1
|
Lian Y, Fu G, Liang X, He X, Xu J, Fan H, Wan Y. Combination of Artemisia selengensis Turcz leaves polysaccharides and dicaffeoylquinic acids could be a potential inhibitor for hyperuricemia. Int J Biol Macromol 2024; 271:132687. [PMID: 38806079 DOI: 10.1016/j.ijbiomac.2024.132687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Caffeioyl quinic acids and polysaccharides from Artemisia selengensis Turcz are considered potential bioactive substances for hyperuricemia (HUA) treatment. While the mechanism of multi-component combined intervention of polysaccharides and dicaffeoylquinic acids (diCQAs) is not yet clear. In this study, we investigated the effect of A. selengensis Turcz leaves polysaccharides (APS) on the HUA treatment with diCQAs in vitro by direct inhibition of XOD activities and in vivo by using animal model. The results showed that APS had almost no inhibitory effect on XOD activities in vitro, but the inhibitory activity of diCQAs on XOD was affected by changes in inhibition type and inhibition constant. Compared to APS and diCQAs alone, high-dose APS and diCQAs in combination (ADPSh) could significantly reduce the production of uric acid (16.38 % reduction compared to diCQAs group) and oxidative stress damage. Additionally, this combined therapy showed promise in restoring the gut microbiota balance and increasing the short-chain fatty acids levels. The results suggested that APS and diCQAs in combination could be a potential inhibitor for HUA treatment.
Collapse
Affiliation(s)
- Yingzhu Lian
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xinmei Liang
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xinchao He
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jin Xu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Haowei Fan
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
2
|
Lei L, Lai S, Liu W, Li Y, Zhang H, Tang Y. Chlorella pyrenoidosa mitigated the negative effect of cylindrospermopsin-producing and non-cylindrospermopsin-producing Raphidiopsis raciborskii on Daphnia magna as a dietary supplement. Front Microbiol 2023; 14:1292277. [PMID: 38033554 PMCID: PMC10687560 DOI: 10.3389/fmicb.2023.1292277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Feeding effects are crucial for evaluating the capacity of zooplankton to regulate phytoplankton populations within freshwater ecosystems. To examine the impact of the bloom-forming cyanobacteria Raphidiopsis raciborskii, which occurs in tropical and subtropical freshwaters, on the growth of zooplankton Daphnia in relation to toxins, filament length and fatty acid content, we fed D. magna with R. raciborskii only (cylindrospermopsin (CYN)-producing and non-CYN-producing, as the negative controls), Chlorella pyrenoidosa only (as the positive control) and a mixed diet containing R. raciborskii (CYN-producing and non-CYN-producing) and C. pyrenoidosa. Consequently, our findings revealed that the toxic effect of CYN-producing R. raciborskii strains on Daphnia was mitigated by the coexistence of C. pyrenoidosa containing stearidonic acid (SDA, C18:4 ω3) in mixed diets. This was evident in the elevated survival rate compared that from diets containing only R. raciborskii and a significantly higher reproduction and population intrinsic increase rate compared to diets consisting of only R. raciborskii or C. pyrenoidos. Additionally, a strong positive correlation was observed between arachidonic acid (ARA, 20:4ω6) and the population intrinsic increase rate of Daphnia; notably, R. raciborskii strains were found to be rich in the ω6 polyunsaturated fatty acid ARA. These outcomes reinforce the crucial role of polyunsaturated fatty acids in predicting the population increase of crustacean zooplankton, which has long been neglected. Furthermore, our results underscore the potential effectiveness of zooplankton, particularly in temperate lakes, in controlling CYN-producing R. raciborskii populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Yali Tang
- Department of Ecology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Plata-Calzado C, Diez-Quijada L, Medrano-Padial C, Prieto AI, Cameán AM, Jos A. In Vitro Mutagenic and Genotoxic Assessment of Anatoxin-a Alone and in Combination with Cylindrospermopsin. Toxins (Basel) 2023; 15:458. [PMID: 37505727 PMCID: PMC10467140 DOI: 10.3390/toxins15070458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Anatoxin-a (ATX-a) is a cyanobacterial toxin whose occurrence has been reported worldwide and has attracted increasing scientific interest due to its toxicity. Moreover, in nature, ATX-a usually appears together with other cyanotoxins, such as cylindrospermopsin (CYN), so possible interaction phenomena could happen and should be considered for risk assessment purposes. For this reason, the aim of this work was to explore the potential mutagenicity and genotoxicity of pure ATX-a and an ATX-a/CYN mixture using a battery of in vitro assays, including the bacterial reverse-mutation assay in Salmonella typhimurium (OECD 471) and the micronucleus test (MN) (OECD 487) on L5178Y Tk+/- cells. The results showed that ATX-a was not mutagenic either alone or in combination with CYN under the conditions tested. Nevertheless, genotoxic effects were observed for both ATX-a and its mixture with CYN following the in vitro MN assay. The genotoxicity exhibited by ATX-a was only observed in the absence of S9 mix, whereas in the cyanotoxin mixture the concentration-dependent genotoxicity of ATX-a/CYN in vitro was observed only in the presence of S9. Thus, the toxicity induced by cyanotoxin mixtures may vary from that produced by toxins alone, and consequently more studies are necessary in order to perform more realistic risk assessments.
Collapse
Affiliation(s)
| | | | | | - Ana I. Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain; (C.P.-C.); (L.D.-Q.); (C.M.-P.); (A.M.C.)
