1
|
Nxumalo MB, Ntanzi N, Kumalo HM, Khan RB. Mitigating Hyperglycaemic Oxidative Stress in HepG2 Cells: The Role of Carica papaya Leaf and Root Extracts in Promoting Glucose Uptake and Antioxidant Defence. Nutrients 2024; 16:3496. [PMID: 39458491 PMCID: PMC11510471 DOI: 10.3390/nu16203496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Diabetes often goes undiagnosed, with 60% of people in Africa unaware of their condition. Type 2 diabetes mellitus (T2DM) is associated with insulin resistance and is treated with metformin, despite the undesirable side effects. Medicinal plants with therapeutic potential, such as Carica papaya, have shown promising anti-diabetic properties. This study explored the role of C. papaya leaf and root extracts compared to metformin in reducing hyperglycaemia-induced oxidative stress and their impact on liver function using HepG2 as a reference. Methods: The cytotoxicity was assessed through the MTT assay. At the same time, glucose uptake and metabolism (ATP and ∆Ψm) in HepG2 cells treated with C. papaya aqueous leaf and root extract were evaluated using a luminometry assay. Additionally, antioxidant properties (SOD2, GPx1, GSH, and Nrf2) were measured using qPCR and Western blot following the detection of MDA, NO, and iNOS, indicators of free radicals. Results: The MTT assay showed that C. papaya extracts did not exhibit toxicity in HepG2 cells and enhanced glucose uptake compared to the hyperglycaemic control (HGC) and metformin. The glucose levels in C. papaya-treated cells increased ATP production (p < 0.05), while the ∆Ψm was significantly increased in HGR1000-treated cells (p < 0.05). Furthermore, C. papaya leaf extract upregulated GPx1 (p < 0.05), GSH, and Nrf2 gene (p < 0.05), while SOD2 and Nrf2 proteins were reduced (p > 0.05), ultimately lowering ROS (p > 0.05). Contrarily, the root extract stimulated SOD2 (p > 0.05), GPx1 (p < 0.05), and GSH levels (p < 0.05), reducing Nrf2 gene and protein expression (p < 0.05) and resulting in high MDA levels (p < 0.05). Additionally, the extracts elevated NO levels and iNOS expression (p < 0.05), suggesting potential RNS activation. Conclusion: Taken together, the leaf extract stimulated glucose metabolism and triggered ROS production, producing a strong antioxidant response that was more effective than the root extract and metformin. However, the root extract, particularly at high concentrations, was less effective at neutralising free radicals as it did not stimulate Nrf2 production, but it did maintain elevated levels of SOD2, GSH, and GPx1 antioxidants.
Collapse
Affiliation(s)
- Mthokozisi Bongani Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (N.N.); (H.M.K.); (R.B.K.)
| | | | | | | |
Collapse
|
2
|
Merlin JPJ, Crous A, Abrahamse H. Combining Photodynamic Therapy and Targeted Drug Delivery Systems: Enhancing Mitochondrial Toxicity for Improved Cancer Outcomes. Int J Mol Sci 2024; 25:10796. [PMID: 39409125 PMCID: PMC11477455 DOI: 10.3390/ijms251910796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer treatment continues to be a substantial problem due to tumor complexities and persistence, demanding novel therapeutic techniques. This review investigates the synergistic potential of combining photodynamic therapy (PDT) and tailored medication delivery technologies to increase mitochondrial toxicity and improve cancer outcomes. PDT induces selective cellular damage and death by activating photosensitizers (PS) with certain wavelengths of light. However, PDT's efficacy can be hampered by issues such as poor light penetration and a lack of selectivity. To overcome these challenges, targeted drug delivery systems have emerged as a promising technique for precisely delivering therapeutic medicines to tumor cells while avoiding off-target effects. We investigate how these technologies can improve mitochondrial targeting and damage, which is critical for causing cancer cell death. The combination method seeks to capitalize on the advantages of both modalities: selective PDT activation and specific targeted drug delivery. We review current preclinical and clinical evidence supporting the efficacy of this combination therapy, focusing on case studies and experimental models. This review also addresses issues such as safety, distribution efficiency, resistance mechanisms, and costs. The prospects of further research include advances in photodynamic agents and medication delivery technology, with a focus on personalized treatment. In conclusion, combining PDT with targeted drug delivery systems provides a promising frontier in cancer therapy, with the ability to overcome current treatment limits and open the way for more effective, personalized cancer treatments.
Collapse
Affiliation(s)
- J. P. Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (A.C.); (H.A.)
| | | | | |
Collapse
|
3
|
Bokolia NP, Bag K, Sarkar B, Jhawar R, Chatterji D, Jayaraman N, Ghosh A. A novel C-4-modified isotetrone acts as a potent bio-enhancer to augment the activities of anti-tuberculosis drugs against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2024; 149:102569. [PMID: 39357126 DOI: 10.1016/j.tube.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Mycobacterium tuberculosis is a deadly pathogen that claims millions of lives every year. Current research focuses on finding new anti-tuberculosis drugs that are safe and effective, with lesser side effects and toxicity. One important approach is to identify bio-enhancers that can improve the effectiveness of anti-tuberculosis drugs, resulting in reduced doses and shortened treatment times. The present study investigates the use of C-4 modified isotetrones as bio-enhancers. A series of studies suggest an isotetrone, labeled as C11, inhibits growth, improves MIC, MBC and enhances the killing of M. tuberculosis H37Rv strain when used in combination with the first line and injectable anti-TB drugs in a dose-dependent manner. The combination of C11 and rifampicin also reduces the generation of spontaneous mutants against rifampicin and reaches a mutation prevention concentration (MPC) with moderate rifampicin concentrations. The identified compounds are effective against the MDR strain of M. tuberculosis and non-cytotoxic in HepG2 cells. We find that C11 induces the generation of reactive oxygen species (ROS) inside macrophages and within bacteria, resulting in better efficacy.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Kingshuk Bag
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Biplab Sarkar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Ruchi Jhawar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Anirban Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
4
|
Shanley HT, Taki AC, Nguyen N, Wang T, Byrne JJ, Ang CS, Leeming MG, Williamson N, Chang BCH, Jabbar A, Sleebs BE, Gasser RB. Comparative structure activity and target exploration of 1,2-diphenylethynes in Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist 2024; 25:100534. [PMID: 38554597 PMCID: PMC10992699 DOI: 10.1016/j.ijpddr.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024]
Abstract
Infections and diseases caused by parasitic nematodes have a major adverse impact on the health and productivity of animals and humans worldwide. The control of these parasites often relies heavily on the treatment with commercially available chemical compounds (anthelmintics). However, the excessive or uncontrolled use of these compounds in livestock animals has led to major challenges linked to drug resistance in nematodes. Therefore, there is a need to develop new anthelmintics with novel mechanism(s) of action. Recently, we identified a small molecule, designated UMW-9729, with nematocidal activity against the free-living model organism Caenorhabditis elegans. Here, we evaluated UMW-9729's potential as an anthelmintic in a structure-activity relationship (SAR) study in C. elegans and the highly pathogenic, blood-feeding Haemonchus contortus (barber's pole worm), and explored the compound-target relationship using thermal proteome profiling (TPP). First, we synthesised and tested 25 analogues of UMW-9729 for their nematocidal activity in both H. contortus (larvae and adults) and C. elegans (young adults), establishing a preliminary nematocidal pharmacophore for both species. We identified several compounds with marked activity against either H. contortus or C. elegans which had greater efficacy than UMW-9729, and found a significant divergence in compound bioactivity between these two nematode species. We also identified a UMW-9729 analogue, designated 25, that moderately inhibited the motility of adult female H. contortus in vitro. Subsequently, we inferred three H. contortus proteins (HCON_00134350, HCON_00021470 and HCON_00099760) and five C. elegans proteins (F30A10.9, F15B9.8, B0361.6, DNC-4 and UNC-11) that interacted directly with UMW-9729; however, no conserved protein target was shared between the two nematode species. Future work aims to extend the SAR investigation in these and other parasitic nematode species, and validate individual proteins identified here as possible targets of UMW-9729. Overall, the present study evaluates this anthelmintic candidate and highlights some challenges associated with early anthelmintic investigation.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
5
|
Fernández-Pastor I, González-Menéndez V, González I, Serrano R, Mackenzie TA, Benítez G, Casares-Porcel M, Genilloud O, Reyes F. Escuzarmycins A-D, Potent Biofungicides to Control Septoria tritici Blotch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15256-15264. [PMID: 38935555 DOI: 10.1021/acs.jafc.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A study targeting novel antifungal metabolites identified potent in vitro antifungal activity against key plant pathogens in acetone extracts of Streptomyces sp. strain CA-296093. Feature-based molecular networking revealed the presence in this extract of antimycin-related compounds, leading to the isolation of four new compounds: escuzarmycins A-D (1-4). Extensive structural elucidation, employing 1D and 2D NMR, high-resolution mass spectrometry, Marfey's analysis, and NOESY correlations, confirmed their structures. The bioactivity of these compounds was tested against six fungal phytopathogens, and compounds 3 and 4 demonstrated strong efficacy, particularly against Zymoseptoria tritici, with compound 3 exhibiting the highest potency (EC50: 11 nM). Both compounds also displayed significant antifungal activity against Botrytis cinerea and Colletotrichum acutatum, with compound 4 proving to be the most potent. Despite moderate cytotoxicity against the human cancer cell line HepG2, compounds 3 and 4 emerge as promising fungicides for combating Septoria tritici blotch, anthracnose, and gray mold.
Collapse
Affiliation(s)
- Ignacio Fernández-Pastor
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, 18016Granada, España
| | - Victor González-Menéndez
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, 18016Granada, España
| | - Ignacio González
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, 18016Granada, España
| | - Rachel Serrano
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, 18016Granada, España
| | - Thomas A Mackenzie
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, 18016Granada, España
| | - Guillermo Benítez
- Departamento de Botánica, Facultad de Farmacia, Universidad de Granada, Campus Universitario de Cartuja, 18071 Granada, España
| | - Manuel Casares-Porcel
- Departamento de Botánica, Facultad de Farmacia, Universidad de Granada, Campus Universitario de Cartuja, 18071 Granada, España
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, 18016Granada, España
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, 18016Granada, España
| |
Collapse
|
6
|
Pinto M, Silva TB, Sardão VA, Simões R, Albuquerque B, Oliveira PJ, Valente MJ, Remião F, Soares-da-Silva P, Fernandes C, Borges F. Cellular and Mitochondrial Toxicity of Tolcapone, Entacapone, and New Nitrocatechol Derivatives. ACS Pharmacol Transl Sci 2024; 7:1637-1649. [PMID: 38751615 PMCID: PMC11091965 DOI: 10.1021/acsptsci.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Nitrocatechols are the standard pharmacophore to develop potent tight-binding inhibitors of catechol O-methyltransferase (COMT), which can be used as coadjuvant drugs to manage Parkinson's disease. Tolcapone is the most potent drug of this class, but it has raised safety concerns due to its potential to induce liver damage. Tolcapone-induced hepatotoxicity has been attributed to the nitrocatechol moiety; however, other nitrocatechol-based COMT inhibitors, such as entacapone, are safe and do not damage the liver. There is a knowledge gap concerning which mechanisms and chemical properties govern the toxicity of nitrocatechol-based COMT inhibitors. Using a vast array of cell-based assays, we found that tolcapone-induced toxicity is caused by direct interference with mitochondria that does not depend on bioactivation by P450. Our findings also suggest that (a) lipophilicity is a key property in the toxic potential of nitrocatechols; (b) the presence of a carbonyl group directly attached to the nitrocatechol ring seems to increase the reactivity of the molecule, and (c) the presence of cyano moiety in double bond stabilizes the reactivity decreasing the cytotoxicity. Altogether, the fine balance between lipophilicity and the chemical nature of the C1 substituents of the nitrocatechol ring may explain the difference in the toxicological behavior observed between tolcapone and entacapone.
