1
|
Saihar A, Yaseen AR, Suleman M, Parveen R, Bashir H. From bytes to bites: In-silico creation of a novel multi-epitope vaccine against Murray Valley Encephalitis Virus. Microb Pathog 2025; 198:107171. [PMID: 39617074 DOI: 10.1016/j.micpath.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024]
Abstract
Flaviviruses transmitted by arthropods, including the Murray Valley Encephalitis Virus (MVEV), are RNA viruses capable of causing severe encephalitis in various hosts. The spread of these viruses is closely linked to climatic conditions and the habitats of host and vector species, leading to outbreaks in new geographic regions. Notable encephalitis-causing flaviviruses include Japanese encephalitis virus (JEV), West Nile virus (WNV), and Kunjin virus (KUNV). MVEV, primarily spread by the mosquito Culex annulirostris and amplified by water birds such as egrets and Nankeen night herons, has caused significant outbreaks in Australia, including severe epidemics in 1951, 1956, and 1974. Despite its severity, no rapid diagnostic techniques or effective antiviral treatments are available, and current interventions are limited to supportive care and mosquito management. Given the absence of a licensed vaccine, this study aimed to develop a multi-epitope hybrid vaccine targeting MVEV using in silico approaches. The study focused on identifying B-cell and T-cell epitopes from the MVEV Envelope (E) protein, constructing a vaccine candidate, and computationally validating its immunogenic potential. The designed vaccine underwent rigorous analysis of its antigenic properties, allergenicity, and toxicity. Disulfide engineering and assessment of physicochemical properties ensured the structural integrity of the vaccine, supported by Ramachandran plot and ProSA web analyses. Molecular docking studies assessed the vaccine's binding affinities with TLR-3, and MHC-I. Population coverage analysis of MHC-I and MHC-II epitopes evaluated global efficacy. Additionally, molecular dynamics simulations explored the stability of docked complexes, and PDBsum analysis elucidated interaction details. Immunological simulations were conducted to predict immune response outcomes, providing comprehensive validation of the vaccine's antigenicity. The findings highlight the potential of a multi-epitope vaccine as a viable strategy for MVEV prevention.
Collapse
Affiliation(s)
- Aisha Saihar
- Center for Applied Molecular Biology, CAMB, University of the Punjab, Lahore, Pakistan.
| | - Allah Rakha Yaseen
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
| | - Muhammad Suleman
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
| | - Rukhsana Parveen
- Center for Applied Molecular Biology, CAMB, University of the Punjab, Lahore, Pakistan.
| | - Hamid Bashir
- Center for Applied Molecular Biology, CAMB, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
2
|
Evasco KL, Brockway C, Falkingham T, Hall M, Wilson NG, Potter A. First detection of Culex tritaeniorhynchus in Western Australia using molecular diagnostics and morphological identification. Parasit Vectors 2024; 17:500. [PMID: 39633475 PMCID: PMC11616137 DOI: 10.1186/s13071-024-06566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Culex tritaeniorhynchus has long been considered the primary vector of Japanese encephalitis virus (JEV), but until recently, it was considered exotic to Australia. When the species was detected in the country's Northern Territory (NT) for the first time, the Western Australia (WA) Department of Health was cognisant of the risk it posed to the State because of the shared border and continuous mosquito habitat adjoining the two jurisdictions. The aim of this study was to undertake intensive mosquito surveillance in the Kimberley region to ascertain whether Cx. tritaeniorhynchus was present in WA, define the extent of its distribution and undertake phylogenetic analysis of select specimens to support hypothesized routes of entry into the state. METHODS Carbon dioxide (CO2)-baited encephalitis virus surveillance (EVS) mosquito traps were deployed at various sites throughout the Kimberley region by surveillance officers within the Medical Entomology unit of the Western Australia (WA) Department of Health. Mosquitoes were then morphologically identified, and a subset of four specimens were confirmed as Cx. tritaeniorhynchus by molecular identification using Cytochrome Oxidase I (COI) DNA data and phylogenetic analysis. RESULTS From 31 March 2021 to 30 May 2024, a total of 211 female Cx. tritaeniorhynchus specimens were collected from 21 unique trap sites in the Kimberley's Shire of Wyndham-East Kimberley (SWEK). Four COI DNA barcode regions were amplified and successfully sequenced for analysis. These sequences fell within a clade recognised as Cx. tritaeniorhynchus and specifically all sequences were in a clade with other specimens from the NT and Timor-Leste. CONCLUSIONS This study represents the first detection of Cx. tritaeniorhynchus in WA. Given the widespread nature of trap sites that yielded the species and consecutive seasons over which it was observed, the authors surmise that Cx. tritaeniorhynchus is now established within the northeast Kimberley region. The findings are significant given the detection of the species coincides with the first significant outbreak of JEV activity on mainland Australia involving an estimated 45 human cases of Japanese encephalitis, 80 impacted commercial piggeries and widespread feral pig activity. Although the role that Cx. tritaeniorhynchus may play in JEV transmission into the future is not yet understood, it presents a potential risk to public health in the region.
Collapse
Affiliation(s)
- Kimberly L Evasco
- Environmental Health Directorate, Western Australia Department of Health, 37 Kensington Street, East Perth, Perth, Western Australia, 6004, Australia.
| | - Craig Brockway
- Environmental Health Directorate, Western Australia Department of Health, 37 Kensington Street, East Perth, Perth, Western Australia, 6004, Australia
| | - Tamara Falkingham
- Environmental Health Directorate, Western Australia Department of Health, 37 Kensington Street, East Perth, Perth, Western Australia, 6004, Australia
| | - Margaret Hall
- Environmental Health Directorate, Western Australia Department of Health, 37 Kensington Street, East Perth, Perth, Western Australia, 6004, Australia
| | - Nerida G Wilson
- School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Perth, Western Australia, 6009, Australia
- Molecular Systematics Unit, WA Museum, 49 Kew St, Welshpool, Perth, Western Australia, 6106, Australia
| | - Abbey Potter
- Environmental Health Directorate, Western Australia Department of Health, 37 Kensington Street, East Perth, Perth, Western Australia, 6004, Australia.
| |
Collapse
|
3
|
Braddick M, O’Brien HM, Lim CK, Feldman R, Bunter C, Neville P, Bailie CR, Butel-Simoes G, Jung MH, Yuen A, Hughes N, Friedman ND. An integrated public health response to an outbreak of Murray Valley encephalitis virus infection during the 2022-2023 mosquito season in Victoria. Front Public Health 2023; 11:1256149. [PMID: 37860808 PMCID: PMC10582942 DOI: 10.3389/fpubh.2023.1256149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Murray Valley encephalitis virus (MVEV) is a mosquito-borne flavivirus known to cause infrequent yet substantial human outbreaks around the Murray Valley region of south-eastern Australia, resulting in significant mortality. Methods The public health response to MVEV in Victoria in 2022-2023 included a climate informed pre-season risk assessment, and vector surveillance with mosquito trapping and laboratory testing for MVEV. Human cases were investigated to collect enhanced surveillance data, and human clinical samples were subject to serological and molecular testing algorithms to assess for co-circulating flaviviruses. Equine surveillance was carried out via enhanced investigation of cases of encephalitic illness. Integrated mosquito management and active health promotion were implemented throughout the season and in response to surveillance signals. Findings Mosquito surveillance included a total of 3,186 individual trapping events between 1 July 2022 and 20 June 2023. MVEV was detected in mosquitoes on 48 occasions. From 2 January 2023 to 23 April 2023, 580 samples (sera and CSF) were tested for flaviviruses. Human surveillance detected 6 confirmed cases of MVEV infection and 2 cases of "flavivirus-unspecified." From 1 September 2022 to 30 May 2023, 88 horses with clinical signs consistent with flavivirus infection were tested, finding one probable and no confirmed cases of MVE. Discussion The expanded, climate-informed vector surveillance system in Victoria detected MVEV in mosquitoes in advance of human cases, acting as an effective early warning system. This informed a one-health oriented public health response including enhanced human, vector and animal surveillance, integrated mosquito management, and health promotion.