| | | | | |
Collapse
|
4
|
Bownik A, Adamczuk M, Skowrońska BP. Effects of cyanobacterial metabolites: Aeruginosin 98A, microginin-FR1, anabaenopeptin-A, cylindrospermopsin in binary and quadruple mixtures on the survival and oxidative stress biomarkers of Daphnia magna. Toxicon 2023; 229:107137. [PMID: 37121403 DOI: 10.1016/j.toxicon.2023.107137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/04/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The aim of our study was to determine the effects of aeruginosin 98 A (ARE-A), microginin-FR1 (MG-FR1), anabaenopeptin-A (ANA-A) cylindrospermopsin (CYL) and their binary and quadruple mixtures on the survival and the levels of oxidative stress biomarkers in Daphnia magna: total glutathione (GSH), catalase (CAT), dismutase (SOD) and malondialdehyde (MDA). The biochemical indicators were measured with ELISA kits and the interactive effects were determined by isobole and polygonal analysis with Compusyn® computer software. The study revealed that oligopeptides did not decrease daphnid survival, only CYL inhibited this parameter, with synergistic effects when it was used as a component. The single metabolites at the two highest concentrations and all the binary and quadruple mixtures at all concentrations diminished GSH level, however both in the binary and in the quadruple mixtures most of the interactions between the metabolites were antagonistic. Nearly additive effects were found only in AER-A + CYL and MG-FR1+CYL. On the other hand, CAT activity was slightly increased in daphnids exposed to the binary mixtures with antagonistic interactions, however nearly addivive effects were found in animals exposed to the mixture of AER-A + ANA-A and synergistic in the quadruple mixture. SOD was elevated in daphnids exposed to single AER-A and MG-FR1, however it was diminished in the animals exposed to ANA-A and CYL. Binary mixtures in which CYL was present as a component decreased the level of this enzyme with nearly additive interactions in ANA-A + CYL. The quadruple mixture increased SOD level, with antagonistic interactions. Both single cyanobacterial metabolites, their binary and quadruple mixtures induced lipid peroxidation measured by MDA level and most of interactions in the binary mixtures were synergistic. The study suggested that antioxidative system of Daphnia magna responded to the tested metabolites and the real exposure to mixtures of these products may lead to various interactive effects with varied total toxicity.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Barbara Pawlik Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
5
|
Casas-Rodríguez A, Cebadero-Dominguez Ó, Puerto M, Cameán AM, Jos A. Immunomodulatory Effects of Cylindrospermopsin in Human T Cells and Monocytes. Toxins (Basel) 2023; 15:toxins15040301. [PMID: 37104239 PMCID: PMC10146592 DOI: 10.3390/toxins15040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Cylindrospermopsin (CYN) is a cyanotoxin with an increasing occurrence, and therefore it is important to elucidate its toxicity profile. CYN has been classified as a cytotoxin, although the scientific literature has already revealed that it affects a wide range of organs and systems. However, research on its potential immunotoxicity is still limited. Thus, this study aimed to evaluate the impact of CYN on two human cell lines representative of the immune system: THP-1 (monocytes) and Jurkat (lymphocytes). CYN reduced cell viability, leading to mean effective concentrations (EC50 24 h) of 6.00 ± 1.04 µM and 5.20 ± 1.20 µM for THP-1 and Jurkat cells, respectively, and induced cell death mainly by apoptosis in both experimental models. Moreover, CYN decreased the differentiation of monocytes to macrophages after 48 h of exposure. In addition, an up-regulation of the mRNA expression of different cytokines, such as interleukin (IL) 2, IL-8, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (INF-γ), was also observed mainly after 24 h exposure in both cell lines. However, only an increase in TNF-α in THP-1 supernatants was observed by ELISA. Overall, these results suggest the immunomodulatory activity of CYN in vitro. Therefore, further research is required to evaluate the impact of CYN on the human immune system.
Collapse
Affiliation(s)
| | | | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| |
Collapse
|
6
|
Cyanotoxins uptake and accumulation in crops: Phytotoxicity and implications on human health. Toxicon 2022; 211:21-35. [DOI: 10.1016/j.toxicon.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
7
|
Diez-Quijada L, Casas-Rodriguez A, Guzmán-Guillén R, Molina-Hernández V, Albaladejo RG, Cameán AM, Jos A. Immunomodulatory Effects of Pure Cylindrospermopsin in Rats Orally Exposed for 28 Days. Toxins (Basel) 2022; 14:144. [PMID: 35202170 PMCID: PMC8877299 DOI: 10.3390/toxins14020144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 01/08/2023] Open
Abstract
Cylindrospermopsin (CYN) is a ubiquitous cyanotoxin showing increasing incidence worldwide. CYN has been classified as a cytotoxin and, among its toxic effects, its immunotoxicity is scarcely studied. This work investigates for the first time the influence of oral CYN exposure (18.75; 37.5 and 75 µg/kg b.w./day, for 28 days) on the mRNA expression of selected interleukin (IL) genes (IL-1β, IL-2, IL-6, Tumor Necrosis Factor alpha (TNF-α), Interferon gamma (IFN-γ)) in the thymus and the spleen of male and female rats, by quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, their serum levels were also measured by a multiplex-bead-based immunoassay, and a histopathological study was performed. CYN produced immunomodulation mainly in the thymus of rats exposed to 75 μg CYN/kg b.w./day in both sexes. However, in the spleen only IL-1β and IL-2 (males), and TNF-α and IFN-γ (females) expression was modified after CYN exposure. Only female rats exposed to 18.75 μg CYN/kg b.w./day showed a significant decrease in TNF-α serum levels. There were no significant differences in the weight or histopathology in the organs studied. Further research is needed to obtain a deeper view of the molecular mechanisms involved in CYN immunotoxicity and its consequences on long-term exposures.
Collapse
Affiliation(s)
- Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Antonio Casas-Rodriguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Verónica Molina-Hernández
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain;
| | - Rafael G. Albaladejo
- Department of Plant Biology and Ecology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| |
Collapse
|
8
|
Ma Q, Chen Y, Zhang X, Cai S, Sun Y, Ma N, Yi J. Crateva unilocalaris Buch. shoots attenuate D-galactose-induced brain injury and cognitive disorders of mice through PI3K/Akt/Nrf2 pathway. Food Funct 2022; 13:3465-3480. [DOI: 10.1039/d1fo03452a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crateva unilocalaris Buch. shoots are traditionally served as vegetable with many health-promoting benefits. The aim of the current investigation was designed to study the preventive effect of ethanol extract from...
Collapse
|
9
|
Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2021; 13:toxins13100711. [PMID: 34679003 PMCID: PMC8540411 DOI: 10.3390/toxins13100711] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, they have been shown to induce deleterious effects in a wide range of organs. However, their effects on the immune system are as yet scarcely investigated. Thus, to know the impact of cyanotoxins on the immune system, due to its importance in organisms’ homeostasis, is considered of interest. A review of the scientific literature dealing with the immunotoxicity of MCs and CYN has been performed, and both in vitro and in vivo studies have been considered. Results have confirmed the scarcity of reports on the topic, particularly for CYN. Decreased cell viability, apoptosis or altered functions of immune cells, and changed levels and mRNA expression of cytokines are among the most common effects reported. Underlying mechanisms, however, are still not yet fully elucidated. Further research is needed in order to have a full picture of cyanotoxin immunotoxicity.
Collapse
|
10
|
Zhao Y, Liao AM, Liu N, Huang JH, Lv X, Yang CR, Chen WJ, Hou YC, Ma LJ, Hui M. Potential anti-aging effects of fermented wheat germ in aging mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
12
|
Moraes ACN, Freire DS, Habibi H, Lowe J, Magalhães VF. Cylindrospermopsin impairs tubular transport function in kidney cells LLC-PK1. Toxicol Lett 2021; 344:26-33. [PMID: 33689780 DOI: 10.1016/j.toxlet.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/03/2023]
Abstract
Cylindrospermopsin (CYN) has been involved in cases of poisoning in humans following ingestion. Studies have demonstrated that the kidney is the most affected organ. CYN exposure leads to low-molecular-weight proteinuria and increased excretions of the tubular enzymes in mice, suggesting the damage caused by CYN is mainly tubular. However, the mechanism involved in CYN nephrotoxicity remains unknown. Thus, in order to evaluate the effects of CYN exposure (0.1, 0.5 and 1.0 μg/mL) on tubular renal cells LLC-PK1 distinct mechanisms were analyzed by assessing cell death using flow cytometry, albumin uptake by fluorescence analysis, Na+/K+-ATPase activity by a colorimetric method, RT-qPCR of genes related to tubular transport and function as well as internalization of CYN by ELISA. In this study, CYN was found to induce necrosis in all concentrations. CYN also decreased albumin uptake as well as downregulated megalin and dab2 expression, both proteins involved in albumin endocytosis process. Moreover, CYN appears to be internalized by renal tubular cells through a receptor-mediated endocytosis. Finally, the present study demonstrates that CYN is responsible for disrupting tubular cell transport and function in LLC-PK1 cells.
