1
|
Wang K, Shi G, Li Y, Liu Q, Zhang Q, Wu C, Jiao Y, Ma Y, Qi A, Huang M. Construction of a toxicity pathway from activation of the TLR4/NF-κB/NLRP3 axis to Parkinson's disease-like non-motor symptoms in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104706. [PMID: 40306475 DOI: 10.1016/j.etap.2025.104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Bipyridyl herbicides, like paraquat, are among the most widely used herbicides worldwide. Although the lungs are the main target organ for acute exposure to paraquat, chronic exposure to paraquat is thought to induce neurotoxicity and is one of the environmental risk factors for neurodegenerative diseases. In the last two decades, as paraquat has been banned in some regions, diquat has gradually become its replacement. However, systematic studies of environmental factor-induced neurodegenerative diseases are incomplete, and information on threats and risk assessment is still insufficient. The aim of this study was to investigate the association between bipyridine herbicides and sporadic Parkinson's disease. Among them, we refer to the concept of Adverse Outcome Pathway (AOP), integrate, analyse and propose the toxicity pathway similar to AOP. It provides ideas for us to conduct traditional toxicological studies. As a result, the present study reveals that bipyridine herbicide exposure causes neuronal pyrocytosis in locus coeruleus through activation of the TLR4/NF-κB/NLRP3 axis, resulting in the development of Parkinson's disease-like non-motor symptoms in mice.
Collapse
Affiliation(s)
- Kaidong Wang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yonghang Li
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Qi Liu
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Qianrong Zhang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Chenyang Wu
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yuxuan Jiao
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yuan Ma
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ai Qi
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Min Huang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
2
|
Silva R, Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. The Link Between Paraquat and Demyelination: A Review of Current Evidence. Antioxidants (Basel) 2024; 13:1354. [PMID: 39594496 PMCID: PMC11590890 DOI: 10.3390/antiox13111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons. They affect the CNS and peripheral nervous system (PNS), resulting in diverse clinical manifestations. In recent years, growing concerns have emerged about the impact of chronic, low-level exposure to herbicides on human health, particularly due to agricultural runoff contaminating drinking water sources and their presence in food. Studies indicate that paraquat may significantly impact myelinating cells, myelin-related gene expression, myelin structure, and cause neuroinflammation, potentially contributing to demyelination. Therefore, demyelination may represent another mechanism of neurotoxicity associated with paraquat, which requires further investigation. This manuscript reviews the potential association between paraquat and demyelination. Understanding this link is crucial for enhancing strategies to minimize exposure and preserve public health.
Collapse
Affiliation(s)
- Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136 Lisbon, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
3
|
Qi A, Wang K, Li Y, Hu R, Hu G, Li Y, Shi G, Huang M. The degradation of α--synuclein is limited by dynein to drive the AALP pathway through HDAC6 upon paraquat exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116841. [PMID: 39128448 DOI: 10.1016/j.ecoenv.2024.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Lewy body disease (LBD), one of the most common neurodegenerative diseases (NDDs), is characterized by excessive accumulation of α-synuclein (α-syn) in neurons. In recent years, environmental factors such as exposure to herbicides and pesticides have been attributed to the development of this condition. While majority of the studies on neurotoxic effects of paraquat (PQ) have focused on α-syn-mediated neuronal damage in the early stages of α-syn accumulation in neurons, efforts to explore the key target for α-syn degradation are limited. Recent research has suggested that histone deacetylase 6 (HDAC6) might possibly regulate amyloid clearance, and that the metabolism of compounds in neurons is also directly affected by axonal transport in neurons. Dynein predominantly mediates reverse transportation of metabolites and uptake of signal molecules and other compounds at the end of axons, which is conducive to the reuse of cell components. However, the role of interaction of dynein with HDAC6 in metabolites transport is still unclear. Therefore, this study aimed to investigate the role of HDAC6 in α-syn accumulation/clearance in neurons and the associated possible influencing factors. The results revealed that HDAC6 could transport ubiquitinated α-syn, bind to dynein, form an aggresome, and relocate to the center of the microtubule tissue, ultimately reducing abnormal accumulation of α-syn. However, PQ treatment resulted in HDAC6 upregulation, causing abnormal aggregation of α-syn. Taken together, these findings indicated that PQ exposure caused abnormal accumulation of α-syn and decreased effective degradation of α-syn by HDAC6-mediated aggresome-autophagy-lysosome pathway.
