1
|
Yang MY, Zhao XH. Panax notoginseng Saponins Ameliorate Gamma Radiation-Mediated Damages in Human Peripheral Blood Monocytes and Swiss Albino Mice. Cell Biochem Funct 2024; 42:e4115. [PMID: 39264203 DOI: 10.1002/cbf.4115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
In this study, the protective effects of Panax notoginseng saponins (PNS) against gamma radiation-induced DNA damage and associated physiological alterations in Swiss albino mice were investigated. Exposure to gamma radiation led to a dose-dependent increase in cytokinesis-blocked micronuclei (CBMN) double-strand DNA breaks (DSBs), dicentric aberrations (DC), formation in peripheral blood mononuclear cells. However, pretreatment with PNS at concentrations of 1, 5, and 10 µg/mL significantly attenuated the frequencies of DC and CBMN in a concentration-dependent manner. PNS administration before radiation exposure also reduced radiation-induced DSBs in BL, indicating protection against reactive oxygen species generation and DNA damage. Notably, pretreatment with PNS at 10 µg/mL prevented the overexpression of γ-H2AX, proteins associated with DNA damage response, in irradiated mice. In addition, in vivo studies showed intraperitoneal administration of PNS (25 mg/kg body weight) for 1 h before radiation exposure mitigated lipid peroxidation levels and restored antioxidant status, countering oxidative damage induced by gamma radiation. Furthermore, PNS pretreatment reversed the decrease in hemoglobin (Hb) content, white blood cell count, and red blood cell count in irradiated mice, indicating preservation of hematological parameters. Overall, PNS demonstrated an anticlastogenic effect by modulating radiation-induced DSBs and preventing oxidative damage, thus highlighting its potential as a protective agent against radiation-induced DNA damage and associated physiological alterations. Clinically, PNS will be beneficial for cancer patients undergoing radiotherapy, but their pharmacological properties and toxicity profiles need to be studied.
Collapse
Affiliation(s)
- Ming-Yu Yang
- Department of Chinese Medicine, Cangzhou Medical College, Cangzhou, China
| | - Xing-Hua Zhao
- Department of Chinese Medicine, Cangzhou Medical College, Cangzhou, China
| |
Collapse
|
2
|
Tang JY, Chuang YT, Shiau JP, Yen CY, Chang FR, Tsai YH, Farooqi AA, Chang HW. Connection between Radiation-Regulating Functions of Natural Products and miRNAs Targeting Radiomodulation and Exosome Biogenesis. Int J Mol Sci 2023; 24:12449. [PMID: 37569824 PMCID: PMC10419287 DOI: 10.3390/ijms241512449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Ziyadi S, Iddar A, Errafiy N, Ridaoui K, Kabine M, El Mzibri M, Moutaouakkil A. Protective Effect of Some Essential Oils Against Gamma-Radiation Damages in Tetrahymena pyriformis Exposed to Cobalt-60 Source. Curr Microbiol 2022; 79:279. [PMID: 35920924 DOI: 10.1007/s00284-022-02924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 11/24/2022]
Abstract
The main purpose of this study was to investigate the protective effect of Rosmarinus officinalis, Origanum compactum, Lavandula angustifolia, and Eucalyptus globulus essential oils (EOs) against gamma-radiation-induced damages on Tetrahymena pyriformis growing in presence of cobalt-60 source. The chemical composition of the 4 EOs was analyzed by gas chromatography-mass spectrometry. The protective effects of EOs on growth, on morphology, and on some metabolic enzymes and antioxidant markers have been evaluated. Thus, addition of EOs significantly improves the growth parameters (generation number and time) in irradiating conditions. All EOs allowed restoring growth parameters over more than 90% compared to the controls. The morphological analysis indicated that T. pyriformis cells growing in irradiating conditions were able to regain their normal form in presence of the different EOs. Our results indicate that the 4 EOs also have protective effects on some metabolic enzymes. They allowed recovering totally or partially the glyceraldehyde 3-phosphate dehydrogenase and the succinate dehydrogenase activities compared to the controls. Moreover, the addition of EOs reduced the lipid peroxidation level and decreased the activities of catalase and superoxide dismutase induced by the gamma-radiation exposure. A more pronounced protective effect was found for O. compactum and L. angustifolia EOs compared to R. officinalis and E. globulus EOs. These results suggest that the studied EOs are efficient natural antioxidants that could offer protection against gamma-radiation-induced damages and can therefore be useful in clinical medicine.