Collapse
Affiliation(s)
- Maxwell Braddick
- Communicable Diseases Section, Health Protection Branch, Victorian Department of Health, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen M. O’Brien
- Communicable Diseases Section, Health Protection Branch, Victorian Department of Health, Melbourne, VIC, Australia
| | - Chuan K. Lim
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Feldman
- Communicable Diseases Section, Health Protection Branch, Victorian Department of Health, Melbourne, VIC, Australia
| | - Cathy Bunter
- Agriculture Victoria, Department of Energy, Environment and Climate Action, Melbourne, VIC, Australia
| | - Peter Neville
- Communicable Diseases Section, Health Protection Branch, Victorian Department of Health, Melbourne, VIC, Australia
| | - Christopher R. Bailie
- Communicable Diseases Section, Health Protection Branch, Victorian Department of Health, Melbourne, VIC, Australia
| | - Grace Butel-Simoes
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Min-Ho Jung
- Communicable Diseases Section, Health Protection Branch, Victorian Department of Health, Melbourne, VIC, Australia
| | - Aidan Yuen
- Communicable Diseases Section, Health Protection Branch, Victorian Department of Health, Melbourne, VIC, Australia
| | - Nicole Hughes
- Communicable Diseases Section, Health Protection Branch, Victorian Department of Health, Melbourne, VIC, Australia
| | - N. Deborah Friedman
- Communicable Diseases Section, Health Protection Branch, Victorian Department of Health, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Gunale B, Farinola N, Yeolekar L, Shrivastava S, Girgis H, Poonawalla CS, Dhere RM, Arankalle V, Chandra Mishra A, Mehla R, Kulkarni PS. A Phase 1, double-blind, randomized, placebo-controlled study to evaluate the safety and immunogenicity of a tetravalent live attenuated dengue vaccine in adults. Vaccine 2023; 41:5614-5621. [PMID: 37532611 DOI: 10.1016/j.vaccine.2023.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/05/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Dengue fever is an important public health problem, especially in Asia and South America. A tetravalent live attenuated dengue vaccine was manufactured in India after receipt of vaccine strains from NIAID, NIH, USA. METHODS This was a Phase 1, double-blind, randomized, placebo-controlled study performed in 60 healthy adults of 18 to 45 years. Participants were randomized 2:1 to receive a single subcutaneous injection of either a tetravalent live attenuated dengue vaccine or placebo. Safety was assessed by unsolicited adverse events (AEs) and solicited reactions through 21 days after vaccination and serious adverse events (SAEs) through the entire study period of 180 days. Dengue viremia was assessed at baseline and on day 9, 11 and 13 post-vaccination using a plaque assay. Immunogenicity was assessed using the plaque reduction neutralization test (PRNT) assay using vaccine-matched wild virus serotypes (DENV 1, DENV 2, DENV 3 and DENV 4) at baseline and on 56-, 84- and 180-days post-vaccination. PRNT assay using circulating wild type DENV 1, DENV 2, DENV 3 and DENV 4 were done on day 1 and day 85 for a subset of 31 participants. RESULTS 60 participants were randomized to receive dengue vaccine (n = 40) or placebo (n = 20). 23 participants (59 %) showed DENV vaccine viremia post- vaccination for any of the four serotypes with majority on day 9 and day 11. At baseline, all participants were naïve by dengue PRNT50 for all four serotypes in both the study groups except for four in the dengue vaccine group and two in the placebo group. On day 57, the GMTs of neutralizing antibodies ranged from 66.76 (95 % CI 36.63, 121.69) to 293.84 (95 % CI 192.25, 449.11) for all four serotypes in the dengue vaccine group. On day 181 though the titers declined, they still remained much higher than the baseline. The titers in the placebo group did not change after vaccination. Seroconversion through day 85 ranged from 79.5 % for DENV 1 to 100 % for DENV2 while in the placebo group, no participant showed seroconversion through day 85. Similar trends were noted when PRNT was done using wild DENV serotypes in both vaccine and placebo groups. Among solicited reactions, injection site erythema, rash, headache, fatigue, myalgia and arthralgia were reported more frequently in the vaccine group than placebo group. All solicited reactions were of grade 1 or grade 2 severity and completely resolved. One unrelated serious adverse event was reported in the vaccine group. CONCLUSION A single dose of dengue vaccine was safe and well tolerated in adults. The vaccine was highly immunogenic with trivalent or tetravalent seroconversion and seropositivity in most of the participants. The study was funded by Serum Institute of India Pvt. Ltd., Pune, India. CLINICALTRIALS gov: NCT04035278.
Collapse
Affiliation(s)
| | | | | | | | - Hanna Girgis
- PPD, 3900 Paramount Pkwy, Morrisville, NC 27560, USA
| | | | | | - Vidya Arankalle
- Interactive Research School for Health Affairs (IRSHA), Pune, India
| | | | | | | |
Collapse
|
5
|
Kurucz N, McMahon JL, Warchot A, Hewitson G, Barcelon J, Moore F, Moran J, Harrison JJ, Colmant AMG, Staunton KM, Ritchie SA, Townsend M, Steiger DM, Hall RA, Isberg SR, Hall-Mendelin S. Nucleic Acid Preservation Card Surveillance Is Effective for Monitoring Arbovirus Transmission on Crocodile Farms and Provides a One Health Benefit to Northern Australia. Viruses 2022; 14:v14061342. [PMID: 35746812 PMCID: PMC9227548 DOI: 10.3390/v14061342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
The Kunjin strain of West Nile virus (WNVKUN) is a mosquito-transmitted flavivirus that can infect farmed saltwater crocodiles in Australia and cause skin lesions that devalue the hides of harvested animals. We implemented a surveillance system using honey-baited nucleic acid preservation cards to monitor WNVKUN and another endemic flavivirus pathogen, Murray Valley encephalitis virus (MVEV), on crocodile farms in northern Australia. The traps were set between February 2018 and July 2020 on three crocodile farms in Darwin (Northern Territory) and one in Cairns (North Queensland) at fortnightly intervals with reduced trapping during the winter months. WNVKUN RNA was detected on all three crocodile farms near Darwin, predominantly between March and May of each year. Two of the NT crocodile farms also yielded the detection of MVE viral RNA sporadically spread between April and November in 2018 and 2020. In contrast, no viral RNA was detected on crocodile farms in Cairns during the entire trapping period. The detection of WNVKUN and MVEV transmission by FTATM cards on farms in the Northern Territory generally correlated with the detection of their transmission to sentinel chicken flocks in nearby localities around Darwin as part of a separate public health surveillance program. While no isolates of WNVKUN or MVEV were obtained from mosquitoes collected on Darwin crocodile farms immediately following the FTATM card detections, we did isolate another flavivirus, Kokobera virus (KOKV), from Culex annulirostris mosquitoes. Our studies support the use of the FTATM card system as a sensitive and accurate method to monitor the transmission of WNVKUN and other arboviruses on crocodile farms to enable the timely implementation of mosquito control measures. Our detection of MVEV transmission and isolation of KOKV from mosquitoes also warrants further investigation of their potential role in causing diseases in crocodiles and highlights a “One Health” issue concerning arbovirus transmission to crocodile farm workers. In this context, the introduction of FTATM cards onto crocodile farms appears to provide an additional surveillance tool to detect arbovirus transmission in the Darwin region, allowing for a more timely intervention of vector control by relevant authorities.
Collapse
Affiliation(s)
- Nina Kurucz
- Medical Entomology, Centre for Disease Control, Public Health Unit, NT Health, Darwin, NT 0811, Australia; (N.K.); (A.W.)
| | - Jamie Lee McMahon
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Allan Warchot
- Medical Entomology, Centre for Disease Control, Public Health Unit, NT Health, Darwin, NT 0811, Australia; (N.K.); (A.W.)
| | - Glen Hewitson
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Jean Barcelon
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Frederick Moore
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT 0837, Australia;
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (A.M.G.C.); (R.A.H.)
| | - Agathe M. G. Colmant
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (A.M.G.C.); (R.A.H.)
| | - Kyran M. Staunton
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Scott A. Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Michael Townsend
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Dagmar Meyer Steiger
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (A.M.G.C.); (R.A.H.)
- Australian Infectious Diseases Centre, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sally R. Isberg
- Centre for Crocodile Research, Noonamah, NT 0837, Australia;
- Correspondence: (S.R.I.); (S.H.-M.)
