1
|
Grigg T, Handy RD, Billington RA. The use of insect cell line Sf21 for ecotoxicity testing. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:831-838. [PMID: 38995497 PMCID: PMC11399169 DOI: 10.1007/s10646-024-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Insect cell lines are finding utility in many areas of biology, but their application as an in vitro tool for ecotoxicity testing has been given less attention. Our study aimed to demonstrate the utility and sensitivity of Sf21 cells to commonly used fungicides: Propiconazole and CuSO4, as well as dimethyl sulphoxide (DMSO) an industrial solvent. Sf21 cells were readily cultured from frozen stocks in 3-4 days and showed utility as an invertebrate in vitro acute toxicity test. The data showed the threshold levels of cell survivability against propiconazole and CuSO4. The EC50 values were 135.1 μM and 3.31 mM respectively. The LOAEL (lowest observed adverse effect level) was ≈ 1 μM for propiconazole and ≈ 10 μM for CuSO4. Culturing of Sf21 cells in media containing the solvent DMSO showed that 0.5% DMSO concentration did not effect cell viability. Sf21 cells are sensitive and useful as a robust ecologically relevant screening tool for acute toxicity testing.
Collapse
Affiliation(s)
- Trevor Grigg
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Richard A Billington
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
2
|
Chang X, Wang Y, Zain A, Yu H, Huang W. Antifungal Activity of Difenoconazole-Loaded Microcapsules against Curvularia lunata. J Fungi (Basel) 2024; 10:519. [PMID: 39194845 DOI: 10.3390/jof10080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Difenoconazole-loaded (CS-DIF) microcapsules were synthesized by encapsulating difenoconazole into biocompatible chitosan. The physical and chemical properties indicated that the encapsulation and chemical loading rates were 85.58% and 61.98%, respectively. The microcapsules exhibited prominent controlled-release and surface stability performance. The cumulative release rate was only 33.6% in 168 h, and the contact angle decreased by 11.73° at 120 s compared with difenoconazole. The antifungal activity of the CS-DIF microcapsules against Curvularia lunata was confirmed through observations of colony growth, in vitro and in vivo inoculation, mycelium morphology, as well as DNA and protein leakage. The antioxidant enzyme activity of superoxide dismutase, peroxidase, and catalase decreased by 65.1%, 84.9%, and 69.7%, respectively, when Curvularia lunata was treated with 200 μg/mL microcapsules, compared with the control in 24 h. The enzymatic activity of polyphenol oxidase decreased by 323.8%. The reactive oxygen species contents of hydrogen peroxide and superoxide anions increased by 204.6% and 164%, respectively. Additionally, the soluble sugar and soluble protein contents decreased by 65.5% and 69.6%, respectively. These findings provided a novel approach to control the growth of C. lunata efficiently, laying a foundation for reducing the quantity and enhancing the efficiency of chemical pesticides. The CS-DIF microcapsules exhibited a strong inhibitory effect on fungus, effectively preventing and controlling leaf spot disease and showing potential for field applications. This study might be of great significance in ensuring plant protection strategies.
Collapse
Affiliation(s)
- Xiaoyu Chang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Yuyan Wang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Abbas Zain
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Weidong Huang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
3
|
Ruiz-Yance I, Siguas J, Bardales B, Robles-Castañeda I, Cordova K, Ypushima A, Estela-Villar E, Quintana-Criollo C, Estacio D, Rodríguez JL. Potential Involvement of Oxidative Stress, Apoptosis and Proinflammation in Ipconazole-Induced Cytotoxicity in Human Endothelial-like Cells. TOXICS 2023; 11:839. [PMID: 37888690 PMCID: PMC10610737 DOI: 10.3390/toxics11100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Triazole fungicides are widely used in the world, mainly in agriculture, but their abuse and possible toxic effects are being reported in some in vivo and in vitro studies that have demonstrated their danger to human health. This in vitro study evaluated the cytotoxicity, oxidative stress and proinflammation of EA.hy926 endothelial cells in response to ipconazole exposure. Using the MTT assay, ipconazole was found to produce a dose-dependent reduction (*** p < 0.001; concentrations of 20, 50 and 100 µM) of cell viability in EA.hy926 with an IC50 of 29 µM. Also, ipconazole induced a significant increase in ROS generation (** p < 0.01), caspase 3/7 (** p < 0.01), cell death (BAX, APAF1, BNIP3, CASP3 and AKT1) and proinflammatory (NLRP3, CASP1, IL1β, NFκB, IL6 and TNFα) biomarkers, as well as a reduction in antioxidant (NRF2 and GPx) biomarkers. These results demonstrated that oxidative stress, proinflammatory activity and cell death could be responsible for the cytotoxic effect produced by the fungicide ipconazole, such that this triazole compound should be considered as a possible risk factor in the development of alterations in cellular homeostasis.
Collapse
Affiliation(s)
- Iris Ruiz-Yance
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Junior Siguas
- Animal Physiology Department, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Brandy Bardales
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Ingrid Robles-Castañeda
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Karen Cordova
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Alina Ypushima
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Esteban Estela-Villar
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Carlos Quintana-Criollo
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Darwin Estacio
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - José-Luis Rodríguez
- Pharmacology and Toxicology Department, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Vadia FY, Ghosh S, Mehta VN, Jha S, Malek NI, Park TJ, Kailasa SK. Fluorescence "Turn OFF-ON" detection of Fe 3+ and propiconazole pesticide using blue emissive carbon dots from lemon peel. Food Chem 2023; 428:136796. [PMID: 37441937 DOI: 10.1016/j.foodchem.2023.136796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
In this study, water-soluble carbon dots (CDs) were employed as a novel fluorescence "turn OFF-ON" sensor to detect Fe3+ ions in pharmaceutical sample and propiconazole (PC) in food samples. Blue fluorescent "LPCDs" are synthesized from the lemon peel that exhibited emission at 468 nm when excited at 378 nm. The average size of the as-prepared LPCDs is 2.03 nm, displaying a quantum yield of 32 %. Fluorescence "turn OFF-ON" strategy was developed for sensing of Fe3+ ion and PC, demonstrating favorable linearity in the range of 0.5-180 μM and 0.1-40 μM with the detection limits of 0.18 μM and 0.054 μM for Fe3+ and PC, respectively. Further, LPCDs-loaded cellulose paper was used as visual reader to detect Fe3+ and PC. This approach was effectively applied to detect Fe3+ and PC in pharmaceutical and vegetable samples.
Collapse
Affiliation(s)
- Foziya Yusuf Vadia
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Subhadeep Ghosh
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Vaibhavkumar N Mehta
- ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat 395007, Gujarat, India
| | - Sanjay Jha
- ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat 395007, Gujarat, India
| | - Naved I Malek
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
5
|
Perović T, Petrović J, Gašić U, Kostić M, Ćirić A. Natural extracts against agricultural pathogens: A case study of Celtis australis L. Food Sci Nutr 2023; 11:3358-3364. [PMID: 37324890 PMCID: PMC10261757 DOI: 10.1002/fsn3.3325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/14/2023] [Accepted: 03/10/2023] [Indexed: 06/17/2023] Open
Abstract
Plant extracts and other plant products have been used as an alternative to synthetic fungicides or an additional way to reduce their use. The choice of plant extracts and their application depends on their functional characteristics, availability, cost-effectiveness, and their impact on phytopathogens, and also on the environment. Therefore, the present study aims to assess the potential of Celtis australis methanolic extracts as source of compounds with antifungal activity. Methanolic extracts prepared from leaves and unripe mesocarps of C. australis collected from different localities of Montenegro (Podgorica-PG, Donja Gorica-DG, and Bar-BR) were evaluated for their phenolic compounds' composition as well as antifungal and cytotoxic properties. Obtained results revealed that extracts contain various bioactive constituents including phenolic acids, flavonoids, and their derivatives. The predominant phenolic acid was ferulic acid, identified in leaf samples from DG (187.97 mg/100 g dw), while isoorientin was the most abundant phenolic compound found in all examined samples. Regarding antifungal potential of the tested samples, all but one (prepared from mesocarp BR) possessed higher activity than Previcur, a commercial systemic fungicide intended to control seedlings. In vitro studies on HaCaT cell line showed that the extracts had no toxic effect toward the tested cell line. These results lead to the conclusion that methanolic extracts of C. australis can become an alternative to the use of synthetic fungicides in agriculture. Those extracts represent natural biodegradable fungicides and enable more efficient control of pathogenic fungi.
