplotype of the inwardly rectifying potassium channel subunit, GIRK2, which plays a critical role in regulating excitability of neurons, has been linked with AUD and shown to be directly regulated by ethanol. At the same time, overexpression of GIRK2 prevents ethanol-induced metabolic changes. Based on the available evidence, we conclude that the mechanisms underlying the effects of ethanol on neuronal metabolism are a novel target for developing therapies for AUD.
Collapse
Affiliation(s)
- Dina Popova
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Jacquelyne Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Chen IS, Yasuda J, Notomi T, Nakamura TY. Licorice metabolite 18β-glycyrrhetinic acid activates G protein-gated inwardly rectifying K + channels. Br J Pharmacol 2024; 181:447-463. [PMID: 37642133 DOI: 10.1111/bph.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Licorice (liquorice) is a common food additive and is used in Chinese medicine. Excess licorice intake can induce atrial fibrillation. Patients with atrial fibrillation possess constitutively activated G protein-gated inwardly rectifying K+ (GIRK) channels. Whether licorice affects GIRK channel activity is unknown. We aimed to clarify the effects of licorice ingredients on GIRK current and the mechanism of action. EXPERIMENTAL APPROACH A major component of licorice, glycyrrhizic acid (GA), and its metabolite, 18β-glycyrrhetinic acid (18β-GA), were tested. We performed electrophysiological recordings in Xenopus oocytes to examine the effects of GA and 18β-GA on various GIRK subunits (Kir 3.1-Kir 3.4), mutagenesis analyses to identify the crucial residues for drug action and motion analysis in cultured rat atrial myocytes to clarify effects of 18β-GA on atrial functions. KEY RESULTS GA inhibited Kir 3.1-containing channels, while 18β-GA activated all Kir 3.x subunits. A pore helix residue Phe137 in Kir 3.1 was critical for GA-mediated inhibition, and the corresponding Ser148 in Kir 3.2 was critical for 18β-GA-mediated activation. 18β-GA activated GIRK channel in a Gβγ -independent manner, whereas phosphatidylinositol 4,5-bisphosphate (PIP2 ) was essential for activation. Glu236 located at the cytoplasmic pore of Kir 3.2 appeared to be important to interactions with 18β-GA. In rat atrial myocytes, 18β-GA suppressed spontaneous beating via activation of GIRK channels. CONCLUSION AND IMPLICATIONS GA acts as a novel GIRK inhibitor, and 18β-GA acts as a novel GIRK activator. 18β-GA alters atrial function via activation of GIRK channels. This study elucidates the pharmacological activity of licorice ingredients and provides information for drug design.
Collapse
Affiliation(s)
- I-Shan Chen
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jumpei Yasuda
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takuya Notomi
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tomoe Y Nakamura
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
6
|
An X, Cho H. Increased GIRK channel activity prevents arrhythmia in mice with heart failure by enhancing ventricular repolarization. Sci Rep 2023; 13:22479. [PMID: 38110503 PMCID: PMC10728207 DOI: 10.1038/s41598-023-50088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023] Open
Abstract
Ventricular arrhythmia causing sudden cardiac death is the leading mode of death in patients with heart failure. Yet, the mechanisms that prevent ventricular arrhythmias in heart failure are not well characterized. Using a mouse model of heart failure created by transverse aorta constriction, we show that GIRK channel, an important regulator of cardiac action potentials, is constitutively active in failing ventricles in contrast to normal cells. Evidence is presented indicating that the tonic activation of M2 muscarinic acetylcholine receptors by endogenously released acetylcholine contributes to the constitutive GIRK activity. This constitutive GIRK activity prevents the action potential prolongation in heart failure ventricles. Consistently, GIRK channel blockade with tertiapin-Q induces QT interval prolongation and increases the incidence of arrhythmia in heart failure, but not in control mice. These results suggest that constitutive GIRK channels comprise a key mechanism to protect against arrhythmia by providing repolarizing currents in heart failure ventricles.