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
- Correspondence: (S.R.I.); (S.H.-M.)
| |
Collapse
|
6
|
Coalson JE, Anderson EJ, Santos EM, Madera Garcia V, Romine JK, Luzingu JK, Dominguez B, Richard DM, Little AC, Hayden MH, Ernst KC. The Complex Epidemiological Relationship between Flooding Events and Human Outbreaks of Mosquito-Borne Diseases: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:96002. [PMID: 34582261 PMCID: PMC8478154 DOI: 10.1289/ehp8887] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Climate change is expected to increase the frequency of flooding events. Although rainfall is highly correlated with mosquito-borne diseases (MBD) in humans, less research focuses on understanding the impact of flooding events on disease incidence. This lack of research presents a significant gap in climate change-driven disease forecasting. OBJECTIVES We conducted a scoping review to assess the strength of evidence regarding the potential relationship between flooding and MBD and to determine knowledge gaps. METHODS PubMed, Embase, and Web of Science were searched through 31 December 2020 and supplemented with review of citations in relevant publications. Studies on rainfall were included only if the operationalization allowed for distinction of unusually heavy rainfall events. Data were abstracted by disease (dengue, malaria, or other) and stratified by post-event timing of disease assessment. Studies that conducted statistical testing were summarized in detail. RESULTS From 3,008 initial results, we included 131 relevant studies (dengue n = 45 , malaria n = 61 , other MBD n = 49 ). Dengue studies indicated short-term (< 1 month ) decreases and subsequent (1-4 month) increases in incidence. Malaria studies indicated post-event incidence increases, but the results were mixed, and the temporal pattern was less clear. Statistical evidence was limited for other MBD, though findings suggest that human outbreaks of Murray Valley encephalitis, Ross River virus, Barmah Forest virus, Rift Valley fever, and Japanese encephalitis may follow flooding. DISCUSSION Flooding is generally associated with increased incidence of MBD, potentially following a brief decrease in incidence for some diseases. Methodological inconsistencies significantly limit direct comparison and generalizability of study results. Regions with established MBD and weather surveillance should be leveraged to conduct multisite research to a) standardize the quantification of relevant flooding, b) study nonlinear relationships between rainfall and disease, c) report outcomes at multiple lag periods, and d) investigate interacting factors that modify the likelihood and severity of outbreaks across different settings. https://doi.org/10.1289/EHP8887.
Collapse
Affiliation(s)
- Jenna E. Coalson
- Center for Insect Science, University of Arizona, Tucson, Arizona, USA
| | | | - Ellen M. Santos
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Valerie Madera Garcia
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - James K. Romine
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Joy K. Luzingu
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Brian Dominguez
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Danielle M. Richard
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Ashley C. Little
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Mary H. Hayden
- National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, Colorado, USA
| | - Kacey C. Ernst
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| |
Collapse
|
7
|
Abdullah N, Ahemad N, Aliazis K, Khairat JE, Lee TC, Abdul Ahmad SA, Adnan NAA, Macha NO, Hassan SS. The Putative Roles and Functions of Indel, Repetition and Duplication Events in Alphavirus Non-Structural Protein 3 Hypervariable Domain (nsP3 HVD) in Evolution, Viability and Re-Emergence. Viruses 2021; 13:v13061021. [PMID: 34071712 PMCID: PMC8228767 DOI: 10.3390/v13061021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Alphavirus non-structural proteins 1–4 (nsP1, nsP2, nsP3, and nsP4) are known to be crucial for alphavirus RNA replication and translation. To date, nsP3 has been demonstrated to mediate many virus–host protein–protein interactions in several fundamental alphavirus mechanisms, particularly during the early stages of replication. However, the molecular pathways and proteins networks underlying these mechanisms remain poorly described. This is due to the low genetic sequence homology of the nsP3 protein among the alphavirus species, especially at its 3′ C-terminal domain, the hypervariable domain (HVD). Moreover, the nsP3 HVD is almost or completely intrinsically disordered and has a poor ability to form secondary structures. Evolution in the nsP3 HVD region allows the alphavirus to adapt to vertebrate and insect hosts. This review focuses on the putative roles and functions of indel, repetition, and duplication events that have occurred in the alphavirus nsP3 HVD, including characterization of the differences and their implications for specificity in the context of virus–host interactions in fundamental alphavirus mechanisms, which have thus directly facilitated the evolution, adaptation, viability, and re-emergence of these viruses.
Collapse
Affiliation(s)
- Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Konstantinos Aliazis
- Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Thong Chuan Lee
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia;
| | - Siti Aisyah Abdul Ahmad
- Immunogenetic Unit, Allergy and Immunology Research Center, Institute for Medical Research, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia;
| | - Nur Amelia Azreen Adnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nur Omar Macha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-5514-6340
| |
Collapse
|
8
|
Madzokere ET, Hallgren W, Sahin O, Webster JA, Webb CE, Mackey B, Herrero LJ. Integrating statistical and mechanistic approaches with biotic and environmental variables improves model predictions of the impact of climate and land-use changes on future mosquito-vector abundance, diversity and distributions in Australia. Parasit Vectors 2020; 13:484. [PMID: 32967711 PMCID: PMC7510059 DOI: 10.1186/s13071-020-04360-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Changes to Australia's climate and land-use patterns could result in expanded spatial and temporal distributions of endemic mosquito vectors including Aedes and Culex species that transmit medically important arboviruses. Climate and land-use changes greatly influence the suitability of habitats for mosquitoes and their behaviors such as mating, feeding and oviposition. Changes in these behaviors in turn determine future species-specific mosquito diversity, distribution and abundance. In this review, we discuss climate and land-use change factors that influence shifts in mosquito distribution ranges. We also discuss the predictive and epidemiological merits of incorporating these factors into a novel integrated statistical (SSDM) and mechanistic species distribution modelling (MSDM) framework. One potentially significant merit of integrated modelling is an improvement in the future surveillance and control of medically relevant endemic mosquito vectors such as Aedes vigilax and Culex annulirostris, implicated in the transmission of many arboviruses such as Ross River virus and Barmah Forest virus, and exotic mosquito vectors such as Aedes aegypti and Aedes albopictus. We conducted a focused literature search to explore the merits of integrating SSDMs and MSDMs with biotic and environmental variables to better predict the future range of endemic mosquito vectors. We show that an integrated framework utilising both SSDMs and MSDMs can improve future mosquito-vector species distribution projections in Australia. We recommend consideration of climate and environmental change projections in the process of developing land-use plans as this directly impacts mosquito-vector distribution and larvae abundance. We also urge laboratory, field-based researchers and modellers to combine these modelling approaches. Having many different variations of integrated (SDM) modelling frameworks could help to enhance the management of endemic mosquitoes in Australia. Enhanced mosquito management measures could in turn lead to lower arbovirus spread and disease notification rates.
Collapse
Affiliation(s)
- Eugene T. Madzokere
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215 Australia
| | - Willow Hallgren
- Environmental Futures Research Institute, Griffith School of Environment, Gold Coast campus, Griffith University, Gold Coast, QLD 4222 Australia
| | - Oz Sahin
- Cities Research Institute, Gold Coast campus, Griffith University, Gold Coast, QLD 4222 Australia
| | - Julie A. Webster
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006 Australia
| | - Cameron E. Webb
- Department of Medical Entomology, NSW Health Pathology, ICPMR, Westmead Hospital, Westmead, NSW 2145 Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2006 Australia
| | - Brendan Mackey
- Griffith Climate Change Response Program, Griffith School of Environment, Gold Coast campus, Griffith University, Gold Coast, QLD 4222 Australia
| | - Lara J. Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215 Australia
| |
Collapse
|
9
|
Michie A, Ernst T, Chua ILJ, Lindsay MDA, Neville PJ, Nicholson J, Jardine A, Mackenzie JS, Smith DW, Imrie A. Phylogenetic and Timescale Analysis of Barmah Forest Virus as Inferred from Genome Sequence Analysis. Viruses 2020; 12:E732. [PMID: 32640629 PMCID: PMC7412159 DOI: 10.3390/v12070732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 11/17/2022] Open
Abstract
Barmah Forest virus (BFV) is a medically important mosquito-borne alphavirus endemic to Australia. Symptomatic disease can be a major cause of morbidity, associated with fever, rash, and debilitating arthralgia. BFV disease is similar to that caused by Ross River virus (RRV), the other major Australian alphavirus. Currently, just four BFV whole-genome sequences are available with no genome-scale phylogeny in existence to robustly characterise genetic diversity. Thirty novel genome sequences were derived for this study, for a final 34-taxon dataset sampled over a 44 year period. Three distinct BFV genotypes were characterised (G1-3) that have circulated in Australia and Papua New Guinea (PNG). Evidence of spatio-temporal co-circulation of G2 and G3 within regions of Australia was noted, including in the South West region of Western Australia (WA) during the first reported disease outbreaks in the state's history. Compared with RRV, the BFV population appeared more stable with less frequent emergence of novel lineages. Preliminary in vitro assessment of RRV and BFV replication kinetics found that RRV replicates at a significantly faster rate and to a higher, more persistent titre compared with BFV, perhaps indicating mosquitoes may be infectious with RRV for longer than with BFV. This investigation resolved a greater diversity of BFV, and a greater understanding of the evolutionary dynamics and history was attained.