Collapse
Affiliation(s)
- Tatjana Perović
- Biotechnical Faculty, Centre for Subtropical CulturesUniversity of MontenegroBarMontenegro
| | - Jovana Petrović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Marina Kostić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
6
|
Correlation between in vitro toxicity of pesticides and in vivo risk guidelines in support of complex operating site risk management: A meta-analysis. Food Chem Toxicol 2022; 170:113502. [DOI: 10.1016/j.fct.2022.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
|
7
|
Ma Y, Li S, Ye S, Hu D, Luo S, Wei L, Xiao F. Effect of propiconazole on neutrophil extracellular traps formation: Assessing the role of autophagy. Food Chem Toxicol 2022; 168:113354. [PMID: 35952824 DOI: 10.1016/j.fct.2022.113354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Propiconazole (Pcz) is a kind of triazole fungicide which has an important impact on the environment. With the extensive use of Pcz in agricultural production activities, the pesticides are left in soil, water, crops and food, and will enter the organisms in the form of residues. Neutrophils play a key role in the body's innate immunity against pathogens, and the formation of neutrophil extracellular traps (NETs) is an important way for neutrophils to exert their immune function. In the present study, we focused on the effect of Pcz on the NETs of Sprague-Dawley (SD) rats for the first time. Our data demonstrated that Pcz could hinder NETs formation via inhibiting the Phosphoinositide 3-kinase (PI3K)/rapidly accelerated fibrosarcoma (Raf)/extracellular signal-regulated kinase (ERK) signaling. In the meanwhile, we assessed the role of autophagy played in this process and revealed that Pcz may inhibit the respiratory burst in neutrophils. This study provided new insights into the immunotoxic hazards of Pcz and additional laboratory evidence for assessing the impact of Pcz on terrestrial organisms.
Collapse
Affiliation(s)
- Yu Ma
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Siwen Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Die Hu
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Sijia Luo
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Lai Wei
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China.
| |
Collapse
|
8
|
Liu R, Li J, Zhang L, Feng T, Zhang Z, Zhang B. Fungicide Difenoconazole Induced Biochemical and Developmental Toxicity in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112304. [PMID: 34834667 PMCID: PMC8621447 DOI: 10.3390/plants10112304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 06/01/2023]
Abstract
Difenoconazole is one of the most commonly used fungicides to prevent and treat plant diseases caused by certain fungi. Due to increasing usage, more difenoconazole has been released into the environment and caused environment pollution. However, the potential impact of difenoconazole on plant growth and development and its involved mechanism are unclear. In this study, we discovered that difenoconazole exposure significantly inhibited plant growth, evidenced by the decrease in root dry weight, total root length, and surface area by 20-70%, 43-73%, and 26-66%, respectively, under different regimes of treatment concentrations and periods. Difenoconazole exposure also significantly inhibited shoot growth and development by decreasing 33-61% of the shoot dry weight and 50-65% of the leaf area. Difenoconazole exposure induced plant leaf cells to generate more ROS (O2•- and H2O2) and MDA, which resulted in a decreased chlorophyll content and then inhibited leaf photosynthesis. Difenoconazole exposure also induced the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (G-POD), and ascorbate peroxidase (APX) in the roots and leaves of the wheat seedlings. SOD and APX activities were higher and more stable in the roots than those in the leaves. Based on our study, plant roots exhibited a more pronounced superoxide radical scavenging ability than plant leaves. In summary, difenoconazole exposure caused oxidative stress, reduced chlorophyll biosynthesis and functions, and then inhibited wheat plant growth and development.
Collapse
Affiliation(s)
- Runqiang Liu
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Collaborative Innovation Center of Modern Biological Breeding, School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.L.); (L.Z.)
| | - Jingchong Li
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Collaborative Innovation Center of Modern Biological Breeding, School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.L.); (L.Z.)
| | - Lei Zhang
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Collaborative Innovation Center of Modern Biological Breeding, School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.L.); (L.Z.)
| | - Ta Feng
- Shanxi Mei Bang Pharmaceutical Group Co., Ltd., Weinan 714000, China;
| | - Zhiyong Zhang
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Collaborative Innovation Center of Modern Biological Breeding, School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.L.); (L.Z.)
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
9
|
Antioxidant Role of Carvacrol Against Hepatotoxicity and Nephrotoxicity Induced by Propiconazole in Rats. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s43450-021-00127-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Inhibitory Effects of Litsea cubeba Oil and Its Active Components on Aspergillus flavus. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8843251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aspergillus flavus (A. flavus) is a frequent harmful fungal pathogen. It can infect traditional Chinese medicine materials and release aflatoxin, to cause both economic and human health effects. By comparing the inhibitory potential of Litsea cubeba oil and its active components to A. flavus CGMCC 3.4408, citral was confirmed to be the main component that inhibits the growth of A. flavus CGMCC 3.4408, and the EC50 was 163.65 mg L−1. The inhibitory effect of citral on A. flavus CGMCC 3.4408 was studied for colony growth rate, mycelium biomass, aflatoxin production, and microstructure. Citral slowed down the growth rate of colonies and reduced mycelium biomass and toxin production. Moreover, citral altered the morphology of fungal spores and mycelium. In addition, citral also has the inhibitory effects on the isolates of A. flavus from moldy traditional Chinese medicinal materials. Thus, citral can be used as a potential agent to check the growth of A. flavus or related fungal strains.
Collapse
|
11
|
Othmène YB, Hamdi H, Salem IB, Annabi E, Amara I, Neffati F, Najjar MF, Abid-Essefi S. Oxidative stress, DNA damage and apoptosis induced by tebuconazole in the kidney of male Wistar rat. Chem Biol Interact 2020; 330:109114. [PMID: 32735800 DOI: 10.1016/j.cbi.2020.109114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Tebuconazole (TEB) is a broad-spectrum conazole fungicide that has been used in agriculture in the control of foliar and soil-borne diseases of many crops. The present study has investigated the adverse effects of subchronic exposure to TEB on the kidney of male rats. Animals were divided into four equal groups and treated with TEB at increasing doses 0.9, 9 and 27 mg/kg body weight for 28 consecutive days. The results showed that TEB induced oxidative stress in the kidney demonstrated by an increase in malondialdehyde (MDA), protein carbonyl (PC), advanced oxidation protein product (AOPP) levels and DNA damage, as compared to the controls. Furthermore, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities were increased in the renal tissue of treated rats. Moreover, significant decrease in reduced glutathione (GSH) content in TEB-treated rats was observed, while oxidized glutathione (GSSG) levels were increased, thus a marked fall in GSH/GSSG ratio was registered in the kidney. Glutathione reductase (GR) activity showed a significant increase after TEB exposure. Moreover, TEB down-regulated the expression of Bcl2 and up-regulated the expression of Bax and caspase 3, which triggered apoptosis via the Bax/Bcl2 and caspase pathway. Also, TEB administration resulted in altered biochemical indicators of renal function and varying lesions in the overall histo-architecture of renal tissues. Taken together, our findings brought into light the renal toxicity induced by TEB, which was found to be significant at low doses.