Collapse
Affiliation(s)
- Ai Qi
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yujing Li
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
4
|
Shi G, Zhang C, Bai X, Sun J, Wang K, Meng Q, Li Y, Hu G, Hu R, Cai Q, Huang M. A potential mechanism clue to the periodic storm from microglia activation and progressive neuron damage induced by paraquat exposure. ENVIRONMENTAL TOXICOLOGY 2024; 39:1874-1888. [PMID: 38189626 DOI: 10.1002/tox.24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/24/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
Paraquat (PQ), is characterized by neurotoxicity, which increases the potential risk of Parkinson's disease (PD) exposure in the long-term and low doses. Triggering microglia activation and neuroinflammation is deemed an early event resulting in PD. However, the underlying pathogenesis of PD by PQ is not clear yet. In this article, C57BL/6J mice treated with PQ could successfully act out Parkinson-like. In addition, we observed the fluorescence intensity enhancement of Iba-1 activated microglia with released pro-inflammatory, all ahead of both the damage of dopaminergic neurons in the substantia nigra and corpus striatum of the brain. Surprisingly, the injection of minocycline before PQ for many hours not only can effectively improve the neurobehavioral symptoms of mice but inhibit the activation of microglia and the release of pro-inflammatory substances, even controlling the gradual damage and loss of neurons. A further mechanism of minocycline hampered the expression levels of key signaling proteins PI3K, PDK1, p-AKT, and CD11b (the receptor of microglia membrane recognition), while a large number of inflammatory factors. Our results suggested that the CD11b/PI3K/NOX2 pathway may be a clue that microglia-mediated inflammatory responses and neuronal damage in a PQ-induced abnormal behavior Parkinson-like mouse.
Collapse
Affiliation(s)
- Ge Shi
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chunhui Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xinghua Bai
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian Sun
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - KaiDong Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Meng
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qian Cai
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Min Huang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Zhang H, Yang H, Liu XM, Ying J, Zu T, Jiang J, Liu MM, Jin J. Targeted inhibition of transforming growth factor-β type I receptor by AZ12601011 improves paraquat poisoning-induced multiple organ fibrosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105831. [PMID: 38582594 DOI: 10.1016/j.pestbp.2024.105831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 04/08/2024]
Abstract
Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-β1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFβRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1β, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-β and TGFβRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFβRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-β/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.