Collapse
Affiliation(s)
- A C N Moraes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - D S Freire
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - H Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - J Lowe
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - V F Magalhães
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Barboza PA, Machado MN, Caldeira DDAF, Peixoto MS, Cruz LF, Takiya CM, Carvalho AR, de Abreu MB, Fortunato RS, Zin WA. Acute cylindrospermopsin exposure: Pulmonary and liver harm and mitigation by dexamethasone. Toxicon 2020; 191:18-24. [PMID: 33359390 DOI: 10.1016/j.toxicon.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 01/15/2023]
Abstract
Cylindrospermopsin (CYN) is a cyanotoxin of increasing worldwide environmental importance as it can harm human beings. Dexamethasone is a steroidal anti-inflammatory agent. Thus, we aimed at evaluating the pulmonary outcomes of acute CYN intoxication and their putative mitigation by dexamethasone. Male BALB/c mice received intratracheally a single dose of saline or CYN (140 μg/kg). Eighteen hours after exposure, mice instilled with either saline solution (Ctrl) or CYN were intramuscularly treated with saline (Tox) or 2 mg/kg dexamethasone (Tox + dexa) every 6 h for 48 h. Pulmonary mechanics was evaluated 66 h after instillation using the forced oscillation technique (flexiVent) to determine airway resistance (RN), tissue viscance (G) and elastance (H). After euthanasia, the lungs were removed and separated for quantification of CYN, myeloperoxidase activity and IL-6 and IL-17 levels plus histological analysis. CYN was also measured in the liver. CYN increased G and H, alveolar collapse, PMN cells infiltration, elastic and collagen fibers, activated macrophages, peroxidase activity in lung and hepatic tissues, as well as IL-6 and IL-17 levels in the lung. Tox + Dexa mice presented total or partial reversion of the aforementioned alterations. Briefly, CYN impaired pulmonary and hepatic characteristics that were mitigated by dexamethasone.
Collapse
Affiliation(s)
- Priscila Apolinario Barboza
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Mariana Nascimento Machado
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Milena Simões Peixoto
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luis Felipe Cruz
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Christina Maeda Takiya
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Alysson Roncally Carvalho
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Mariana Boechat de Abreu
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Rodrigo Soares Fortunato
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Walter Araujo Zin
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Hercog K, Štampar M, Štern A, Filipič M, Žegura B. Application of advanced HepG2 3D cell model for studying genotoxic activity of cyanobacterial toxin cylindrospermopsin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114965. [PMID: 32559695 DOI: 10.1016/j.envpol.2020.114965] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Cylindrospermopsin (CYN) is an emerging cyanotoxin increasingly being found in freshwater cyanobacterial blooms worldwide. Humans and animals are exposed to CYN through the consumption of contaminated water and food as well as occupational and recreational water activities; therefore, it represents a potential health threat. It exhibits genotoxic effects in metabolically active test systems, thus it is considered as pro-genotoxic. In the present study, the advanced 3D cell model developed from human hepatocellular carcinoma (HepG2) cells was used for the evaluation of CYN cyto-/genotoxic activity. Spheroids were formed by forced floating method and were cultured for three days under static conditions prior to exposure to CYN (0.125, 0.25 and 0.5 μg/mL) for 72 h. CYN influence on spheroid growth was measured daily and cell survival was determined by MTS assay and live/dead staining. The influence on cell proliferation, cell cycle alterations and induction of DNA damage (γH2AX) was determined using flow cytometry. Further, the expression of selected genes (qPCR) involved in the metabolism of xenobiotics, proliferation, DNA damage response, apoptosis and oxidative stress was studied. Results revealed that CYN dose-dependently reduced the size of spheroids and affected cell division by arresting HepG2 cells in G1 phase of the cell cycle. No induction of DNA double strand breaks compared to control was determined at applied conditions. The analysis of gene expression revealed that CYN significantly deregulated genes encoding phase I (CYP1A1, CYP1A2, CYP3A4, ALDH3A) and II (NAT1, NAT2, SULT1B1, SULT1C2, UGT1A1, UGT2B7) enzymes as well as genes involved in cell proliferation (PCNA, TOP2α), apoptosis (BBC3) and DNA damage response (GADD45a, CDKN1A, ERCC4). The advanced 3D HepG2 cell model due to its more complex structure and improved cellular interactions provides more physiologically relevant information and more predictive data for human exposure, and can thus contribute to more reliable genotoxicity assessment of chemicals including cyanotoxins.
Collapse
Affiliation(s)
- Klara Hercog
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
| | - Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Wejnerowski Ł, Falfushynska H, Horyn O, Osypenko I, Kokociński M, Meriluoto J, Jurczak T, Poniedziałek B, Pniewski F, Rzymski P. In Vitro Toxicological Screening of Stable and Senescing Cultures of Aphanizomenon, Planktothrix, and Raphidiopsis. Toxins (Basel) 2020; 12:E400. [PMID: 32560354 PMCID: PMC7354461 DOI: 10.3390/toxins12060400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Toxicity of cyanobacteria is the subject of ongoing research, and a number of toxic metabolites have been described, their biosynthesis pathways have been elucidated, and the mechanism of their action has been established. However, several knowledge gaps still exist, e.g., some strains produce hitherto unknown toxic compounds, while the exact dynamics of exerted toxicity during cyanobacterial growth still requires further exploration. Therefore, the present study investigated the toxicity of extracts of nine freshwater strains of Aphanizomenon gracile, an Aphanizomenon sp. strain isolated from the Baltic Sea, a freshwater strain of Planktothrix agardhii, and two strains of Raphidiopsis raciborskii obtained from 25- and 70-day-old cultures. An in vitro experimental model based on Cyprinus carpio hepatocytes (oxidative stress markers, DNA fragmentation, and serine/threonine protein activity) and brain homogenate (cholinesterase activity) was employed. The studied extracts demonstrated toxicity to fish cells, and in general, all examined extracts altered at least one or more of considered parameters, indicating that they possess, to some degree, toxic potency. Although the time from which the extracts were obtained had a significant importance for the response of fish cells, we observed strong variability between the different strains and species. In some strains, extracts that originated from 25-day-old cultures triggered more harmful effects on fish cells compared to those obtained from 70-day-old cultures, whereas in other strains, we observed the opposite effect or a lack of a significant change. Our study revealed that there was no clear or common pattern regarding the degree of cyanobacterial bloom toxicity at a given stage of development. This means that young cyanobacterial blooms that are just forming can pose an equally toxic threat to aquatic vertebrates and ecosystem functioning as those that are stable or old with a tendency to collapse. This might be largely due to a high variability of strains in the bloom.