Collapse
Affiliation(s)
- Yosra Ben Othmène
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia
| | - Hiba Hamdi
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia
| | - Intidhar Ben Salem
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia; University of Sousse, Faculty of Medicine of Sousse, Rue Mohamed Karoui, 4000, Tunisia
| | - Emna Annabi
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia
| | - Ines Amara
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia
| | - Fadwa Neffati
- Fattouma Bourguiba University Hospital, Laboratory of Biochemistry-Toxicology, Avenue 1 Juin 1955, 5000, Monastir, Tunisia
| | - Mohamed Fadhel Najjar
- Fattouma Bourguiba University Hospital, Laboratory of Biochemistry-Toxicology, Avenue 1 Juin 1955, 5000, Monastir, Tunisia
| | - Salwa Abid-Essefi
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia.
| |
Collapse
|
12
|
de Almeida ÂB, Corrêa IP, Furuie JL, de Farias Pires T, do Rocio Dalzoto P, Pimentel IC. Inhibition of growth and ochratoxin A production in Aspergillus species by fungi isolated from coffee beans. Braz J Microbiol 2019; 50:1091-1098. [PMID: 31515726 DOI: 10.1007/s42770-019-00152-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/04/2019] [Indexed: 11/24/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin found in several agricultural commodities. Produced by Aspergillus spp., it is nephrotoxic and hepatotoxic and can be carcinogenic. Preventive measures are preventing fungal growth and OTA production. In this study, fungal strains (Rhizopus oryzae, Lichtheimia ramosa, Aspergillus westerdijkiae, Aspergillus niger, Aspergillus tamarii, Aspergillus sp., and Aspergillus fumigatus) isolated from coffee beans were identified for their abilities to inhibit the growth of Aspergillus ochraceus, Aspergillus westerdijkiae, Aspergillus carbonarius, and Aspergillus niger, and OTA production. All fungi strains tested were able to inhibit growth of the four Aspergillus species and OTA production, where A. niger showed the best results in both tests. L. ramosa showed the lowest growth-reducing potential, while the other fungal strains had a growth-reducing potential higher than 70% against all Aspergillus species tested. Regarding OTA production, L. ramosa and Aspergillus sp. completely inhibited the mycotoxin production by A. ochraceus and non-toxigenic strain A. niger completely inhibited OTA production by A. niger. Our findings indicate that the strains tested can be used as an alternative means to control growth of OTA-producing fungi and production of the mycotoxin in coffee beans.
Collapse
Affiliation(s)
- Ângela Bozza de Almeida
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| | - Isabela Pauluk Corrêa
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| | - Jason Lee Furuie
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil.
| | - Thiago de Farias Pires
- Laboratório de Genética e Cardiologia Molecular, Universidade de São Paulo, Instituto do Coração, São Paulo, Brazil
| | - Patrícia do Rocio Dalzoto
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| | - Ida Chapaval Pimentel
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| |
Collapse
|
13
|
Hamdi H, Othmène YB, Ammar O, Klifi A, Hallara E, Ghali FB, Houas Z, Najjar MF, Abid-Essefi S. Oxidative stress, genotoxicity, biochemical and histopathological modifications induced by epoxiconazole in liver and kidney of Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17535-17547. [PMID: 31025280 DOI: 10.1007/s11356-019-05022-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Epoxiconazole (EPX) is a triazole fungicide commonly used in agriculture and for domestic purposes around the world. The excessive application of this pesticide may result in a variety of adverse effects on non-target organisms, including humans. Since, the liver and kidneys are the target organs of this fungicide, potential hepatotoxic and nephrotoxic effects are of high relevance. Thus, our study aimed to investigate the toxic effects of EPX on the liver and kidney of Wistar rats. The exposure of rats to EPX at these concentrations (8, 24, 40, 56 mg/kg bw representing, respectively, NOEL (no observed effect level), NOEL × 3, NOEL × 5, and NOEL × 7) for 28 days significantly enhances hepatic and renal lipid peroxidation which is accompanied by an increase in the level of protein oxidation. Furthermore, the results of the present study clearly indicated that EPX administration induces an increase in the levels of DNA damage in a dose-dependent manner. In addition, the activities of liver and kidney antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) are increased significantly in EPX-treated rats at concentrations of 8, 24, and 40 mg/kg bw. However, with the dose NOEL × 7 (56 mg/kg bw of EPX), the activities of CAT, GPx, and GST are decreased. Indeed, EPX-intoxicated rats revealed a significant reduction in acetylcholinesterase (AChE) activity in both liver and kidney compared with the control group. Also, our results demonstrated that the EPX administration leads to a disruption of the hepatic (aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH)) and renal (uric acid and creatinine) functions. The biochemical perturbations obtained in the present study are corroborated with the histopathological modifications. Since EPX treatment caused severe damage in the overall histo-architecture of liver and kidney tissues, these results suggest that administration of EPX induced a marked deregulation of liver and kidney functions. Graphical abstract.
Collapse
Affiliation(s)
- Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Yosra Ben Othmène
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Oumaima Ammar
- Laboratory of Histology and Cytogenetic (Research Unit of Genetic, Genotoxicity and Childhood Illness UR12ES10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Aida Klifi
- Research Laboratory "Bioressources: Integrative Biology & Valorisation", University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Elhem Hallara
- Laboratory of Biochemistry and Toxicology, Hospital of Monastir, Fattouma Bourguiba University, Monastir, Tunisia
| | - Faten Ben Ghali
- Laboratory of Biochemistry and Toxicology, Hospital of Monastir, Fattouma Bourguiba University, Monastir, Tunisia
| | - Zohra Houas
- Laboratory of Histology and Cytogenetic (Research Unit of Genetic, Genotoxicity and Childhood Illness UR12ES10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Mohamec Fadhel Najjar
- Laboratory of Biochemistry and Toxicology, Hospital of Monastir, Fattouma Bourguiba University, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, 5000, Monastir, Tunisia.
| |
Collapse
|
14
|
André R, Catarro J, Freitas D, Pacheco R, Oliveira MC, Serralheiro ML, Falé PL. Action of euptox A from Ageratina adenophora juice on human cell lines: A top-down study using FTIR spectroscopy and protein profiling. Toxicol In Vitro 2019; 57:217-225. [DOI: 10.1016/j.tiv.2019.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
|
15
|
Machado SC, Martins I. Risk assessment of occupational pesticide exposure: Use of endpoints and surrogates. Regul Toxicol Pharmacol 2018; 98:276-283. [DOI: 10.1016/j.yrtph.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/20/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
|
16
|
Wang L, Jin J, Liu X, Wang Y, Liu Y, Zhao Y, Xing F. Effect of Cinnamaldehyde on Morphological Alterations of Aspergillus ochraceus and Expression of Key Genes Involved in Ochratoxin A Biosynthesis. Toxins (Basel) 2018; 10:E340. [PMID: 30135391 PMCID: PMC6162615 DOI: 10.3390/toxins10090340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 01/27/2023] Open
Abstract
Ochratoxin A (OTA) is a potent nephrotoxic, hepatotoxic, and teratogenic compound which is a significant mycotoxin contaminates cereals during storage. Aspergillus ochraceus is the most common producer of OTA in cereals and cereal-derived products. Cinnamaldehyde is a natural substance derived from plant cinnamon playing an important role in the reduction of OTA contamination. In this study, the antifungal and antitoxigenic effect of cinnamaldehyde was investigated with its mechanisms of inhibition of fungal growth at the morphological and ultrastructural levels, and inhibition of OTA biosynthesis at the transcriptional level. Significant A. ochraceus growth was inhibited at 0.4⁻1.6 mmol/L with fumigation. A. ochraceus exposed to 0.4 mmol/L of cinnamaldehyde indicated irreversible harmful morphological and ultrastructural modifications such as the folding of the cell, the loss of integrity of the cell wall, the disruption of plasma membrane, the destruction of the mitochondria, and the absence of intracellular organelles. These alterations may be attributed to its inhibition of enzymatic reactions that regulate cell wall synthesis, thus disturbing the morphogenesis and growth of A. ochraceus. In the presence of cinnamaldehyde, the tested biosynthetic and regulatory genes like pks, nrps, veA, laeA and velB were highly downregulated. Moreover, the downregulation effect of cinnamaldehyde increased proportionally with the concentrations. These results suggest that the decrease of OTA production by cinnamaldehyde is attributed to the downregulation of the transcriptional levels of OTA biosynthetic and regulatory genes besides the inhibition of fungal growth. The study reveals the mechanisms of the antifungal and antitoxigenic activities of cinnamaldehyde against A. ochraceus, and further emphasizes that cinnamaldehyde could be a safe and effective natural agents against OTA contamination during cereals storage.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Xiao Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
17
|
Hamdi H, Ben Salem I, Ben Othmène Y, Annabi E, Abid-Essefi S. The involvement of ROS generation on Epoxiconazole-induced toxicity in HCT116 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:62-67. [PMID: 29891378 DOI: 10.1016/j.pestbp.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Avicenne Street, 5019 Monastir, Tunisia
| | - Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Avicenne Street, 5019 Monastir, Tunisia; Faculty of Medicine of Sousse, University of Sousse, Tunisia
| | - Yosra Ben Othmène
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Avicenne Street, 5019 Monastir, Tunisia
| | - Emna Annabi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Avicenne Street, 5019 Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Avicenne Street, 5019 Monastir, Tunisia.