Collapse
Affiliation(s)
- Heng Zhang
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Hang Yang
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xue-Mei Liu
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ying
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Tong Zu
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing Jiang
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Juan Jin
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Kumari A, Srivastava A, Jagdale P, Ayanur A, Khanna VK. Lambda-cyhalothrin enhances inflammation in nigrostriatal region in rats: Regulatory role of NF-κβ and JAK-STAT signaling. Neurotoxicology 2023; 96:101-117. [PMID: 37060950 DOI: 10.1016/j.neuro.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The risk to develop neurobehavioural abnormalities in humans on exposure to lambda-cyhalothrin (LCT) - a type II synthetic pyrethroid has enhanced significantly due to its extensive uses in agriculture, homes, veterinary practices and public health programs. Earlier, we found that the brain dopaminergic system is vulnerable to LCT and affects motor functions in rats. In continuation to this, the present study is focused to unravel the role of neuroinflammation in LCT-induced neurotoxicity in substantia nigra and corpus striatum in rats. Increase in the mRNA expression of proinflammatory cytokines (TNF- α, IL-1β, IL-6) and iNOS whereas decrease in anti-inflammatory cytokine (IL-10) was distinct both in substantia nigra and corpus striatum of rats treated with LCT (0.5, 1.0, 3.0 mg/kg body weight, p.o, for 45 days) as compared to control rats. Further, LCT-treated rats exhibited increased levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1), the glial marker proteins both in substantia nigra and corpus striatum as compared to controls. Exposure of rats to LCT also caused alterations in the levels of heat shock protein 60 (HSP60) and mRNA expression of toll-like receptors (TLR2 and TLR4) in the substantia nigra and corpus striatum. An increase in the phosphorylation of key proteins involved in NF-kβ (P65, Iκβ, IKKα, IKKβ) and JAK/STAT (STAT1, STAT3) signaling and alteration in the protein levels of JAK1 and JAK2 was prominent in LCT-treated rats. Histological studies revealed damage of dopaminergic neurons and reactive gliosis as evidenced by the presence of darkly stained pyknotic neurons and decrease in Nissl substance and an increase in infiltration of immune cells both in substantia nigra and corpus striatum of LCT-treated rats. Presence of reactive microglia and astrocytes in LCT-treated rats was also distinct in ultrastructural studies. The results exhibit that LCT may damage dopaminergic neurons in the substantia nigra and corpus striatum by inducing inflammation as a result of stimulation of neuroglial cells involving activation of NF-κβ and JAK/STAT signaling.
Collapse
Affiliation(s)
- Anima Kumari
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anugya Srivastava
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, Area - Regulatory Toxicology, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, Area - Regulatory Toxicology, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Vinay Kumar Khanna
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
7
|
Blocking Two-Pore Domain Potassium Channel TREK-1 Inhibits the Activation of A1-Like Reactive Astrocyte Through the NF-κB Signaling Pathway in a Rat Model of Major Depressive Disorder. Neurochem Res 2023; 48:1737-1754. [PMID: 36670238 PMCID: PMC10119044 DOI: 10.1007/s11064-023-03857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023]
Abstract
Major depressive disorder (MDD) refers to a widespread psychiatric disorder. Astrocytes play a pivotal role in regulating inflammation which is a well-acknowledged key component in depression pathogenesis. However, the effects of the neuroinflammation-inducing A1-like astrocytes on MDD are still unknown. TWIK-related K+ channel 1 (TREK-1) has been demonstrated to regulate the action of antidepressants. Nevertheless, its mechanisms and effects on A1-like astrocyte stimulation in MDD are not clear. Therefore, we conducted in vivo and in vitro experiments using TREK-1 specific inhibitor spadin. In vivo, rats were subjected to a 6-week chronic unpredictable mild stress (CUMS) followed by spadin treatment. Behavioral tests were employed to surveil depressive-like behaviors. Hippocampal proteomic analysis was carried out with the purpose of identifying differentially expressed proteins after CUMS and spadin treatments. In vitro, astrocyte-conditioned medium and spadin were used to treat rat astrocyte cell line. The activated microglia, inflammatory factors, A1 astrocyte markers, and activated nuclear factor kappa B (NF-κB) pathway were later analyzed using immunofluorescence, western blot, and RT-qPCR. Our findings indicated that blockage of TREK-1 reduced CUMS-induced depressive-like behavior in rats, inhibited the microglial stimulation, reduced inflammatory factor levels, and suppressed the activation of A1-like reactive astrocytes in the hippocampus. We also verified that the suppression of A1-like astrocytes by spadin necessitated the NF-κB pathway. According to the findings, blocking TREK-1 inhibited the activation of A1-like reactive astrocytes via the NF-κB signaling pathway in MDD. Our study preliminarily identifies a novel antidepressant mechanism of TREK-1 action and provides a therapeutic path for MDD.