Collapse
Affiliation(s)
- Xue An
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| |
Collapse
|
7
|
Oh Y, Yoo ES, Ju SH, Kim E, Lee S, Kim S, Wickman K, Sohn JW. GIRK2 potassium channels expressed by the AgRP neurons decrease adiposity and body weight in mice. PLoS Biol 2023; 21:e3002252. [PMID: 37594983 PMCID: PMC10468093 DOI: 10.1371/journal.pbio.3002252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 08/30/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
It is well known that the neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons increase appetite and decrease thermogenesis. Previous studies demonstrated that optogenetic and/or chemogenetic manipulations of NPY/AgRP neuronal activity alter food intake and/or energy expenditure (EE). However, little is known about intrinsic molecules regulating NPY/AgRP neuronal excitability to affect long-term metabolic function. Here, we found that the G protein-gated inwardly rectifying K+ (GIRK) channels are key to stabilize NPY/AgRP neurons and that NPY/AgRP neuron-selective deletion of the GIRK2 subunit results in a persistently increased excitability of the NPY/AgRP neurons. Interestingly, increased body weight and adiposity observed in the NPY/AgRP neuron-selective GIRK2 knockout mice were due to decreased sympathetic activity and EE, while food intake remained unchanged. The conditional knockout mice also showed compromised adaptation to coldness. In summary, our study identified GIRK2 as a key determinant of NPY/AgRP neuronal excitability and driver of EE in physiological and stress conditions.
Collapse
Affiliation(s)
- Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eun-Seon Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sang Hyeon Ju
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
8
|
Meyer KM, Malhotra N, Kwak JS, El Refaey M. Relevance of KCNJ5 in Pathologies of Heart Disease. Int J Mol Sci 2023; 24:10849. [PMID: 37446026 PMCID: PMC10341679 DOI: 10.3390/ijms241310849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Abnormalities in G-protein-gated inwardly rectifying potassium (GIRK) channels have been implicated in diseased states of the cardiovascular system; however, the role of GIRK4 (Kir3.4) in cardiac physiology and pathophysiology has yet to be completely understood. Within the heart, the KACh channel, consisting of two GIRK1 and two GIRK4 subunits, plays a major role in modulating the parasympathetic nervous system's influence on cardiac physiology. Being that GIRK4 is necessary for the functional KACh channel, KCNJ5, which encodes GIRK4, it presents as a therapeutic target for cardiovascular pathology. Human variants in KCNJ5 have been identified in familial hyperaldosteronism type III, long QT syndrome, atrial fibrillation, and sinus node dysfunction. Here, we explore the relevance of KCNJ5 in each of these diseases. Further, we address the limitations and complexities of discerning the role of KCNJ5 in cardiovascular pathophysiology, as identical human variants of KCNJ5 have been identified in several diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Karisa M. Meyer
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nipun Malhotra
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jung seo Kwak
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mona El Refaey
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Boccaccio A, Finol-Urdaneta RK. Redox Bridling of GIRK Channel Activity. FUNCTION 2023; 4:zqad027. [PMID: 37342411 PMCID: PMC10278978 DOI: 10.1093/function/zqad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy
| | | |
Collapse
|
10
|
Popova D, Gameiro-Ros I, Youssef MM, Zalamea P, Morris AD, Prytkova I, Jadali A, Kwan KY, Kamarajan C, Salvatore JE, Xuei X, Chorlian DB, Porjesz B, Kuperman S, Dick DM, Goate A, Edenberg HJ, Tischfield JA, Pang ZP, Slesinger PA, Hart RP. Alcohol reverses the effects of KCNJ6 (GIRK2) noncoding variants on excitability of human glutamatergic neurons. Mol Psychiatry 2023; 28:746-758. [PMID: 36207584 PMCID: PMC9542475 DOI: 10.1038/s41380-022-01818-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/19/2023]
Abstract
Synonymous and noncoding single nucleotide polymorphisms (SNPs) in the KCNJ6 gene, encoding G protein-gated inwardly rectifying potassium channel subunit 2 (GIRK2), have been linked with increased electroencephalographic frontal theta event-related oscillations (ERO) in subjects diagnosed with alcohol use disorder (AUD). To identify molecular and cellular mechanisms while retaining the appropriate genetic background, we generated induced excitatory glutamatergic neurons (iN) from iPSCs derived from four AUD-diagnosed subjects with KCNJ6 variants ("Affected: AF") and four control subjects without variants ("Unaffected: UN"). Neurons were analyzed for changes in gene expression, morphology, excitability and physiological properties. Single-cell RNA sequencing suggests that KCNJ6 AF variant neurons have altered patterns of synaptic transmission and cell projection morphogenesis. Results confirm that AF neurons express lower levels of GIRK2, have greater neurite area, and elevated excitability. Interestingly, exposure to intoxicating concentrations of ethanol induces GIRK2 expression and reverses functional effects in AF neurons. Ectopic overexpression of GIRK2 alone mimics the effect of ethanol to normalize induced excitability. We conclude that KCNJ6 variants decrease GIRK2 expression and increase excitability and that this effect can be minimized or reduced with ethanol.