| |
Collapse
|
18
|
Cheng Y, Zheng Y, Dong F, Li J, Zhang Y, Sun S, Li N, Cui X, Wang Y, Pan X, Zhang W. Stereoselective Analysis and Dissipation of Propiconazole in Wheat, Grapes, and Soil by Supercritical Fluid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:234-243. [PMID: 27983813 DOI: 10.1021/acs.jafc.6b04623] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An efficient and sensitive chiral analytical method was established for the determination of propiconazole stereoisomers by supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). Stereoisomeric separation was performed on a Chiralpak AD-3 column with CO2/ethanol (93:7) as the mobile phase. The four propiconazole stereoisomers were well separated in 4.7 min with resolutions above 2.0. The specificity, linearity, matrix effects, accuracy, precision, and stability of the developed method were evaluated. The stereoselective dissipation of propiconazole in wheat straw, grape, and soil samples was investigated according to the proposed method. The results indicated that significant stereoselective degradation occurred in wheat straw and grapes, with preferential degradation of (-)-propiconazole A and (+)-propiconazole B in wheat straw and the opposite case in grapes. No enantioselectivity was observed in soil, although diastereoisomer A degraded more rapidly than diastereoisomer B. These results could contribute to a more accurate assessment of the environmental risk and food safety of propiconazole.
Collapse
Affiliation(s)
- Youpu Cheng
- Tianjin Agricultural University , Tianjin, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Jing Li
- Institute of Quality Standard and Testing Technology for Agro-products , Tianjin Academy of Agricultural Sciences , Tianjin, China
| | | | - Shuhong Sun
- Tianjin Agricultural University , Tianjin, China
| | - Ning Li
- Tianjin Agricultural University , Tianjin, China
| | - Xinyi Cui
- Tianjin Agricultural University , Tianjin, China
| | | | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing, China
| | | |
Collapse
|
19
|
Rachitha P, Krupashree K, Jayashree GV, Gopalan N, Khanum F. Growth Inhibition and Morphological Alteration of Fusarium sporotrichioides by Mentha piperita Essential Oil. Pharmacognosy Res 2017; 9:74-79. [PMID: 28250658 PMCID: PMC5330108 DOI: 10.4103/0974-8490.199771] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The aim of this study is to determine the phytochemical composition, antifungal activity of Mentha piperita essential oil (MPE) against Fusarium sporotrichioides. METHODS The phytochemical composition was conducted by gas chromatography mass spectrometry (GC MS) analysis and mycelia growth inhibition was determined by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), the morphological characterization was observed by scanning electron microscopy. Finally, the membrane permeability was determined by the release of extracellular constituents, pH, and total lipid content. RESULT In GC MS analysis, 22 metabolites were identified such as menthol, l menthone, pulegone, piperitone, caryophyllene, menthol acetate, etc. The antifungal activity against targeted pathogen, with MIC and MFC 500 μg/mL and 1000 μg/mL, respectively. The MPE altered the morphology of F. sporotrichoides hyphae with the loss of cytoplasm content and contorted the mycelia. The increasing concentration of MPE showed increase in membrane permeability of F. sporotrichoides as evidenced by the release of extracellular constituents and pH with the disruption of cell membrane indicating decrease in lipid content of F. sporotrichoides. CONCLUSION The observed results showed that MPE exhibited promising new antifungal agent against Fusarium sporotrichioides. SUMMARY F. sporotrichioides, filamentous fungi contaminate to corn and corn--based productsF. sporotrichioides mainly responsible for the production of T-2 toxinPhytochemical composition was conducted by gas chromatography--mass spectrometry analysisMentha piperita essential oil (MPE) is commonly known as peppermintThe F. sporotrichioides growth was inhibited by MPE (minimum inhibitory concentration, minimum fungicidal concentration)Morphological observation by scanning electron microscope. Abbreviations Used: Cfu: Colony forming unit; DMSO: Dimethyl sulfoxide, °C: Degree celsius; F. Sporotrichoides: Fusarium sporotrichioides; EOs: Essential oils; M: Molar, g: Gram/gravity, mg: Milligram; μg: Microgram, ml: Milliliter; mm: Millimeter, min: Minutes; M. piperita: Mentha piperita, MIC: Minimum inhibitory concentration; MFC: Minimum fungicidal concentration; MAE: Mentha arvensis essential oil; Na2SO4: Sodium sulfate; pH: Potential Hydrogen; PDB: Potato Dextrose Broth; SEM: Scanning electron microscope.
Collapse
Affiliation(s)
- P. Rachitha
- Department of Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Mysore, Karnataka, India
| | - K. Krupashree
- Department of Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Mysore, Karnataka, India
| | - G. V. Jayashree
- Department of Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Mysore, Karnataka, India
| | - Natarajan Gopalan
- Department of Food Biotechnology, Defence Food Research Laboratory, Mysore, Karnataka, India
| | - Farhath Khanum
- Department of Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Mysore, Karnataka, India
| |
Collapse
|
20
|
Shaik AB, Ahil SB, Govardhanam R, Senthi M, Khan R, Sojitra R, Kumar S, Srinivas A. Antifungal Effect and Protective Role of Ursolic Acid and Three Phenolic Derivatives in the Management of Sorghum Grain Mold Under Field Conditions. Chem Biodivers 2016; 13:1158-1164. [PMID: 27447843 DOI: 10.1002/cbdv.201500515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/19/2016] [Indexed: 11/10/2022]
Abstract
In this study, investigation was carried out under in vitro as well as field conditions to explore inhibitors of sorghum grain mold. Phytochemicals, viz., methyl trans-p-coumarate (AIC-1), methyl caffeate (AIC-2), syringic acid (AIC-3), and ursolic acid (UA), at different concentrations (500, 750, and 1000 ppm) were tested on spore germination of Alternaria alternata, Curvularia lunata, Fusarium moniliforme, F. pallidoroseum, and Helminthosporium sp. Significant growth inhibition (P < 0.001) was observed against all fungi except A. alternata which was found to be resistant to AIC-3. Further, two separate sets of field experiments involving spraying of water and F. moniliforme suspension over chemicals treated (1000 ppm) sorghum panicles were done. The levels of protection varied with different treatments which were graded using a standard 1 - 9 rating scale. The Fusarium-challenged panicles (FCP) showed lesser susceptibility and decreased the rate of infection of grain mold (grade 7.0), compared to simple UA, AIC-2, and AIC-1 treatments (7.4, 7.6, and 8.0 grade, resp.). The HPLC quantification of differentially induced phenolic acids in treated sorghum grains substantiated this effect disclosing the higher accumulation of chlorogenic, vanillic, and salicylic acids in FCP. This might be due to defensive induction of these acids by the plants. Although mold control by examined chemicals were lesser than the standard Tilt (grade 5.9), they were found to be nontoxic to mammalian cells under cytotoxicity assay.