Collapse
Affiliation(s)
- Soukaina Ziyadi
- Biotechnology and Biomolecule Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP 1382, 10001, Rabat, Morocco.,Health and Environment Laboratory, Faculty of Sciences Aïn-Chock, Hassan II University, Km 8 Route d'El Jadida, Mâarif, BP 5366, 20100, Casablanca, Morocco
| | - Abdelghani Iddar
- Biotechnology and Biomolecule Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP 1382, 10001, Rabat, Morocco
| | - Nadia Errafiy
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Bld Mohammed Taïeb Naciri, 82403, Casablanca, Morocco
| | - Khadija Ridaoui
- Health and Environment Laboratory, Faculty of Sciences Aïn-Chock, Hassan II University, Km 8 Route d'El Jadida, Mâarif, BP 5366, 20100, Casablanca, Morocco
| | - Mostafa Kabine
- Health and Environment Laboratory, Faculty of Sciences Aïn-Chock, Hassan II University, Km 8 Route d'El Jadida, Mâarif, BP 5366, 20100, Casablanca, Morocco
| | - Mohammed El Mzibri
- Biotechnology and Biomolecule Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP 1382, 10001, Rabat, Morocco
| | - Adnane Moutaouakkil
- Biotechnology and Biomolecule Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP 1382, 10001, Rabat, Morocco.
| |
Collapse
|
4
|
Lalpara JN, Hadiyal SD, Dhaduk BB, Gupta MK, Solanki MB, Sharon A, Dubal GG. Water Promoted One Pot Synthesis of Sesamol Derivatives as Potent Antioxidants: DFT, Molecular Docking, SAR and Single Crystal Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2083194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - B. B. Dhaduk
- Department of Chemistry, Atmiya University, Rajkot, Gujarat, India
| | - Maneesh Kumar Gupta
- Department of Chemistry, Hotilal Ramnath College (A Constituent Unit of Jai Prakash University), Amnour, Chapra, Bihar, India
| | - M. B. Solanki
- School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, India
| | | | - G. G. Dubal
- Department of Chemistry, RK University, Rajkot, Gujarat, India
| |
Collapse
|
5
|
Askar MA, Guida MS, AbuNour SM, Ragab EA, Ali EN, Abdel-Magied N, Mansour NA, Elmasry SA. Nanoparticles for active combination radio mitigating agents of zinc coumarate and zinc caffeinate in a rat model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30233-30248. [PMID: 35000180 DOI: 10.1007/s11356-021-18411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Zinc coumarate and zinc caffeinate nanoparticles (ZnCoNPs, ZnCaNPs) affect different biological processes. This study aimed to evaluate the mitigating action of ZnCoNPs in combination with ZnCaNPs against liver damage induced by gamma rays (γ-rays). Rats were exposed to 7 Gy of γ-rays and then injected intraperitoneally (i.p) with ZnCoNPs [2U/rat/day (5 mg/kg)] and ZnCaNPs [2U/rat/day (15 mg/kg)] for 7 consecutive days. The results showed that irradiated rats treated with ZnCoNPs (5 mg/kg/body weight) in combination with ZnCaNPs (15 mg/kg/body weight) for 7 days had a significant increases in body weight, antioxidant levels, T helper cell 4 (cluster of differentiation 4 (CD4)), and T cytotoxic cell 8 (cluster of differentiation 8 (CD8)), associated with a marked decrease in lipid peroxidation (LP), nitric oxide(NOx), total free radicals concentrate (TFRC), and DNA fragmentation. There were positive alterations in the morphological state, hematological parameters and the cell cycle phases. Additionally, the histopathological study demonstrated an improvement in the liver tissue of irradiated rats after treatment. Thus, ZnCoNPs and ZnCaNPs could be used as natural mitigating agents to reduce the hazards of ionizing radiation.