Collapse
Affiliation(s)
- Miguel Pinto
- CIQUP-IMS
− Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, Porto 4169-007, Portugal
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, Faculty
of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO
− Applied Molecular Biosciences Unit, REQUIMTE. Laboratory
of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Tiago Barros Silva
- CIQUP-IMS
− Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, Porto 4169-007, Portugal
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, Faculty
of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO
− Applied Molecular Biosciences Unit, REQUIMTE. Laboratory
of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Vilma A. Sardão
- CNC-UC
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004−504, Portugal
- MIA-Portugal
- Multidisciplinary Institute of Aging, University of Coimbra, Coimbra 3004−504, Portugal
| | - Rui Simões
- CNC-UC
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004−504, Portugal
- CIBB
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004−504, Portugal
| | - Bárbara Albuquerque
- CIQUP-IMS
− Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, Porto 4169-007, Portugal
- MedInUP -
Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| | - Paulo J. Oliveira
- CNC-UC
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004−504, Portugal
- CIBB
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004−504, Portugal
| | - Maria João Valente
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, Faculty
of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO
− Applied Molecular Biosciences Unit, REQUIMTE. Laboratory
of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Fernando Remião
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, Faculty
of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO
− Applied Molecular Biosciences Unit, REQUIMTE. Laboratory
of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Patrício Soares-da-Silva
- MedInUP -
Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| | - Carlos Fernandes
- CIQUP-IMS
− Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, Porto 4169-007, Portugal
| | - Fernanda Borges
- CIQUP-IMS
− Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, Porto 4169-007, Portugal
| |
Collapse
|
7
|
Pinto M, Machado CS, Barreiro S, Otero-Espinar FJ, Remião F, Borges F, Fernandes C. Rescuing a Troubled Tolcapone with PEGylated PLGA Nanoparticles: Design, Characterization, and Hepatotoxicity Evaluation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21522-21533. [PMID: 38647198 DOI: 10.1021/acsami.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tolcapone is an orally active catechol-O-methyltransferase (COMT) inhibitor used as adjuvant therapy in Parkinson's disease. However, it has a highly hepatotoxic profile, as recognized by the U.S. Food and Drug Administration. As a possible solution, nanoscience brought us several tools in the development of new functional nanomaterials with tunable physicochemical properties, which can be part of a solution to solve several drawbacks, including drug's short half-life and toxicity. This work aims to use PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a stable carrier with lower hydrodynamic size and polydispersity to encapsulate tolcapone in order to overcome its therapeutic drawbacks. Using the nanoprecipitation method, tolcapone-loaded nanoparticles with a DLC% of 5.7% were obtained (EE% of 47.0%) and subjected to a lyophilization optimization process to obtain a final shelf-stable formulation. Six different cryoprotectants in concentrations up to 10% (w/v) were tested. A formulation of PLGA nanoparticles with 3% hydroxypropyl-β-cyclodextrin (HPβCD) as a cryoprotectant (PLGA-HP@Tolc), presenting sub-200 nm sizes and low polydispersity (PdI < 0.200) was selected. Cytotoxicity assays, namely, MTT and SRB, were used to study the metabolic activity and cell density of tolcapone and PLGA-HP@Tolc-treated cells. In both assays, a hepatocarcinoma cell line (HepG2) growing in glucose or glucose-free media (galactose-supplemented medium) was used. The results demonstrated that the treatment with the PLGA-HP@Tolc formulation led to a decrease in cytotoxicity in comparison to free tolcapone-treated cells in both media tested. Moreover, the elected formulation also counteracted ATP-depletion and excessive ROS production induced by tolcapone. The results suggest that HPβCD might have a dual function in the formulation: cryoprotectant and anticytotoxic agent, protecting cells from tolcapone-induced damage. Using an in vitro COMT inhibition assay, the PLGA-HP@Tolc formulation demonstrated to inhibit COMT as efficiently as free tolcapone. Overall, the results suggest that tolcapone-loaded PLGA NPs could be an interesting alternative to free tolcapone, demonstrating the same in vitro efficacy in inhibiting COMT but with a safer cytotoxic profile.
Collapse
Affiliation(s)
- Miguel Pinto
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R.Campo Alegre s/n, Porto 4169-007, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Cláudia Sofia Machado
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R.Campo Alegre s/n, Porto 4169-007, Portugal
| | - Sandra Barreiro
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R.Campo Alegre s/n, Porto 4169-007, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Fernando Remião
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R.Campo Alegre s/n, Porto 4169-007, Portugal
| | - Carlos Fernandes
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R.Campo Alegre s/n, Porto 4169-007, Portugal
| |
Collapse
|
8
|
Shanley HT, Taki AC, Byrne JJ, Nguyen N, Wells TNC, Jabbar A, Sleebs BE, Gasser RB. A phenotypic screen of the Global Health Priority Box identifies an insecticide with anthelmintic activity. Parasit Vectors 2024; 17:131. [PMID: 38486232 PMCID: PMC10938758 DOI: 10.1186/s13071-024-06183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Infection with parasitic nematodes (helminths), particularly those of the order Strongylida (such as Haemonchus contortus), can cause significant and burdensome diseases in humans and animals. Widespread drug (anthelmintic) resistance in livestock parasites, the absence of vaccines against most of these nematodes, and a lack of new and effective chemical entities on the commercial market demands the discovery of new anthelmintics. In the present study, we searched the Global Health Priority Box (Medicines for Malaria Venture) for new candidates for anthelmintic development. METHODS We employed a whole-organism, motility-based phenotypic screening assay to identify compounds from the Global Health Priority Box with activity against larvae of the model parasite H. contortus, and the free-living comparator nematode Caenorhabditis elegans. Hit compounds were further validated via dose-response assays, with lead candidates then assessed for nematocidal activity against H. contortus adult worms, and additionally, for cytotoxic and mitotoxic effects on human hepatoma (HepG2) cells. RESULTS The primary screen against H. contortus and C. elegans revealed or reidentified 16 hit compounds; further validation established MMV1794206, otherwise known as 'flufenerim', as a significant inhibitor of H. contortus larval motility (half-maximal inhibitory concentration [IC50] = 18 μM) and development (IC50 = 1.2 μM), H. contortus adult female motility (100% after 12 h of incubation) and C. elegans larval motility (IC50 = 0.22 μM). Further testing on a mammalian cell line (human hepatoma HepG2 cells), however, identified flufenerim to be both cytotoxic (half-maximal cytotoxic concentration [CC50] < 0.7 μM) and mitotoxic (half-maximal mitotoxic concentration [MC50] < 0.7 μM). CONCLUSIONS The in vitro efficacy of MMV1794206 against the most pathogenic stages of H. contortus, as well as the free-living C. elegans, suggests the potential for development as a broad-spectrum anthelmintic compound; however, the high toxicity towards mammalian cells presents a significant hindrance. Further work should seek to establish the protein-drug interactions of MMV1794206 in a nematode model, to unravel the mechanism of action, in addition to an advanced structure-activity relationship investigation to optimise anthelmintic activity and eliminate mammalian cell toxicity.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Tim N C Wells
- Medicines for Malaria Venture (MMV), 1215, Geneva, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
9
|
Abegg VF, Panajatovic MV, Mancuso RV, Allard JA, Duthaler U, Odermatt A, Krähenbühl S, Bouitbir J. Mechanisms of hepatocellular toxicity associated with the components of St. John's Wort extract hypericin and hyperforin in HepG2 and HepaRG cells. Toxicol Lett 2024; 393:1-13. [PMID: 38219807 DOI: 10.1016/j.toxlet.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
St. John's Wort preparations are used for the treatment of mild to moderate depression. They are usually well tolerated but can cause adverse reactions including liver toxicity in rare cases. To date, the mechanism(s) underlying the hepatotoxicity of St. John's Wort extracts are poorly investigated. We studied the hepatocellular toxicity of hypericin and hyperforin as the two main ingredients of St. John's Wort extracts in HepG2 and HepaRG cells and compared the effects to citalopram (a synthetic serotonin uptake inhibitor) with a special focus on mitochondrial toxicity and oxidative stress. In HepG2 cells, hypericin was membrane-toxic at 100 µM and depleted ATP at 20 µM. In HepaRG cells, ATP depletion started at 5 µM. In comparison, hyperforin and citalopram were not toxic up to 100 µM. In HepG2 cells, hypericin decreased maximal respiration starting at 2 µM and mitochondrial ATP formation starting at 10 µM but did not affect glycolytic ATP production. Hypericin inhibited the activity of complex I, II and IV of the electron transfer system and caused mitochondrial superoxide accumulation in cells. The protein expression of mitochondrial superoxide dismutase 2 (SOD2) and thioredoxin 2 (TRX2) and total and reduced glutathione decreased in cells exposed to hypericin. Finally, hypericin diminished the mitochondrial DNA copy number and caused cell necrosis but not apoptosis. In conclusion, hypericin, but not hyperforin or citalopram, is a mitochondrial toxicant at low micromolar concentrations. This mechanism may contribute to the hepatotoxicity occasionally observed in susceptible patients treated with St. John's Wort preparations.
Collapse
Affiliation(s)
- Vanessa Fabienne Abegg
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | | | | | - Julien Arthur Allard
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland
| | - Jamal Bouitbir
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland.
| |
Collapse
|
10
|
Shanley HT, Taki AC, Nguyen N, Wang T, Byrne JJ, Ang CS, Leeming MG, Nie S, Williamson N, Zheng Y, Young ND, Korhonen PK, Hofmann A, Wells TNC, Jabbar A, Sleebs BE, Gasser RB. Structure activity relationship and target prediction for ABX464 analogues in Caenorhabditis elegans. Bioorg Med Chem 2024; 98:117540. [PMID: 38134663 DOI: 10.1016/j.bmc.2023.117540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Global challenges with treatment failures and/or widespread resistance in parasitic worms against commercially available anthelmintics lend impetus to the development of new anthelmintics with novel mechanism(s) of action. The free-living nematode Caenorhabditis elegans is an important model organism used for drug discovery, including the screening and structure-activity investigation of new compounds, and target deconvolution. Previously, we conducted a whole-organism phenotypic screen of the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) and identified a hit compound, called ABX464, with activity against C. elegans and a related, parasitic nematode, Haemonchus contortus. Here, we tested a series of 44 synthesized analogues to explore the pharmacophore of activity on C. elegans and revealed five compounds whose potency was similar or greater than that of ABX464, but which were not toxic to human hepatoma (HepG2) cells. Subsequently, we employed thermal proteome profiling (TPP), protein structure prediction and an in silico-docking algorithm to predict ABX464-target candidates. Taken together, the findings from this study contribute significantly to the early-stage drug discovery of a new nematocide based on ABX464. Future work is aimed at validating the ABX464-protein interactions identified here, and at assessing ABX464 and associated analogues against a panel of parasitic nematodes, towards developing a new anthelmintic with a mechanism of action that is distinct from any of the compounds currently-available commercially.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nghi Nguyen
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; National Reference Centre for Authentic Food, Max Rubner-Institut, 95326 Kulmbach, Germany
| | - Tim N C Wells
- Medicines for Malaria Venture (MMV), 1215 Geneva, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
11
|
Lalwani P, King DE, Morton KS, Rivera NA, Huayta J, Hsu-Kim H, Meyer JN. Increased cytotoxicity of Pb 2+ with co-exposures to a mitochondrial uncoupler and mitochondrial calcium uniporter inhibitor. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1743-1751. [PMID: 37503664 PMCID: PMC10681630 DOI: 10.1039/d3em00188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Lead (Pb2+) is an important developmental toxicant. The mitochondrial calcium uniporter (MCU) imports calcium ions using the mitochondrial membrane potential (MMP), and also appears to mediate the influx of Pb2+ into the mitochondria. Since our environment contains mixtures of toxic agents, it is important to consider multi-chemical exposures. To begin to develop generalizable, predictive models of interactive toxicity, we developed mechanism-based hypotheses about interactive effects of Pb2+ with other chemicals. To test these hypotheses, we exposed HepG2 (human liver) cells to Pb2+ alone and in mixtures with other mitochondria-damaging chemicals: carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler that reduces MMP, and Ruthenium Red (RuRed), a dye that inhibits the MCU. After 24 hours, Pb2+ alone, the mixture of Pb2+ and RuRed, and the mixture of Pb2+ and FCCP caused no decrease in cell viability. However, the combination of all three exposures led to a significant decrease in cell viability at higher Pb2+ concentrations. After 48 hours, the co-exposure to elevated Pb2+ concentrations and FCCP caused a significant decrease in cell viability, and the mixture of all three showed a clear dose-response curve with significant decreases in cell viability across a range of Pb2+ concentrations. We performed ICP-MS analyses on isolated mitochondrial and cytosolic fractions and found no differences in Pb2+ uptake across exposure groups, ruling out altered cellular uptake as the mechanism for interactive toxicity. We assessed MMP following exposure and observed a decrease in membrane potential that corresponds to loss of cell viability but is likely not sufficient to be the causative mechanistic driver of cell death. This research provides a mechanistically-based framework for understanding Pb2+ toxicity in mixtures with mitochondrial toxicants.