Collapse
Affiliation(s)
- Ameer Basha Shaik
- Regional Agricultural Research Station, Professor Jayashanker Telangana State Agricultural University, Palem, Mahaboobnagar, Telangana State, 509215, India
| | - Sajeli Begum Ahil
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani Hyderabad Campus, Jawahar Nagar, Shamirpet Mandal, Ranga Reddy, Telangana State, 500078, India.
| | - Ragavendra Govardhanam
- Regional Agricultural Research Station, Professor Jayashanker Telangana State Agricultural University, Palem, Mahaboobnagar, Telangana State, 509215, India
| | - Mahibalan Senthi
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani Hyderabad Campus, Jawahar Nagar, Shamirpet Mandal, Ranga Reddy, Telangana State, 500078, India
| | - Rukaiyya Khan
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani Hyderabad Campus, Jawahar Nagar, Shamirpet Mandal, Ranga Reddy, Telangana State, 500078, India
| | - Ravi Sojitra
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani Hyderabad Campus, Jawahar Nagar, Shamirpet Mandal, Ranga Reddy, Telangana State, 500078, India
| | - Santhosh Kumar
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani Hyderabad Campus, Jawahar Nagar, Shamirpet Mandal, Ranga Reddy, Telangana State, 500078, India
| | - Asalla Srinivas
- Regional Agricultural Research Station, Professor Jayashanker Telangana State Agricultural University, Palem, Mahaboobnagar, Telangana State, 509215, India
| |
Collapse
|
21
|
Wang H, Wang J, Li L, Hsiang T, Wang M, Shang S, Yu Z. Metabolic activities of five botryticides against Botrytis cinerea examined using the Biolog FF MicroPlate. Sci Rep 2016; 6:31025. [PMID: 27491536 PMCID: PMC4974496 DOI: 10.1038/srep31025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/13/2016] [Indexed: 11/08/2022] Open
Abstract
Tobacco grey mold caused by Botrytis cinerea is an important fungal disease worldwide. Boscalid, carbendazim, iprodione, pyrimethanil and propiconazole are representative botryticides for grey mold management. This research investigated the sensitivities of B. cinerea from tobacco to these chemicals using the Biolog FF Microplate. All five chemicals showed inhibitory activity, with average EC50 values of 0.94, 0.05, 0.50, 0.61 and 0.31 μg ml(-1), respectively. B. cinerea metabolized 96.8% of tested carbon sources, including 29 effectively and 33 moderately, but the metabolic fingerprints differed under pressures imposed by these botryticides. For boscalid, B. cinerea was unable to metabolize many substrates related to tricarboxylic acid cycle. For carbendazim, carbon sources related to glycolysis were not metabolized. For iprodione, use of most carbon substrates was weakly inhibited, and the metabolic profile was similar to that of the control. For propiconazole, no carbon substrates were metabolized and the physiological and biochemical functions of the pathogen were totally inhibited. These findings provide useful information on metabolic activities of these botryticides, and may lead to future applications of the Biolog FF Microplate for examining metabolic effects of other fungicides on other fungi, as well as providing a metabolic fingerprint of B. cinerea that could be useful for identification.
Collapse
Affiliation(s)
- Hancheng Wang
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang 550081, P.R. China
| | - Jin Wang
- College of Life Science, Yangtze University, Jingzhou 434025, P.R. China
| | - Licui Li
- College of Life Science, Yangtze University, Jingzhou 434025, P.R. China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Maosheng Wang
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang 550081, P.R. China
| | - Shenghua Shang
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang 550081, P.R. China
| | - Zhihe Yu
- College of Life Science, Yangtze University, Jingzhou 434025, P.R. China
| |
Collapse
|
22
|
Tu TY, Hong CY, Sasado T, Kashiwada S, Chen PJ. Early life exposure to a rodent carcinogen propiconazole fungicide induces oxidative stress and hepatocarcinogenesis in medaka fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:52-61. [PMID: 26619215 DOI: 10.1016/j.aquatox.2015.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
Conazole pollution is an emerging concern to human health and environmental safety because of the broad use of conazole fungicides in agriculture and medicine and their frequent occurrence in aquifers. The agricultural pesticide propiconazole has received much regulatory interest because it is a known rodent carcinogen with evidence of multiple adverse effects in mammals and non-targeted organisms. However, the carcinogenic effect and associated mechanism of propiconazole in fish under microgram-per-liter levels of environmental-relevant exposure remains unclear. To explore whether early life of propiconzaole exposure would induce oxidative stress and latent carcinogenic effects in fish, we continuously exposed larvae of wild type or p53(-/-) mutant of medaka fish (Oryzias latipes) to propiconazole (2.5-250μg/L) for 3, 7, 14 or 28 days and assessed liver histopathology and/or the oxidative stress response and gene expression during exposure and throughout adulthood. Propiconazole dose-dependently induced reactive oxygen species (ROS) level, altered homeostasis of antioxidant superoxide dismutase, catalase and glutathione S-transferase and caused lipid and protein peroxidation during early life exposure in wild type medaka. Such exposure also significantly upregulated gene expression of the cytochrome P450 CYP1A, but marginally suppressed that of tumor suppressor p53 in adults. Furthermore, histopathology revealed that p53(-/-) mutant medaka with early life exposure to propiconazole showed increased incidence of hepatocarcionogensis, as compared to the p53(-/-) control group and wild type strain. We demonstrated that propiconazole can initiate ROS-mediated oxidative stress and induce hepatic tumorigenesis associated with CYP1A- and/or p53 -mediated pathways with the use of wild type and p53(-/-) mutant of medaka fish. The toxic response of medaka to propiconazole is compatible with that observed in rodents.
Collapse
Affiliation(s)
- Tzu-Yi Tu
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Takao Sasado
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Japan
| | - Shosaku Kashiwada
- Research Center for Life and Environmental Sciences, Department of Life Sciences, the Toyo University, Gunma, Japan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
23
|
Liang D, Xing F, Selvaraj JN, Liu X, Wang L, Hua H, Zhou L, Zhao Y, Wang Y, Liu Y. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus. J Food Sci 2015; 80:M2917-24. [PMID: 26556681 DOI: 10.1111/1750-3841.13144] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/12/2015] [Indexed: 11/27/2022]
Abstract
In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice.
Collapse
Affiliation(s)
- Dandan Liang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Fuguo Xing
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Jonathan Nimal Selvaraj
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Xiao Liu
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Limin Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Huijuan Hua
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Lu Zhou
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Yueju Zhao
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Yan Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| | - Yang Liu
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, 100193, P. R. China
| |
Collapse
|
24
|
Stadnicka-Michalak J, Schirmer K, Ashauer R. Toxicology across scales: Cell population growth in vitro predicts reduced fish growth. SCIENCE ADVANCES 2015; 1:e1500302. [PMID: 26601229 PMCID: PMC4643812 DOI: 10.1126/sciadv.1500302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/19/2015] [Indexed: 05/19/2023]
Abstract
Environmental risk assessment of chemicals is essential but often relies on ethically controversial and expensive methods. We show that tests using cell cultures, combined with modeling of toxicological effects, can replace tests with juvenile fish. Hundreds of thousands of fish at this developmental stage are annually used to assess the influence of chemicals on growth. Juveniles are more sensitive than adult fish, and their growth can affect their chances to survive and reproduce. Thus, to reduce the number of fish used for such tests, we propose a method that can quantitatively predict chemical impact on fish growth based on in vitro data. Our model predicts reduced fish growth in two fish species in excellent agreement with measured in vivo data of two pesticides. This promising step toward alternatives to fish toxicity testing is simple, inexpensive, and fast and only requires in vitro data for model calibration.