Collapse
|
8
|
Li C, Wang Y, Wang Z, Li X. β-Cyclodextrin/Azobenzene Microspheres Loaded with Paraquat Are Safe and Effective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:638-646. [PMID: 36542801 DOI: 10.1021/acs.langmuir.2c03004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although paraquat is a widely used herbicide, it is toxic to humans if ingested or absorbed through an open wound. To improve the safety of paraquat, a new formulation of paraquat based on photoresponsive polymers was exploited. Photoresponsive β-cyclodextrin polymer microspheres (AZO-CD) were synthesized via a host-guest interaction between β-cyclodextrin and azobenzene. AZO-CD were characterized by Fourier transform infrared spectrometry, circular dichroism, ultraviolet (UV) spectrophotometry, and thermogravimetric analysis, and their photoresponsiveness was also evaluated. AZO-CD were used to load paraquat, which yielded photoresponsive paraquat-loaded microspheres. For the paraquat-loaded microspheres, irradiation with UV light or sunlight induced the isomerization of azobenzene into the cis form. Then, the cis-azobenzene was liberated from the cavities of the β-cyclodextrin. The paraquat-loaded microspheres released paraquat continuously over time. Furthermore, under UV light, the herbicidal capacity of the paraquat-loaded microspheres against barnyard grass was comparable to that of free paraquat at the same dose. Our findings show that loading paraquat into AZO-CD provides a safe and environmentally friendly herbicide formulation.
Collapse
Affiliation(s)
- Chaonan Li
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| | - Ya Wang
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| | - Zihao Wang
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| | - Xiaogang Li
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| |
Collapse
|
9
|
HIF-1α promotes paraquat induced acute lung injury and implicates a role NF-κB and Rac2 activity. Toxicology 2023; 483:153388. [PMID: 36462643 DOI: 10.1016/j.tox.2022.153388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Paraquat (PQ) is a bipyridine herbicide and oral exposure is the main way of PQ exposure with a very high mortality. At present, it is believed that large number of oxygen free radicals are generated and cause lipid peroxidation of tissue and organ cell membranes after PQ is absorbed. PQ exposure could cause multiple organ dysfunction, among which acute lung injury is the most common and most serious. However, its specific mechanism is still unclear. In this study, the C57BL/6J mouse (alveolar epithelial cell-specific knockout HIF-1α) model of acute lung injury (40 mg/kg PQ) at several time pointes and a model of acute type II alveolar epithelial cell (A549, 800 μM PQ) injury constructed. The oxidative stress (ROS, MDA) and inflammatory response (IL-1β, IL-6, TNF-α) were significantly inhibited in the alveolar epithelial cell-specific knockout of HIF-1α mice and siRNA technology to inhibit HIF-1α in alveolar epithelial cells. Further proteomic analysis showed that the expression of Rac2 protein, which is closely related to oxidative stress, was significantly increased after PQ exposure. And the inhibition of Rac2 expression in vitro significantly alleviated PQ-induced oxidative stress and inflammatory response. The expression of Rac2 protein was regulated by HIF-1α. The above suggests that HIF-1α may promote oxidative stress and inflammatory response in alveolar epithelial cells by regulating the expression of Rac2, and then participate in the promotion of PQ exposure-induced acute lung injury.