Collapse
Affiliation(s)
- Pooja Lalwani
- Nicholas School of Environment, Duke University, 308 Research Drive, A354 LSRC Building, Durham, NC 27708, USA.
| | - Dillon E King
- Nicholas School of Environment, Duke University, 308 Research Drive, A354 LSRC Building, Durham, NC 27708, USA.
| | - Katherine S Morton
- Nicholas School of Environment, Duke University, 308 Research Drive, A354 LSRC Building, Durham, NC 27708, USA.
| | | | - Javier Huayta
- Nicholas School of Environment, Duke University, 308 Research Drive, A354 LSRC Building, Durham, NC 27708, USA.
| | | | - Joel N Meyer
- Nicholas School of Environment, Duke University, 308 Research Drive, A354 LSRC Building, Durham, NC 27708, USA.
| |
Collapse
|
12
|
Peralta ME, Parisi JC, Castrogiovanni DC, Jadhav SA, Carlos L, Bosio GN, Mártire DO. Effective intracellular release of ibuprofen triggered by thermosensitive magnetic nanocarriers. Colloids Surf B Biointerfaces 2023; 230:113508. [PMID: 37562121 DOI: 10.1016/j.colsurfb.2023.113508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Stimuli-responsive nanocarriers are being widely applied in the development of new strategies for the diagnosis and treatment of diseases. An inherent difficulty in general drug therapy is the lack of precision with respect to a specific pathological site, which can lead to toxicity, excessive drug consumption, or premature degradation. In this work, the controlled drug delivery is achieved by using magnetite nanoparticles coated with mesoporous silica with core-shell structure (MMS) and grafted with the thermoresponsive polymer poly [N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate] (MMS-P). The efficiency of MMS-P as a temperature-controlled drug delivery system was evaluated by in vitro release experiments using ibuprofen (IBU) in various mammalian cell models. Further, the effects of IBU as a photoprotectant in cells exposed to photodynamic therapy (PDT) in a carbaryl-induced neurodegenerative model were evaluated. The results showed that MMS-P nanocarriers do not exhibit cytotoxicity in HepG2 cells at high doses such as 7600 µg mL-1. Pre-incubation of MMS-P charged with IBU showed no effect on the PDT in N2A cells; however, it produced a further decrease in the viability of HepG2 cells, leading to a reduction to PDT resistance. On the other hand, a cytoprotective effect against carbaryl toxicity in N2A cells was observed in IBU administrated by MMS-P, which confirms the effective intracellular IBU uptake by means of MMS-P. These results encourage the potential application of MMS-P as a drug delivery system and confirm the effect of IBU as a cytoprotective agent in a neurodegenerative model.
Collapse
Affiliation(s)
- Marcos E Peralta
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-UNCo), Universidad Nacional Del Comahue, Neuquén 8300, Argentina
| | - Julieta C Parisi
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA - CONICET, UNLP, La Plata 1900, Argentina
| | - Daniel C Castrogiovanni
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA - CONICET, UNLP, La Plata 1900, Argentina
| | - Sushilkumar A Jadhav
- School of Nanoscience and Technology, Shivaji University Kolhapur, Vidyanagar, 416004 Kolhapur, Maharashtra, India
| | - Luciano Carlos
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-UNCo), Universidad Nacional Del Comahue, Neuquén 8300, Argentina.
| | - Gabriela N Bosio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Daniel O Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
13
|
Martínez-Sena T, Moro E, Moreno-Torres M, Quintás G, Hengstler J, Castell JV. Metabolomics-based strategy to assess drug hepatotoxicity and uncover the mechanisms of hepatotoxicity involved. Arch Toxicol 2023; 97:1723-1738. [PMID: 37022445 PMCID: PMC10182947 DOI: 10.1007/s00204-023-03474-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Toxicity studies, among them hepatotoxicity, are key throughout preclinical stages of drug development to minimise undesired toxic effects that might eventually appear in the course of the clinical use of the new drug. Understanding the mechanism of injury of hepatotoxins is essential to efficiently anticipate their potential risk of toxicity in humans. The use of in vitro models and particularly cultured hepatocytes represents an easy and robust alternative to animal drug hepatotoxicity testing for predicting human risk. Here, we envisage an innovative strategy to identify potential hepatotoxic drugs, quantify the magnitude of the alterations caused, and uncover the mechanisms of toxicity. This strategy is based on the comparative analysis of metabolome changes induced by hepatotoxic and non-hepatotoxic compounds on HepG2 cells, assessed by untargeted mass spectrometry. As a training set, we used 25 hepatotoxic and 4 non-hepatotoxic compounds and incubated HepG2 cells for 24 h at a low and a high concentration (IC10 and IC50) to identify mechanism-related and cytotoxicity related metabolomic biomarkers and to elaborate prediction models accounting for global hepatotoxicity and mechanisms-related toxicity. Thereafter, a second set of 69 chemicals with known predominant mechanisms of toxicity and 18 non-hepatotoxic compounds were analysed at 1, 10, 100 and 1000 µM concentrations from which and based on the magnitude of the alterations caused as compared with non-toxic compounds, we defined a "toxicity index" for each compound. In addition, we extracted from the metabolome data the characteristic signatures for each mechanism of hepatotoxicity. The integration of all this information allowed us to identify specific metabolic patterns and, based on the occurrence of that specific metabolome changes, the models predicted the likeliness of a compound to behave as hepatotoxic and to act through a given toxicity mechanism (i.e., oxidative stress, mitochondrial disruption, apoptosis and steatosis) for each compound and concentration.
Collapse
Affiliation(s)
- Teresa Martínez-Sena
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain
- Departamento de Química Analítica, Facultad de Químicas, Universidad de Valencia, Valencia, Spain
| | - Erika Moro
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Marta Moreno-Torres
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto de Salud Carlos III, CIBEREHD, Madrid, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Valencia, Spain
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Dortmund, Germany
| | - José V Castell
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
- Instituto de Salud Carlos III, CIBEREHD, Madrid, Spain.
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
14
|
Bin Dayel FF, Alfirevic A, Chadwick AE. Developing In Vitro Models to Define the Role of Direct Mitochondrial Toxicity in Frequently Reported Drug-Induced Rhabdomyolysis. Biomedicines 2023; 11:biomedicines11051485. [PMID: 37239154 DOI: 10.3390/biomedicines11051485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The United States Food and Drug Administration Adverse Event Reporting System (FAERS) logged 27,140 rhabdomyolysis cases from 2004 to 31 March 2020. We used FAERS to identify 14 drugs frequently reported in 6583 rhabdomyolysis cases and to investigate whether mitochondrial toxicity is a common pathway of drug-induced rhabdomyolysis by these drugs. Preliminary screening for mitochondrial toxicity was performed using the acute metabolic switch assay, which is adapted here for use in murine L6 cells. Fenofibrate, risperidone, pregabalin, propofol, and simvastatin lactone drugs were identified as mitotoxic and underwent further investigation, using real-time respirometry (Seahorse Technology) to provide more detail on the mechanism of mitochondrial-induced toxicity. To confirm the human relevance of the findings, fenofibrate and risperidone were evaluated in primary human skeletal muscle-derived cells (HSKMDC), using the acute metabolic switch assay and real-time respirometry, which confirmed this designation, although the toxic effects on the mitochondria were more pronounced in HSKMDC. Overall, these studies demonstrate that the L6 model of acute modification may find utility as an initial, cost-effective screen for identifying potential myotoxicants with relevance to humans and, importantly, that drug-induced mitochondrial dysfunction may be a common mechanism shared by some drugs that induce myotoxicity.
Collapse
Affiliation(s)
- Faten F Bin Dayel
- Department of Pharmacology and Therapeutics, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Ana Alfirevic
- Department of Pharmacology and Therapeutics, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Amy E Chadwick
- Department of Pharmacology and Therapeutics, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| |
Collapse
|
15
|
Pinho SA, Anjo SI, Cunha-Oliveira T. Metabolic Priming as a Tool in Redox and Mitochondrial Theragnostics. Antioxidants (Basel) 2023; 12:1072. [PMID: 37237939 PMCID: PMC10215850 DOI: 10.3390/antiox12051072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Theragnostics is a promising approach that integrates diagnostics and therapeutics into a single personalized strategy. To conduct effective theragnostic studies, it is essential to create an in vitro environment that accurately reflects the in vivo conditions. In this review, we discuss the importance of redox homeostasis and mitochondrial function in the context of personalized theragnostic approaches. Cells have several ways to respond to metabolic stress, including changes in protein localization, density, and degradation, which can promote cell survival. However, disruption of redox homeostasis can lead to oxidative stress and cellular damage, which are implicated in various diseases. Models of oxidative stress and mitochondrial dysfunction should be developed in metabolically conditioned cells to explore the underlying mechanisms of diseases and develop new therapies. By choosing an appropriate cellular model, adjusting cell culture conditions and validating the cellular model, it is possible to identify the most promising therapeutic options and tailor treatments to individual patients. Overall, we highlight the importance of precise and individualized approaches in theragnostics and the need to develop accurate in vitro models that reflect the in vivo conditions.
Collapse
Affiliation(s)
- Sónia A. Pinho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- PDBEB—PhD Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra I. Anjo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
16
|
Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, Mow T, Oinonen T, Roth A, Steger-Hartmann T, Valentin JP, Van Goethem F, Weaver RJ, Newham P. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov 2023; 22:317-335. [PMID: 36781957 PMCID: PMC9924869 DOI: 10.1038/s41573-022-00633-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.
Collapse
Affiliation(s)
- Francois Pognan
- Discovery and Investigative Safety, Novartis Pharma AG, Basel, Switzerland.
| | - Mario Beilmann
- Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Harrie C M Boonen
- Drug Safety, Dept of Exploratory Toxicology, Lundbeck A/S, Valby, Denmark
| | | | - Gordon Dear
- In Vitro In Vivo Translation, GlaxoSmithKline David Jack Centre for Research, Ware, UK
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Tomas Mow
- Safety Pharmacology and Early Toxicology, Novo Nordisk A/S, Maaloev, Denmark
| | - Teija Oinonen
- Preclinical Safety, Orion Corporation, Espoo, Finland
| | - Adrian Roth
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Freddy Van Goethem
- Predictive, Investigative & Translational Toxicology, Nonclinical Safety, Janssen Research & Development, Beerse, Belgium
| | - Richard J Weaver
- Innovation Life Cycle Management, Institut de Recherches Internationales Servier, Suresnes, France
| | - Peter Newham
- Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Cambridge, UK.
| |
Collapse
|
17
|
Chen S, Liang JF. Anticancer Activity of Nano-formulated Orlistat-Dopamine Conjugates Through Self-Assembly. Bioconjug Chem 2023; 34:581-593. [PMID: 36802542 DOI: 10.1021/acs.bioconjchem.3c00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Orlistat, an FDA-approved fatty acid inhibitor for obesity treatment, demonstrates certain low and greatly varied anticancer abilities. In a previous study, we revealed a synergistic effect between orlistat and dopamine in cancer treatment. Here, orlistat-dopamine conjugates (ODCs) with defined chemical structures were synthesized. The ODC by design underwent polymerization and self-assembly in the presence of oxygen to form nano-sized particles (Nano-ODCs) spontaneously. The resulted Nano-ODCs of partial crystalline structures demonstrated good water dispersion to form stable Nano-ODC suspensions. Because of the bioadhesive property of the catechol moieties, once administered, Nano-ODCs were quickly accumulated on cell surfaces and efficiently uptaken by cancer cells. In the cytoplasm, Nano-ODC experienced biphasic dissolution followed by spontaneous hydrolysis to release intact orlistat and dopamine. Besides elevated levels of intracellular reactive oxygen species (ROS), the co-localized dopamine also induced mitochondrial dysfunctions through monoamine oxidases (MAOs)-catalyzed dopamine oxidation. The strong synergistic effects between orlistat and dopamine determined a good cytotoxicity activity and a unique cell lysis mechanism, explaining the distinguished activity of Nano-ODC to drug-sensitive and -resistant cancer cells. This new technology-enabled orlistat repurposing will contribute to overcoming drug resistance and the improvement of cancer chemotherapy.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Chemistry and Chemical Biology, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jun F Liang
- Department of Chemistry and Chemical Biology, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
18
|
Esplugas R, Linares V, Bellés M, Domingo JL, Schuhmacher M. In vitro neurotoxic potential of emerging flame retardants on neuroblastoma cells in an acute exposure scenario. Toxicol In Vitro 2023; 87:105523. [PMID: 36427757 DOI: 10.1016/j.tiv.2022.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Since 2004, some legacy flame retardants (FRs) were restricted or removed from the European markets due to their concern on human health. Both organophosphorus FRs (OPFRs) and novel brominated FRs (NBFRs) have replaced them because they are presumably safer and less persistent emerging FRs (EFRs) and their exposure is currently occurring in indoor environments at high levels. Little is known about the neurotoxic potential risk of these EFRs in humans. The present study was aimed at assessing the acute neurotoxicity potential of Tris(1, 3-dichloro-2-propyl)phosphate (TDCPP), triphenyl phosphate (TPhP), Bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) on human neuroblastoma cells (SH-SY5Y). SH-SY5Y were exposed to these EFRs at low concentrations -ranging 2.5-20 μM. during 2-24 h. We investigated viability, mitochondrial function, oxidative stress, inflammatory response, as well as neural plasticity and development. The results have demonstrated that selected EFRs (TDCPP, TPhP, EH-TBB and BEH-TBP) did not impair neural function on SH-SY5Y as acute response. To the best of our knowledge, this has been the first study focused on evaluating the neural affection of TPhP on SH-SY5Y cells and of EH-TBB and BEH-TBP on neural cells. We also assessed for the first time almost all endpoints after FR exposure on neural cell lines.