Collapse
Affiliation(s)
- Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Halina Falfushynska
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine; (O.H.); (I.O.)
| | - Oksana Horyn
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine; (O.H.); (I.O.)
| | - Inna Osypenko
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine; (O.H.); (I.O.)
| | - Mikołaj Kokociński
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland;
| | - Tomasz Jurczak
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland;
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland;
| | - Filip Pniewski
- Institute of Oceanography, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland;
| |
Collapse
|
16
|
Zhong Y, Shen L, Ye X, Zhou D, He Y, Li Y, Ding Y, Zhu W, Ding J, Zhang H. Neurotoxic Anatoxin-a Can Also Exert Immunotoxicity by the Induction of Apoptosis on Carassius auratus Lymphocytes in vitro When Exposed to Environmentally Relevant Concentrations. Front Physiol 2020; 11:316. [PMID: 32351401 PMCID: PMC7174720 DOI: 10.3389/fphys.2020.00316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Hazardous anatoxin-a (ANTX-a) is produced by freshwater algal blooms worldwide, which greatly increases the risk of consumer exposure. Although ANTX-a shows widespread neurotoxicity in aquatic animals, little is known about its mechanism of action and biotransformation in biological systems, especially in immunobiological models. In this study, transmission electron microscopy results showed that ANTX-a can destroy lymphocytes of Carassius auratus in vitro by inducing cytoplasmic concentration, vacuolation, and swollen mitochondria. DNA fragmentations clearly showed a ladder pattern in agarose gel electrophoresis, which demonstrated that the apoptosis of fish lymphocytes was caused by exposure to ANTX-a. Flow cytometry results showed that the apoptotic percentage of fish lymphocytes exposed to 0.01, 0.1, 1, and 10 mg/L of ANTX-a for 12 h reached 18.89, 22.89, 39.23, and 35.58%, respectively. ANTX-a exposure induced a significant increase in reactive oxygen species (ROS) and malonaldehyde (MDA) in lymphocytes. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and the glutathione (GSH) content of the 0.01 mg/L ANTX-a-treated group decreased significantly by about 41, 46, 67, and 54% compared with that of the control group (p < 0.01), respectively. Although these observations were dose-dependent, these results suggested that ANTX-a can induce lymphocyte apoptosis via intracellular oxidative stress and destroy the antioxidant system after a short exposure time of only 12 h. Besides neurotoxicity, ANTX-a may also be toxic to the immune system of fish, even when the fish are exposed to environmentally relevant concentrations, which clearly demonstrated that the potential health risks induced by ANTX-a in aquatic organisms requires attention.
Collapse
Affiliation(s)
- Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lilai Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueping Ye
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Dongren Zhou
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yunyi He
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Ding
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Weiqin Zhu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiafeng Ding
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
Wang L, Chen G, Xiao G, Han L, Wang Q, Hu T. Cylindrospermopsin induces abnormal vascular development through impairing cytoskeleton and promoting vascular endothelial cell apoptosis by the Rho/ROCK signaling pathway. ENVIRONMENTAL RESEARCH 2020; 183:109236. [PMID: 32062183 DOI: 10.1016/j.envres.2020.109236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/08/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Cylindrospermopsin (CYN) is a widely distributed cyanobacterial toxin in water bodies and is considered to pose growing threats to human and environmental health. Although its potential toxicity has been reported, its effects on the vascular system are poorly understood. In this study, we examined the toxic effects of CYN on vascular development and the possible mechanism of vascular toxicity induced by CYN using zebrafish embryos and human umbilical vein endothelial cells (HUVECs). CYN exposure induced abnormal vascular development and led to an increase in the growth of common cardinal vein (CCV), in which CCV remodeling was delayed as reflected by the larger CCV area and wider ventral diameter. CYN decreased HUVECs viability, inhibited HUVECs migration, promoted HUVECs apoptosis, destroyed cytoskeleton, and increased intracellular ROS levels. Additionally, CYN could promote the expression of Bax, Bcl-2, and MLC-1 and inhibit the expression of ITGB1, Rho, ROCK, and VIM-1. Taken together, CYN may induce cytoskeleton damage and promote vascular endothelial cell apoptosis by the Rho/ROCK signaling pathway, leading to abnormal vascular development. The current results provide potential insight into the mechanism of CYN toxicity in angiocardiopathy and are beneficial for understanding the environmental risks of CYN for aquatic organisms and human health.
Collapse
Affiliation(s)
- Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guosheng Xiao
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Lin Han
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Qilong Wang
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
18
|
Henao E, Murphy PJ, Falfushynska H, Horyn O, Evans DM, Klimaszyk P, Rzymski P. Polymethoxy-1-Alkenes Screening of Chlorella and Spirulina Food Supplements Coupled with In Vivo Toxicity Studies. Toxins (Basel) 2020; 12:E111. [PMID: 32050689 PMCID: PMC7077266 DOI: 10.3390/toxins12020111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Selected species of cyanobacteria and green algae have been reported to produce lipophilic polymethoxy-1-alkenes (PMAs) which were shown to exhibit in vivo teratogenicity. Considering that information on PMAs in Arthospira sp. (known commercially as Spirulina) and Chlorella sp. cultivated for food supplement production was essentially lacking, the present study screened Chlorella (n = 10) and Spirulina (n = 13) food supplements registered in the European Union. Mass spectrometry analysis of column fractionated extracts was performed. None of the four variants previously reported in some cyanobacteria and green algae, nor any potentially related structures were detected in the studied samples. Since the isolated lipophilic fractions contained various compounds, they were further screened for in vivo teratogenicity in Danio rerio embryo, and for the potential to induce oxidative stress and genotoxicity in the liver and neurotoxicity in the brain of adult zebrafish. None of the tested food supplements had detectable levels of PMAs or any potentially related structures. No teratogenicity was revealed except for spinal curvature induced by fractions obtained from two Chlorella products. Selected fractions revealed cytotoxicity as indicated by an increased level of reactive oxygen species, catalase activity, lipid peroxidation and increased frequency of DNA strand breaks in hepatic tissue. The majority (60%) of Chlorella fractions induced an increase in cholinesterase activity in zebrafish brain homogenate while exposure to 61.5% of Spirulina fractions was associated with its decrease. The present study confirms that Chlorella and Spirulina food supplements are free of teratogenic PMAs, although the observed in vivo toxicities raise questions regarding the quality of selected products.
Collapse
Affiliation(s)
- Eliana Henao
- Department of Biology, Universidad del Valle, 100-00 Cali, Colombia;
| | - Patrick J. Murphy
- School of Natural Sciences, Alun Roberts Building (Chemistry), Bangor University, LL57 2UW Bangor, Wales;
| | - Halina Falfushynska
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine;
| | - Oksana Horyn
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine;
| | - Daniel M. Evans
- School of Natural Sciences, Alun Roberts Building (Chemistry), Bangor University, LL57 2UW Bangor, Wales;
| | - Piotr Klimaszyk
- Department of Water Protection, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
19
|
Smukowska-Gorynia A, Rzymski P, Marcinkowska J, Poniedziałek B, Komosa A, Cieslewicz A, Slawek-Szmyt S, Janus M, Araszkiewicz A, Jankiewicz S, Tomaszewska-Krajniak I, Mularek-Kubzdela T. Prognostic Value of Oxidative Stress Markers in Patients with Pulmonary Arterial or Chronic Thromboembolic Pulmonary Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3795320. [PMID: 31929853 PMCID: PMC6939433 DOI: 10.1155/2019/3795320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Oxidative stress is regarded to play a crucial role in the pathophysiology of pulmonary arterial hypertension (PAH) and inoperable chronic thromboembolic pulmonary hypertension (CTEPH). This study evaluated the prognostic value of serum oxidative stress markers (malondialdehyde (MDA), total antioxidant capacity (TAC), catalase activity (CAT), and superoxide activity (SOD)) in patients with PAH and CTEPH (n = 45). During 13 months of follow-up (median 9 months), clinical deterioration occurred in 14 patients (including 2 deaths). On the Cox regression analysis, MDA, TAC, and CAT were associated with clinical deterioration (p = 0.0068, HR = 1.42, 95% CI: 1.10-1.82; p = 0.0038, HR = 0.033, 95% CI: 0.0032-0.33; and p = 0.046, HR = 0.20, 95% CI: 0.04-0.98, respectively). There was no significant difference in SOD (p = 0.53, HR = 0.97, 95% CI: 0.87-1.08). The cut-off value derived from ROC curve analysis was 3.79 μM (p = 0.0048, AUC = 0.76, 95% CI: 0.62-0.91) for MDA, 0.49 mM (p = 0.027, AUC = 0.71, 95% CI: 0.18-0.47) for TAC, and 1.34 U/L (p = 0.029, AUC = 0.71, 95% CI: 0.55-0.86) for CAT. MDA in the group with deterioration was higher (p = 0.0041), while TAC as well as CAT were lower (p = 0.027 and p = 0.028, respectively) when compared to stable patients. Survival without clinical deterioration was significantly longer in patients with lower MDA (p = 0.037, HR = 0.37, 95% CI: 0.12-1.14, log-rank), higher TAC (p = 0.0018, HR = 0.19, 95% CI: 0.06-0.60, log-rank), and higher CAT (p = 0.044, HR = 0.31 95% CI: 0.11-0.88, log-rank). Markers of oxidative stress such as MDA, TAC, and CAT were associated with adverse clinical outcomes in patients with PAH and inoperable or residual CTEPH.