Collapse
Affiliation(s)
- Mostafa A Askar
- Department of Radiation Biology Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Mona S Guida
- GenticUnit, Pediatric Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Seham M AbuNour
- Department of Health and Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Essam A Ragab
- Department of Natural Product Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Eiman N Ali
- Department of Radiation Biology Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Nadia Abdel-Magied
- Department of Radiation Biology Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt.
| | - Nahla A Mansour
- Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Samir A Elmasry
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, Sadat City, Egypt
| |
Collapse
|
6
|
Wickramasinghe JS, Udagama PV, Dissanayaka VHW, Weerasooriya AD, Goonasekera HWW. Plant based radioprotectors as an adjunct to radiotherapy: advantages and limitations. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021001. [PMID: 35130534 DOI: 10.1088/1361-6498/ac5295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Radioprotectors are agents that have the potential to act against radiation damage to cells. These are equally invaluable in radiation protection, both in intentional and unintentional radiation exposure. It is however, complex to use a universal radioprotector that could be beneficial in diverse contexts such as in radiotherapy, nuclear accidents, and space travel, as each of these circumstances have unique requirements. In a clinical setting such as in radiotherapy, a radioprotector is used to increase the efficacy of cancer treatment. The protective agent must act against radiation damage selectively in normal healthy cells while enhancing the radiation damage imparted on cancer cells. In the context of radiotherapy, plant-based compounds offer a more reliable solution over synthetic ones as the former are less expensive, less toxic, possess synergistic phytochemical activity, and are environmentally friendly. Phytochemicals with both radioprotective and anticancer properties may enhance the treatment efficacy by two-fold. Hence, plant based radioprotective agents offer a promising field to progress forward, and to expand the boundaries of radiation protection. This review is an account on radioprotective properties of phytochemicals and complications encountered in the development of the ideal radioprotector to be used as an adjunct in radiotherapy.
Collapse
Affiliation(s)
- Jivendra S Wickramasinghe
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Preethi V Udagama
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Vajira H W Dissanayaka
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Aruna D Weerasooriya
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States of America
| | - Hemali W W Goonasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
7
|
Baran M, Yay A, Onder GO, Canturk Tan F, Yalcin B, Balcioglu E, Yıldız OG. Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats. Int J Radiat Biol 2022; 98:1473-1483. [PMID: 35171756 DOI: 10.1080/09553002.2022.2033339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Although radiation is one of the basic methods commonly used in cancer treatment, it inevitably enters the field of treatment in healthy tissues and is adversely affected by the acute and chronic side effects of radiation. This study evaluated the possible protective effects of quercetin, an antioxidant agent, against liver and kidney damage in rats exposed to a whole-body single dose of radiation (10 Gy of gamma-ray). MATERIALS AND METHODS The study groups were formed as control, sham, quercetin, radiation, quercetin + radiation and radiation + quercetin using 60 male Wistar albino (200-250 g, 3 months old) rats, including 10 rats in each group. The gamma-ray provided by the Co60 teletherapy machine was given to the whole body as external irradiation. According to the groups, quercetin was administered to rats at 50 mg/kg/day via oral gavage before or after radiation administration. The rats were sacrificed the day after irradiation and the extracted tissue samples from all groups were compared histologically and immunohistochemically. DNA damage was determined by the neutral comet assay technique. Also, malondialdehyde (MDA) and glutathione peroxidase (GSH) were evaluated in liver and kidney tissues by the ELISA method. RESULTS Histopathological changes were observed altered morphology of liver and kidney tissues in the radiation groups. Sinusoidal dilatations, vacuolization, and hepatic parenchyma necrosis in the liver, while in kidneys, glomerular shrinkage, widened Bowman's space, tubular dilatation, and inflammation were evident. TNF-α, IL1-α, HIF1-α, and caspase 3 immunoreactivities in tissues were determined by immunohistochemistry. High caspase 3 positive cell number confirmed apoptosis, the comet parameters were decreased in the quercetin + radiation group. When compared to the control group, the exposure to radiation showed a marked elevation in MDA which was accompanied by high GSH. This damage was reduced in the quercetin + radiation group. CONCLUSIONS With the results obtained from the study; Quercetin is thought to have a protective potential against radiation-induced liver and kidney damage due to its radioprotective effect.
