1
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
2
|
Badri H, Polya DA, Povey AC. Geochemical compositional controls on DNA strand breaks induced in in vitro cell-free assays by crushed rock powders from the Panasqueira mine area, Portugal. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2631-2647. [PMID: 32648060 PMCID: PMC8275547 DOI: 10.1007/s10653-020-00653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
DNA strand breaks are a common form of DNA damage that can contribute to chromosomal instability or gene mutations. Such strand breaks may be caused by exposure to heavy metals. The aim of this study was to assess the level of DNA strand breaks caused by µm-scale solid particles of known chemical composition with elevated heavy metals/metalloids, notably arsenic, using an in vitro cell-free DNA plasmid scission assay. These samples were incubated with and without H2O2 to see whether damage occurs directly or indirectly through the Fenton reaction. Levels of DNA damage in the absence of H2O2 were < 10%, but in the presence of H2O2, all samples showed higher levels of damage ranging from 10 to 100% suggesting that damage was being incurred through the Fenton reaction. Using bivariate correlation analysis and multiple linear regression, manganese oxide (MnO), sulphur (S), copper (Cu), and zinc (Zn) concentrations in the particulates were found to be the most significant predictors of DNA damage. The mechanism of this DNA damage formation has yet to be thoroughly investigated but is hypothesised to be due to reactive oxygen species formation. Further work is required to assess the extent of contribution of reactive oxygen species to this DNA damage, but this study highlights the potential role of chemistry and/or mineralogy to the extent and/or nature of DNA damage caused by particulates.
Collapse
Affiliation(s)
- Hatim Badri
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
- Department of Environmental Health, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - David A Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK.
| | - Andrew C Povey
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
3
|
Kim C, States JC, Ceresa BP. Chronic and acute arsenic exposure enhance EGFR expression via distinct molecular mechanisms. Toxicol In Vitro 2020; 67:104925. [PMID: 32599262 DOI: 10.1016/j.tiv.2020.104925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 01/06/2023]
Abstract
The impacts of acute arsenic exposure (i.e. vomiting, diarrhea, and renal failure) are distinct from those brought about by sustained, low level exposure from environmental sources or drinking of contaminated well water. Chronic arsenic exposure is a risk factor for the development of pulmonary diseases, including lung cancer. How arsenic exposure leads to pulmonary disease is not fully understood. Both acute versus chronic arsenic exposure increase EGFR expression, but do so via distinct molecular mechanisms. BEAS-2B cells were exposed to either acute sodium arsenite (5 μM for 24 h) or chronic sodium arsenite (100 nM for 24 weeks). Cells treated with acute arsenic exhibited a decrease in viability, changes in morphology, and increased mRNA level of BTC. In contrast, during 24 weeks of arsenic exposure, the cells had increased EGFR expression and activity, and increased mRNA and protein levels of TGFα. Further, chronic arsenic treatment caused an increase in cell migration in the absence of exogenous ligand. Elevated TGFα and EGFR expression are features of many non-small cell lung cancers. We propose that lung epithelial cells chronically exposed to low level arsenic increases EGFR signaling via TGFα production to enhance ligand-independent cell migration.
Collapse
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, USA
| | | | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, USA.
| |
Collapse
|
4
|
Kumar A, Kesari VP, Alok AK, Kazim SN, Khan PK. Assessment of arsenic-induced DNA damage in goldfish by a polymerase chain reaction-based technique using random amplified polymorphic DNA markers. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:630-638. [PMID: 24965481 DOI: 10.1007/s00244-014-0051-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Arsenic is a groundwater contaminant of global concern. It is a potent human carcinogen, and its marked genotoxic effects have been reported in several human and animal studies. The present work investigates the applicability of the random amplified polymorphic DNA (RAPD) assay to study the DNA-damaging effects of arsenic at low-level exposure in goldfish Carassius auratus. Four experimental groups of fish, A, B, C and D, were exposed to 0, 10, 50, and 1,000 µg L(-1) of arsenic, respectively, in aquaria water for 15 consecutive days. Genomic DNA extraction was followed by RAPD-polymerase chain reaction amplification for each fish separately. One arbitrary decamer primer (PUZ-19) of 33 primers used appeared as the most informative and was capable of exhibiting marked alterations in RAPD profiles between arsenic-exposed and unexposed (control) samples. Different sets of 11 loci were amplified in various experimental groups with four clear polymorphic bands by the primer PUZ-19. The X and XIII amplification loci, which were prominent in the unexposed group, failed to appear in the arsenic-exposed groups. In contrast, the I and XI RAPD bands appeared as new amplification loci in all of the exposed groups. Such alterations in genomic DNA, however, did not exhibit a clear dose-dependent tendency. The RAPD assay, because of its efficacy to unmask alterations in genomic DNA induced by arsenic at low exposure level of 10 µg L(-1), appears to be a sensitive and potential tool for detecting arsenic genotoxicity.