Collapse
Affiliation(s)
- Julita Stadnicka-Michalak
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Corresponding author. E-mail: ;
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- ETH (Eidgenössische Technische Hochschule) Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Roman Ashauer
- Environment Department, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
25
|
Pallavi S, Ajay S. Evidence of micronuclei in fish blood as a biomarker of genotoxicity due to surface run off agricultural fungicide (Propiconazole). ACTA ACUST UNITED AC 2015. [DOI: 10.5897/jtehs2015.0325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
Mazur CS, Marchitti SA, Zastre J. P-glycoprotein inhibition by the agricultural pesticide propiconazole and its hydroxylated metabolites: Implications for pesticide–drug interactions. Toxicol Lett 2015; 232:37-45. [DOI: 10.1016/j.toxlet.2014.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
|
27
|
Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.04.037] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Zhu B, Liu L, Gong YX, Ling F, Wang GX. Triazole-induced toxicity in developing rare minnow (Gobiocypris rarus) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13625-13635. [PMID: 25028328 DOI: 10.1007/s11356-014-3317-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Using rare minnow (Gobiocypris rarus) at early-life stages as experimental models, the developmental toxicity of five widely used triazole fungicides (myclobutanil, fluconazole, flusilazole, triflumizole, and epoxiconazole) were investigated following exposure to 1-15 mg/L for 72 h. Meanwhile, morphological parameters (body length, body weight, and heart rate), enzyme activities (superoxide dismutase (SOD), glutathione S-transferase (GST), adenosine triphosphatase (ATPase), and acetyl cholinesterase (AChE)), and mRNA levels (hsp70, mstn, mt, apaf1, vezf1, and cyp1a) were also recorded following exposure to 0.2, 1.0, and 5.0 mg/L for 72 h. Results indicated that increased malformation and mortality, decreased body length, body weight, and heart rate provide a concentration-dependent pattern; values of 72 h LC50 (median lethal concentration) and EC50 (median effective concentration) ranged from 3 to 12 mg/L. Most importantly, the results of the present study suggest that even at the lowest concentration, 0.2 mg/L, five triazole fungicides also caused notable changes in enzyme activities and mRNA levels. Overall, the present study points out that those five triazole fungicides are highly toxic to the early development of G. rarus embryos. The information presented in this study will be helpful in better understanding the toxicity induced by triazole fungicides in fish embryos.
Collapse
Affiliation(s)
- Bin Zhu
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | | | | | | | | |
Collapse
|
29
|
Hossain F, Follett P, Vu KD, Salmieri S, Senoussi C, Lacroix M. Radiosensitization of Aspergillus niger and Penicillium chrysogenum using basil essential oil and ionizing radiation for food decontamination. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Hua H, Xing F, Selvaraj JN, Wang Y, Zhao Y, Zhou L, Liu X, Liu Y. Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxin A production. PLoS One 2014; 9:e108285. [PMID: 25255251 PMCID: PMC4178002 DOI: 10.1371/journal.pone.0108285] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/19/2014] [Indexed: 11/18/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150-250 µL/L with fumigation and 250-500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥ 100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥ 75 µg/mL and ≥ 150 µg/mL respectively, while natural cinnamaldehyde couldn't fully inhibit OTA production at ≤ 200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains.
Collapse
Affiliation(s)
- Huijuan Hua
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Fuguo Xing
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Jonathan Nimal Selvaraj
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Yan Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Yueju Zhao
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Lu Zhou
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Xiao Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Yang Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
31
|
Lin T, Zhang D, Lai Q, Sun M, Quan W, Zhou K. A modified method to detect the phagocytic ability of eosinophilic and basophilic haemocytes in the oyster Crassostrea plicatula. FISH & SHELLFISH IMMUNOLOGY 2014; 40:337-343. [PMID: 25038283 DOI: 10.1016/j.fsi.2014.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
The immune defence system of bivalve species largely depends on haemocytes. Haemocytes are generally classified as hyalinocytes (H) or granulocytes (G), and each cell type is further sub-classified as eosinophilic (E) or basophilic (B) haemocytes. Until recently, research on eosinophilic and basophilic haemocytes has primarily focused on their morphologies, dye affinities and intracellular components. Few studies have investigated their phagocytic ability because of the absence of appropriate experimental methods. In this study, we introduce a modified method suitable to detect the phagocytic ability of eosinophilic and basophilic haemocytes. This modified method involves neutral red staining by employing fluorescent microspheres as the phagocytosed medium. Specifically, haemocytes are incubated with fluorescent microspheres and then stained with neutral red. Next, the stained haemocytes are fixed by acetone and are counterstained by propidium iodide. Finally, the haemocytes are observed under a multifunctional microscope to analyse the phagocytic ability by counting the number of eosinophilic or basophilic haemocytes involved in phagocytosis (calculation for phagocytic rate, PR) and the number of phagocytosed microspheres by each eosinophilic or basophilic haemocyte (calculation for phagocytic index, PI). By employing this modified method in the oyster Crassostrea plicatula, we found that the PRs of G and H were very similar to the data obtained by another method, flow cytometry, indicating that this modified method has high accuracy. Additionally, we also found that the PR and PI in E-G were 70.9 ± 7.3% and 1.0 ± 0.2, respectively, which were both significantly higher than those in B-G (53.1 ± 6.4% and 0.7 ± 0.1). The PR and PI in E-H were 16.3 ± 2.8% and 0.2 ± 0.1, respectively, while in B-H, the PR and PI were 13.3 ± 3.6% and 0.2 ± 0.1, respectively, with no significant difference observed. Based on this result, eosinophilic granulocytes are more active in phagocytosis than basophilic granulocytes in the oyster immune defence system.
Collapse
Affiliation(s)
- Tingting Lin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, PR China
| | - Dong Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, PR China
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, PR China
| | - Min Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, PR China
| | - Weimin Quan
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, PR China
| | - Kai Zhou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, PR China.
| |
Collapse
|
32
|
Zhang Z, Jiang W, Jian Q, Song W, Zheng Z, Wang D, Liu X. Residues and dissipation kinetics of triazole fungicides difenoconazole and propiconazole in wheat and soil in Chinese fields. Food Chem 2014; 168:396-403. [PMID: 25172726 DOI: 10.1016/j.foodchem.2014.07.087] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/28/2022]
Abstract
An analytical method for simultaneously determining the residues of difenoconazole and propiconazole in wheat straw, wheat grain and soil was developed. Mean recoveries and relative standard deviations in all samples ranged 86.2-101.3% and 3.1-12.1% for propiconazole and difenoconazole. The half-lives of difenoconazole and propiconazole were 3.6-5.5days and 5.1-6.9days in wheat straws, and 4.9-5.8days and 6.1-8.4days in soil, respectively. The residues in wheat grain were found to be <0.01mg/kg, based on the application rate (135g a.i./ha) and the pre-harvest interval (PHI=28days) recommended by the manufacturer. The results suggest that the use of difenoconazole and propiconazole on wheat is considered to be safe under the Good Agricultural Practices (GAP) in the Chinese fields, and the main factors for pesticide residue in crops are application times, rates and pre-harvest intervals.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, P.R. China, Nanjing 210014, China.
| | - Wayne Jiang
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiu Jian
- Institute for the Control of Agrochemicals, Ministry of Agriculture, P.R. China, Beijing 100125, China
| | - Wencheng Song
- Institute for the Control of Agrochemicals, Ministry of Agriculture, P.R. China, Beijing 100125, China
| | - Zuntao Zheng
- Institute for the Control of Agrochemicals, Ministry of Agriculture, P.R. China, Beijing 100125, China
| | - Donglan Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, P.R. China, Nanjing 210014, China
| | - Xianjin Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, P.R. China, Nanjing 210014, China
| |
Collapse
|
33
|
Urzúa J, González-Vargas C, Sepúlveda F, Ureta-Zañartu MS, Salazar R. Degradation of conazole fungicides in water by electrochemical oxidation. CHEMOSPHERE 2013; 93:2774-2781. [PMID: 24140400 DOI: 10.1016/j.chemosphere.2013.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
The electrochemical oxidation (EO) treatment in water of three conazole fungicides, myclobutanil, triadimefon and propiconazole, has been carried out at constant current using a BDD/SS system. First, solutions of each fungicide were electrolyzed to assess the effect of the experimental parameters such as current, pH and fungicide concentration on the decay of each compound and total organic carbon abatement. Then a careful analysis of the degradation by-products was made by high performance liquid chromatography, ion chromatography and gas chromatography coupled with mass spectrometry in order to provide a detailed discussion on the original reaction pathways. Thus, during the degradation of conazole fungicides by the electrochemical oxidation process, aromatic intermediates, aliphatic carboxylic acids and Cl(-) were detected prior to their complete mineralization to CO2 while NO3(-) anions remained in the treated solution. This is an essential preliminary step towards the applicability of the EO processes for the treatment of wastewater containing conazole fungicides.