Collapse
Affiliation(s)
- Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
| | - Isabel Gameiro-Ros
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark M Youssef
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Petronio Zalamea
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
| | - Ayeshia D Morris
- Joint Program in Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Iya Prytkova
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azadeh Jadali
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Kelvin Y Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Chella Kamarajan
- Dept. of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jessica E Salvatore
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David B Chorlian
- Dept. of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Bernice Porjesz
- Dept. of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Samuel Kuperman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Danielle M Dick
- Rutgers Addiction Research Center, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Alison Goate
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana Univ School of Medicine, Indianapolis, IN, USA
| | - Jay A Tischfield
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
| | - Zhiping P Pang
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
- Child Health Institute, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA.
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
11
|
Yekefallah M, Rasberry CA, van Aalst EJ, Browning HP, Amani R, Versteeg DB, Wylie BJ. Mutational Insight into Allosteric Regulation of Kir Channel Activity. ACS OMEGA 2022; 7:43621-43634. [PMID: 36506180 PMCID: PMC9730464 DOI: 10.1021/acsomega.2c04456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 06/08/2023]
Abstract
Potassium (K+) channels are regulated in part by allosteric communication between the helical bundle crossing, or inner gate, and the selectivity filter, or outer gate. This network is triggered by gating stimuli. In concert, there is an allosteric network which is a conjugated set of interactions which correlate long-range structural rearrangements necessary for channel function. Inward-rectifier K+ (Kir) channels favor inward K+ conductance, are ligand-gated, and help establish resting membrane potentials. KirBac1.1 is a bacterial Kir (KirBac) channel homologous to human Kir (hKir) channels. Additionally, KirBac1.1 is gated by the anionic phospholipid ligand phosphatidylglycerol (PG). In this study, we use site-directed mutagenesis to investigate residues involved in the KirBac1.1 gating mechanism and allosteric network we previously proposed using detailed solid-state NMR (SSNMR) measurements. Using fluorescence-based K+ and sodium (Na+) flux assays, we identified channel mutants with impaired function that do not alter selectivity of the channel. In tandem, we performed coarse grain molecular dynamics simulations, observing changes in PG-KirBac1.1 interactions correlated with mutant channel activity and contacts between the two transmembrane helices and pore helix tied to this behavior. Lipid affinity is closely tied to the proximity of two tryptophan residues on neighboring subunits which lure anionic lipids to a cationic pocket formed by a cluster of arginine residues. Thus, these simulations establish a structural and functional basis for the role of each mutated site in the proposed allosteric network. The experimental and simulated data provide insight into key functional residues involved in gating and lipid allostery of K+ channels. Our findings also have direct implications on the physiology of hKir channels due to conservation of many of the residues identified in this work from KirBac1.1.
Collapse
Affiliation(s)
- Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Carver A. Rasberry
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Evan J. van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Holley P. Browning
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Reza Amani
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Derek B. Versteeg
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| |
Collapse
|
12
|
Pelzmann B, Hatab A, Scheruebel S, Langthaler S, Rienmueller T, Sokolowski A, Gorischek A, Platzer D, Zorn-Pauly K, Jahn SW, Bauernhofer T, Schreibmayer W. Consequences of somatic mutations of GIRK1 detected in primary malign tumors on expression and function of G-protein activated, inwardly rectifying, K+ channels. Front Oncol 2022; 12:998907. [DOI: 10.3389/fonc.2022.998907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
A search in the GDC Data Portal revealed 304 documented somatic mutations of the KCNJ3 gene in primary tumors (out of 10.202 cases). Most affected tumor types were carcinomas from uterus, skin and lung, while breast cancer exerted the lowest number of somatic mutations. We focused our research on 15 missense mutations within the region between TM1 and TM2, comprising the pore helix and ion selectivity signature. Expression was measured by confocal laser scan microscopy of eGFP tagged GIRK1 subunits, expressed with and without GIRK4 in oocytes of Xenopus laevis. GIRK ion currents were activated via coexpressed m2Rs and measured by the Two Electrode Voltage Clamp technique. Magnitude of the total GIRK current, as well as the fraction of current inducible by the agonist, were measured. Ion selectivity was gauged by assessment of the PNa+/PK+ ratio, calculated by the GIRK current reversal potential in extracellular media at different Na+ and K+ concentrations. None of the tested mutations was able to form functional GIRK1 homooligomeric ion channels. One of the mutations, G145A, which locates directly to the ion selectivity signature, exerted an increased PNa+/PK+ ratio. Generally, the missense mutations studied can be categorized into three groups: (i) normal/reduced expression accompanied by reduced/absent function (S132Y, F136L, E139K, G145A, R149Q, R149P, G178D, S185Y, Q186R), (ii) normal/increased expression as well as increased function (E140M, A142T, M184I) and (iii) miniscule expression but increased function relative to expression levels (I151N, G158S). We conclude, that gain of function mutations, identical or similar to categories (ii) and (iii), may potentially be involved in genesis and progression of malignancies in tissues that exert a high rate of occurrence of somatic mutations of KCNJ3.