Collapse
Affiliation(s)
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Justyna Marcinkowska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Komosa
- 1st Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Artur Cieslewicz
- Department of Clinical Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sylwia Slawek-Szmyt
- 1st Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Janus
- 1st Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Stanislaw Jankiewicz
- 1st Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | |
Collapse
|
20
|
Falfushynska H, Horyn O, Fedoruk O, Khoma V, Rzymski P. Difference in biochemical markers in the gibel carp (Carassius auratus gibelio) upstream and downstream of the hydropower plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113213. [PMID: 31541825 DOI: 10.1016/j.envpol.2019.113213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
However the physiological stress in aquatic organisms associated with hydropower plants (HPP) ecosystems has been previously investigated, no studies have so far assessed it on biochemical level. Therefore this study evaluated an oxidative stress and toxicity in the gibel carp Carassius auratus gibelio associated with a small-scale HPP in the West Ukraine. A battery of liver, brain and blood markers was evaluated individuals inhabiting upstream and downstream of the dam of the small-scale Kasperivtci HPP (KHPP; an installed capacity of 7.5 MW), and from a reference site. Number of alterations were noted in fish from the KHPP impoundment facility including signs of oxidative stress (a decrease in superoxide dismutase (SOD) activity and an increase in protein carbonyls) and cytotoxicity (an increase in micronucleated erythrocytes and caspase-3 activity). No changes in DNA fragmentation in hepatocytes or brain cholinesterase activity were detected. As demonstrated by the integral stress index, fish associated with downstream of the dam revealed the greatest alterations reflected by the combined oppression of antioxidant system (SOD, catalase) and pro-oxidants (thiobarbituric acid reactive substances and oxyradicals), low concentration of metallothioneins, but high cathepsin D activity (as markers of lysosomal dysfunction and autophagy) and increased vitellogenin concentration in males (indicating an endocrine disruption). The study highlights that fish inhabiting ecosystems associated with HPP, particularly downstream of the dam, may face additional stresses with long-term effects yet to be evaluated.
Collapse
Affiliation(s)
| | - Oksana Horyn
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Olga Fedoruk
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Vira Khoma
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poland
| |
Collapse
|
21
|
Mehmood A, Zhao L, Wang C, Hossen I, Nadeem M. Stevia residue extract alone and combination with allopurinol attenuate hyperuricemia in fructose-PO-induced hyperuricemic mice. J Food Biochem 2019; 44:e13087. [PMID: 31680279 DOI: 10.1111/jfbc.13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 01/29/2023]
Abstract
The current project was designed to utilize flavonoids and chlorogenic acids enriched stevia residue extract (STVRE) against hyperuricemia (HU). The in vitro results showed that STVRE potently and synergistically inhibits Xanthine oxidase (XO) with allopurinol. The AFM results predicted that STVRE compounds bind with XO and alter its structure which further prevents the entrance of substrate with XO. These in vitro results were further confirmed in fructose-PO-induced hyperuricemic mice model. The results showed that supplementation of STVRE with allopurinol significantly attenuated HU, oxidative stress, and inflammation caused by UA via inhibiting the production of uric acid and lowering cyclooxygenase-2, tumor necrosis factor-alpha, prostaglandin E2, interleukin-6, and interleukin 1-beta levels in serum and renal tissues. Moreover, STVRE and allopurinol treatment attenuated, tubular dilation, infiltration of inflammatory cells, improved structure disorder of podocyte, and foot process fusion, and decreased glomerular basement membrane thickness. These findings suggested that STVRE can be used as an antihyperuricemic agent along with allopurinol. PRACTICAL APPLICATIONS: The results of present study showed that STVRE has a beneficial effect against fructose-PO-induced hyperuricemia by decreasing uric acid level, xanthine oxidase activity, improving oxidative stress and inflammation. These findings suggested that by-product of stevia (STVRE) enriched with polyphenolic compounds can be used as a functional ingredient against hyperuricemia and related diseases.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Imam Hossen
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
22
|
Evans DM, Hughes J, Jones LF, Murphy PJ, Falfushynska H, Horyn O, Sokolova IM, Christensen J, Coles SJ, Rzymski P. Elucidating cylindrospermopsin toxicity via synthetic analogues: An in vitro approach. CHEMOSPHERE 2019; 234:139-147. [PMID: 31207420 DOI: 10.1016/j.chemosphere.2019.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Cylindrospermopsin (CYN) is an alkaloid biosynthesized by selected cyanobacteria, the cyto- and genotoxic properties of which have been studied extensively by in vitro and in vivo experimental models. Various studies have separately established the role of uracil, guanidine and hydroxyl groups in CYN-induced toxicity. In the present study, we have prepared five synthetic analogues that all possess a uracil group but had variations in the other functionality found in CYN. We compared the in vitro toxicity of these analogues in common carp hepatocytes by assessing oxidative stress markers, DNA fragmentation and apoptosis. All the analogues tested induced generation of reactive oxygen species, lipid peroxidation (LPO) and DNA fragmentation. However, the greatest increase in LPO and increase in caspase-3 activity, an apoptosis marker, was demonstrated by an analogue containing guanidine, hydroxyl and uracil functionalities similar to those found in CYN but lacking the complex tricyclic structure of CYN. We also report a crystal structure of an analogue lacking the hydroxyl group found in CYN which does not show intramolecular H-bonding interactions between the guanidine and the uracil functionalities. The observations made in this work supports the hypothesis that CYN toxicity is a result of an interplay between both of the uracil, hydroxyl and guanidine functional groups.