Collapse
Affiliation(s)
- J Urzúa
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | | | | | | | | |
Collapse
|
34
|
Savi GD, Vitorino V, Bortoluzzi AJ, Scussel VM. Effect of zinc compounds on Fusarium verticillioides growth, hyphae alterations, conidia, and fumonisin production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3395-3402. [PMID: 23775536 DOI: 10.1002/jsfa.6271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/27/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Several strategies are used to eliminate toxigenic fungi that produce fumonisins in grains. Fusarium verticillioides can be controlled by the application of synthetic fungicides in the field or during storage. However, there may also be residuals, which may remain in the foods. Inorganic compounds such as zinc are cheap, stable and could present strong antifungal activity. Some Zn compounds can be utilized as dietary supplements and are authorized for the fortification of foods. Knowing the advantages and that low concentrations of Zn can have antimicrobial activity, our objective was to evaluate the effects of Zn compounds on the growth of F. verticillioides and the production of fumonisin and conidia. In addition, we aimed to verify that Zn compounds cause morphological alterations of the hyphae, mortality and production of reactive oxygen species. RESULTS Zn compounds efficiently reduced fungal growth and fumonisin production. Treatment using zinc perchlorate gave the best results. All treatments inhibited conidia production and caused morphological alterations of the hyphae. It was possible to observe cell death and production of reactive oxygen species. CONCLUSION Zn compounds have advantages compared to other antifungal compounds. In particular, they are non-toxic for the organism in appropriate amounts. They could be studied further as potential fungicides in agriculture.
Collapse
Affiliation(s)
- Geovana D Savi
- Laboratory of Mycotoxicology and Food Contaminants, Food Science and Technology Department, Center of Agricultural Sciences, Federal University of Santa Catarina, P.O. Box 476, 88034-001, Florianopolis, Santa Catarina, Brazil
| | | | | | | |
Collapse
|
35
|
Nesnow S. Integration of toxicological approaches with “omic” and related technologies to elucidate mechanisms of carcinogenic action: Propiconazole, an example. Cancer Lett 2013. [DOI: 10.1016/j.canlet.2012.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Li ZH, Zlabek V, Velisek J, Grabic R, Machova J, Kolarova J, Li P, Randak T. Multiple biomarkers responses in juvenile rainbow trout, Oncorhynchus mykiss, after acute exposure to a fungicide propiconazole. ENVIRONMENTAL TOXICOLOGY 2013; 28:119-126. [PMID: 21384499 DOI: 10.1002/tox.20701] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 12/28/2010] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
In this study, the toxic effects of propiconazole (PCZ), a triazole fungicide present in aquatic environment, were studied in juvenile rainbow trout, Oncorhynchus mykiss, by acute toxicity test with the concentration of 5.04 mg/L (96 h LC50). Morphological indices, hematological parameters, liver xenobiotic-metabolizing response, and tissue antioxidant status were evaluated. Compared with the control group, fish exposed to PCZ showed significantly higher Leuko, PCV, MCHC, and hepatic EROD, and significantly lower MCV. CF and HSI were not significantly different among groups. SOD, CAT, GPx, and GR activities increased significantly in liver of experimental groups, but decreased significantly in gill. In general, antioxidant enzyme activity in intestine was less evident than in liver. Oxidative stress indices (levels of LPO and CP) were significantly higher in gill. Additionally, through chemometrics of all parameters measured in this study, two groups with 67.29% of total accumulated variance were distinguished. In short, the physiological and biochemical responses in different tissues of fish indicated that PCZ-induced the stressful environmental conditions. But according to PCZ residual status in the natural environment, more long-term experiments at lower concentrations will be necessary in the future. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2013.
Collapse
Affiliation(s)
- Zhi-Hua Li
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Single and Combined Cytotoxicity Research of Propiconazole and Nano-zinc Oxide on the NIH/3T3 Cell. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proenv.2013.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Dambolena JS, López AG, Meriles JM, Rubinstein HR, Zygadlo JA. Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides. A structure–property–activity relationship study. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Falé PL, Amaral F, Amorim Madeira PJ, Sousa Silva M, Florêncio MH, Frazão FN, Serralheiro MLM. Acetylcholinesterase inhibition, antioxidant activity and toxicity of Peumus boldus water extracts on HeLa and Caco-2 cell lines. Food Chem Toxicol 2012; 50:2656-62. [PMID: 22617353 DOI: 10.1016/j.fct.2012.04.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/20/2012] [Accepted: 04/30/2012] [Indexed: 11/28/2022]
Abstract
This work aimed to study the inhibition on acetylcholinesterase activity (AChE), the antioxidant activity and the toxicity towards Caco-2 and HeLa cells of aqueous extracts of Peumus Boldus. An IC(50) value of 0.93 mg/mL, for AChE inhibition, and EC(50) of 18.7 μg/mL, for the antioxidant activity, was determined. This activity can be attributed to glycosylated flavonoid derivatives detected, which were the main compounds, although boldine and other aporphine derivatives were also present. No changes in the chemical composition or the biochemical activities were found after gastrointestinal digestion. Toxicity of P. boldus decoction gave an IC(50) value 0.66 mg/mL for HeLa cells, which caused significant changes in the cell proteome profile.
Collapse
Affiliation(s)
- P L Falé
- Centro de Quíımica e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
40
|
Hester S, Moore T, Padgett WT, Murphy L, Wood CE, Nesnow S. The Hepatocarcinogenic Conazoles: Cyproconazole, Epoxiconazole, and Propiconazole Induce a Common Set of Toxicological and Transcriptional Responses. Toxicol Sci 2012; 127:54-65. [DOI: 10.1093/toxsci/kfs086] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
Peng CC, Shi W, Lutz JD, Kunze KL, Liu JO, Nelson WL, Isoherranen N. Stereospecific metabolism of itraconazole by CYP3A4: dioxolane ring scission of azole antifungals. Drug Metab Dispos 2011; 40:426-35. [PMID: 22106171 DOI: 10.1124/dmd.111.042739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Itraconazole (ITZ) is a mixture of four cis-stereoisomers that inhibit CYP3A4 potently and coordinate CYP3A4 heme via the triazole nitrogen. However, (2R,4S,2'R)-ITZ and (2R,4S,2'S)-ITZ also undergo stereoselective sequential metabolism by CYP3A4 at a site distant from the triazole ring to 3'-OH-ITZ, keto-ITZ, and N-desalkyl-ITZ. This stereoselective metabolism demonstrates specific interactions of ITZ within the CYP3A4 active site. To further investigate this process, the binding and metabolism of the four trans-ITZ stereoisomers by CYP3A4 were characterized. All four trans-ITZ stereoisomers were tight binding inhibitors of CYP3A4-mediated midazolam hydroxylation (IC(50) 16-26 nM), and each gave a type II spectrum upon binding to CYP3A4. However, instead of formation of 3'-OH-ITZ, they were oxidized at the dioxolane ring, leading to ring scission and formation of two new metabolites of ITZ. These two metabolites were also formed from the four cis-ITZ stereoisomers, although not as efficiently. The catalytic rates of dioxolane ring scission were similar to the dissociation rates of ITZ stereoisomers from CYP3A4, suggesting that the heme iron is reduced while the triazole moiety coordinates to it and no dissociation of ITZ is necessary before catalysis. The triazole containing metabolite [1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone] also inhibited CYP3A4 (IC(50) >15 μM) and showed type II binding with CYP3A4. The dioxolane ring scission appears to be clinically relevant because this metabolite was detected in urine samples from subjects that had been administered the mixture of cis-ITZ isomers. These data suggest that the dioxolane ring scission is a metabolic pathway for drugs that contain this moiety.