Collapse
Affiliation(s)
- Amod Kumar
- Toxicogenetics Laboratory, Department of Zoology, Patna University, Patna, 800 005, India
| | | | | | | | | |
Collapse
|
5
|
Bustaffa E, Stoccoro A, Bianchi F, Migliore L. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch Toxicol 2014; 88:1043-67. [PMID: 24691704 DOI: 10.1007/s00204-014-1233-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Arsenic is a human carcinogen with weak mutagenic properties that induces tumors through mechanisms not yet completely understood. People worldwide are exposed to arsenic-contaminated drinking water, and epidemiological studies showed a high percentage of lung, bladder, liver, and kidney cancer in these populations. Several mechanisms by which arsenical compounds induce tumorigenesis were proposed including genotoxic damage and chromosomal abnormalities. Over the past decade, a growing body of evidence indicated that epigenetic modifications have a role in arsenic-inducing adverse effects on human health. The main epigenetic mechanisms are DNA methylation in gene promoter regions that regulate gene expression, histone tail modifications that regulate the accessibility of transcriptional machinery to genes, and microRNA activity (noncoding RNA able to modulate mRNA translation). The "double capacity" of arsenic to induce mutations and epimutations could be the main cause of arsenic-induced carcinogenesis. The aim of this review is to better clarify the mechanisms of the initiation and/or the promotion of arsenic-induced carcinogenesis in order to understand the best way to perform an early diagnosis and a prompt prevention that is the key point for protecting arsenic-exposed population. Studies on arsenic-exposed population should be designed in order to examine more comprehensively the presence and consequences of these genetic/epigenetic alterations.
Collapse
Affiliation(s)
- Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56123, Pisa, Italy
| | | | | | | |
Collapse
|
6
|
Faita F, Cori L, Bianchi F, Andreassi MG. Arsenic-induced genotoxicity and genetic susceptibility to arsenic-related pathologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:1527-46. [PMID: 23583964 PMCID: PMC3709332 DOI: 10.3390/ijerph10041527] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 12/24/2022]
Abstract
The arsenic (As) exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects.
Collapse
Affiliation(s)
- Francesca Faita
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy.
| | | | | | | |
Collapse
|
7
|
Kumar A, Kesari VP, Khan PK. Fish micronucleus assay to assess genotoxic potential of arsenic at its guideline exposure in aquatic environment. Biometals 2013; 26:337-46. [DOI: 10.1007/s10534-013-9620-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/07/2013] [Indexed: 01/12/2023]
|
8
|
Bhattacharjee P, Banerjee M, Giri AK. Role of genomic instability in arsenic-induced carcinogenicity. A review. ENVIRONMENT INTERNATIONAL 2013; 53:29-40. [PMID: 23314041 DOI: 10.1016/j.envint.2012.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
Exposure to chronic arsenic toxicity is associated with cancer. Although unstable genome is a characteristic feature of cancer cells, the mechanisms leading to genomic instability in arsenic-induced carcinogenesis are poorly understood. While there are excellent reviews relating to genomic instability in general, there is no comprehensive review presenting the mechanisms involved in arsenic-induced genomic instability. This review was undertaken to present the current state of research in this area and to highlight the major mechanisms that may involved in arsenic-induced genomic instability leading to cancer. Genomic instability is broadly classified into chromosomal instability (CIN), primarily associated with mitotic errors; and microsatellite instability (MIN), associated with DNA level instability. Arsenic-induced genomic instability is essentially multi-factorial in nature and involves molecular cross-talk across several cellular pathways, and is modulated by a number of endogenous and exogenous factors. Arsenic and its metabolites generate oxidative stress, which in turn induces genomic instability through DNA damage, irreversible DNA repair, telomere dysfunction, mitotic arrest and apoptosis. In addition to genetic alteration; epigenetic regulation through promoter methylation and miRNA expression alters gene expression profiling leading to genome more vulnerable and unstable towards cancer risk. Moreover, mutations or silencing of pro-apoptotic genes can lead to genomic instability by allowing survival of damaged cells that would otherwise die. Although a large body of information is now generated regarding arsenic-induced carcinogenesis; further studies exploring genome-wide association, role of environment and diet are needed for a better understanding of the arsenic-induced genomic instability.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | | | | |
Collapse
|
9
|
Kesari VP, Kumar A, Khan PK. Genotoxic potential of arsenic at its reference dose. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 80:126-131. [PMID: 22421451 DOI: 10.1016/j.ecoenv.2012.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 02/18/2012] [Accepted: 02/21/2012] [Indexed: 05/31/2023]
Abstract
Arsenic, a highly hazardous contaminant in our drinking water, accounts for various toxic effects (including cancer) in human. However, intake of arsenic @0.3 μg kg(-1)day(-1) through drinking water, containing arsenic at its guideline value or maximum contaminant limit (10 μg L(-1)), has been estimated to pose very little or no measurable risk to cancer in humans. The value also appears to be equal to the human reference dose (or index dose) of arsenic based on human skin toxicity data. The present work was a quantitative assessment of the genotoxic potential of arsenic in mice at doses equivalent to its human reference dose as well as its multiples. Significant increases in the frequencies of chromosome abnormalities in the bone marrow cells were registered over the control level upon exposure to all the doses of arsenic including its reference dose (or index dose). The assessment of arsenic genotoxicity in humans at low doses will therefore be highly instrumental in establishing a permissible limit of arsenic in drinking water.