Collapse
Affiliation(s)
- Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| | - Timo Ernst
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| | - I-Ly Joanna Chua
- PathWest Laboratory Medicine Western Australia, Perth, WA 6000, Australia; (I-L.J.C.); (J.S.M.); (D.W.S.)
| | - Michael D. A. Lindsay
- Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (M.D.A.L.); (P.J.N.); (J.N.); (A.J.)
| | - Peter J. Neville
- Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (M.D.A.L.); (P.J.N.); (J.N.); (A.J.)
| | - Jay Nicholson
- Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (M.D.A.L.); (P.J.N.); (J.N.); (A.J.)
| | - Andrew Jardine
- Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (M.D.A.L.); (P.J.N.); (J.N.); (A.J.)
| | - John S. Mackenzie
- PathWest Laboratory Medicine Western Australia, Perth, WA 6000, Australia; (I-L.J.C.); (J.S.M.); (D.W.S.)
- Faculty of Health Sciences, Curtin University, Bentley WA 6102, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4067, Australia
| | - David W. Smith
- PathWest Laboratory Medicine Western Australia, Perth, WA 6000, Australia; (I-L.J.C.); (J.S.M.); (D.W.S.)
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| |
Collapse
|
10
|
Genome-Scale Phylogeny and Evolutionary Analysis of Ross River Virus Reveals Periodic Sweeps of Lineage Dominance in Western Australia, 1977-2014. J Virol 2020; 94:JVI.01234-19. [PMID: 31666378 PMCID: PMC6955267 DOI: 10.1128/jvi.01234-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/11/2019] [Indexed: 11/20/2022] Open
Abstract
Ross River virus (RRV) causes the most common mosquito-borne infection in Australia and causes a significant burden of suffering to infected individuals as well as being a large burden to the Australian economy. The genetic diversity of RRV and its evolutionary history have so far only been studied using partial E2 gene analysis with a limited number of isolates. Robust whole-genome analysis has not yet been conducted. This study generated 94 novel near-whole-genome sequences to investigate the evolutionary history of RRV to better understand its genetic diversity through comprehensive whole-genome phylogeny. A better understanding of RRV genetic diversity will enable better diagnostics, surveillance, and potential future vaccine design. Ross River virus (RRV), an alphavirus of the Togaviridae family, is the most medically significant mosquito-borne virus of Australia. Past RRV phylogenetic and evolutionary analyses have been based on partial genome analyses only. Three geographically distinct RRV lineages, the Eastern, the Western, and the supposedly extinct North-Eastern lineage, were classified previously. We sought to expand on past phylogenies through robust genome-scale phylogeny to better understand RRV genetic diversity and evolutionary dynamics. We analyzed 106 RRV complete coding sequences, which included 13 genomes available on NCBI and 94 novel sequences derived for this study, sampled throughout Western Australia (1977–2014) and during the substantial Pacific Islands RRV epidemic (1979–1980). Our final data set comprised isolates sampled over 59 years (1959–2018) from a range of locations. Four distinct genotypes were defined, with the newly described genotype 4 (G4) found to be the contemporary lineage circulating in Western Australia. The prior geographical classification of RRV lineages was not supported by our findings, with evidence of geographical and temporal cocirculation of distinct genetic groups. Bayesian Markov chain Monte Carlo (MCMC) analysis revealed that RRV lineages diverged from a common ancestor approximately 94 years ago, with distinct lineages emerging roughly every 10 years over the past 50 years in periodic bursts of genetic diversity. Our study has enabled a more robust analysis of RRV evolutionary history and resolved greater genetic diversity that had been previously defined by partial E2 gene analysis. IMPORTANCE Ross River virus (RRV) causes the most common mosquito-borne infection in Australia and causes a significant burden of suffering to infected individuals as well as being a large burden to the Australian economy. The genetic diversity of RRV and its evolutionary history have so far only been studied using partial E2 gene analysis with a limited number of isolates. Robust whole-genome analysis has not yet been conducted. This study generated 94 novel near-whole-genome sequences to investigate the evolutionary history of RRV to better understand its genetic diversity through comprehensive whole-genome phylogeny. A better understanding of RRV genetic diversity will enable better diagnostics, surveillance, and potential future vaccine design.
Collapse
|
11
|
Walker LJ, Selvey LA, Jardine A, Johansen CA, Lindsay MDA. Mosquito and Virus Surveillance as a Predictor of Human Ross River Virus Infection in South-West Western Australia: How Useful Is It? Am J Trop Med Hyg 2019; 99:1066-1073. [PMID: 30182918 DOI: 10.4269/ajtmh.18-0459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mosquito and virus surveillance systems are widely used in Western Australia (WA) to support public health efforts to reduce mosquito-borne disease. However, these programs are costly to maintain on a long-term basis. Therefore, we aimed to assess the validity of mosquito numbers and Ross River virus (RRV) isolates from surveillance trap sites as predictors of human RRV cases in south-west WA between 2003 and 2014. Using negative binomial regression modeling, mosquito surveillance was found to be a useful tool for predicting human RRV cases. In eight of the nine traps, when adjusted for season, there was an increased risk of RRV cases associated with elevated mosquito numbers detected 1 month before the onset of human cases for at least one quartile compared with the reference group. The most predictive urban trap sites were located near saltmarsh mosquito habitat, bushland that could sustain macropods and densely populated residential suburbs. This convergence of environments could allow enzootic transmission of RRV to spillover and infect the human population. Close proximity of urban trap sites to each other suggested these sites could be reduced. Ross River virus isolates were infrequent at some trap sites, so ceasing RRV isolation from mosquitoes at these sites or where isolates were not predictive of human cases could be considered. In future, trap sites could be reduced for routine surveillance, allowing other environments to be monitored to broaden the understanding of RRV ecology in the region. A more cost-effective and efficient surveillance program may result from these modifications.