Collapse
Affiliation(s)
- Chi-Chi Peng
- Department of Pharmaceutics, University of Washington, P.O. Box 357610, Seattle, Washington 98103, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Nesnow S, Grindstaff RD, Lambert G, Padgett WT, Bruno M, Ge Y, Chen PJ, Wood CE, Murphy L. Propiconazole increases reactive oxygen species levels in mouse hepatic cells in culture and in mouse liver by a cytochrome P450 enzyme mediated process. Chem Biol Interact 2011; 194:79-89. [DOI: 10.1016/j.cbi.2011.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 01/14/2023]
|
43
|
Comparative in vitro activities of fluconazole, voriconazole, and MXP-4509 against Romanian blood yeast isolates. Mycopathologia 2011; 172:487-92. [PMID: 21805354 DOI: 10.1007/s11046-011-9455-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
The aim of the study was to evaluate the antifungal activity of a new triazole formulation against 182 clinical isolates of yeasts recovered from blood cultures in three tertiary hospitals in Romania and to compare its activity with those of fluconazole and voriconazole. In vitro susceptibility was assessed by following the guidelines of AFST-EUCAST E. Def. 7.1. The distribution of minimum inhibitory concentrations (MICs) of MXP-4509 was very similar to that of voriconazole (MIC(50): 0.0312 mg/l vs. 0.0156 mg/l; MIC(90): 0.25 mg/l vs. 0.25 mg/l), but significantly different from that of fluconazole (MIC(50): 0.0312 mg/l vs. 0.5 mg/l; MIC(90): 0.25 mg/l vs. 32 mg/l). The new triazole MXP-4509 proved to have a good in vitro antifungal activity raising the interest for further pharmacological and microbiological investigations in order to assess its potential advantages for therapy.
Collapse
|
44
|
Nesnow S, Padgett WT, Moore T. Propiconazole induces alterations in the hepatic metabolome of mice: relevance to propiconazole-induced hepatocarcinogenesis. Toxicol Sci 2011; 120:297-309. [PMID: 21278054 DOI: 10.1093/toxsci/kfr012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Propiconazole is a mouse hepatotumorigenic fungicide and has been the subject of recent investigations into its carcinogenic mechanism of action. The goals of this study were (1) to identify metabolomic changes induced in the liver by increasing doses of propiconazole in mice, (2) to interpret these results with key previously reported biochemical, transcriptomic, and proteomic findings obtained from mouse liver under the same treatment conditions, and (3) to relate these alterations to those associated with the carcinogenesis process. Propiconazole was administered to male CD-1 mice in the feed for 4 days with six mice per feed level (500, 1250, and 2500 ppm). The 2500 ppm dose level had previously been shown to induce both adenocarcinomas and adenomas in mouse liver after a 2-year continuous feed regimen. Endogenous biochemicals were profiled using liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry methods and 261 were detected. The most populous biochemical class detected was lipids, followed by amino acids and then carbohydrates. Nucleotides, cofactors and vitamins, energy, peptides, and xenobiotics were also represented. Of the biochemicals detected, 159 were significantly altered by at least one dose of propiconazole and many showed strong dose responses. Many alterations in the levels of biochemicals were found in the glycogen metabolism, glycolysis, lipolysis, carnitine, and the tricarboxylic acid cycle pathways Several groups of metabolomic responses were ascribed to the metabolism and clearance of propiconazole: glucuronate, glutathione, and cysteine pathways. Groups of metabolic responses supported previous hypotheses on key events that can lead to propiconazole-induced tumorigenesis: oxidative stress and increases in the cholesterol biosynthesis pathway. Groups of metabolomic responses identified biomarkers associated with neoplasia: increases in glycolysis and increases in the levels of spermidine, sarcosine, and pseudouridine. These results extended the companion transcriptomic and proteomic studies and provided a more complete understanding of propiconazole's effects in mouse liver.
Collapse
Affiliation(s)
- Stephen Nesnow
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | |
Collapse
|
45
|
Li ZH, Zlabek V, Grabic R, Li P, Machova J, Velisek J, Randak T. Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+-K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:297-303. [PMID: 20363517 DOI: 10.1016/j.aquatox.2010.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/17/2010] [Accepted: 02/23/2010] [Indexed: 05/29/2023]
Abstract
Propiconazole (PCZ), a triazole fungicide, is widely present in the aquatic environment, but little is known regarding its chronic toxicity in the fish brain. This study assessed the effects of long-term exposure to PCZ on the antioxidant defense system and Na(+)-K(+)-ATPase activity of rainbow trout brain. Fish were exposed to sublethal concentrations of PCZ (0.2, 50, and 500 microg/l) for 7, 20, and 30 days, respectively. Oxidative stress indices (reactive oxygen species, lipid peroxidation, and carbonyl protein) and antioxidant parameters (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and reduced glutathione) were measured, as well as Na(+)-K(+)-ATPase activity. Adaptive responses to PCZ-induced stress were observed at 7 days. With prolonged exposure, significantly higher levels of oxidative indices were indicative of oxidative stress, as also were the significant inhibition of antioxidant enzyme activity and reduced glutathione content. Na(+)-K(+)-ATPase activity was significantly inhibited after prolonged exposure. Chemometrics of all parameters by principal component analysis, enabled the separation of sampled individuals into four groups with 93.39% of total accumulated variance. A low level of oxidative stress can induce the adaptive responses of the antioxidant defense system, while prolonged exposure to PCZ may lead to serious oxidative damage in fish brain. We suggest that selected biochemical markers in fish brain could be used as potential biomarkers for monitoring residual fungicides present in the aquatic environments.
Collapse
Affiliation(s)
- Zhi-Hua Li
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Jingzhou 434000, China.
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Department of Chemistry, Umea University, SE-90187 Umea, Sweden
| | - Ping Li
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Jingzhou 434000, China
| | - Jana Machova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| |
Collapse
|
46
|
Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem Toxicol 2010; 48:1734-40. [PMID: 20385194 DOI: 10.1016/j.fct.2010.04.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 03/27/2010] [Accepted: 04/05/2010] [Indexed: 11/23/2022]
Abstract
The study deals with antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima and Citrus sinensis essential oils (EOs) and their phytochemical composition. The EOs were obtained by hydrodistillation and their chemical profile was determined through GC and GC-MS analysis. Both the EOs and their 1:1 combination showed broad fungitoxic spectrum against different food contaminating moulds. The EOs and their combination completely inhibited aflatoxin B(1) (AFB(1)) production at 500 ppm, whereas, DL-limonene, the major component of EOs showed better antiaflatoxigenic efficacy even at 250 ppm. Both the oils exhibited antioxidant activity as DPPH free radical scavenger in dose dependent manner. The IC(50) for radical scavenging efficacy of C. maxima and C. sinensis oils were to be 8.84 and 9.45 microl ml(-1), respectively. The EOs were found non-mammalian toxic showing high LD(50) for mice (oral, acute). The oils may be recommended as safe plant based antimicrobials as well as antioxidants for enhancement of shelf life of food commodities by checking their fungal infestation, aflatoxin production as well as lipid peroxidation.
Collapse
|
47
|
Nesnow S, Ward W, Moore T, Ren H, Hester SD. Discrimination of Tumorigenic Triazole Conazoles from Phenobarbital by Transcriptional Analyses of Mouse Liver Gene Expression. Toxicol Sci 2009; 110:68-83. [DOI: 10.1093/toxsci/kfp076] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|