Collapse
Affiliation(s)
- Roser Esplugas
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira I Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Victoria Linares
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Montserrat Bellés
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Schuhmacher
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
19
|
Huang YL, De Gregorio C, Silva V, Elorza ÁA, Léniz P, Aliaga-Tobar V, Maracaja-Coutinho V, Budini M, Ezquer F, Ezquer M. Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells 2023; 12:cells12040636. [PMID: 36831304 PMCID: PMC9954258 DOI: 10.3390/cells12040636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Verónica Silva
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Álvaro A. Elorza
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Vida, Universidad Andres Bello, Santiago 7610658, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana, Santiago 7610658, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 7610658, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 7610658, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| |
Collapse
|
20
|
Huang Z, Shen Y, Liu W, Yang Y, Guo L, Yan Q, Wei C, Guo Q, Fan X, Ma W. Berberine targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia with IDH1 mutation. Chin J Nat Med 2023; 21:136-145. [PMID: 36871981 DOI: 10.1016/s1875-5364(23)60391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 03/07/2023]
Abstract
Metabolic reprogramming, a newly recognized trait of tumor biology, is an intensively studied prospect for oncology medicines. For numerous tumors and cancer cell subpopulations, oxidative phosphorylation (OXPHOS) is essential for their biosynthetic and bioenergetic functions. Cancer cells with mutations in isocitrate dehydrogenase 1 (IDH1) exhibit differentiation arrest, epigenetic and transcriptional reprogramming, and sensitivity to mitochondrial OXPHOS inhibitors. In this study, we report that berberine, which is widely used in China to treat intestinal infections, acted solely at the mitochondrial electron transport chain (ETC) complex I, and that its association with IDH1 mutant inhibitor (IDH1mi) AG-120 decreased mitochondrial activity and enhanced antileukemic effect in vitro andin vivo. Our study gives a scientific rationale for the therapy of IDH1 mutant acute myeloid leukemia (AML) patients using combinatory mitochondrial targeted medicines, particularly those who are resistant to or relapsing from IDH1mi.
Collapse
Affiliation(s)
- Zhe Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenjun Liu
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Yan Yang
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Ling Guo
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Qin Yan
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Chengming Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qulian Guo
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
21
|
Cordova AC, Ford LC, Valdiviezo A, Roman-Hubers AT, McDonald TJ, Chiu WA, Rusyn I. Dosing Methods to Enable Cell-Based In Vitro Testing of Complex Substances: A Case Study with a PAH Mixture. TOXICS 2022; 11:19. [PMID: 36668745 PMCID: PMC9866728 DOI: 10.3390/toxics11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Cell-based testing of multi-constituent substances and mixtures for their potential adverse health effects is difficult due to their complex composition and physical-chemical characteristics. Various extraction methods are typically used to enable studies in vitro; however, a limited number of solvents are biocompatible with in vitro studies and the extracts may not fully represent the original test article's composition. While the methods for dosing with "difficult-to-test" substances in aquatic toxicity studies are well defined and widely used, they are largely unsuited for small-volume (100 microliters or less) in vitro studies with mammalian cells. Therefore, we aimed to evaluate suitability of various scaled-down dosing methods for high-throughput in vitro testing by using a mixture of polycyclic aromatic hydrocarbons (PAH). Specifically, we compared passive dosing via silicone micro-O-rings, cell culture media-accommodated fraction, and traditional solvent (dimethyl sulfoxide) extraction procedures. Gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to evaluate kinetics of PAH absorption to micro-O-rings, as well as recovery of PAH and the extent of protein binding in cell culture media with and without cells for each dosing method. Bioavailability of the mixture from different dosing methods was also evaluated by characterizing in vitro cytotoxicity of the PAH mixture using EA.hy926 and HepG2 human cell lines. Of the tested dosing methods, media accommodated fraction (MAF) was determined to be the most appropriate method for cell-based studies of PAH-containing complex substances and mixtures. This conclusion is based on the observation that the highest fraction of the starting materials can be delivered using media accommodated fraction approach into cell culture media and thus enable concentration-response in vitro testing.
Collapse
Affiliation(s)
- Alexandra C. Cordova
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucie C. Ford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alina T. Roman-Hubers
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Thomas J. McDonald
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Departments of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
22
|
Piao S, Lin H, Tao X, Chen W. Mitochondrial toxicants in Xian-Ling-Gu-Bao induce liver injury by regulating the PI3K/mTOR signaling pathway: an in vitro study. BMC Complement Med Ther 2022; 22:317. [PMID: 36457007 PMCID: PMC9716976 DOI: 10.1186/s12906-022-03798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Drug-induced mitochondrial toxicity is thought to be a common mechanism of drug hepatotoxicity. Xian-Ling-Gu-Bao (XLGB) oral preparation is a commonly used drug for osteoporosis in China. Classical safety evaluation studies have shown that the entire preparation and six Chinese herbal medicines have high safety, but the incidence of drug-induced liver damage due to XLGB remains high, the mechanism and toxic substances causing liver injury are still unclear. The purpose of this study is to identify compounds with potential mitochondrial liabilities in XLGB, and to clarify their underlying mechanisms and related pathways. METHODS The mitochondrial function analysis was performed using an extracellular flux assay, which simultaneously monitored both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Through network pharmacology and in vitro experimental verification, the potential protein targets, signaling pathways and molecular mechanism of mitochondrial toxicity have been studied. RESULTS We observed a significant decrease in mitochondrial respiration of Psoraleae Fructus and its five compounds in fundamental bioenergetics parameters such as basal respiration, ATP-linked production and maximal respiration, indicating mitochondrial dysfunction. The network pharmacology results showed that the influence of XLGB on mitochondrial dysfunction was closely related to PI3K-Akt signaling pathway, mTOR signaling pathway and Apoptosis. Western blot showed that the levels of mTOR, p-mTOR (Ser2448), Raptor, PI3K (p110α), Beclin 1, ATG5 and Caspase-9 were up-regulated after treatment with psoralidin, psoralen and bavachin, and the expression of Bcl-2 was down-regulated after bavachinin treatment. CONCLUSIONS The hepatotoxicity of XLGB is associated with mitochondrial dysfunction. Five compounds in Psoraleae Fructus showed mitochondrial damage, they are psoralidin, isobavachalcone, bavachinin, bavachin and psoralen, especially psoralidin showed significant reduction in reserve capacity and respiratory control ratios. The molecular mechanism is related to the activation of PI3K/mTOR signaling pathway to inhibit autophagy and induce mitochondrial apoptosis.
Collapse
Affiliation(s)
- Shujuan Piao
- grid.73113.370000 0004 0369 1660Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003 China
| | - Hongwei Lin
- grid.73113.370000 0004 0369 1660Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003 China
| | - Xia Tao
- grid.73113.370000 0004 0369 1660Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003 China
| | - Wansheng Chen
- grid.73113.370000 0004 0369 1660Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003 China ,grid.412540.60000 0001 2372 7462Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
23
|
Hibino Y, Iguchi A, Zaitsu K. Preliminary study to classify mechanisms of mitochondrial toxicity by in vitro metabolomics and bioinformatics. Toxicol Appl Pharmacol 2022; 457:116316. [PMID: 36462684 DOI: 10.1016/j.taap.2022.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
AIM Mitochondrial toxicity is one of the causes for drug-induced liver injury, and the classification of phenotypes or mitochondrial toxicity are highly required though there are no molecular-profiling approaches for classifying mitochondrial toxicity. Therefore, the aim of this study was to classify the mechanisms of mitochondrial toxicity by metabolic profiling in vitro and bioinformatics. MAIN METHODS We applied an established gas chromatography tandem mass spectrometry-based metabolomics to human hepatoma grade 2 (HepG2) cells that were exposed to mitochondrial toxicants, whose mechanisms are different, such as rotenone (0.1 μM), carbonyl cyanide-3-chlorophenylhydrazone (CCCP, 0.5 μM), nefazodone (20 μM), perhexiline (6.25 μM), or digitonin (positive cytotoxic substance, 4 μM). These concentrations were determined by the Mitochondrial ToxGlo Assay. Galactose medium was used for suppressing the Warburg effect in HepG2 cells, and the metabolome analysis successfully identified 125 metabolites in HepG2 cells. Multivariate, metabolic pathway and network analyses were performed by the R software. KEY FINDINGS Metabolic profiling enabled the classifying the mitochondrial toxicity mechanisms of RCC inhibition and uncoupling. The metabolic profiles of respiratory chain complex (RCC) inhibitors (rotenone and nefazodone) and an uncoupler (CCCP) were fully differentiated from those of other compounds. The metabolic pathway analysis revealed that the RCC inhibitors and the uncoupler mainly disrupted TCA-cycle and related metabolic pathways. In addition, the correlation-based network analysis revealed that succinic acid, β-alanine, and glutamic acid were potential metabolic indicators for RCC inhibition and uncoupling. SIGNIFICANCE Our results provided new insights into classifying mechanisms of mitochondrial toxicity by in vitro metabolomics.
Collapse
Affiliation(s)
- Yui Hibino
- Safety Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan; Department of Legal Medicine & Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kei Zaitsu
- Multimodal Informatics and Wide-data Analytics Laboratory, Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishi Mitani, Kinokawa, Wakayama 649-6493, Japan; In Vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
24
|
Shen Y, Guo K, Ma A, Huang Z, Du J, Chen J, Lin Q, Wei C, Wang Z, Zhang F, Zhang J, Lin W, Feng N, Ma W. Mitochondrial toxicity evaluation of traditional Chinese medicine injections with a dual in vitro approach. Front Pharmacol 2022; 13:1039235. [PMID: 36408232 PMCID: PMC9667049 DOI: 10.3389/fphar.2022.1039235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
There are technical obstacles in the safety evaluation of traditional Chinese medicine (TCM) injections due to their complex chemical nature and the lack of rapid and accurate in vitro methods. Here, we established a dual in vitro mitochondrial toxicity approach combing the conventional "glucose/galactose" assay in HepG2 cells with the cytotoxic assay in mitochondrial respiration deficient cells. Using this dual in vitro approach, for the first time, we systematically assessed the mitochondrial toxicity of TCM injections. Four of the 35 TCM injections, including Xiyanping, Dengzhanhuasu, Shuanghuanglian, and Yinzhihuang, significantly reduced cellular ATP production in galactose medium in the first assay, and presented less cytotoxic in the respiration deficient cells in the second assay, indicating that they have mitochondrial toxicity. Furthermore, we identified scutellarin, rutin, phillyrin, and baicalin could be the potential mitochondrial toxic ingredients in the 4 TCM injections by combining molecular docking analysis with experimental validation. Collectively, the dual in vitro approach is worth applying to the safety evaluation of more TCM products, and mitochondrial toxic TCM injections and ingredients found in this study deserve more attention.
Collapse
Affiliation(s)
- Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Kaiqiang Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Aijun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Zhe Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jingjing Du
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Junhe Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Qianyu Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Chengming Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Fuming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
25
|
Wesseler MF, Johansen MN, Kızıltay A, Mortensen KI, Larsen NB. Optical 4D oxygen mapping of microperfused tissue models with tunable in vivo-like 3D oxygen microenvironments. LAB ON A CHIP 2022; 22:4167-4179. [PMID: 36155607 DOI: 10.1039/d2lc00063f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sufficient and controllable oxygen supply is essential for in vitro 3D cell and tissue culture at high cell densities, which calls for volumetric in situ oxygen analysis methods to quantitatively assess the oxygen distribution. This paper presents a general approach for accurate and precise non-contact 3D mapping of oxygen tension in high cell-density cultures via embedded commercially available oxygen microsensor beads read out by confocal phosphorescence lifetime microscopy (PLIM). Optimal acquisition conditions and data analysis procedures are established and implemented in a publicly available software package. The versatility of the established method is first demonstrated in model-assisted fluidic design of microperfused 3D printed hydrogel culture chips with the aim of full culture oxygenation, and subsequently for monitoring and maintenance of physiologically relevant spatial and temporal oxygen gradients in the 3D printed chips controlled by static or dynamic flow conditions during 3D culture.