Collapse
Affiliation(s)
- Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Fazile Canturk Tan
- Department of Biophysics, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Betul Yalcin
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Esra Balcioglu
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Oguz Galip Yıldız
- Department of Radiation Oncology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| |
Collapse
|
8
|
Benković V, Marčina N, Horvat Knežević A, Šikić D, Rajevac V, Milić M, Kopjar N. Potential radioprotective properties of arbutin against ionising radiation on human leukocytes in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503413. [PMID: 34798933 DOI: 10.1016/j.mrgentox.2021.503413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Arbutin is a simple phenolic glucoside biosynthesised in many plant families. Some of the everyday foods that contain arbutin are species of the genus Origanum, peaches, cereal products, coffee and tea and Arctostaphyllos uva ursi L. leaves. Arbutin possesses various beneficial effects in the organism, and was confirmed effective in the treatment of urinary tract infections as well as in preventing skin hyperpigmentation. It shows antioxidant and anti-inflammatory properties, and antitumor activity. The aim of this study was to explore potential radioprotective properties of arbutin in concentrations of 11.4 μg/mL, 57 μg/mL, 200 μg/mL and 400 μg/mL administered as a pre-treatment for one hour before exposing human leukocytes to ionising radiation at a therapeutic dose of 2 Gy. The alkaline comet assay was used to establish the levels of primary DNA damage, and cytokinesis-block micronucleus (CBMN) cytome assay to determine the level of cytogenetic damage. None of the tested concentrations of single arbutin showed genotoxic and cytotoxic effects. Even at the lowest tested concentration, 11.4 μg/mL, arbutin demonstrated remarkable potential for radioprotection in vitro, observed both at the level of primary DNA damage, and using CBMN cytome assay. The best dose reduction compared with amifostine was observed after pre-treatment with the highest concentration of arbutin, corresponding to 400 μg/mL. Promising results obtained on the leukocyte model speak in favour of extending similar experiments on other cell and animal models.
Collapse
Affiliation(s)
- Vesna Benković
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Nives Marčina
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anica Horvat Knežević
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Dunja Šikić
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Vedran Rajevac
- University Hospital for Tumours, Sisters of Mercy University Hospital Centre, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
9
|
Mani S, Swargiary G, Ralph SJ. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy. Mitochondrion 2021; 62:50-73. [PMID: 34758363 DOI: 10.1016/j.mito.2021.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Changes in reactive oxygen species (ROS) levels affect many aspects of cell behavior. During carcinogenesis, moderate ROS production modifies gene expression to alter cell function, elevating metabolic activity and ROS. To avoid extreme ROS-activated death, cancer cells increase antioxidative capacity, regulating sustained ROS levels that promote growth. Anticancer therapies are exploring inducing supranormal, cytotoxic oxidative stress levels either inhibiting antioxidative capacity or promoting excess ROS to selectively destroy cancer cells, triggering mechanisms such as apoptosis, autophagy, necrosis, or ferroptosis. This review exemplifies pro-oxidants (natural/synthetic/repurposed drugs) and their clinical significance as cancer therapies providing revolutionary approaches.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Medical Science, Griffith University, Southport, Australia.