Collapse
|
10
|
Wang K, Zhang C, Zhang B, Li G, Shi G, Cai Q, Huang M. Gut dysfunction may be the source of pathological aggregation of alpha-synuclein in the central nervous system through Paraquat exposure in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114152. [PMID: 36201918 DOI: 10.1016/j.ecoenv.2022.114152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND One of the most common types of neurodegenerative diseases (NDDs) is Lewy body disease (LBD), which is characterized by excessive accumulation of α-synuclein (α-syn) in the neurons and affects around 6 million individuals globally. In recent years, due to the environmental factors that can affect the development of this condition, such as exposure to herbicides and pesticides, so it has become a younger disease. Currently, the vast majority of studies on the neurotoxic effects of paraquat (PQ) focus on the late mechanisms of neuronal-glial network regulation, and little is known about the early origins of this environmental factor leading to LBD. OBJECTIVE To observe the effect of PQ exposure on intestinal function and to explore the key components of communicating the gut-brain axis by establishing a mouse model. METHODS AND RESULTS In this study, C57BL/6J mice were treated by intraperitoneal injection of 15 mg/kg PQ to construct an LBD time-series model, and confirmed by neurobehavioral testing and pathological examination. After PQ exposure, on the one hand, we found that fecal particle counts and moisture content were abnormal. on the other hand, we found that the expression levels of colonic tight junction proteins decreased, the expression levels of inflammatory markers increased, and the diversity and abundance of gut microbiota altered. In addition, pathological aggregation of α-syn was consistent in the colon and midbrain, and the metabolism and utilization of short-chain fatty acids (SCFAs) were also markedly altered. This suggests that pathological α-syn and SCFAs form the gut may be key components of the communicating gut-brain axis. CONCLUSION In this PQ-induced mouse model, gut microbiota disruption, intestinal epithelial barrier damage, and inflammatory responses may be the main causes of gut dysfunction, and pathological α-syn and SCFAs in the gut may be key components of the communicating gut-brain axis.
Collapse
Affiliation(s)
- Kaidong Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Chunhui Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Baofu Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Guoliang Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Qian Cai
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
11
|
Zhang L, Dong MN, Deng J, Zhang CH, Liu MW. Resveratrol exhibits neuroprotection against paraquat-induced PC12 cells via heme oxygenase 1 upregulation by decreasing MiR-136-5p expression. Bioengineered 2022; 13:7065-7081. [PMID: 35236239 PMCID: PMC8974050 DOI: 10.1080/21655979.2022.2045764] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Resveratrol (Res) is a flavonoid with an antioxidant effect and has been utilized to treat oxidative stress-related illnesses; however, its mechanism remains ambiguous. This research aims to explore whether Res inhibits miR-136-5p expression, increases heme oxygenase 1 (HMOX1) expression, and mitigates oxidative stress and PC12 cell apoptosis triggered by paraquat (PQ). Results showed that PQ dose-dependently increased the expression of miR-136-5p, the apoptosis of PC12 cells, the activities of reactive oxygen species (ROS), and the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), caspase-3, and pro-apoptotic protein Bax. In addition, PQ reduced the expression of anti-apoptotic protein Bcl-2, HMOX1 mRNA and protein, and nuclear factor-erythroid factor 2-related factor 2 (Nrf2) protein and the activity of superoxide dismutase 1 (SOD1) and PC12 cells. After the PQ-treated PC12 cells were administered with different Res concentrations for 24 h, the miR-136-5p expression was dose-dependently decreased. An increase was observed in the activity and survival rate of PC12 cells, the protein and mRNA levels of HMOX1 and Nrf2, and the content of anti-apoptotic protein B-cell lymphoma/leukemia gene-2 (Bcl-2). By contrast, the activities of ROS, LDH, and MDA and the apoptosis of PC12 cells decreased. These findings illustrated that Res could reduce the oxidative stress and apoptosis triggered by PQ and enhance the activity and survival rate of PC12 cells. The underlying mechanism might be correlated with the reduced miR-136-5p expression and the elevated activity of the HMOX1/Nrf2 pathway.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Yan-an Hospital of Kunming City, Kunming, China