Collapse
Affiliation(s)
- Milan Finn Wesseler
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Mathias Nørbæk Johansen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Aysel Kızıltay
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Kim I Mortensen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Niels B Larsen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
26
|
Al-Naqeb G, Sidarovich V, Scrinzi D, Mazzeo I, Robbiati S, Pancher M, Fiori L, Adami V. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 3. Toxicological evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115910. [PMID: 35947910 DOI: 10.1016/j.jenvman.2022.115910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Modern societies produce ever-increasing amounts of waste, e.g. organic fraction of municipal solid waste (OFMSW). According to the best available techniques, OFMSW should be treated through anaerobic digestion to recover biogas and subsequently composted. An innovative scheme is under investigation, where anaerobic digestion is combined with hydrothermal carbonization (HTC) and composting. The final product, referred to as hydrochar co-compost (HCO), is under study to be used as an unconventional soil improver/fertilizer. Recent studies showed that HCO is not phytotoxic. However, nothing is known about the toxicity of HCO on cells as part and organisms as a whole. This study aims to investigate in vitro genotoxicity and cytotoxicity of the HCO and its precursors in the production process. In particular, we tested water and methanolic extracts of HCO (WEHCO and MEHCO) from one side and methanolic extracts of hydrochar (MEH) and OFMSW digestate (MED) as well as liquor produced downstream HTC (HTCL) from the other side. Genotoxicity was investigated using cytokinesis-block micronucleus assay in Chinese Hamster Ovarian K1 (CHO-K1) cells. Cytotoxicity was tested in vitro against a panel of human cells line. Zebrafish embryo toxicity upon MEH treatment was also investigated. Results show that incubation of CHO-K1 cells with all the tested samples at different concentrations did not cause any induction of micronucleus formation compared to the vehicle-treated control. Treatment of cells with MEH, MED, HTCL and MEHCO, but not WEHCO, induced some degree of cytotoxicity and MEH showed to be more cytotoxic against tested cells compared to the MEHCO. Toxicity effect at the highest tested concentrations of MEH on zebrafish embryos resulted in coagulation, induction of pericardial edema and death. In conclusion, the hydrochar co-compost cytotoxicity is similar to standard compost cytotoxicity. Hence composting the hydrochar from OFMSW digestate is a good step to eliminate the cytotoxicity of hydrochar.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy; Department of Food Sciences and Nutrition, Faculty of Agriculture Food and Environment, University of Sana'a, Sana'a, Yemen.
| | - Viktoryia Sidarovich
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Donato Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Ilaria Mazzeo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Sergio Robbiati
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael Pancher
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luca Fiori
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy; Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Valentina Adami
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
27
|
Taki AC, Wang T, Nguyen NN, Ang CS, Leeming MG, Nie S, Byrne JJ, Young ND, Zheng Y, Ma G, Korhonen PK, Koehler AV, Williamson NA, Hofmann A, Chang BCH, Häberli C, Keiser J, Jabbar A, Sleebs BE, Gasser RB. Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868. Front Pharmacol 2022; 13:1014804. [PMID: 36313370 PMCID: PMC9616048 DOI: 10.3389/fphar.2022.1014804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Parasitic roundworms (nematodes) cause destructive diseases, and immense suffering in humans and other animals around the world. The control of these parasites relies heavily on anthelmintic therapy, but treatment failures and resistance to these drugs are widespread. As efforts to develop vaccines against parasitic nematodes have been largely unsuccessful, there is an increased focus on discovering new anthelmintic entities to combat drug resistant worms. Here, we employed thermal proteome profiling (TPP) to explore hit pharmacology and to support optimisation of a hit compound (UMW-868), identified in a high-throughput whole-worm, phenotypic screen. Using advanced structural prediction and docking tools, we inferred an entirely novel, parasite-specific target (HCO_011565) of this anthelmintic small molecule in the highly pathogenic, blood-feeding barber’s pole worm, and in other socioeconomically important parasitic nematodes. The “hit-to-target” workflow constructed here provides a unique prospect of accelerating the simultaneous discovery of novel anthelmintics and associated parasite-specific targets.
Collapse
Affiliation(s)
- Aya C. Taki
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Nghi N. Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael G. Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Yuanting Zheng
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Guangxu Ma
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Anson V. Koehler
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas A. Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Bill C. H. Chang
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Cécile Häberli
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Brad E. Sleebs
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Brad E. Sleebs, ; Robin B. Gasser,
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Brad E. Sleebs, ; Robin B. Gasser,
| |
Collapse
|
28
|
Brennan S, Esposito S, Abdelaziz MIM, Martin CA, Makwana S, Sims MW, Squire IB, Sharma P, Chadwick AE, Rainbow RD. Selective protein kinase C inhibition switches time-dependent glucose cardiotoxicity to cardioprotection. Front Cardiovasc Med 2022; 9:997013. [PMID: 36158799 PMCID: PMC9489859 DOI: 10.3389/fcvm.2022.997013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperglycaemia at the time of myocardial infarction has an adverse effect on prognosis irrespective of a prior diagnosis of diabetes, suggesting glucose is the damaging factor. In ex vivo models of ischaemia, we demonstrated that deleterious effects of acutely elevated glucose are PKCα/β-dependent, and providing PKCα/β are inhibited, elevated glucose confers cardioprotection. Short pre-treatments with high glucose were used to investigate time-dependent glucose cardiotoxicity, with PKCα/β inhibition investigated as a potential mechanism to reverse the toxicity. Freshly isolated non-diabetic rat cardiomyocytes were exposed to elevated glucose to investigate the time-dependence toxic effects. High glucose challenge for >7.5 min was cardiotoxic, proarrhythmic and lead to contractile failure, whilst cardiomyocytes exposed to metabolic inhibition following 5-min high glucose, displayed a time-dependent protection lasting ∼15 min. This protection was further enhanced with PKCα/β inhibition. Cardioprotection was measured as a delay in contractile failure and KATP channel activation, improved contractile and Ca2+ transient recovery and increased cell survival. Finally, the effects of pre-ischaemic treatment with high glucose in a whole-heart coronary ligation protocol, where protection was evident with PKCα/β inhibition. Selective PKCα/β inhibition enhances protection suggesting glycaemic control with PKC inhibition as a potential cardioprotective therapeutics in myocardial infarction and elective cardiac surgery.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular, Metabolic Medicine and Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Sean Brennan,
| | - Simona Esposito
- Department of Cardiovascular, Metabolic Medicine and Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| | - Muhammad I. M. Abdelaziz
- Department of Cardiovascular, Metabolic Medicine and Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christopher A. Martin
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| | - Samir Makwana
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| | - Mark W. Sims
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| | - Iain B. Squire
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
- Leicester NIHR Biomedical Research Centre, Glenfield General Hospital, Leicester, United Kingdom
| | - Parveen Sharma
- Department of Cardiovascular, Metabolic Medicine and Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Amy E. Chadwick
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, United Kingdom
| | - Richard D. Rainbow
- Department of Cardiovascular, Metabolic Medicine and Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Richard D. Rainbow,
| |
Collapse
|
29
|
Seal S, Carreras-Puigvert J, Trapotsi MA, Yang H, Spjuth O, Bender A. Integrating cell morphology with gene expression and chemical structure to aid mitochondrial toxicity detection. Commun Biol 2022; 5:858. [PMID: 35999457 PMCID: PMC9399120 DOI: 10.1038/s42003-022-03763-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial toxicity is an important safety endpoint in drug discovery. Models based solely on chemical structure for predicting mitochondrial toxicity are currently limited in accuracy and applicability domain to the chemical space of the training compounds. In this work, we aimed to utilize both -omics and chemical data to push beyond the state-of-the-art. We combined Cell Painting and Gene Expression data with chemical structural information from Morgan fingerprints for 382 chemical perturbants tested in the Tox21 mitochondrial membrane depolarization assay. We observed that mitochondrial toxicants differ from non-toxic compounds in morphological space and identified compound clusters having similar mechanisms of mitochondrial toxicity, thereby indicating that morphological space provides biological insights related to mechanisms of action of this endpoint. We further showed that models combining Cell Painting, Gene Expression features and Morgan fingerprints improved model performance on an external test set of 244 compounds by 60% (in terms of F1 score) and improved extrapolation to new chemical space. The performance of our combined models was comparable with dedicated in vitro assays for mitochondrial toxicity. Our results suggest that combining chemical descriptors with biological readouts enhances the detection of mitochondrial toxicants, with practical implications in drug discovery.
Collapse
Affiliation(s)
- Srijit Seal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Maria-Anna Trapotsi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Hongbin Yang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden.
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK.
| |
Collapse
|
30
|
How to Use Respiratory Chain Inhibitors in Toxicology Studies-Whole-Cell Measurements. Int J Mol Sci 2022; 23:ijms23169076. [PMID: 36012337 PMCID: PMC9409450 DOI: 10.3390/ijms23169076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial electron transport chain (ETC) inhibition is a phenomenon interesting in itself and serves as a tool for studying various cellular processes. Despite the fact that searching the term “rotenone” in PubMed returns more than 6900 results, there are many discrepancies regarding the directions of changes reported to be caused by this RTC inhibitor in the delicate redox balance of the cell. Here, we performed a multifaceted study of the popular ETC inhibitors rotenone and antimycin A, involving assessment of mitochondrial membrane potential and the production of hydrogen peroxide and superoxide anions at cellular and mitochondrial levels over a wide range of inhibitor concentrations (1 nmol/dm3–100 µmol/dm3). All measurements were performed with whole cells, with accompanying control of ATP levels. Antimycin A was more potent in hindering HepG2 cells’ abilities to produce ATP, decreasing ATP levels even at a 1 nmol/dm3 concentration, while in the case of rotenone, a 10,000-times greater concentration was needed to produce a statistically significant decrease. The amount of hydrogen peroxide produced in the course of antimycin A biological activity increased rapidly at low concentrations and decreased below control level at a high concentration of 100 µmol/dm3. While both inhibitors influenced cellular superoxide anion production in a comparable manner, rotenone caused a greater increase in mitochondrial superoxide anions compared to a modest impact for antimycin A. IC50 values for rotenone and antimycin A with respect to HepG2 cell survival were of the same order of magnitude, but the survival curve of cells treated with rotenone was clearly biphasic, suggesting a concentration-dependent mode of biological action. We propose a clear experimental setup allowing for complete and credible analysis of the redox state of cells under stress conditions which allows for better understanding of the effects of ETC inhibition.
Collapse
|
31
|
Grabner GF, Guttenberger N, Mayer N, Migglautsch-Sulzer AK, Lembacher-Fadum C, Fawzy N, Bulfon D, Hofer P, Züllig T, Hartig L, Kulminskaya N, Chalhoub G, Schratter M, Radner FPW, Preiss-Landl K, Masser S, Lass A, Zechner R, Gruber K, Oberer M, Breinbauer R, Zimmermann R. Small-Molecule Inhibitors Targeting Lipolysis in Human Adipocytes. J Am Chem Soc 2022; 144:6237-6250. [PMID: 35362954 PMCID: PMC9011347 DOI: 10.1021/jacs.1c10836] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Chronically elevated
circulating fatty acid levels promote lipid
accumulation in nonadipose tissues and cause lipotoxicity. Adipose
triglyceride lipase (ATGL) critically determines the release of fatty
acids from white adipose tissue, and accumulating evidence suggests
that inactivation of ATGL has beneficial effects on lipotoxicity-driven
disorders including insulin resistance, steatohepatitis, and heart
disease, classifying ATGL as a promising drug target. Here, we report
on the development and biological characterization of the first small-molecule
inhibitor of human ATGL. This inhibitor, designated NG-497, selectively
inactivates human and nonhuman primate ATGL but not structurally and
functionally related lipid hydrolases. We demonstrate that NG-497
abolishes lipolysis in human adipocytes in a dose-dependent and reversible
manner. The combined analysis of mouse- and human-selective inhibitors,
chimeric ATGL proteins, and homology models revealed detailed insights
into enzyme–inhibitor interactions. NG-497 binds ATGL within
a hydrophobic cavity near the active site. Therein, three amino acid
residues determine inhibitor efficacy and species selectivity and
thus provide the molecular scaffold for selective inhibition.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Nikolaus Guttenberger
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Nicole Mayer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | | | | | - Nermeen Fawzy
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Dominik Bulfon
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Lennart Hartig
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Natalia Kulminskaya
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Gabriel Chalhoub
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Margarita Schratter
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Karina Preiss-Landl
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Sarah Masser
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| |
Collapse
|
32
|
A High-Throughput Phenotypic Screen of the 'Pandemic Response Box' Identifies a Quinoline Derivative with Significant Anthelmintic Activity. Pharmaceuticals (Basel) 2022; 15:ph15020257. [PMID: 35215369 PMCID: PMC8874578 DOI: 10.3390/ph15020257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Parasitic nematodes cause diseases in livestock animals and major economic losses to the agricultural industry worldwide. Nematodes of the order Strongylida, including Haemonchus contortus, are particularly important. The excessive use of anthelmintic compounds to treat infections and disease has led to widespread resistance to these compounds in nematodes, such that there is a need for new anthelmintics with distinctive mechanisms of action. With a focus on discovering new anthelmintic entities, we screened 400 chemically diverse compounds within the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) for activity against H. contortus and its free-living relative, Caenorhabditis elegans-a model organism. Using established phenotypic assays, test compounds were evaluated in vitro for their ability to inhibit the motility and/or development of H. contortus and C. elegans. Dose-response evaluations identified a compound, MMV1581032, that significantly the motility of H. contortus larvae (IC50 = 3.4 ± 1.1 μM) and young adults of C. elegans (IC50 = 7.1 ± 4.6 μM), and the development of H. contortus larvae (IC50 = 2.2 ± 0.7 μM). The favourable characteristics of MMV1581032, such as suitable physicochemical properties and an efficient, cost-effective pathway to analogue synthesis, indicates a promising candidate for further evaluation as a nematocide. Future work will focus on a structure-activity relationship investigation of this chemical scaffold, a toxicity assessment of potent analogues and a mechanism/mode of action investigation.