Collapse
Affiliation(s)
- V P Kesari
- Toxicogenetics Laboratory, Department of Zoology, Patna University, Patna 800 005, India
| | | | | |
Collapse
|
10
|
DNA-PKcs-mediated stabilization of p53 by JNK2 is involved in arsenite-induced DNA damage and apoptosis in human embryo lung fibroblast cells. Toxicol Lett 2012; 210:302-10. [DOI: 10.1016/j.toxlet.2012.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 02/07/2012] [Indexed: 11/23/2022]
|
11
|
Zhang Y, Ma P, Wang Y, Du J, Zhou Q, Zhu Z, Yang X, Yuan J. Biocompatibility of Porous Spherical Calcium Carbonate Microparticles on Hela Cells. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/wjnse.2012.21005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Martinez VD, Vucic EA, Adonis M, Gil L, Lam WL. Arsenic biotransformation as a cancer promoting factor by inducing DNA damage and disruption of repair mechanisms. Mol Biol Int 2011. [PMID: 22091411 DOI: 10.4061/2011/718974]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates. Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM). Metabolism of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and repair, will be discussed here.
Collapse
Affiliation(s)
- Victor D Martinez
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | |
Collapse
|
13
|
Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL. Arsenic exposure and the induction of human cancers. J Toxicol 2011; 2011:431287. [PMID: 22174709 PMCID: PMC3235889 DOI: 10.1155/2011/431287] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 12/21/2022] Open
Abstract
Arsenic is a metalloid, that is, considered to be a human carcinogen. Millions of individuals worldwide are chronically exposed through drinking water, with consequences ranging from acute toxicities to development of malignancies, such as skin and lung cancer. Despite well-known arsenic-related health effects, the molecular mechanisms involved are not fully understood; however, the arsenic biotransformation process, which includes methylation changes, is thought to play a key role. This paper explores the relationship of arsenic exposure with cancer development and summarizes current knowledge of the potential mechanisms that may contribute to the neoplastic processes observed in arsenic exposed human populations.
Collapse
Affiliation(s)
- Victor D. Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
- Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Emily A. Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Daiana D. Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Lionel Gil
- Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| |
Collapse
|
14
|
Martinez VD, Vucic EA, Adonis M, Gil L, Lam WL. Arsenic biotransformation as a cancer promoting factor by inducing DNA damage and disruption of repair mechanisms. Mol Biol Int 2011; 2011:718974. [PMID: 22091411 PMCID: PMC3200225 DOI: 10.4061/2011/718974] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/06/2011] [Indexed: 11/20/2022] Open
Abstract
Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates. Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM). Metabolism of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and repair, will be discussed here.