Collapse
Affiliation(s)
- Liz J Walker
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Linda A Selvey
- Faculty of Medicine, School of Public Health, The University of Queensland, Brisbane, Australia
| | - Andrew Jardine
- Environmental Health Hazards Unit, Environmental Health Directorate, Public and Aboriginal Health Division, Department of Health Western Australia, Perth, Australia
| | - Cheryl A Johansen
- The University of Western Australia, Nedlands, Western Australia, Australia and PathWest Laboratory Medicine Western Australia, Department of Health Western Australia, Nedlands, Australia
| | - Michael D A Lindsay
- Environmental Health Hazards Unit, Environmental Health Directorate, Public and Aboriginal Health Division, Department of Health Western Australia, Perth, Australia
| |
Collapse
|
12
|
Dehhaghi M, Kazemi Shariat Panahi H, Holmes EC, Hudson BJ, Schloeffel R, Guillemin GJ. Human Tick-Borne Diseases in Australia. Front Cell Infect Microbiol 2019; 9:3. [PMID: 30746341 PMCID: PMC6360175 DOI: 10.3389/fcimb.2019.00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022] Open
Abstract
There are 17 human-biting ticks known in Australia. The bites of Ixodes holocyclus, Ornithodoros capensis, and Ornithodoros gurneyi can cause paralysis, inflammation, and severe local and systemic reactions in humans, respectively. Six ticks, including Amblyomma triguttatum, Bothriocroton hydrosauri, Haemaphysalis novaeguineae, Ixodes cornuatus, Ixodes holocyclus, and Ixodes tasmani may transmit Coxiella burnetii, Rickettsia australis, Rickettsia honei, or Rickettsia honei subsp. marmionii. These bacterial pathogens cause Q fever, Queensland tick typhus (QTT), Flinders Island spotted fever (FISF), and Australian spotted fever (ASF). It is also believed that babesiosis can be transmitted by ticks to humans in Australia. In addition, Argas robertsi, Haemaphysalis bancrofti, Haemaphysalis longicornis, Ixodes hirsti, Rhipicephalus australis, and Rhipicephalus sanguineus ticks may play active roles in transmission of other pathogens that already exist or could potentially be introduced into Australia. These pathogens include Anaplasma spp., Bartonella spp., Burkholderia spp., Francisella spp., Dera Ghazi Khan virus (DGKV), tick-borne encephalitis virus (TBEV), Lake Clarendon virus (LCV), Saumarez Reef virus (SREV), Upolu virus (UPOV), or Vinegar Hill virus (VINHV). It is important to regularly update clinicians' knowledge about tick-borne infections because these bacteria and arboviruses are pathogens of humans that may cause fatal illness. An increase in the incidence of tick-borne infections of human may be observed in the future due to changes in demography, climate change, and increase in travel and shipments and even migratory patterns of birds or other animals. Moreover, the geographical conditions of Australia are favorable for many exotic ticks, which may become endemic to Australia given an opportunity. There are some human pathogens, such as Rickettsia conorii and Rickettsia rickettsii that are not currently present in Australia, but can be transmitted by some human-biting ticks found in Australia, such as Rhipicephalus sanguineus, if they enter and establish in this country. Despite these threats, our knowledge of Australian ticks and tick-borne diseases is in its infancy.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Edward C. Holmes
- Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Bernard J. Hudson
- Department of Microbiology and Infectious Disease, Royal North Shore Hospital, Sydney, NSW, Australia
| | | | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
13
|
Mackenzie JS, Lindsay MDA, Smith DW, Imrie A. The ecology and epidemiology of Ross River and Murray Valley encephalitis viruses in Western Australia: examples of One Health in Action. Trans R Soc Trop Med Hyg 2018; 111:248-254. [PMID: 29044370 PMCID: PMC5914307 DOI: 10.1093/trstmh/trx045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/27/2017] [Indexed: 01/02/2023] Open
Abstract
Arboviruses are maintained and transmitted through an alternating biological cycle in arthropods and vertebrates, with largely incidental disease in humans and animals. As such, they provide excellent examples of One Health, as their health impact is inextricably linked to their vertebrate hosts, their arthropod vectors and the environment. Prevention and control requires a comprehensive understanding of these interactions, and how they may be effectively and safely modified. This review concentrates on human disease due to Ross River and Murray Valley encephalitis viruses, the two major arboviral pathogens in Australia. It describes how their pattern of infection and disease is influenced by natural climatic and weather patterns, and by anthropogenic activities. The latter includes human-mediated environmental manipulations, such as water impoundment infrastructures, human movements and migration, and community and social changes, such as urban spread into mosquito larval habitats. Effective interventions need to be directed at the environmental precursors of risk. This can best be achieved using One Health approaches to improve collaboration and coordination between different disciplines and cross-sectoral jurisdictions in order to develop more holistic mitigation and control procedures, and to address poorly understood ecological issues through multidisciplinary research.
Collapse
Affiliation(s)
- John S Mackenzie
- Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Nedlands, WA 6009
- Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845
- Corresponding author: Present address: 5E, 16 Kings Park Avenue, Crawley, WA 6009; Tel: +61 439 875 697; E-mail:
| | - Michael D A Lindsay
- Public and Aboriginal Health Division, Department of Health, Grace Vaughan House, Shenton Park, Western Australia, WA 6008
| | - David W Smith
- Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Nedlands, WA 6009
- Faculty of Medicine and Health Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| | - Allison Imrie
- Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Nedlands, WA 6009
- Faculty of Medicine and Health Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
14
|
Lim EXY, Lee WS, Madzokere ET, Herrero LJ. Mosquitoes as Suitable Vectors for Alphaviruses. Viruses 2018; 10:v10020084. [PMID: 29443908 PMCID: PMC5850391 DOI: 10.3390/v10020084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/28/2022] Open
Abstract
Alphaviruses are arthropod-borne viruses and are predominantly transmitted via mosquito vectors. This vector preference by alphaviruses raises the important question of the determinants that contribute to vector competence. There are several tissue barriers of the mosquito that the virus must overcome in order to establish a productive infection. Of importance are the midgut, basal lamina and the salivary glands. Infection of the salivary glands is crucial for virus transmission during the mosquito’s subsequent bloodfeed. Other factors that may contribute to vector competence include the microflora and parasites present in the mosquito, environmental conditions, the molecular determinants of the virus to adapt to the vector, as well as the effect of co-infection with other viruses. Though mosquito innate immunity is a contributing factor to vector competence, it will not be discussed in this review. Detailed understanding of these factors will be instrumental in minimising transmission of alphaviral diseases.
Collapse
Affiliation(s)
- Elisa X Y Lim
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| | - Wai Suet Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| | - Eugene T Madzokere
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia.
| |
Collapse
|
15
|
Gibbs T, Speers DJ. Neurological disease caused by flavivirus infections. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Flavivirus genus contains dozens of species with varying geographical distributions. Most flavivirus infections in humans are asymptomatic or manifest as a non-specific febrile illness, sometimes accompanied by rash or arthralgia. Certain species are more commonly associated with neurological disease and may be termed neurotropic flaviviruses. Several flaviviruses endemic to Australia and our near northern neighbours are neurotropic, such as Murray Valley encephalitis virus, West Nile (Kunjin) virus and Japanese encephalitis virus. Flavivirus neurological disease ranges from self-limiting meningitis to fulminant encephalitis causing permanent debilitating neurological sequelae or death. The recent Zika virus outbreak in South America has highlighted the dramatic effects of flavivirus neurotropism on the developing brain. This article focuses on the neurotropic flaviviruses endemic to Australia and those of international significance.
Collapse
|
16
|
Smith DW. Endemic Australian arboviruses of human health significance. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Each year many thousands of cases of human arbovirus infection are notified within Australia, acquired either within Australia or when travelling overseas1. These cause diseases varying from fever and aches, to debilitating joint disease, to encephalitis and death. The arboviruses endemic to Australia are all maintained in a cycle between mosquitoes (and rarely midges) and a bird or mammalian host2. As such, the virus activity is dependent on rainfall and temperature conditions that are conducive to mosquito breeding, and to virus replication and amplification (Figure 1). Those conditions being met, there have to be suitable amplifying animal hosts nearby, and their absence is one of the factors that protects most of the larger urban populations in Australia. Then, of course, humans have to be exposed to the infected mosquitoes to get disease.
Collapse
|
17
|
Neglected Australian arboviruses: quam gravis? Microbes Infect 2017; 19:388-401. [PMID: 28552411 DOI: 10.1016/j.micinf.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 11/20/2022]
Abstract
At least 75 arboviruses have been identified from Australia. Most have a zoonotic transmission cycle, maintained in the environment by cycling between arthropod vectors and susceptible mammalian or avian hosts. The primary arboviruses that cause human disease in Australia are Ross River, Barmah Forest, Murray Valley encephalitis, Kunjin and dengue. Several other arboviruses are associated with human disease but little is known about their clinical course and diagnostic testing is not routinely available. Given the significant prevalence of undifferentiated febrile illness in Australia, investigation of the potential threat to public health presented by these viruses is required.