Collapse
|
13
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Monroy-Jaramillo N, Martínez-Magaña JJ, Pérez-Aldana BE, Ortega-Vázquez A, Montalvo-Ortiz J, López-López M. The role of alcohol intake in the pharmacogenetics of treatment with clozapine. Pharmacogenomics 2022; 23:371-392. [PMID: 35311547 DOI: 10.2217/pgs-2022-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Clozapine (CLZ) is an atypical antipsychotic reserved for patients with refractory psychosis, but it is associated with a significant risk of severe adverse reactions (ADRs) that are potentiated with the concomitant use of alcohol. Additionally, pharmacogenetic studies have explored the influence of several genetic variants in CYP450, receptors and transporters involved in the interindividual response to CLZ. Herein, we systematically review the current multiomics knowledge behind the interaction between CLZ and alcohol intake, and how its concomitant use might modulate the pharmacogenetics. CYP1A2*1F, *1C and other alleles not yet discovered could support a precision medicine approach for better therapeutic effects and fewer CLZ ADRs. CLZ monitoring systems should be amended and include alcohol intake to protect patients from severe CLZ ADRs.
Collapse
Affiliation(s)
- Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Division of Human Genetics, Yale University School of Medicine, Orange, West Haven, CT 06477, USA
| | - Blanca Estela Pérez-Aldana
- Doctorado en Ciencias Biológicas y de la Salud, Metropolitan Autonomous University, Campus Xochimilco, Villa Quietud, Coyoacán, Mexico City, 04960, Mexico
| | - Alberto Ortega-Vázquez
- Metropolitan Autonomous University, Campus Xochimilco, Villa Quietud, Coyoacán, Mexico City, 04960, Mexico
| | - Janitza Montalvo-Ortiz
- Department of Psychiatry, Division of Human Genetics, Yale University School of Medicine, Orange, West Haven, CT 06477, USA
| | - Marisol López-López
- Metropolitan Autonomous University, Campus Xochimilco, Villa Quietud, Coyoacán, Mexico City, 04960, Mexico
| |
Collapse
|
15
|
AsKC11, a Kunitz Peptide from Anemonia sulcata, Is a Novel Activator of G Protein-Coupled Inward-Rectifier Potassium Channels. Mar Drugs 2022; 20:md20020140. [PMID: 35200669 PMCID: PMC8876855 DOI: 10.3390/md20020140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: G protein-coupled inward-rectifier potassium (GIRK) channels, especially neuronal GIRK1/2 channels, have been the focus of intense research interest for developing drugs against brain diseases. In this context, venom peptides that selectively activate GIRK channels can be seen as a new source for drug development. Here, we report on the identification and electrophysiological characterization of a novel activator of GIRK1/2 channels, AsKC11, found in the venom of the sea anemone Anemonia sulcata. (2) Methods: AsKC11 was purified from the sea anemone venom by reverse-phase chromatography and the sequence was identified by mass spectrometry. Using the two-electrode voltage-clamp technique, the activity of AsKC11 on GIRK1/2 channels was studied and its selectivity for other potassium channels was investigated. (3) Results: AsKC11, a Kunitz peptide found in the venom of A. sulcata, is the first peptide shown to directly activate neuronal GIRK1/2 channels independent from Gi/o protein activity, without affecting the inward-rectifier potassium channel (IRK1) and with only a minor effect on KV1.6 channels. Thus, AsKC11 is a novel activator of GIRK channels resulting in larger K+ currents because of an increased chord conductance. (4) Conclusions: These discoveries provide new insights into a novel class of GIRK activators.