Collapse
Affiliation(s)
- Daniel M Evans
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | - Jack Hughes
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | - Leigh F Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | - Patrick J Murphy
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom.
| | - Halina Falfushynska
- Department of Human Health, Physical Rehabilitation and Vital Activity, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Horyn
- Department of Human Health, Physical Rehabilitation and Vital Activity, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Jeppe Christensen
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, England, SO17 1BJ, United Kingdom
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, England, SO17 1BJ, United Kingdom
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
23
|
Rzymski P, Evans DM, Murphy PJ, Kokociński M. A study of polymethoxy-1-alkenes in Raphidiopsis (Cylindrospermopsis) raciborskii and Aphanizomenon gracile isolated in Poland. Toxicon 2019; 171:51-53. [PMID: 31586555 DOI: 10.1016/j.toxicon.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
Previous studies indicated that teratogenic polymethoxy-1-alkenes (PMAs) are produced by phylogenetically diverse cyanobacteria taxa, however corresponding studies on the occurrence of PMAs in European cyanobacteria are lacking. Herein, the presence of PMAs in strains of Raphidiopsis raciborskii and Aphanizomenon gracile isolated from surface waters in Poland was studied using nuclear magnetic resonance and mass spectrometry. No PMAs were detected in any of the strains investigated, indicating that production of these compounds may be geographically diversified. Further studies are necessary to elucidate mechanisms of cyanobacterial PMAs synthesis.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Daniel M Evans
- School of Natural Sciences, Alun Roberts Building (Chemistry), Bangor University, Bangor, Gwynedd, LL57 2DG, UK
| | - Patrick J Murphy
- School of Natural Sciences, Alun Roberts Building (Chemistry), Bangor University, Bangor, Gwynedd, LL57 2DG, UK
| | | |
Collapse
|
24
|
Abstract
Eutrophication is a process that occurs due to the excessive accumulation of nutrients, primarily nitrogen and phosphorus, from natural and anthropogenic sources. This phenomenon causes cyanobacterial overgrowth, which over time leads to cyanobacterial harmful algal blooms (CHABs) that affect public drinking water sources and water sites with recreational usage. The rapid detection of bloom-forming cyanobacteria in freshwater bodies is critical in order to implement prevention strategies. Cyanobacteria contain phycobiliproteins such as phycoerythrin and allophycocyanin as part of the phycobilisome that allows autofluorescence. In this study, samples from 36 freshwater bodies in 14 New Jersey counties were collected and analyzed using flow cytometry with forward-scatter phycoerythrin and allophycocyanin parameters. Pure cultures of Synechococcus sp. IU 625, Cylindrospermum spp. and Microcystis aeruginosa were used as references. The results revealed that 17 out of the 36 analyzed sites contained all three references and related species. Seven sites showed Microcystis and Cylindrospermum-like species, while four sites indicated Microcystis and Cylindrospermum-like species. Six water bodies showed Cylindrospermum-like species, and two sites showed Microcystis-like species. Polymerase chain reaction (PCR)-based assays further confirmed the flow cytometric results. The findings from this study suggest that flow cytometry could potentially serve as a rapid method for freshwater cyanobacteria detection and screening.
Collapse
|
25
|
Díez-Quijada L, Prieto AI, Puerto M, Jos Á, Cameán AM. In Vitro Mutagenic and Genotoxic Assessment of a Mixture of the Cyanotoxins Microcystin-LR and Cylindrospermopsin. Toxins (Basel) 2019; 11:E318. [PMID: 31167415 PMCID: PMC6628426 DOI: 10.3390/toxins11060318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
The co-occurrence of various cyanobacterial toxins can potentially induce toxic effects different than those observed for single cyanotoxins, as interaction phenomena cannot be discarded. Moreover, mixtures are a more probable exposure scenario. However, toxicological information on the topic is still scarce. Taking into account the important role of mutagenicity and genotoxicity in the risk evaluation framework, the objective of this study was to assess the mutagenic and genotoxic potential of mixtures of two of the most relevant cyanotoxins, Microcystin-LR (MC-LR) and Cylindrospermopsin (CYN), using the battery of in vitro tests recommended by the European Food Safety Authority (EFSA) for food contaminants. Mixtures of 1:10 CYN/MC-LR (CYN concentration in the range 0.04-2.5 µg/mL) were used to perform the bacterial reverse-mutation assay (Ames test) in Salmonella typhimurium, the mammalian cell micronucleus (MN) test and the mouse lymphoma thymidine-kinase assay (MLA) on L5178YTk± cells, while Caco-2 cells were used for the standard and enzyme-modified comet assays. The exposure periods ranged between 4 and 72 h depending on the assay. The genotoxicity of the mixture was observed only in the MN test with S9 metabolic fraction, similar to the results previously reported for CYN individually. These results indicate that cyanobacterial mixtures require a specific (geno)toxicity evaluation as their effects cannot be extrapolated from those of the individual cyanotoxins.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
26
|
Huguet A, Lanceleur R, Quenault H, Le Hégarat L, Fessard V. Identification of key pathways involved in the toxic response of the cyanobacterial toxin cylindrospermopsin in human hepatic HepaRG cells. Toxicol In Vitro 2019; 58:69-77. [PMID: 30905859 DOI: 10.1016/j.tiv.2019.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
The hepatotoxin cylindrospermopsin (CYN) has been involved in cases of poisoning in humans following ingestion. As its liver toxicity process is complex, we studied the transcriptomic profile of HepaRG cells exposed to CYN. The affected pathways were confirmed through the expression of key genes and the investigation of toxicity markers. In addition, CYP450 activities and cell redox homeostasis were investigated following acute and repeated exposure. CYN induced the down-regulation of genes involved in xenobiotic metabolism and cell cycle progression. There was cell cycle disturbance characterised by an accumulation of G1/S and G2/M cells and an increase in phospho-H3-positive cells. This was linked to the induction of DNA damage demonstrated by an increase in γH2AX-positive cells as well as an accumulation of sub-G1 cells indicating apoptosis but not involving caspase-3. While glutathione (GSH) content sharply decreased following acute exposure to CYN, it increased following repeated exposure, reflecting an adaptive response of cell redox homeostasis. However, our data also suggested that CYN induced the down-regulation of phase I and II metabolism gene products, and CYP450 activities were affected following both acute and repeated exposure to CYN. Our study indicated that repeated exposure of liver cells to low concentrations of CYN may affect their detoxification capacities.
Collapse
Affiliation(s)
- Antoine Huguet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue Claude Bourgelat, 35306 Fougères, France.