Collapse
|
18
|
Gyawali N, Bradbury RS, Taylor-Robinson AW. Do neglected Australian arboviruses pose a global epidemic threat? Aust N Z J Public Health 2016; 40:596. [DOI: 10.1111/1753-6405.12582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Narayan Gyawali
- School of Medical & Applied Sciences; Central Queensland University
| | | | | |
Collapse
|
19
|
Inglis TJJ, Bradbury RS, McInnes RL, Frances SP, Merritt AJ, Levy A, Nicholson J, Neville PJ, Lindsay M, Smith DW. Deployable Molecular Detection of Arboviruses in the Australian Outback. Am J Trop Med Hyg 2016; 95:633-8. [PMID: 27402516 DOI: 10.4269/ajtmh.15-0878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/25/2016] [Indexed: 11/07/2022] Open
Abstract
The most common causes of human infection from the arboviruses that are endemic in Australia are the arthritogenic alphaviruses: Ross River virus (RRV) and Barmah Forest virus (BFV). The most serious infections are caused by the neurotropic flaviviruses, Murray Valley encephalitis virus (MVEV) and the Kunjin subtype of West Nile virus. The greatest individual risk of arbovirus infection occurs in tropical/subtropical northern Australia because of the warm, wet summer conditions from December to June, where conventional arbovirus surveillance is difficult due to a combination of low population density, large distances between population centers, poor roads, and seasonal flooding. Furthermore, virus detection requires samples to be sent to Perth up to 2,000 km away for definitive analysis, causing delays of days to weeks before test results are available and public health interventions can be started. We deployed a portable molecular biology laboratory for remote field detection of endemic arboviruses in northern Queensland, then in tropical Western Australia and detected BFV, MVEV, and RRV RNA by polymerase chain reaction (PCR) assays of extracts from mosquitoes trapped in Queensland. We then used a field-portable compact real-time thermocycler for the samples collected in the Kimberley region of Western Australia. Real-time field PCR assays enabled concurrent endemic arbovirus distribution mapping in outback Queensland and Western Australia. Our deployable laboratory method provides a concept of operations for future remote area arbovirus surveillance.
Collapse
Affiliation(s)
- Timothy J J Inglis
- Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine WA, Nedlands, Australia. School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia. 3rd Health Support Battalion, Adelaide, Australia.
| | - Richard S Bradbury
- 3rd Health Support Battalion, Adelaide, Australia. School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | | | | | - Adam J Merritt
- Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine WA, Nedlands, Australia. School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Avram Levy
- Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine WA, Nedlands, Australia. School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | | | | | | | - David W Smith
- Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine WA, Nedlands, Australia. School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| |
Collapse
|
20
|
Reusken C, Cleton N, Medonça Melo M, Visser C, GeurtsvanKessel C, Bloembergen P, Koopmans M, Schmidt-Chanasit J, van Genderen P. Ross River virus disease in two Dutch travellers returning from Australia, February to April 2015. Euro Surveill 2015; 20. [DOI: 10.2807/1560-7917.es2015.20.31.21200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We report two cases of Ross River virus (RRV) infection in Dutch travellers who visited Australia during February to April 2015. These cases coincided with the largest recorded outbreak of RRV disease in Australia since 1996. This report serves to create awareness among physicians to consider travel-related RRV disease in differential diagnosis of patients with fever, arthralgia and/or rash returning from the South Pacific area, and to promote awareness among professionals advising travellers to this region.
Collapse
Affiliation(s)
- C Reusken
- Department of Viroscience, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Erasmus MC, Rotterdam, the Netherlands
| | - N Cleton
- Department of Viroscience, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Erasmus MC, Rotterdam, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - M Medonça Melo
- Institute for Tropical Diseases, Harbour Hospital, Rotterdam, the Netherlands
| | - C Visser
- General practice Havelte, Havelte, the Netherlands
| | - C GeurtsvanKessel
- Department of Viroscience, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Erasmus MC, Rotterdam, the Netherlands
| | - P Bloembergen
- Laboratory for Medical Microbiology and Infectious diseases, Isala Clinics, Zwolle, the Netherlands
| | - M Koopmans
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Viroscience, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Erasmus MC, Rotterdam, the Netherlands
| | - J Schmidt-Chanasit
- German Centre for Infection Research (DZIF), Hamburg-Luebeck-Borstel, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
| | - P van Genderen
- Institute for Tropical Diseases, Harbour Hospital, Rotterdam, the Netherlands
| |
Collapse
|
21
|
|
22
|
An inactivated Ross River virus vaccine is well tolerated and immunogenic in an adult population in a randomized phase 3 trial. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:267-73. [PMID: 25540268 DOI: 10.1128/cvi.00546-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ross River virus (RRV) is endemic in Australia and several South Pacific Islands. More than 90,000 cases of RRV disease, which is characterized by debilitating polyarthritis, were reported in Australia in the last 20 years. There is no vaccine available to prevent RRV disease. A phase 3 study was undertaken at 17 sites in Australia to investigate the safety and immunogenicity of an inactivated whole-virus Vero cell culture-derived RRV vaccine in 1,755 healthy younger adults aged 16 to 59 years and 209 healthy older adults aged ≥60 years. Participants received a 2.5-μg dose of Al(OH)(3)-adjuvanted RRV vaccine, with a second and third dose after 3 weeks and 6 months, respectively. Vaccine-induced RRV-specific neutralizing and total IgG antibody titers were measured after each immunization. Vaccine safety was monitored over the entire study period. The vaccine was safe and well-tolerated after each vaccination. No cases of arthritis resembling RRV disease were reported. The most frequently reported systemic reactions were headache, fatigue, and malaise; the most frequently reported injection site reactions were tenderness and pain. After the third immunization, 91.5% of the younger age group and 76.0% of the older age group achieved neutralizing antibody titers of ≥1:10; 89.1% of the younger age group and 70.9% of the older age group achieved enzyme-linked immunosorbent assay (ELISA) titers of ≥11 PanBio units. A whole-virus Vero cell culture-derived RRV vaccine is well tolerated in an adult population and induces antibody titers associated with protection from RRV disease in the majority of individuals. (This study is registered at www.clinicaltrials.gov under registration no. NCT01242670.).
Collapse
|
23
|
Faddy HM, Prow NA, Fryk JJ, Hall RA, Keil SD, Goodrich RP, Marks DC. The effect of riboflavin and ultraviolet light on the infectivity of arboviruses. Transfusion 2014; 55:824-31. [PMID: 25370822 DOI: 10.1111/trf.12899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Arboviruses are an emerging threat to transfusion safety and rates of infection are likely to increase with the increased rainfall associated with climate change. Arboviral infections are common in Australia, where Ross River virus (RRV), Barmah Forest virus (BFV), and Murray Valley encephalitis virus (MVEV), among others, have the potential to cause disease in humans. The use of pathogen reduction technology (PRT) may be an alternative approach for blood services to manage the risk of arboviral transfusion transmission. In this study, the effectiveness of the Mirasol PRT (Terumo BCT) system at inactivating RRV, BFV, and MVEV in buffy coat (BC)-derived platelets (PLTs) was investigated. STUDY DESIGN AND METHODS BC-derived PLT concentrates in additive solution (SSP+) were spiked with RRV, BFV, or MVEV and then treated with the Mirasol PRT system. The level of infectious virus was determined before and after treatment, and the reduction in viral infectivity was calculated. RESULTS Treatment with PRT (Mirasol) reduced the amount of infectious virus of all three arboviruses. The greatest level of inactivation was observed for RRV (2.33 log; 99.25%), followed by BFV (1.97 log; 98.68%) and then MVEV (1.83 log; 98.42%). CONCLUSION Our study demonstrates that treatment of PLT concentrates with PRT (Mirasol) reduces the infectious levels of RRV, BFV, and MVEV. The relevance of the level of reduction required to prevent disease transmission by transfusion has not been fully defined and requires further investigation. In the face of a changing climate, with its associated threat to blood safety, PRT represents a proactive approach for maintaining blood safety.