| | - Min-Na Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Deng
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chun-Hai Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ming-Wei Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Alarfaj NA, Amina M, Al Musayeib NM, El-Tohamy MF, Al-Hamoud GA. Immunomodulatory and Antiprotozoal Potential of Fabricated Sesamum radiatum Oil/Polyvinylpyrrolidone/Au Polymeric Bionanocomposite Film. Polymers (Basel) 2021; 13:4321. [PMID: 34960872 PMCID: PMC8709204 DOI: 10.3390/polym13244321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
A unique morphological Sesamum radiatum oil/polyvinylpyrrolidone/gold polymeric bionanocomposite film was synthesized using the S. radiatum oil dispersed in a polymeric polyvinylpyrrolidone (PVP) matrix and decorated with gold nanoparticles (AuNPs). The chemical and physical characteristics as well as the thermal stability of the synthesized bionanocomposite film were investigated using various spectroscopic and microscopic techniques. The microscopic analysis confirmed well dispersed AuNPs in the PVP- S. radiatum oil matrix with particle size of 100 nm. Immunomodulatory and antiprotozoal potentials of the suggested bionanocomposite film were evaluated for lipopolysaccharide-induced BV-2 microglia and against L. amazonensis, L. mexicana promastigotes and T. cruzi epimastigotes, respectively. The results exerted outstanding reduction of inflammatory cytokines' (IL-6 and TNFα) secretions after pretreatment of bionanocomposite. The bionanocomposite exhibited large inhibitory effects on certain cell signaling components that are related to the activation of expression of proinflammatory cytokines. Additionally, AuNPs and bionanocomposite exhibited excellent growth inhibition of L. mexicana and L. amazonensis promastigotes with IC50 (1.71 ± 1.49, 1.68 ± 0.75) and (1.12 ± 1.10, 1.42 ± 0.69), respectively. However, the nanomaterials showed moderate activity towards T. cruzi. All outcomes indicated promising immunomodulatory, antiprotozoal, and photocatalytic potentials for the synthesized S. radiatum oil/PVP/Au polymeric bionanocomposite.
Collapse
Affiliation(s)
- Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.A.); (M.F.E.-T.)
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia; (N.M.A.M.); (G.A.A.-H.)
| | - Nawal M. Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia; (N.M.A.M.); (G.A.A.-H.)
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.A.); (M.F.E.-T.)
| | - Gadah A. Al-Hamoud
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia; (N.M.A.M.); (G.A.A.-H.)
| |
Collapse
|
13
|
Wang K, Zhang B, Tian T, Zhang B, Shi G, Zhang C, Li G, Huang M. Taurine protects dopaminergic neurons in paraquat-induced Parkinson's disease mouse model through PI3K/Akt signaling pathways. Amino Acids 2021; 54:1-11. [PMID: 34837554 DOI: 10.1007/s00726-021-03104-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/24/2021] [Indexed: 01/19/2023]
Abstract
Taurine (Tau) is one of the most abundant amino acids in the brain and regulates physiological functions in the central nervous system, including anti-inflammatory effects. There is growing evidence that microglia-mediated neuro-inflammatory responses are an integral part of Parkinson's disease (PD) onset and progression. Among the many factors regulating the inflammatory response, phosphatidylinositol-3 kinase (PI3K) is susceptible to activation by a variety of cytokines and physicochemical factors, and subsequently recruits signaling proteins containing the pleckstrin homology structural domain to further regulate protein kinase B (AKT) expression involved in the regulation of the intracellular immune response and inflammatory response. Therefore, we established a PD mouse model using paraquat (PQ) intraperitoneal injection staining to explore the mechanism of Tau action on PI3K/AKT signaling pathway. Our study showed that PD mice with Tau intervention recovered motor and non-motor functions to some extent, and the number of dopaminergic (DAc) neurons in the substantia nigra and the level of dopamine (DA) secretion in the striatum were also significantly increased compared with the PQ-dyed group, and the protein content of PI3K and PDK-1 and the phosphorylation level of AKT were reduced in parallel with the reduction in the expression of microglia and related inflammatory factors. In conclusion, our results suggest that Tau may regulate microglia-mediated inflammatory responses through inhibition of the PI3K/AKT pathway in the midbrain of PD mice, thereby reducing DAc neurons damage.