Collapse
|
16
|
Xu Y, Chen R, Zhi F, Sheng S, Khiati L, Yang Y, Peng Y, Xia Y. δ-opioid Receptor, Microglia and Neuroinflammation. Aging Dis 2022; 14:778-793. [PMID: 37191426 DOI: 10.14336/ad.2022.0912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation underlies the pathophysiology of multiple age-related neurological disorders. Microglia, the resident immune cells of the central nervous system, are critically involved in neuroinflammatory regulation and neural survival. Modulating microglial activation is thus a promising approach to alleviate neuronal injury. Our serial studies have revealed a neuroprotective role of the δ-opioid receptor (DOR) in several acute and chronic cerebral injuries by regulating neuroinflammation and cellular oxidative stress. More recently, we found an endogenous mechanism for the inhibition of neuroinflammation is closely related to DOR's modulation of microglia. Our recent studies showed that DOR activation could strongly protect neurons from hypoxia- and lipopolysaccharide (LPS)-induced injury by inhibiting microglial pro-inflammatory transformation, while knocking-down DOR or restraining DOR activity promoted microglia activation and the relevant inflammatory events with an aggravation of cell injury. This novel finding highlights a therapeutic potential of DOR in numerous age-related neurological disorders through the modulation of neuroinflammation by targeting microglia. This review summarized the current data regarding the role of microglia in neuroinflammation, oxidative stress, and age-related neurological diseases focusing on the pharmacological effects and signaling transduction of DOR in microglia.
Collapse
|
17
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
18
|
Alfaro-Ruiz R, Martín-Belmonte A, Aguado C, Hernández F, Moreno-Martínez AE, Ávila J, Luján R. The Expression and Localisation of G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels Is Differentially Altered in the Hippocampus of Two Mouse Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222011106. [PMID: 34681766 PMCID: PMC8541655 DOI: 10.3390/ijms222011106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channels are the main targets controlling excitability and synaptic plasticity on hippocampal neurons. Consequently, dysfunction of GIRK-mediated signalling has been implicated in the pathophysiology of Alzheimer´s disease (AD). Here, we provide a quantitative description on the expression and localisation patterns of GIRK2 in two transgenic mice models of AD (P301S and APP/PS1 mice), combining histoblots and immunoelectron microscopic approaches. The histoblot technique revealed differences in the expression of GIRK2 in the two transgenic mice models. The expression of GIRK2 was significantly reduced in the hippocampus of P301S mice in a laminar-specific manner at 10 months of age but was unaltered in APP/PS1 mice at 12 months compared to age-matched wild type mice. Ultrastructural approaches using the pre-embedding immunogold technique, demonstrated that the subcellular localisation of GIRK2 was significantly reduced along the neuronal surface of CA1 pyramidal cells, but increased in its frequency at cytoplasmic sites, in both P301S and APP/PS1 mice. We also found a decrease in plasma membrane GIRK2 channels in axon terminals contacting dendritic spines of CA1 pyramidal cells in P301S and APP/PS1 mice. These data demonstrate for the first time a redistribution of GIRK channels from the plasma membrane to intracellular sites in different compartments of CA1 pyramidal cells. Altogether, the pre- and post-synaptic reduction of GIRK2 channels suggest that GIRK-mediated alteration of the excitability in pyramidal cells could contribute to the cognitive dysfunctions as described in the two AD animal models.
Collapse
Affiliation(s)
- Rocío Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Félix Hernández
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain; (F.H.); (J.Á.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Jesús Ávila
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain; (F.H.); (J.Á.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
- Correspondence: ; Tel.: +34-967-599200 (ext. 2196)
| |
Collapse
|
19
|
Sharma S, Lesiak L, Aretz CD, Du Y, Kumar S, Gautam N, Alnouti Y, Dhuria NV, Chhonker YS, Weaver CD, Hopkins CR. Discovery, synthesis and biological characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1 H-pyrazol-5-yl)acetamide ethers as novel GIRK1/2 potassium channel activators. RSC Med Chem 2021; 12:1366-1373. [PMID: 34458739 PMCID: PMC8372201 DOI: 10.1039/d1md00129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
The present study describes the discovery and characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-yl)acetamide ethers as G protein-gated inwardly-rectifying potassium (GIRK) channel activators. From our previous lead optimization efforts, we have identified a new ether-based scaffold and paired this with a novel sulfone-based head group to identify a potent and selective GIRK1/2 activator. In addition, we evaluated the compounds in tier 1 DMPK assays and have identified compounds that display nanomolar potency as GIRK1/2 activators with improved metabolic stability over the prototypical urea-based compounds.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Lauren Lesiak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Christopher D Aretz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yu Du
- Department of Pharmacology, Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Nikilesh V Dhuria
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|