Collapse
Affiliation(s)
- Helen M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Natalie A Prow
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jesse J Fryk
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Foord AJ, Boyd V, White JR, Williams DT, Colling A, Heine HG. Flavivirus detection and differentiation by a microsphere array assay. J Virol Methods 2014; 203:65-72. [DOI: 10.1016/j.jviromet.2014.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 11/26/2022]
|
25
|
Williams SA, Richards JS, Faddy HM, Leydon J, Moran R, Nicholson S, Perry F, Paskin R, Catton M, Lester R, MacKenzie JS. Low seroprevalence of Murray Valley encephalitis and Kunjin viruses in an opportunistic serosurvey, Victoria 2011. Aust N Z J Public Health 2014; 37:427-33. [PMID: 24090325 DOI: 10.1111/1753-6405.12113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To assess evidence of recent and past exposure to Murray Valley encephalitis virus (MVEV) and West Nile clade Kunjin virus (KUNV) in residents of the Murray Valley, Victoria, during a period of demonstrated activity of both viruses in early 2011. METHODS A cross-sectional serosurvey using two convenience samples: stored serum specimens from a diagnostic laboratory in Mildura and blood donors from the Murray Valley region. Specimens were collected between April and July 2011. The main outcome measure was total antibody (IgM and IgG) reactivity against MVEV and KUNV measured using an enzyme immunoassay and defined as inhibiting binding of monoclonal antibodies by >50%, when compared to negative controls. Evidence of recent exposure was measured by the presence of MVEV and KUNV IgM detected by immunofluorescence. RESULTS Of 1,115 specimens, 24 (2.2%, 95% CI 1.3-3.0%) were positive for MVEV total antibody, and all were negative for MVEV IgM. Of 1,116 specimens, 34 (3.1%, 95% CI 2.0-4.0%) were positive for KUNV total antibody, and 3 (0.27%) were KUNV IgM positive. Total antibody seroprevalence for both viruses was higher in residents born before 1974. CONCLUSIONS Despite widespread MVEV and KUNV activity in early 2011, this study found that seroprevalence of antibodies to both viruses was low (<5%) and little evidence of recent exposure. IMPLICATIONS Our findings suggest both viruses remain epizootic in the region and local residents remain potentially susceptible to future outbreaks.
Collapse
Affiliation(s)
- Stephanie A Williams
- Victorian Department of Health Centre for Immunology, Burnet Institute, Victoria Research and Development, Australian Red Cross Blood Service, Queensland Victorian Infectious Diseases Reference Laboratory Victorian Department of Health Victorian Infectious Diseases Reference Laboratory Barratt and Smith Pathology, Victoria Victorian Department of Environment and Primary Industries Victorian Infectious Diseases Reference Laboratory Victorian Department of Health Faculty of Health Sciences Office, Curtin University, Western Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Selvey LA, Dailey L, Lindsay M, Armstrong P, Tobin S, Koehler AP, Markey PG, Smith DW. The changing epidemiology of Murray Valley encephalitis in Australia: the 2011 outbreak and a review of the literature. PLoS Negl Trop Dis 2014; 8:e2656. [PMID: 24466360 PMCID: PMC3900403 DOI: 10.1371/journal.pntd.0002656] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/06/2013] [Indexed: 11/24/2022] Open
Abstract
Murray Valley encephalitis virus (MVEV) is the most serious of the endemic arboviruses in Australia. It was responsible for six known large outbreaks of encephalitis in south-eastern Australia in the 1900s, with the last comprising 58 cases in 1974. Since then MVEV clinical cases have been largely confined to the western and central parts of northern Australia. In 2011, high-level MVEV activity occurred in south-eastern Australia for the first time since 1974, accompanied by unusually heavy seasonal MVEV activity in northern Australia. This resulted in 17 confirmed cases of MVEV disease across Australia. Record wet season rainfall was recorded in many areas of Australia in the summer and autumn of 2011. This was associated with significant flooding and increased numbers of the mosquito vector and subsequent MVEV activity. This paper documents the outbreak and adds to our knowledge about disease outcomes, epidemiology of disease and the link between the MVEV activity and environmental factors. Clinical and demographic information from the 17 reported cases was obtained. Cases or family members were interviewed about their activities and location during the incubation period. In contrast to outbreaks prior to 2000, the majority of cases were non-Aboriginal adults, and almost half (40%) of the cases acquired MVEV outside their area of residence. All but two cases occurred in areas of known MVEV activity. This outbreak continues to reflect a change in the demographic pattern of human cases of encephalitic MVEV over the last 20 years. In northern Australia, this is associated with the increasing numbers of non-Aboriginal workers and tourists living and travelling in endemic and epidemic areas, and also identifies an association with activities that lead to high mosquito exposure. This outbreak demonstrates that there is an ongoing risk of MVEV encephalitis to the heavily populated areas of south-eastern Australia. An outbreak of Murray Valley encephalitis with 17 confirmed cases occurred across Australia in 2011. This outbreak involved parts of Australia where cases had not occurred for many decades. The epidemiology in this outbreak reflects a change that has occurred over the past 15 years, with more non-Aboriginal cases, fewer children and more cases that were not resident where they acquired the infection than had been observed prior to 2000. The outbreak was associated with significant flooding in many parts of Australia and most cases reported either outdoor activities where mosquito exposure was highly likely or significant mosquito exposure.
Collapse
Affiliation(s)
- Linda A. Selvey
- School of Public Health, Curtin University, Perth, Western Australia, Australia
- * E-mail:
| | - Lynne Dailey
- Independent consultant, Perth, Western Australia, Australia
| | - Michael Lindsay
- Environmental Health Directorate, WA Health, Perth, Western Australia, Australia
| | - Paul Armstrong
- Communicable Disease Control Directorate, WA Health, Perth, Western Australia, Australia
| | - Sean Tobin
- Communicable Diseases Branch, Health Protection NSW, NSW Health, Sydney, New South Wales, Australia
| | - Ann P. Koehler
- Communicable Disease Control Branch, SA Department for Health and Ageing, Adelaide, South Australia, Australia
| | - Peter G. Markey
- Centre for Disease Control, Department of Health, Northern Territory, Australia
| | - David W. Smith
- School of Pathology and Laboratory Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
27
|
Malabu UH, Porter D, Vangaveti VN, Kazi M, Kennedy RL. Prevalence of hyponatremia in acute medical admissions in tropical Asia Pacific Australia. ASIAN PAC J TROP MED 2014; 7:40-3. [DOI: 10.1016/s1995-7645(13)60189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/10/2013] [Accepted: 12/13/2013] [Indexed: 11/27/2022] Open
|
28
|
Dridi M, Rauw F, Muylkens B, Lecollinet S, van den Berg T, Lambrecht B. Setting up a SPF Chicken Model for the Pathotyping of West Nile Virus (WNV) Strains. Transbound Emerg Dis 2013; 60 Suppl 2:51-62. [DOI: 10.1111/tbed.12144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 11/30/2022]
Affiliation(s)
- M. Dridi
- Operational Direction of Viral Diseases; CODA-CERVA - Veterinary and Agrochemical Research Center; Brussels Belgium
| | - F. Rauw
- Operational Direction of Viral Diseases; CODA-CERVA - Veterinary and Agrochemical Research Center; Brussels Belgium
| | - B. Muylkens
- Integrated Veterinary Research Unit; University of Namur; Namur Belgium
| | - S. Lecollinet
- UMR1161 Virologie Institut National de la recherche Agronomique (INRA), agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Ecole Nationale Vétérinaire d'Alfort (ENVA); French Agency for Food, Environmental and Occupational Health & Safety - Anses; Maisons-Alfort France
| | - T. van den Berg
- Operational Direction of Viral Diseases; CODA-CERVA - Veterinary and Agrochemical Research Center; Brussels Belgium
| | - B. Lambrecht
- Operational Direction of Viral Diseases; CODA-CERVA - Veterinary and Agrochemical Research Center; Brussels Belgium
| |
Collapse
|
29
|
Kardamanidis K, Cashman P, Durrheim DN. Travel and non-travel associated rabies post exposure treatment in New South Wales residents, Australia, 2007-2011: a cross-sectional analysis. Travel Med Infect Dis 2013; 11:421-6. [PMID: 24211239 DOI: 10.1016/j.tmaid.2013.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Australian Bat Lyssavirus is endemic in Australian bats. More Australians are travelling to rabies (Lyssavirus 1) endemic countries. The nature and frequency of lyssavirus exposures and characteristics of New South Wales (NSW) residents exposed have not previously been described. METHOD Access to free rabies post-exposure treatment (PET) can only be arranged through Public Health Units in NSW. Details of people receiving PET after potential exposures to rabies or ABLV from 1 January 2007 to 31 December 2011 were extracted from an NSW Ministry of Health web-based database and analysed to better understand lyssavirus exposure epidemiology. RESULTS Of 1195 people receiving PET, 415 exposures were in Australia and 780 abroad; 78.3% occurring in Southeast Asia, mainly Indonesia (47.6%) where most were on the island of Bali (95.2%). PET use increased substantially for domestic and international exposures. In Australia, most bat exposures were to members of the public (76.0%), rather than to people who work with bats professionally or as volunteers, with 54.1% due to bat rescue attempts. Injuries abroad were mainly from monkeys (49.4%) and from dogs (35.8%). Only 4.0% of international travellers were vaccinated prior to their exposure. CONCLUSIONS Increasing rates of PET in travelling and non-travelling Australians emphasise the need for more effective communication about appropriate animal avoidance and the measures required if exposed. Opportunities for increasing pre-exposure treatment amongst individuals likely to be exposed should be promoted.