Collapse
|
33
|
Bouitbir J, Panajatovic MV, Krähenbühl S. Mitochondrial Toxicity Associated with Imatinib and Sorafenib in Isolated Rat Heart Fibers and the Cardiomyoblast H9c2 Cell Line. Int J Mol Sci 2022; 23:ijms23042282. [PMID: 35216404 PMCID: PMC8878993 DOI: 10.3390/ijms23042282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are associated with cardiac toxicity, which may be caused by mitochondrial toxicity. The underlying mechanisms are currently unclear and require further investigation. In the present study, we aimed to investigate in more detail the role of the enzyme complexes of the electron transfer system (ETS), mitochondrial oxidative stress, and mechanisms of cell death in cardiac toxicity associated with imatinib and sorafenib. Cardiac myoblast H9c2 cells were exposed to imatinib and sorafenib (1 to 100 µM) for 24 h. Permeabilized rat cardiac fibers were treated with both drugs for 15 min. H9c2 cells exposed to sorafenib for 24 h showed a higher membrane toxicity and ATP depletion in the presence of galactose (favoring mitochondrial metabolism) compared to glucose (favoring glycolysis) but not when exposed to imatinib. Both TKIs resulted in a higher dissipation of the mitochondrial membrane potential in galactose compared to glucose media. Imatinib inhibited Complex I (CI)- and CIII- linked respiration under both conditions. Sorafenib impaired CI-, CII-, and CIII-linked respiration in H9c2 cells cultured with glucose, whereas it inhibited all ETS complexes with galactose. In permeabilized rat cardiac myofibers, acute exposure to imatinib and sorafenib decreased CI- and CIV-linked respiration in the presence of the drugs. Electron microscopy showed enlarged mitochondria with disorganized cristae. In addition, both TKIs caused mitochondrial superoxide accumulation and decreased the cellular GSH pool. Both TKIs induced caspase 3/7 activation, suggesting apoptosis as a mechanism of cell death. Imatinib and sorafenib impaired the function of cardiac mitochondria in isolated rat cardiac fibers and in H9c2 cells at plasma concentrations reached in humans. Both imatinib and sorafenib impaired the function of enzyme complexes of the ETS, which was associated with mitochondrial ROS accumulation and cell death by apoptosis.
Collapse
Affiliation(s)
- Jamal Bouitbir
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; (M.V.P.); (S.K.)
- Correspondence: ; Tel.: +41-61-207-6290
| | - Miljenko V. Panajatovic
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; (M.V.P.); (S.K.)
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; (M.V.P.); (S.K.)
| |
Collapse
|
34
|
Guo L, Tang T, Fang D, Gong H, Zhang B, Zhou Y, Zhang L, Yan M. An Insight on the Pathways Involved in Crizotinib and Sunitinib Induced Hepatotoxicity in HepG2 Cells and Animal Model. Front Oncol 2022; 12:749954. [PMID: 35155225 PMCID: PMC8832280 DOI: 10.3389/fonc.2022.749954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
Both crizotinib and sunitinib, novel orally-active multikinase inhibitors, exhibit antitumor activity and extend the survival of patients with a malignant tumor. However, some patients may suffer liver injury that can further limit the clinical use of these drugs, however the mechanisms underlying hepatotoxicity are still to be elucidated. Thus, our study was designed to use HepG2 cells in vitro and the ICR mice model in vivo to investigate the mechanisms of hepatotoxicity induced by crizotinib and sunitinib. Male ICR mice were treated orally with crizotinib (70 mg/kg/day) or sunitinib (7.5 mg/kg/day) for four weeks. The results demonstrated that crizotinib and sunitinib caused cytotoxicity in HepG2 cells and chronic liver injury in mice, which were associated with oxidative stress, apoptosis and/or necrosis. Crizotinib- and sunitinib-induced oxidative stress was accompanied by increasing reactive oxygen species and malondialdehyde levels and decreasing the activity of superoxide dismutase and glutathione peroxidase. Notably, the activation of the Kelch-like ECH-associated protein-1/Nuclear factor erythroid-2 related factor 2 signaling pathway was involved in the process of oxidative stress, and partially protected against oxidative stress. Crizotinib and sunitinib induced apoptosis via the mitochondrial pathway, which was characterized by decreasing Bcl2/Bax ratio to dissipate the mitochondrial membrane potential, and increasing apoptotic markers levels. Moreover, the pan-caspase inhibitor Z-VAD-FMK improved the cell viability and alleviated liver damage, which further indicated the presence of apoptosis. Taken together, this study demonstrated that crizotinib- and sunitinib-caused oxidative stress and apoptosis finally impaired hepatic function, which was strongly supported by the histopathological lesions and markedly increased levels of serum alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase.
Collapse
Affiliation(s)
- Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tingli Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dongmei Fang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yueyin Zhou
- Orthodontic Department of Xiangya Stomatology Hospital, Central South University, Changsha, China
| | - Leiyi Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Amorim R, Cagide F, Tavares LC, Simões RF, Soares P, Benfeito S, Baldeiras I, Jones JG, Borges F, Oliveira PJ, Teixeira J. Mitochondriotropic antioxidant based on caffeic acid AntiOxCIN 4 activates Nrf2-dependent antioxidant defenses and quality control mechanisms to antagonize oxidative stress-induced cell damage. Free Radic Biol Med 2022; 179:119-132. [PMID: 34954022 DOI: 10.1016/j.freeradbiomed.2021.12.304] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are key organelles involved in cellular survival, differentiation, and death induction. In this regard, mitochondrial morphology and/or function alterations are involved in stress-induced adaptive pathways, priming mitochondria for mitophagy or apoptosis induction. We have previously shown that the mitochondriotropic antioxidant AntiOxCIN4 (100 μM; 48 h) presented significant cytoprotective effect without affecting the viability of human hepatoma-derived (HepG2) cells. Moreover, AntiOxCIN4 (12.5 μM; 72 h) caused a mild increase of reactive oxygen species (ROS) levels without toxicity to primary human skin fibroblasts (PHSF). As Nrf2 is a master regulator of the oxidative stress response inducing antioxidant-encoding gene expression, we hypothesized that AntiOxCIN4 could increase the resistance of human hepatoma-derived HepG2 to oxidative stress by Nrf2-dependent mechanisms, in a process mediated by mitochondrial ROS (mtROS). Here we showed that after an initial decrease in oxygen consumption paralleled by a moderate increase in superoxide anion levels, AntiOxCIN4 led to a time-dependent Nrf2 translocation to the nucleus. This was followed later by a 1.5-fold increase in basal respiration and a 1.2-fold increase in extracellular acidification. AntiOxCIN4 treatment enhanced mitochondrial quality by triggering the clearance of defective organelles by autophagy and/or mitophagy, coupled with increased mitochondrial biogenesis. AntiOxCIN4 also up-regulated the cellular antioxidant defense system. AntiOxCIN4 seems to have the ability to maintain hepatocyte redox homeostasis, regulating the electrophilic/nucleophilic tone, and preserve cellular physiological functions. The obtained data open a new avenue to explore the effects of AntiOxCIN4 in the context of preserving hepatic mitochondrial function in disorders, such as NASH/NAFLD and type II diabetes.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789, Coimbra, Portugal
| | - Fernando Cagide
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Ludgero C Tavares
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, 3020-210, Coimbra, Portugal
| | - Rui F Simões
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789, Coimbra, Portugal
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
36
|
Ahmed S, Manning A, Flint L, Awasthi D, Ovechkina Y, Parish T. Identification of Novel Chemical Scaffolds that Inhibit the Growth of Mycobacterium tuberculosis in Macrophages. Front Pharmacol 2022; 12:790583. [PMID: 35046812 PMCID: PMC8762250 DOI: 10.3389/fphar.2021.790583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis is an important global pathogen for which new drugs are urgently required. The ability of the organism to survive and multiply within macrophages may contribute to the lengthy treatment regimen with multiple drugs that are required to cure the infection. We screened the MyriaScreen II diversity library of 10,000 compounds to identify novel inhibitors of M. tuberculosis growth within macrophage-like cells using high content analysis. Hits were selected which inhibited the intramacrophage growth of M. tuberculosis without significant cytotoxicity to infected macrophages. We selected and prioritized compound series based on their biological and physicochemical properties and the novelty of the chemotypes. We identified five chemical classes of interest and conducted limited catalog structure-activity relationship studies to determine their tractability. We tested activity against intracellular and extracellular M. tuberculosis, as well as cytoxicity against murine RAW264.7 and human HepG2 cells. Benzene amide ethers, thiophene carboxamides and thienopyridines were only active against intracellular bacteria, whereas the phenylthiourea series was also active against extracellular bacteria. One member of a phenyl pyrazole series was moderately active against extracellular bacteria. We identified the benzene amide ethers as an interesting series for further work. These new compound classes serve as starting points for the development of novel drugs to target intracellular M. tuberculosis.
Collapse
Affiliation(s)
- Sara Ahmed
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States
| | - Alyssa Manning
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States
| | - Lindsay Flint
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States
| | - Divya Awasthi
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States
| | - Yulia Ovechkina
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States
| | - Tanya Parish
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States
| |
Collapse
|
37
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
38
|
Negi CK, Bajard L, Kohoutek J, Blaha L. An adverse outcome pathway based in vitro characterization of novel flame retardants-induced hepatic steatosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117855. [PMID: 34340181 DOI: 10.1016/j.envpol.2021.117855] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 05/22/2023]
Abstract
A wide range of novel replacement flame retardants (nFRs) is consistently detected in increasing concentrations in the environment and human matrices. Evidence suggests that nFRs exposure may be associated with disruption of the endocrine system, which has been linked with the etiology of various metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). NAFLD is a multifactorial disease characterized by the uncontrolled accumulation of fats (lipids) in the hepatocytes and involves multiple-hit pathogenesis, including exposure to occupational and environmental chemicals such as organophosphate flame retardants (OPFRs). In the present study we aimed to investigate the potential mechanisms of the nFRs-induced hepatic steatosis in the human liver cells. In this study, we employed an in vitro bioassay toolbox to assess the key events (KEs) in the proposed adverse outcome pathways (AOP) (s) for hepatic steatosis. We examined nine nFRs using AOP- based in vitro assays measuring KEs such as lipid accumulation, mitochondrial dysfunction, gene expression, and in silico approach to identify the putative molecular initiating events (MIEs). Our findings suggest that several tested OPFRs induced lipid accumulation in human liver cell culture. Tricresyl phosphate (TMPP), triphenyl phosphate (TPHP), tris(1,3-dichloropropyl) phosphate (TDCIPP), and 2-ethylhexyl diphenyl phosphate (EHDPP) induced the highest lipid accumulation by altering the expression of genes encoding hepatic de novo lipogenesis and mitochondrial dysfunction depicted by decreased cellular ATP production. Available in vitro data from ToxCast and in silico molecular docking suggests that pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ) could be the molecular targets for the tested nFRs. The study identifies several nFRs, such as TMPP and EHDPP, TPHP, and TDCIPP, as potential risk factor for NAFLD and advances our understanding of the mechanisms involved, demonstrating the utility of an AOP-based strategy for screening and prioritizing chemicals and elucidating the molecular mechanisms of toxicity.