Collapse
Affiliation(s)
- Victor D Martinez
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | |
Collapse
|
15
|
Lai Y, Zhao W, Chen C, Wu M, Zhang Z. Role of DNA polymerase beta in the genotoxicity of arsenic. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:460-468. [PMID: 21370284 DOI: 10.1002/em.20643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 12/25/2010] [Accepted: 12/26/2010] [Indexed: 05/30/2023]
Abstract
Arsenic, an important hazard in the environment, is associated with human cancer and other degenerative diseases. However, the mechanisms underlying arsenic hazardous effects remain unclear. It has been reported arsenic exposure can result in increased cellular reactive oxygen species and oxidative DNA damage. This suggests DNA base excision repair (BER), the major pathway for repairing oxidative DNA damage, may be involved in combating arsenic hazardous effects. As a critical repair enzyme in BER, DNA polymerase beta (Pol β) might play an essential role in reducing arsenic toxicity. To test this hypothesis, we evaluated arsenic-induced cytotoxic and genotoxic effects under Pol β deficiency. Our results demonstrated that the viability of Pol β-deficient mouse embryonic fibroblasts was much lower than that of Pol β wild-type cells after treatment with arsenite (As(3+) ). An increased level of DNA damage and significantly delayed arsenite-induced DNA damage repair in Pol β-deficient cells indicated reduced repair of DNA lesions under Pol β deficiency. This was consistent with the increase in the frequency of micronuclei (MN), an indicator of chromosomal breakage, which was also observed in Pol β-deficient cells treated with arsenite. In contrast, cells harboring overexpressed Pol β resulted in a lower level of DNA damage and MN than Pol β wild-type cells, indicating overexpression of the enzyme can combat arsenic-induced genotoxic effects. In conclusion, our results indicate an important role for Pol β in repairing arsenite-induced DNA damage and maintaining chromosomal integrity and further suggest deficiency of BER may be involved in arsenic genotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Yanhao Lai
- Department of Environmental Health, Sichuan University, West China School of Public Health, Chengdu, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Coelho PCDS, García-Lestón J, Silva SPE, da Costa CST, da Costa SCB, Coelho MIC, Lage BL, Mendez EP, Teixeira JPF. Geno- and immunotoxic effects on populations living near a mine: a case study of Panasqueira mine in Portugal. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1076-1086. [PMID: 21707431 DOI: 10.1080/15287394.2011.582314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mining industry is a vital economic sector for many countries but it is also one of the most hazardous activities, both occupationally and environmentally. Existing studies point to several adverse effects on communities' health living near mines, effects such as mesothelioma and respiratory illnesses. Results achieved in a geochemical sampling campaign undertaken in the vicinity of São Francisco de Assis village showed an anomalous distribution of some heavy metals in soils and waters. To evaluate the effects of mining activities on human health produced by these conditions, a group of 28 individuals from São Francisco de Assis village was examined for some biological endpoints. A nonexposed group (30 individuals) with the same demographic characteristics without exposure to genotoxic compounds was also studied and data obtained from both groups compared. Results of the T-cell receptor mutation assay and micronucleus (MN) test showed significant increases in the frequencies of both mutations and MN in exposed subjects compared to controls. Data obtained in the analysis of the different lymphocyte subsets demonstrated significant decreases in percentages of CD3+ and CD4+ cells, and a significant increase in percentage of CD16/56+ cells, in exposed individuals. The results of the present study indicate an elevated risk of human environmental contamination resulting from mining activities, emphasizing the need to implement preventive measures, remediation, and rehabilitation plans. This would lead to a reduction in cancer risk not only for this particular population but for all populations exposed under similar conditions.
Collapse
|
17
|
Li Y, Liu D, Ai H, Chang Q, Liu D, Xia Y, Liu S, Peng N, Xi Z, Yang X. Biological evaluation of layered double hydroxides as efficient drug vehicles. NANOTECHNOLOGY 2010; 21:105101. [PMID: 20154371 DOI: 10.1088/0957-4484/21/10/105101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recently there has been a rapid expansion of the development of bioinorganic hybrid systems for safe drug delivery. Layered double hydroxides (LDH), a variety of available inorganic matrix, possess great promise for this purpose. In this study, an oxidative stress biomarker system, including measurement of reactive oxygen species, glutathione content, endogenous nitric oxide, carbonyl content in proteins, DNA strand breaks and DNA-protein crosslinks, was designed to evaluate the biocompatibility of different concentrations of nano-Zn/Al-LDH with a Hela cell line. The drug delivery activity of the LDH-folic-acid complex was also assessed. The resulting data clearly demonstrated that nano-LDH could be applied as a relatively safe drug vehicle with good delivery activity, but with the caveat that the effects of high dosages observed here should not be ignored when attempting to maximize therapeutic activity by increasing LDH concentration.