Collapse
Affiliation(s)
- K Kardamanidis
- National Institute for Public Health and the Environment (RIVM), Postbus 1, 3720 BA Bilthoven, Netherlands.
| | | | | |
Collapse
|
30
|
Exploring the spatio-temporal dynamics of reservoir hosts, vectors, and human hosts of West Nile virus: a review of the recent literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:5399-432. [PMID: 24284356 PMCID: PMC3863852 DOI: 10.3390/ijerph10115399] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 01/22/2023]
Abstract
Over the last two decades West Nile Virus (WNV) has been responsible for significant disease outbreaks in humans and animals in many parts of the World. Its extremely rapid global diffusion argues for a better understanding of its geographic extent. The purpose of this inquiry was to explore spatio-temporal patterns of WNV using geospatial technologies to study populations of the reservoir hosts, vectors, and human hosts, in addition to the spatio-temporal interactions among these populations. Review of the recent literature on spatial WNV disease risk modeling led to the conclusion that numerous environmental factors might be critical for its dissemination. New Geographic Information Systems (GIS)-based studies are monitoring occurrence at the macro-level, and helping pinpoint areas of occurrence at the micro-level, where geographically-targeted, species-specific control measures are sometimes taken and more sophisticated methods of surveillance have been used.
Collapse
|
31
|
Speers DJ, Flexman J, Blyth CC, Rooban N, Raby E, Ramaseshan G, Benson S, Smith DW. Clinical and radiological predictors of outcome for Murray Valley encephalitis. Am J Trop Med Hyg 2013; 88:481-9. [PMID: 23296449 DOI: 10.4269/ajtmh.12-0379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A review of the laboratory-confirmed cases of Murray Valley encephalitis (MVE) from Western Australia between 2009 and 2011 was conducted to describe the clinical, laboratory, and radiological features of the disease. The nine encephalitis patients presented with altered mental state and seizures, tremor, weakness, or paralysis. All patients developed a raised C-reactive protein, whereas most developed acute liver injury, neutrophilia, and thrombocytosis. All patients with encephalitis developed cerebral peduncle involvement on early magnetic resonance imaging (MRI). The absence of thalamic MRI hyperintensity during the acute illness, with or without leptomeningeal enhancement, predicted a better neurological outcome, whereas those patients with widespread abnormalities involving the thalamus, midbrain, and cerebral cortex or the cerebellum had devastating neurological outcomes. MRI scans repeated months after acute illness showed destruction of the thalamus and basal ganglia, cortex, or cerebellum. These findings may help clinicians predict the neurological outcome when evaluating patients with MVE.
Collapse
Affiliation(s)
- David J Speers
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Onmaz AC, Beutel RG, Schneeberg K, Pavaloiu AN, Komarek A, van den Hoven R. Vectors and vector-borne diseases of horses. Vet Res Commun 2012; 37:65-81. [PMID: 23054414 DOI: 10.1007/s11259-012-9537-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2012] [Indexed: 11/29/2022]
Abstract
Most diseases of horses with zoonotic importance are transmitted by arthropods. The vectors belong to two very distantly related groups, the chelicerate Ixodidae (Acari = ticks) and the hexapod Diptera (true flies). Almost all relevant species are predestined for transmitting pathogens by their blood-sucking habits. Especially species of Diptera, one of the megadiverse orders of holometabolan insects (ca. 150.000 spp.), affect the health status and performance of horses during the grazing period in summer. The severity of pathological effect depends on the pathogen, but also on the group of vectors and the intensity of the infection or infestation. Dipteran species but also blood-sucking representatives of Acari (Ixodidae) can damage their hosts by sucking blood, causing myiasis, allergy, paralysis and intoxication, and also transmit various bacterial, viral, parasitic, spirochetal and rickettsial diseases to animals and also humans. The aim of this review was to provide extensive information on the infectious diseases transmitted by members of the two arthropod lineages (Ixodidae, Diptera) and a systematic overview of the vectors. For each taxon, usually on the ordinal, family, and genus level a short characterisation is given, allowing non-entomologists easy identification. Additionally, the biology of the relevant species (or genera) is outlined briefly.
Collapse
Affiliation(s)
- A C Onmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Erciyes, 38039, Kayseri, Turkey.
| | | | | | | | | | | |
Collapse
|
33
|
Surveillance should be strengthened to improve epidemiological understandings of mosquito-borne Barmah Forest virus infection. Western Pac Surveill Response J 2012; 3:63-8. [PMID: 23908926 DOI: 10.5365/wpsar.2012.3.1.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Barmah Forest virus (BFV) is a mosquito-borne virus causing epidemic polyarthritis in Australia. This study used case follow-up of cases from the surveillance system to demonstrate that routinely collected BFV notification data were an unreliable indicator of the true location of exposure. METHODS BFV notifications from June 2001 to May 2011 were extracted from the New South Wales (NSW) Notifiable Conditions Information Management System to study case distribution. Disease cluster analysis was performed using spatial scan statistics. Exposure history data were collected from cases notified in 2010 and 2011 to accurately determine travel to high-risk areas. RESULTS Cluster analysis using address data identified an area of increased BFV disease incidence in the mid-north coast of NSW contiguous with estuarine wetlands. When travel to this area was investigated, 96.7% (29/30) cases reported having visited coastal regions within four weeks of developing symptoms. DISCUSSION Along the central NSW coastline, extensive wetlands occur in close proximity to populated areas. These wetlands provide ideal breeding habitats for a range of mosquito species implicated in the transmission of BFV. This is the first study to fully assess case exposure with findings suggesting that sporadic cases of BFV in people living further away from the coast do not reflect alternative exposure sites but are likely to result from travel to coastal regions. Spatial analysis by case address alone may lead to inaccurate understandings of the true distribution of arboviral diseases. Subsequently, this information has important implications for the collection of mosquito-borne disease surveillance information and public health response strategies.
Collapse
|
34
|
Knox J, Cowan RU, Doyle JS, Ligtermoet MK, Archer JS, Burrow JNC, Tong SYC, Currie BJ, Mackenzie JS, Smith DW, Catton M, Moran RJ, Aboltins CA, Richards JS. Murray Valley encephalitis: a review of clinical features, diagnosis and treatment. Med J Aust 2012; 196:322-6. [PMID: 22432670 DOI: 10.5694/mja11.11026] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/30/2011] [Indexed: 01/12/2023]
Abstract
Murray Valley encephalitis virus (MVEV) is a mosquito-borne virus that is found across Australia, Papua New Guinea and Irian Jaya. MVEV is endemic to northern Australia and causes occasional outbreaks across south-eastern Australia. 2011 saw a dramatic increase in MVEV activity in endemic regions and the re-emergence of MVEV in south-eastern Australia. This followed significant regional flooding and increased numbers of the main mosquito vector, Culex annulirostris, and was evident from the widespread seroconversion of sentinel chickens, fatalities among horses and several cases in humans, resulting in at least three deaths. The last major outbreak in Australia was in 1974, during which 58 cases were identified and the mortality rate was about 20%. With the potential for a further outbreak of MVEV in the 2011-2012 summer and following autumn, we highlight the importance of this disease, its clinical characteristics and radiological and laboratory features. We present a suspected but unproven case of MVEV infection to illustrate some of the challenges in clinical management. It remains difficult to establish an early diagnosis of MVEV infection, and there is a lack of proven therapeutic options.
Collapse
Affiliation(s)
- James Knox
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|