| | - Rachelle Lanceleur
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue Claude Bourgelat, 35306 Fougères, France
| | - Hélène Quenault
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Genetic and Biosecurity Unit, 22440 Ploufragan, France
| | - Ludovic Le Hégarat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue Claude Bourgelat, 35306 Fougères, France
| | - Valérie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue Claude Bourgelat, 35306 Fougères, France
| |
Collapse
|
27
|
Zhao L, Yang H, Xu M, Wang X, Wang C, Lian Y, Mehmood A, Dai H. Stevia residue extract ameliorates oxidative stress in d-galactose-induced aging mice via Akt/Nrf2/HO-1 pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
28
|
Falfushynska H, Horyn O, Brzozowska A, Fedoruk O, Buyak B, Poznansky D, Poniedziałek B, Kokociński M, Rzymski P. Is the presence of Central European strains of Raphidiopsis (Cylindrospermopsis) raciborskii a threat to a freshwater fish? An in vitro toxicological study in common carp cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:105-113. [PMID: 30472479 DOI: 10.1016/j.aquatox.2018.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
As yet European strains of Raphidiopsis raciborskii (previously Cylindrospermopsis raciborskii) have not been found to produce known cyanotoxins although their extracts have caused adverse effects in mammals, as shown using in vitro and in vivo experimental models. The present study investigated whether R. raciborskii isolated from Western Poland and Ukraine can affect fish cells using in vitro exposures of hepatocytes and red blood cells (RBC), and brain homogenates obtained from common carp (Cyprinus carpio) to 1.0% and 0.1% extracts of 7 strains. The studied extracts evoked different responses of catalase activity in hepatocytes with both increase and decrease observed under low and high concentrations. The cellular thiol pool was also altered with most extracts inducing a decrease in the activity of glutathione-S-transferase, and Ukrainian strains leading to an increase in glutathione level and a decrease in metallothionein content. All the studied extracts induced comparable reactive oxygen species formation, lipid peroxidation, protein carbonylation and DNA fragmentation in hepatocytes, and all but one increased the activity of caspase-3. Only one extract caused lysosomal membrane destabilization as measured by neutral red retention in RBC. In contrast to extracts of Ukrainian isolates, exposure of brain homogenates to extracts of Polish strains induced an increase in acetylcholinesterase activity suggesting the neurotoxic action of their exudates. The results indicate that both Polish and Ukrainian strains of R. raciborskii may pose a toxicological risk to freshwater fish, and further, that Polish strains may produce compound(s) evoking neurotoxic effects.
Collapse
Affiliation(s)
- Halina Falfushynska
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Horyn
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Agnieszka Brzozowska
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Olga Fedoruk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Bogdan Buyak
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Dmytro Poznansky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Mikołaj Kokociński
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
29
|
Development of Time-Resolved Fluoroimmunoassay for Detection of Cylindrospermopsin Using Its Novel Monoclonal Antibodies. Toxins (Basel) 2018; 10:toxins10070255. [PMID: 29933618 PMCID: PMC6070832 DOI: 10.3390/toxins10070255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Cylindrospermopsin (CYN) is a cyanotoxin that is of particular concern for its potential toxicity to human and animal health and ecological consequences due to contamination of drinking water. The increasing emergence of CYN around the world has led to urgent development of rapid and high-throughput methods for its detection in water. In this study, a highly sensitive monoclonal antibody N8 was produced and characterized for CYN detection through the development of a direct competitive time-resolved fluorescence immunoassay (TRFIA). The newly developed TRFIA exhibited a typical sigmoidal response for CYN at concentrations of 0.01–100 ng mL−1, with a wide quantitative range between 0.1 and 50 ng mL−1. The detection limit of the method was calculated to be 0.02 ng mL−1, which is well below the guideline value of 1 μg L−1 and is sensitive enough to provide an early warning of the occurrence of CYN-producing cyanobacterial blooms. The newly developed TRFIA also displayed good precision and accuracy, as evidenced by low coefficients of variation (4.1–6.5%). Recoveries ranging from 92.6% to 108.8% were observed upon the analysis of CYN-spiked water samples. Moreover, comparison of the TRIFA with an ELISA kit through testing 76 water samples and 15 Cylindrospermopsis cultures yielded a correlation r2 value of 0.963, implying that the novel immunoassay was reliable for the detection of CYN in water and algal samples.
Collapse
|
30
|
Pichardo S, Cameán AM, Jos A. In Vitro Toxicological Assessment of Cylindrospermopsin: A Review. Toxins (Basel) 2017; 9:toxins9120402. [PMID: 29258177 PMCID: PMC5744122 DOI: 10.3390/toxins9120402] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
Cylindrospermopsin (CYN) is a cyanobacterial toxin that is gaining importance, owing to its increasing expansion worldwide and the increased frequency of its blooms. CYN mainly targets the liver, but also involves other organs. Various mechanisms have been associated with its toxicity, such as protein synthesis inhibition, oxidative stress, etc. However, its toxic effects are not yet fully elucidated and additional data for hazard characterization purposes are required. In this regard, in vitro methods can play an important role, owing to their advantages in comparison to in vivo trials. The aim of this work was to compile and evaluate the in vitro data dealing with CYN available in the scientific literature, focusing on its toxicokinetics and its main toxicity mechanisms. This analysis would be useful to identify research needs and data gaps in order to complete knowledge about the toxicity profile of CYN. For example, it has been shown that research on various aspects, such as new emerging toxicity effects, the toxicity of analogs, or the potential interaction of CYN with other cyanotoxins, among others, is still very scarce. New in vitro studies are therefore welcome.
Collapse
Affiliation(s)
- Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
31
|
Cartmell C, Evans DM, Elwood JM, Fituri HS, Murphy PJ, Caspari T, Poniedziałek B, Rzymski P. Synthetic analogues of cyanobacterial alkaloid cylindrospermopsin and their toxicological activity. Toxicol In Vitro 2017; 44:172-181. [DOI: 10.1016/j.tiv.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/19/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|
32
|
Rzymski P, Klimaszyk P, Marszelewski W, Borowiak D, Mleczek M, Nowiński K, Pius B, Niedzielski P, Poniedziałek B. The chemistry and toxicity of discharge waters from copper mine tailing impoundment in the valley of the Apuseni Mountains in Romania. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21445-21458. [PMID: 28744684 PMCID: PMC5579155 DOI: 10.1007/s11356-017-9782-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/19/2017] [Indexed: 05/06/2023]
Abstract
Copper mining generates large quantities of waste, tailings, and acid outflows causing long-term environmental impacts and potential threats to human health. Valea Şesei is the largest tailing impoundment in Romania, created by flooding the valley (known as Valea Şesei) of the Metalliferous Mountains (a division of the Apuseni Mountains) with copper mining waste. The present study (i) estimated the total volume of tailings in this area; (ii) screened the concentration of 65 elements (rare earth and platinum group elements, alkali metals and alkali earth metals, transition and post-transition metals and metalloids) and cyanide concentrations in wastewater samples collected from tailing impoundment; (iii) evaluated the toxicity of these water samples using five in vitro bioassays employing human cells isolated from healthy donors and a short-term (1 h) exposure model. The sampled waters were highly acidic (pH 2.1-4.9) and had high electrical conductivity (2.80-15.61 mS cm-1). No cyanides were detected in any sample. Water samples collected from the stream (AMD) inflowing to the tailing impoundment were characterized by the greatest concentrations of alkali metals, alkaline earth metals, transition and post-transition metals, metalloids, rare earth elements, and noble metal group. At other sites, the elemental concentrations were lower but remained high enough to pose a relevant risk. The greatest magnitude of in vitro toxic effects was induced by AMD. Observed alterations included redox imbalance in human neutrophils followed by lipid peroxidation and decreased cell survival, significant aggregation of red blood cells, and increased prothrombin time. The study highlights that Valea Şesei is a large sink for toxic elements, posing environmental and health risks, and requiring action to prevent further release of chemicals and to initiate restoration of the area.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Piotr Klimaszyk