Collapse
Affiliation(s)
- Yan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yi ZC, Liu YZ, Li HX, Wang Z. Prooxidant action of chebulinic acid and tellimagrandin I: causing copper-dependent DNA strand breaks. Toxicol In Vitro 2009; 23:425-31. [PMID: 19344683 DOI: 10.1016/j.tiv.2009.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/22/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
The prooxidant activity of two hydrolysable tannins, chebulinic acid and tellimagrandin I, on plasmid DNA and genomic DNA of cultured MRC-5 human embryo lung fibroblasts was assessed. The results revealed that both hydrolysable tannins in combination with Cu(II) induced DNA strand breaks in pBR322 plasmid DNA in a concentration-dependent manner. Chebulinic acid and tellimagrandin I also induced genomic DNA strand breaks of MRC-5 human embryo lung fibroblasts in the presence of Cu(II). After treatment with chebulinic acid or tellimagrandin I alone, the pBR322 plasmid DNA and genomic DNA in MRC-5 cells kept intact. In addition, addition of Cu(I) reagent bathocuproinedisulfonic acid or catalase markedly inhibited the copper-dependent DNA strand breaks by both tannins. However, three typical hydroxyl radical scavengers, DMSO, ethanol and mannitol, did not inhibit the DNA strand breaks. Both tannins were able to reduce Cu(II) to Cu(I). These results indicated that chebulinic acid and tellimagrandin I induced the copper-dependent strand breaks of pBR322 plasmid DNA and MRC-5 genomic DNA with prooxidant action, in which Cu(II)/Cu(I) redox cycle and H(2)O(2) were involved and hydroxyl radical formation is important in the hypothetical mechanism by which DNA strand breaks are formed.
Collapse
Affiliation(s)
- Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China.
| | | | | | | |
Collapse
|
19
|
|
20
|
[Detection of DNA-protein crosslinks with modified comet assay]. YI CHUAN = HEREDITAS 2008; 30:659-62. [PMID: 18487159 DOI: 10.3724/sp.j.1005.2008.00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Modifications of the comet assay were introduced to measure crosslinks and the effect of formaldehyde in liver cells of the tested animals was investigated by the new method to see whether the method is feasible. Since exposure of slides to proteinase K can increase DNA migration of the treated cells, the presence of DNA-protein crosslinks can be indicated by compare of the tail moment before and after the proteinase K added. The results showed that the modified protocol of the alkaline comet assay is a fast, inexpensive and sensitive tool for the detection of potent crosslinkers-induced DNA-protein crosslinks at single cell level. Due to its specific advantages, the modified comet assay seems to be a useful tool as a DNA crosslink potency indicator.
Collapse
|
21
|
Banerjee M, Sarma N, Biswas R, Roy J, Mukherjee A, Giri AK. DNA repair deficiency leads to susceptibility to develop arsenic-induced premalignant skin lesions. Int J Cancer 2008; 123:283-287. [DOI: 10.1002/ijc.23478] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Palmieri MA, Tasat DR, Molinari BL. Oxidative metabolism of lung macrophages exposed to sodium arsenite. Toxicol In Vitro 2007; 21:1603-9. [PMID: 17716856 DOI: 10.1016/j.tiv.2007.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 05/08/2007] [Accepted: 06/03/2007] [Indexed: 11/22/2022]
Abstract
Arsenic pollution has become increasingly severe. It occurs as the result of geological processes and different human activities. Arsenic toxicity at the respiratory level occurs mainly by inhalation of products of coal combustion. The aim of this study was to evaluate sodium arsenite (As(3+)) toxicity in murine alveolar macrophages (AMs) in vitro and its association with the alterations in cell metabolism. No changes in viability, apoptosis or cell area were detected in AMs treated with As(3+) concentrations up to 2 microM for 24-96 h. A marked decrease in these end-points was observed for As(3+) concentrations ranging from 2.5 microM to 10 microM. Regarding the dynamics of the endo-exocytic process triggered by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell incorporation, no variations were detected for As(3+) concentrations lower than 2 microM while higher concentrations markedly modified this response. MTT specific activity, as a measure of cell metabolic activity, was not modified irrespective of the As(3+) concentration assayed. However, nitroblue tetrazolium (NBT) specific activity, as a measure of superoxide anion generation, is responsive but only to low As(3+) doses. Although this study focuses on lung macrophages, the effects of As(3+) described herein may also apply to the response of macrophages residing in other organs. Arsenite modifies the metabolic and the oxidative status of AMs in vitro. When macrophages are in an As(3+) rich medium, they exhibit a reduction in respiratory burst levels and lose their intrinsic capacity to respond to toxicants.
Collapse
Affiliation(s)
- Mónica A Palmieri
- Biodiversity and Experimental Biology Department, F.C.E.y N., National University of Buenos Aires, Argentina
| | | | | |
Collapse
|