Collapse
Affiliation(s)
- Kaidong Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Baofu Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Tian Tian
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Bingyang Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Chunhui Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Guoliang Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Min Huang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China. .,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
14
|
De Miranda BR, Goldman SM, Miller GW, Greenamyre JT, Dorsey ER. Preventing Parkinson's Disease: An Environmental Agenda. JOURNAL OF PARKINSONS DISEASE 2021; 12:45-68. [PMID: 34719434 PMCID: PMC8842749 DOI: 10.3233/jpd-212922] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fueled by aging populations and continued environmental contamination, the global burden of Parkinson's disease (PD) is increasing. The disease, or more appropriately diseases, have multiple environmental and genetic influences but no approved disease modifying therapy. Additionally, efforts to prevent this debilitating disease have been limited. As numerous environmental contaminants (e.g., pesticides, metals, industrial chemicals) are implicated in PD, disease prevention is possible. To reduce the burden of PD, we have compiled preclinical and clinical research priorities that highlight both disease prediction and primary prevention. Though not exhaustive, the "PD prevention agenda" builds upon many years of research by our colleagues and proposes next steps through the lens of modifiable risk factors. The agenda identifies ten specific areas of further inquiry and considers the funding and policy changes that will be necessary to help prevent the world's fastest growing brain disease.
Collapse
Affiliation(s)
- Briana R De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama atBirmingham, Birmingham, AL, USA
| | - Samuel M Goldman
- Division of Occupational and Environmental Medicine, San Francisco VeteransAffairs Health Care System, School of Medicine, University ofCalifornia-San Francisco, San Francisco, CA, USA
| | - Gary W Miller
- Department of Environmnetal Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Universityof Pittsburgh, Pittsburgh, PA, USA
| | - E Ray Dorsey
- Center for Health+Technology and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
15
|
Yang W, Ma X, Zhu Y, Meng X, Tian R, Yang Z. Paraquat but not diquat induces TGF-β expression and thus activates calcium-NFAT axis for epithelial-mesenchymal transition. Toxicol Res (Camb) 2021; 10:733-741. [PMID: 34484664 PMCID: PMC8403590 DOI: 10.1093/toxres/tfab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/04/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
Paraquat (PQ) and diquat (DQ), two highly efficient herbicides sharing similar chemical backbone, both induce reactive oxygen species and are highly toxic to humans and livestock, however, PQ but not DQ poisoning result in pulmonary fibrosis, the leading cause of high mortality rate in patients suffering PQ toxicity. Understanding the unique mechanism of PQ different from DQ therefore would provide potential strategies to reduce PQ-induced pulmonary fibrosis. Here, we identified that PQ but not DQ continuously upregulates TGF-β expression in alveolar type II (AT II) cells. Importantly, such high expression of TGF-β increases cytosolic calcium levels and further promotes the activation of calcineurin-NFAT axis. TGF-β mainly activates NFATc1 and NFATc2, but not NFATc3 or NFATc4. Administration of the inhibitors targeting cytosolic calcium or calcineurin largely reverses PQ-induced epithelial-mesenchymal transition (EMT), whereas DQ has little effects on activation of NFAT and EMT. Ultimately, PQ poisoned patients exhibit significantly reduced blood calcium levels compared to DQ poisoning, possibly via the large usage of calcium by AT II cells. All in all, we found a vicious cycle that the upregulated TGF-β in PQ-induced EMT further aggravates EMT via promotion of the calcium-calcineurin axis, which could be potential drug targets for treating PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenyu Yang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xingsongjiang Road, Shanghai 201620, China
| | - Xinrun Ma
- Institute of clinical Immunology, Center for Translational Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xingsongjiang Road, Shanghai 201620, China
| | - Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xingsongjiang Road, Shanghai 201620, China
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xingsongjiang Road, Shanghai 201620, China
| | - Rui Tian
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xingsongjiang Road, Shanghai 201620, China
| | - Zhengfeng Yang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xingsongjiang Road, Shanghai 201620, China
- Institute of clinical Immunology, Center for Translational Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xingsongjiang Road, Shanghai 201620, China
| |
Collapse
|