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | | | - Mirosław Mleczek
- Department of Chemistry, Poznan University of Life Sciences, Poznań, Poland
| | - Kamil Nowiński
- Department of Limnology, University of Gdańsk, Gdańsk, Poland
| | - Bożena Pius
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
33
|
Platelets redox balance assessment: Current evidence and methodological considerations. Vascul Pharmacol 2017; 93-95:6-13. [DOI: 10.1016/j.vph.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/10/2017] [Accepted: 06/28/2017] [Indexed: 01/22/2023]
|
34
|
Rzymski P, Poniedziałek B, Mankiewicz-Boczek J, Faassen EJ, Jurczak T, Gągała-Borowska I, Ballot A, Lürling M, Kokociński M. Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Poniedziałek B, Mleczek M, Niedzielski P, Siwulski M, Gąsecka M, Kozak L, Komosa A, Rzymski P. Bio-enriched Pleurotus mushrooms for deficiency control and improved antioxidative protection of human platelets? Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2921-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Djiadeu P, Azzouz D, Khan MA, Kotra LP, Sweezey N, Palaniyar N. Ultraviolet irradiation increases green fluorescence of dihydrorhodamine (DHR) 123: false-positive results for reactive oxygen species generation. Pharmacol Res Perspect 2017; 5:e00303. [PMID: 28357129 PMCID: PMC5368967 DOI: 10.1002/prp2.303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 12/31/2016] [Accepted: 02/05/2017] [Indexed: 01/15/2023] Open
Abstract
Dihydrorhodamine (DHR) 123 is a fluorophore commonly used for measuring reactive oxygen species (ROS), often after exposing cells to ultraviolet (UV) irradiation or oxidative burst inducers such as Phorbol 12‐myristate 13‐acetate (PMA). However, the negative effects of UV irradiation on oxidation of DHR123 itself to green fluorescence rhodamine (R) 123 under different experimental conditions (e.g., different buffers, media, cells, ROS detection techniques) have not been fully appreciated. We determined the effect of UV on DHR123 fluorescence, using a cell‐free system, and A549 epithelial cells, NIH/3T3 fibroblast cells, Jurkat T cells, primary human T cells, HL‐60 neutrophils and primary human neutrophils. We found that UV irradiation rapidly increases green fluorescence of DHR123 in cell‐free solutions. The intensity of green fluorescence increases with increasing amounts of DHR123 and UV exposure. The fluorescence increase was greater in Roswell Park Memorial Institute medium (RPMI) than DMEM media. The presence of DMSO (0–1.25%, v/v) in RPMI further increases the fluorescence signal. Phosphate buffered solution (PBS) and Hanks' Balanced Salt Solution (HBSS) generate considerable background signal with DHR123, and increasing DMSO concentration greatly increases the fluorescence signal in these buffers. However, after UV irradiation the amount of DHR123 that remains unoxidized generates sufficient fluorescence signal to measure the ROS produced by H2O2 and peroxidase in vitro or Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase‐mediated ROS production within HL‐60 neutrophils or primary human neutrophils. We conclude that UV irradiation oxidizes DHR123 to generate Rhodamine 123 (R123) green fluorescence signal, and that the R123 present in the culture supernatant could give erroneous results in plate reader assays. However, flow cytometry and fluorescence microscopy reliably detect ROS in cells such as neutrophils. Overall, avoiding false‐positive results when detecting ROS using DHR123 requires selection of, agonists, the correct buffers, media, cell types, and measurement techniques.
Collapse
Affiliation(s)
- Pascal Djiadeu
- Innate Immunity Research Laboratory Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning The Hospital for Sick Children 686 Bay St Toronto Ontario Canada M5G 0A4; Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario Canada M5S 3M2
| | - Dhia Azzouz
- Innate Immunity Research Laboratory Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning The Hospital for Sick Children 686 Bay St Toronto Ontario Canada M5G 0A4; Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada M5G 1X8
| | - Meraj A Khan
- Innate Immunity Research Laboratory Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning The Hospital for Sick Children 686 Bay St Toronto Ontario Canada M5G 0A4
| | - Lakshmi P Kotra
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario Canada M5S 3M2
| | - Neil Sweezey
- Innate Immunity Research Laboratory Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning The Hospital for Sick Children 686 Bay St Toronto Ontario Canada M5G 0A4; Department of Physiology University of Toronto Toronto Ontario Canada M5G 1X8; Department of Pediatrics University of Toronto Toronto Ontario Canada M5G 1X8
| | - Nades Palaniyar
- Innate Immunity Research Laboratory Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning The Hospital for Sick Children 686 Bay St Toronto Ontario Canada M5G 0A4; Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada M5G 1X8; Institute of Medical Sciences Faculty of Medicine University of Toronto Toronto Ontario Canada M5G 1X8
| |
Collapse
|
37
|
Gąsecka M, Rzymski P, Mleczek M, Siwulski M, Budzyńska S, Magdziak Z, Niedzielski P, Sobieralski K. The relationship between metal composition, phenolic acid and flavonoid content in Imleria badia from non-polluted and polluted areas. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:171-177. [PMID: 28121273 DOI: 10.1080/03601234.2017.1261541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this study was to determine the elemental composition, phenolic content and composition and antioxidant properties of Imleria badia (Fr.) Vizzini (former names Boletus badius (Fr.) Fr., and Xerocomus badius (Fr.) E.-J. Gilbert) fruiting bodies collected from sites with different levels of pollution. Imleria badia was relatively tolerant to soil contamination with toxic elements and was able to grow in As, Cd, Hg and Pb concentrations exceeding 15, 2.9, 0.4 and 77 mg kg-1, respectively. The concentration of elements in soil was reflected in the element content in I. badia. The fruiting bodies from polluted sites exhibited significantly higher content of all the analyzed elements. Among 21 individual phenolic compounds only protocatechiuc and caffeic acids, and quercetin were determined in fruiting bodies of I. badia. The differences between the concentration of the quantified phenolic compounds and the total flavonoid content in fruiting bodies of I. badia from unpolluted and polluted sites were not significant. However, the greatest total phenolic content was found in fruiting bodies from the polluted areas. The antioxidative capacity of mushrooms collected from heavily polluted sites was lower than those growing in unpolluted areas. The concentrations of some metals in soil and fruiting soil were positively correlated with phenolic content and IC50.
Collapse
Affiliation(s)
- Monika Gąsecka
- a Department of Chemistry , Poznan University of Life Sciences , Poznań , Poland
| | - Piotr Rzymski
- b Department of Environmental Medicine , Poznan University of Medical Sciences , Poznan , Poland
| | - Mirosław Mleczek
- a Department of Chemistry , Poznan University of Life Sciences , Poznań , Poland
| | - Marek Siwulski
- c Department of Vegetable Crops , Poznan University of Life Sciences , Poznań , Poland
| | - Sylwia Budzyńska
- a Department of Chemistry , Poznan University of Life Sciences , Poznań , Poland
| | - Zuzanna Magdziak
- a Department of Chemistry , Poznan University of Life Sciences , Poznań , Poland
| | | | - Krzysztof Sobieralski
- c Department of Vegetable Crops , Poznan University of Life Sciences , Poznań , Poland
| |
Collapse
|
38
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
39
|
Metal accumulation in the human uterus varies by pathology and smoking status. Fertil Steril 2016; 105:1511-1518.e3. [DOI: 10.1016/j.fertnstert.2016.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/24/2016] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
|
40
|
Rzymski P, Poniedziałek B. The surprising world of cyanobacteria: cylindrospermopsin has a soil face. JOURNAL OF PHYCOLOGY 2015; 51:1037-1039. [PMID: 26986999 DOI: 10.1111/jpy.12358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Piotr Rzymski
- Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|