Collapse
Affiliation(s)
- Chander K Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Jiri Kohoutek
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Ludek Blaha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic.
| |
Collapse
|
39
|
van der Stel W, Yang H, Vrijenhoek NG, Schimming JP, Callegaro G, Carta G, Darici S, Delp J, Forsby A, White A, le Dévédec S, Leist M, Jennings P, Beltman JB, van de Water B, Danen EHJ. Mapping the cellular response to electron transport chain inhibitors reveals selective signaling networks triggered by mitochondrial perturbation. Arch Toxicol 2021; 96:259-285. [PMID: 34642769 PMCID: PMC8748354 DOI: 10.1007/s00204-021-03160-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Mitochondrial perturbation is a key event in chemical-induced organ toxicities that is incompletely understood. Here, we studied how electron transport chain (ETC) complex I, II, or III (CI, CII and CIII) inhibitors affect mitochondrial functionality, stress response activation, and cell viability using a combination of high-content imaging and TempO-Seq in HepG2 hepatocyte cells. CI and CIII inhibitors perturbed mitochondrial membrane potential (MMP) and mitochondrial and cellular ATP levels in a concentration- and time-dependent fashion and, under conditions preventing a switch to glycolysis attenuated cell viability, whereas CII inhibitors had no effect. TempO-Seq analysis of changes in mRNA expression pointed to a shared cellular response to CI and CIII inhibition. First, to define specific ETC inhibition responses, a gene set responsive toward ETC inhibition (and not to genotoxic, oxidative, or endoplasmic reticulum stress) was identified using targeted TempO-Seq in HepG2. Silencing of one of these genes, NOS3, exacerbated the impact of CI and CIII inhibitors on cell viability, indicating its functional implication in cellular responses to mitochondrial stress. Then by monitoring dynamic responses to ETC inhibition using a HepG2 GFP reporter panel for different classes of stress response pathways and applying pathway and gene network analysis to TempO-Seq data, we looked for downstream cellular events of ETC inhibition and identified the amino acid response (AAR) as being triggered in HepG2 by ETC inhibition. Through in silico approaches we provide evidence indicating that a similar AAR is associated with exposure to mitochondrial toxicants in primary human hepatocytes. Altogether, we (i) unravel quantitative, time- and concentration-resolved cellular responses to mitochondrial perturbation, (ii) identify a gene set associated with adaptation to exposure to active ETC inhibitors, and (iii) show that ER stress and an AAR accompany ETC inhibition in HepG2 and primary hepatocytes.
Collapse
Affiliation(s)
- Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Huan Yang
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Nanette G Vrijenhoek
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Johannes P Schimming
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Giulia Callegaro
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Giada Carta
- Division Molecular and Computational Toxicology, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Salihanur Darici
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Johannes Delp
- Chair for In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Sylvia le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Marcel Leist
- Chair for In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Paul Jennings
- Division Molecular and Computational Toxicology, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Erik H J Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
40
|
Host bioenergetic parameters reveal cytotoxicity of anti-tuberculosis drugs undetected using conventional viability assays. Antimicrob Agents Chemother 2021; 65:e0093221. [PMID: 34339269 PMCID: PMC8448146 DOI: 10.1128/aac.00932-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development for cancer, metabolic, and neurological disorders and for antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte-derived macrophages (hMDMs). We found that the XF analysis reveals earlier drug-induced effects on the cells’ bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.
Collapse
|
41
|
Monckton CP, Brown GE, Khetani SR. Latest impact of engineered human liver platforms on drug development. APL Bioeng 2021; 5:031506. [PMID: 34286173 PMCID: PMC8286174 DOI: 10.1063/5.0051765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of drug attrition, which is partly due to differences between preclinical animals and humans in metabolic pathways. Therefore, in vitro human liver models are utilized in biopharmaceutical practice to mitigate DILI risk and assess related mechanisms of drug transport and metabolism. However, liver cells lose phenotypic functions within 1–3 days in two-dimensional monocultures on collagen-coated polystyrene/glass, which precludes their use to model the chronic effects of drugs and disease stimuli. To mitigate such a limitation, bioengineers have adapted tools from the semiconductor industry and additive manufacturing to precisely control the microenvironment of liver cells. Such tools have led to the fabrication of advanced two-dimensional and three-dimensional human liver platforms for different throughput needs and assay endpoints (e.g., micropatterned cocultures, spheroids, organoids, bioprinted tissues, and microfluidic devices); such platforms have significantly enhanced liver functions closer to physiologic levels and improved functional lifetime to >4 weeks, which has translated to higher sensitivity for predicting drug outcomes and enabling modeling of diseased phenotypes for novel drug discovery. Here, we focus on commercialized engineered liver platforms and case studies from the biopharmaceutical industry showcasing their impact on drug development. We also discuss emerging multi-organ microfluidic devices containing a liver compartment that allow modeling of inter-tissue crosstalk following drug exposure. Finally, we end with key requirements for engineered liver platforms to become routine fixtures in the biopharmaceutical industry toward reducing animal usage and providing patients with safe and efficacious drugs with unprecedented speed and reduced cost.
Collapse
Affiliation(s)
- Chase P Monckton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Grace E Brown
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Salman R Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
42
|
Khoo J, Hagemeyer CE, Henstridge DC, Kumble S, Wang TY, Xu R, Gani L, King T, Soh SB, Puar T, Au V, Tan E, Tay TL, Kam C, Teo EK. Effects of water stably-enriched with oxygen as a novel method of tissue oxygenation on mitochondrial function, and as adjuvant therapy for type 2 diabetes in a randomized placebo-controlled trial. PLoS One 2021; 16:e0254619. [PMID: 34260650 PMCID: PMC8279347 DOI: 10.1371/journal.pone.0254619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/07/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Diabetes mellitus is associated with inadequate delivery of oxygen to tissues. Cellular hypoxia is associated with mitochondrial dysfunction which increases oxidative stress and hyperglycaemia. Hyperbaric oxygenation therapy, which was shown to improve insulin sensitivity, is impractical for regular use. We evaluated the effects of water which is stably-enriched with oxygen (ELO water) to increase arterial blood oxygen levels, on mitochondrial function in the presence of normal- or high-glucose environments, and as glucose-lowering therapy in humans. METHODS We compared arterial blood oxygen levels in Sprague-Dawley rats after 7 days of ad libitum ELO or tap water consumption. Mitochondrial stress testing, and flow cytometry analysis of mitochondrial mass and membrane potential, were performed on human HepG2 cells cultured in four Dulbecco's Modified Eagle Medium media, made with ELO water or regular (control) water, at normal (5.5 mM) or high (25 mM) glucose concentrations. We also randomized 150 adults with type 2 diabetes (mean age 53 years, glycated haemoglobin HbA1c 8.9% [74 mmol/mol], average duration of diabetes 12 years) to drink 1.5 litres daily of bottled ELO water or drinking water. RESULTS ELO water raised arterial oxygen tension pO2 significantly (335 ± 26 vs. 188 ± 18 mmHg, p = 0.006) compared with tap water. In cells cultured in control water, mitochondrial mass and membrane potential were both significantly lower at 25 mM glucose compared with 5.5 mM glucose; in contrast, mitochondrial mass and membrane potential did not differ significantly at normal or high glucose concentrations in cells cultured in ELO water. The high-glucose environment induced a greater mitochondrial proton leak in cells cultured in ELO water compared to cells cultured in control medium at similar glucose concentration. In type 2 diabetic adults, HbA1c decreased significantly (p = 0.002) by 0.3 ± 0.7% (4 ± 8 mmol/mol), with ELO water after 12 weeks of treatment but was unchanged with placebo. CONCLUSIONS ELO water raises arterial blood oxygen levels, appears to have a protective effect on hyperglycaemia-induced reduction in mitochondrial mass and mitochondrial dysfunction, and may be effective adjuvant therapy for type 2 diabetes.
Collapse
Affiliation(s)
- Joan Khoo
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | | | - Darren C. Henstridge
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Sumukh Kumble
- NanoBiotechnology Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Ting-Yi Wang
- NanoBiotechnology Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- NanoBiotechnology Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Linsey Gani
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Thomas King
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Shui-Boon Soh
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Troy Puar
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Vanessa Au
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Eberta Tan
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Tunn-Lin Tay
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Carmen Kam
- Clinical Trials and Research Unit, Changi General Hospital, Singapore, Singapore
| | - Eng-Kiong Teo
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| |
Collapse
|
43
|
Ball AL, Bloch KM, Rainbow L, Liu X, Kenny J, Lyon JJ, Gregory R, Alfirevic A, Chadwick AE. Assessment of the impact of mitochondrial genotype upon drug-induced mitochondrial dysfunction in platelets derived from healthy volunteers. Arch Toxicol 2021; 95:1335-1347. [PMID: 33585966 PMCID: PMC8032628 DOI: 10.1007/s00204-021-02988-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/21/2021] [Indexed: 12/02/2022]
Abstract
Mitochondrial DNA (mtDNA) is highly polymorphic and encodes 13 proteins which are critical to the production of ATP via oxidative phosphorylation. As mtDNA is maternally inherited and undergoes negligible recombination, acquired mutations have subdivided the human population into several discrete haplogroups. Mitochondrial haplogroup has been found to significantly alter mitochondrial function and impact susceptibility to adverse drug reactions. Despite these findings, there are currently limited models to assess the effect of mtDNA variation upon susceptibility to adverse drug reactions. Platelets offer a potential personalised model of this variation, as their anucleate nature offers a source of mtDNA without interference from the nuclear genome. This study, therefore, aimed to determine the effect of mtDNA variation upon mitochondrial function and drug-induced mitochondrial dysfunction in a platelet model. The mtDNA haplogroup of 383 healthy volunteers was determined using next-generation mtDNA sequencing (Illumina MiSeq). Subsequently, 30 of these volunteers from mitochondrial haplogroups H, J, T and U were recalled to donate fresh, whole blood from which platelets were isolated. Platelet mitochondrial function was tested at basal state and upon treatment with compounds associated with both mitochondrial dysfunction and adverse drug reactions, flutamide, 2-hydroxyflutamide and tolcapone (10–250 μM) using extracellular flux analysis. This study has demonstrated that freshly-isolated platelets are a practical, primary cell model, which is amenable to the study of drug-induced mitochondrial dysfunction. Specifically, platelets from donors of haplogroup J have been found to have increased susceptibility to the inhibition of complex I-driven respiration by 2-hydroxyflutamide. At a time when individual susceptibility to adverse drug reactions is not fully understood, this study provides evidence that inter-individual variation in mitochondrial genotype could be a factor in determining sensitivity to mitochondrial toxicants associated with costly adverse drug reactions.
Collapse
Affiliation(s)
- Amy L Ball
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Katarzyna M Bloch
- The Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Lucille Rainbow
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Xuan Liu
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - John Kenny
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Richard Gregory
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ana Alfirevic
- The Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Amy E Chadwick
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.
| |
Collapse
|
44
|
Schmidt CA, McLaughlin KL, Boykov IN, Mojalagbe R, Ranganathan A, Buddo KA, Lin CT, Fisher-Wellman KH, Neufer PD. Aglycemic growth enhances carbohydrate metabolism and induces sensitivity to menadione in cultured tumor-derived cells. Cancer Metab 2021; 9:3. [PMID: 33468237 PMCID: PMC7816515 DOI: 10.1186/s40170-021-00241-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most prevalent form of liver malignancy and carries poor prognoses due to late presentation of symptoms. Treatment of late-stage HCC relies heavily on chemotherapeutics, many of which target cellular energy metabolism. A key platform for testing candidate chemotherapeutic compounds is the intrahepatic orthotopic xenograft (IOX) model in rodents. Translational efficacy from the IOX model to clinical use is limited (in part) by variation in the metabolic phenotypes of the tumor-derived cells that can be induced by selective adaptation to subculture conditions. Methods In this study, a detailed multilevel systems approach combining microscopy, respirometry, potentiometry, and extracellular flux analysis (EFA) was utilized to examine metabolic adaptations that occur under aglycemic growth media conditions in HCC-derived (HEPG2) cells. We hypothesized that aglycemic growth would result in adaptive “aerobic poise” characterized by enhanced capacity for oxidative phosphorylation over a range of physiological energetic demand states. Results Aglycemic growth did not invoke adaptive changes in mitochondrial content, network complexity, or intrinsic functional capacity/efficiency. In intact cells, aglycemic growth markedly enhanced fermentative glycolytic substrate-level phosphorylation during glucose refeeding and enhanced responsiveness of both fermentation and oxidative phosphorylation to stimulated energy demand. Additionally, aglycemic growth induced sensitivity of HEPG2 cells to the provitamin menadione at a 25-fold lower dose compared to control cells. Conclusions These findings indicate that growth media conditions have substantial effects on the energy metabolism of subcultured tumor-derived cells, which may have significant implications for chemotherapeutic sensitivity during incorporation in IOX testing panels. Additionally, the metabolic phenotyping approach used in this study provides a practical workflow that can be incorporated with IOX screening practices to aid in deciphering the metabolic underpinnings of chemotherapeutic drug sensitivity. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00241-0.
Collapse
Affiliation(s)
- Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey L McLaughlin
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Ilya N Boykov
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rafiq Mojalagbe
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | | | - Katherine A Buddo
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA. .,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA. .,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
45
|
Jones SW, Penman SL, French NS, Park BK, Chadwick AE. Investigating dihydroorotate dehydrogenase inhibitor mediated mitochondrial dysfunction in hepatic in vitro models. Toxicol In Vitro 2021; 72:105096. [PMID: 33460737 DOI: 10.1016/j.tiv.2021.105096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 01/13/2023]
Abstract
Inhibition of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzymatic step in de novo pyrimidine synthesis, has broad immunosuppressive effects in vivo and shows promise as a therapeutic target for the treatment of malignancies, viral infections and auto-immune diseases. Whilst there are numerous DHODH inhibitors under development, leflunomide and teriflunomide are the only FDA approved compounds on the market, each of which have been issued with black-box warnings for hepatotoxicity. Mitochondrial dysfunction is a putative mechanism by which teriflunomide and leflunomide elicit their hepatotoxic effects, however it is as yet unclear whether this is shared by other nascent DHODH inhibitors. The present study aimed to evaluate the propensity for DHODH inhibitors to mediate mitochondrial dysfunction in two hepatic in vitro models. Initial comparisons of cytotoxicity and ATP content in HepaRG® cells primed for oxidative metabolism, in tandem with mechanistic evaluations by extracellular flux analysis identified multifactorial toxicity and moderate indications of respiratory chain dysfunction or uncoupling. Further investigations using HepG2 cells, a hepatic line with limited capability for phase I xenobiotic metabolism, identified leflunomide and brequinar as positive mitochondrial toxicants. Taken together, biotransformation of some DHODH inhibitor species may play a role in mediating or masking hepatic mitochondrial liabilities.
Collapse
Affiliation(s)
- Samantha W Jones
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Ashton street Liverpool, L69 3GE, UK
| | - Sophie L Penman
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Ashton street Liverpool, L69 3GE, UK
| | - Neil S French
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Ashton street Liverpool, L69 3GE, UK
| | - B Kevin Park
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Ashton street Liverpool, L69 3GE, UK
| | - Amy E Chadwick
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Ashton street Liverpool, L69 3GE, UK.
| |
Collapse
|
46
|
Jiang H, Jin Y, Yan H, Xu Z, Yang B, He Q, Luo P. Hepatotoxicity of FDA-approved small molecule kinase inhibitors. Expert Opin Drug Saf 2020; 20:335-348. [PMID: 33356646 DOI: 10.1080/14740338.2021.1867104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Given their importance in cellular processes and association with numerous diseases, protein kinases have emerged as promising targets for drugs. The FDA has approved greater than fifty small molecule kinase inhibitors (SMKIs) since 2001. Nevertheless, severe hepatotoxicity and related fatal cases have grown as a potential challenge in the advancement of these drugs, and the identification and diagnosis of drug-induced liver injury (DILI) are thorny problems for clinicians.Areas covered: This article summarizes the progression and analyzes the significant features in the study of SMKI hepatotoxicity, including clinical observations and investigations of the underlying mechanisms.Expert opinion: The understanding of SMKI-associated hepatotoxicity relies on the development of preclinical models and improvement of clinical assessment. With a full understanding of the role of inflammation in DILI and the mediating role of cytokines in inflammation, cytokines are promising candidates as sensitive and specific biomarkers for DILI. The emergence of three-dimensional spheroid models demonstrates potential use in providing clinically relevant data and predicting hepatotoxicity of SMKIs.
Collapse
Affiliation(s)
| | | | - Hao Yan
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| |
Collapse
|
47
|
Preston S, Garcia-Bustos J, Hall LG, Martin SD, Le TG, Kundu A, Ghoshal A, Nguyen NH, Jiao Y, Ruan B, Xue L, Huang F, Chang BCH, McGee SL, Wells TNC, Palmer MJ, Jabbar A, Gasser RB, Baell JB. 1-Methyl-1 H-pyrazole-5-carboxamide Derivatives Exhibit Unexpected Acute Mammalian Toxicity. J Med Chem 2020; 64:840-844. [PMID: 33352050 DOI: 10.1021/acs.jmedchem.0c01793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of 1-methyl-1H-pyrazole-5-carboxamides were synthesized as potent inhibitors of the parasitic nematode of sheep, Haemonchus contortus. These compounds did not show overt cytotoxicity to a range of mammalian cell lines under standard in vitro culture conditions, had high selectivity indices, and were progressed to an acute toxicity study in a rodent model. Strikingly, acute toxicity was observed in mice. Experiments measuring cellular respiration showed a dose-dependent inhibition of mitochondrial respiration. Under these conditions, potent cytotoxicity was observed for these compounds in rat hepatocytes suggesting that the potent acute mammalian toxicity of this chemotype is most likely associated with respiratory inhibition. In contrast, parasite toxicity was not correlated to acute toxicity or cytotoxicity in respiring cells. This paper highlights the importance of identifying an appropriate in vitro predictor of in vivo toxicity early on in the drug discovery pipeline, in particular assessment for in vitro mitochondrial toxicity.
Collapse
Affiliation(s)
- Sarah Preston
- School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia
| | - Jose Garcia-Bustos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liam G Hall
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Sheree D Martin
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Thuy G Le
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Abhijit Kundu
- TCG Lifesciences Private Limited, Block BN, Plot 7, Salt-lake Electronics Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Atanu Ghoshal
- TCG Lifesciences Private Limited, Block BN, Plot 7, Salt-lake Electronics Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Nghi H Nguyen
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yaqing Jiao
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Banfeng Ruan
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lian Xue
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | | | - Sean L McGee
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | | | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
48
|
Niu X, Ferracci G, Lin M, Rong X, Zhu M, Cho NJ, Lee BH. Highly substituted decoupled gelatin methacrylamide free of hydrolabile methacrylate impurities: An optimum choice for long-term stability and cytocompatibility. Int J Biol Macromol 2020; 167:479-490. [PMID: 33275977 DOI: 10.1016/j.ijbiomac.2020.11.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
Gelatin methacryloyl (GelMA; GM) contains impurities, including hydrolabile photosensitive methacrylate groups or soluble methacrylic acid (MA), which could be potentially detrimental to its in vitro and in vivo applications. To date, the influence of GM photocurable side chains on the cytotoxicity and ambient structural stability has remained to be investigated. Here, we successfully separated highly substituted decoupled gelatin methacrylamide (DGM) from GM via removing methacrylate impurities in order to evaluate its stability, cell viability, and cell toxicity, compared to GM, DGM plus soluble MA, and soluble MA. The photocurable methacrylate groups in GM were hydrolytically labile in neutral solutions, changing into soluble MA over time; on the other hand, the photocurable methacrylamide groups in DGM remained intact under the same conditions. Soluble MA was found to decrease cell viability in a dose dependent manner and caused severe cell toxicity at above 10 mg/mL. DGM plus MA started to impair cell viability at a 25 mg/mL concentration. DGM exhibited excellent cell viability and little cell toxicity across the treated concentrations (0.1-25 mg/mL). DGM without hydrolabile methacrylate and cytotoxic MA impurities could be a better choice for long term stability and good cell compatibility for bioapplications including bioprinting and cell encapsulation.
Collapse
Affiliation(s)
- Xueming Niu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gaia Ferracci
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Xiaona Rong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Mengxiang Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Bae Hoon Lee
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; School of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
49
|
Kim I, Kim M, Park MK, Naik R, Park JH, Kim BK, Choi Y, Chang KY, Won M, Ban HS, Lee K. The disubstituted adamantyl derivative LW1564 inhibits the growth of cancer cells by targeting mitochondrial respiration and reducing hypoxia-inducible factor (HIF)-1α accumulation. Exp Mol Med 2020; 52:1845-1856. [PMID: 33235318 PMCID: PMC8080809 DOI: 10.1038/s12276-020-00523-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Targeting cancer metabolism has emerged as an important cancer therapeutic strategy. Here, we describe the synthesis and biological evaluation of a novel class of hypoxia-inducible factor (HIF)-1α inhibitors, disubstituted adamantyl derivatives. One such compound, LW1564, significantly suppressed HIF-1α accumulation and inhibited the growth of various cancer cell lines, including HepG2, A549, and HCT116. Measurements of the oxygen consumption rate (OCR) and ATP production rate revealed that LW1564 suppressed mitochondrial respiration, thereby increasing the intracellular oxygen concentration to stimulate HIF-1α degradation. LW1564 also significantly decreased overall ATP levels by inhibiting mitochondrial electron transport chain (ETC) complex I and downregulated mammalian target of rapamycin (mTOR) signaling by increasing the AMP/ATP ratio, which increased AMP-activated protein kinase (AMPK) phosphorylation. Consequently, LW1564 promoted the phosphorylation of acetyl-CoA carboxylase, which inhibited lipid synthesis. In addition, LW1564 significantly inhibited tumor growth in a HepG2 mouse xenograft model. Taken together, the results indicate that LW1564 inhibits the growth of cancer cells by targeting mitochondrial ETC complex I and impairing cancer cell metabolism. We, therefore, suggest that LW1564 may be a potent therapeutic agent for a subset of cancers that rely on oxidative phosphorylation for ATP generation. A drug that curbs the accumulation of a critical protein involved in the oxygen-sensing machinery of cells could offer a potent new therapeutic for treating cancer. Inhyub Kim, University of Science and Technology, Daejeon, South Korea, and colleagues describe a compound called LW1564 that suppresses metabolism within mitochondria, the energy factories of the cell. Less energy production means less oxygen consumption and therefore oxygen molecules build up inside the cell, which in turn stimulates the degradation of HIF-1α, a master regulator of oxygen balance. Many tumors rely on HIF-1α for their aberrant biological characteristics, and without this protein they tend to show reduced growth. The authors demonstrated that LW1564 could limit HIF-1α accumulation and inhibit the proliferation of various cancer cell lines. The drug also inhibited tumor growth in a mouse model of liver cancer.
Collapse
Affiliation(s)
- Inhyub Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34141, Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Min Kyung Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea.,College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Ravi Naik
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Jae Hyung Park
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | | | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea. .,Department of Functional Genomics, University of Science and Technology, Daejeon, 34141, Korea.
| | - Hyun Seung Ban
- Biotherapeutics Translational Research Center, KRIBB, Daejeon, 34141, Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea.
| |
Collapse
|
50
|
Wang W, Zheng F, Lin C, Zhang A. Changes in energy metabolism and macrophage polarization: Potential mechanisms of arsenic-induced lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:110948. [PMID: 32739672 DOI: 10.1016/j.ecoenv.2020.110948] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Exposure to arsenic is epidemiologically associated with increased lung disease. In detailing the mechanism by which arsenic exposure leads to disease, studies have emphasized that metabolic reprogramming and immune dysfunction are related to arsenic-induced lung injury. However, the association between the mechanisms listed above is not well understood. Thus, the current study aimed to investigate the interaction of energy metabolism and macrophage polarization, by which arsenic exposure adversely induced lung injury in both in vitro and human studies. First, we confirmed a shift to glycolytic metabolism resulting from mitochondrial dysfunction. This shift was accompanied by an increase in the levels of phosphorylated PDHE1α (S293) and PDK1 and a concomitant marked increase in several key markers of the HIF-1α signaling pathway (HIF-1α, p-PKM2, GLUT1 and HK-2). In addition, utilizing an in vitro model in which lung epithelial cells are cultured with macrophages, we determined that arsenic treatment polarizes macrophages towards the M2 phenotype through lactate. In the human study, the serum lactate and TGF-β levels were higher in arsenic-exposed subjects than that in reference subjects (t= 4.50, 6.24, both p < 0.05), while FVC and FEV1 were both lower (t= 5.47, 7.59, both p < 0.05). Pearson correlation analyses showed a significant negative correlation between the serum TGF-β and lactate levels and the lung function parameters (pcorrelation<0.05). In mediation analyses, lactate and TGF-β significantly mediated 24.3% and 9.0%, respectively, of the association between arsenic and FVC (pmediation<0.05), while lactate and TGF-β significantly mediated 22.2% and 12.5%, respectively, of the association between arsenic and FEV1 (pmediation<0.05). Together, the results of the in vitro and human studies indicated that there is complex communication between metabolic reprogramming and immune dysfunction, resulting in exacerbated effects in a feedback loop with increased arsenic-induced lung damage.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Fanyan Zheng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Changhu Lin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|