| |
Collapse
|
10
|
Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021; 10:3041. [PMID: 34831262 PMCID: PMC8616186 DOI: 10.3390/cells10113041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, University of Manchester, Manchester M13 9PL, UK;
| | - Cliona C. Kirwan
- Division of Cancer Sciences and Manchester Breast Centre, Oglesby Cancer Research Building, Manchester Cancer Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
11
|
Abou-Zeid SM, Elkhadrawey BA, Anis A, AbuBakr HO, El-Bialy BE, Elsabbagh HS, El-Borai NB. Neuroprotective effect of sesamol against aluminum nanoparticle-induced toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53767-53780. [PMID: 34037932 DOI: 10.1007/s11356-021-14587-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (ALNPs) are widely used causing neurobehavioral impairment in intoxicated animals and humans. Sesamol (SML) emerged as a natural phytochemical with potent antioxidant and anti-inflammatory properties. However, no study has directly tested the potential of SML to protect against AlNP-induced detrimental effects on the brain. AlNPs (100 mg/kg) were orally administered to rats by gavage with or without oral sesamol (100 mg/kg) for 28 days. In AlNP-intoxicated group, the brain AChE activity was elevated. The concentrations of MDA and 8-OHdG were increased suggesting lipid peroxidation and oxidative DNA damage. GSH depletion with inhibited activities of CAT and SOD were demonstrated. Serum levels of IL-1β and IL-6 were elevated. The expressions of GST, TNF-α, and caspase-3 genes in the brain were upregulated. Histopathologically, AlNPs induced hemorrhages, edema, neuronal necrosis, and/or apoptosis in medulla oblongata. The cerebellum showed loss of Purkinje cells, and the cerebrum showed perivascular edema, neuronal degeneration, necrosis, and neuronal apoptosis. However, concomitant administration of SML with AlNPs significantly ameliorated the toxic effects on the brain, reflecting antioxidant, anti-inflammatory, and anti-apoptotic effects of SML. Considering these results, sesamol could be a promising phytochemical with neuroprotective activity against AlNP-induced neurotoxicity.
Collapse
Affiliation(s)
- Shimaa M Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt.
| | - Basma A Elkhadrawey
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Anis Anis
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Badr E El-Bialy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Hesham S Elsabbagh
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Nermeen B El-Borai
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| |
Collapse
|
12
|
Gupta B, Dalal P, Rao R. Cyclodextrin decorated nanosponges of sesamol: Antioxidant, anti-tyrosinase and photostability assessment. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Baş H, Apaydın FG, Kalender S, Kalender Y. Lead nitrate and cadmium chloride induced hepatotoxicity and nephrotoxicity: Protective effects of sesamol on biochemical indices and pathological changes. J Food Biochem 2021; 45:e13769. [PMID: 34021611 DOI: 10.1111/jfbc.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Lead nitrate (LN) and cadmium chloride (CdCl2 ), regarded as environmental contaminants, are toxic heavy metals. Sesamol is a dietary phytochemical found in sesame oil. We aimed to analyze the hepatotoxic and nephrotoxic effects of LN and CdCl2 and to evaluate the possible protective effect of sesamol. LN (90 mg/kg bw per day), CdCl2 (3 mg/kg bw per day), and sesamol (50 mg/kg bw per day) were given to rats via gavage for 28 days. Total protein, albumin, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, total cholesterol, urea, uric acid, creatinine, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, malondialdehyde, acetylcholinesterase, and histopathological changes were investigated in liver and kidney tissues. Lead and cadmium were found to result in decreases in the antioxidant enzymes and acetylcholinesterase activities, increases in malondialdehyde levels, and changes in serum biochemical parameters and various pathological findings. An improvement in all these parameters was observed in the sesamol-treated groups. PRACTICAL APPLICATIONS: Heavy metals are used in many areas of the industry all over the world. Heavy metals which include lead nitrate and cadmium chloride cause cell damage by oxidative stress. Some of the examining parameters for oxidative stress are SOD, GST, MDA, GPx, and CAT. However, some chemicals such as sesamol are well-liked and widely used as antioxidants against xenobiotic toxicity. We also indicate that sesamol has been shown to protective effect against heavy metals caused cell damage.
Collapse
Affiliation(s)
- Hatice Baş
- Faculty of Arts and Science, Department of Biology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Suna Kalender
- Gazi Education Faculty, Department of Science Education, Gazi University, Ankara, Turkey
| | - Yusuf Kalender
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
14
|
Adnan M, Rasul A, Shah MA, Hussain G, Asrar M, Riaza A, Sarfraza I, Hussaina A, Khorsandid K, Laie NS, Hussaina SM. Radioprotective Role of Natural Polyphenols: From Sources to Mechanisms. Anticancer Agents Med Chem 2021; 22:30-39. [PMID: 33874875 DOI: 10.2174/1871520621666210419095829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
The identification and development of radioprotective agents has emerged as a subject matter of research during recent years due to the growing usage of ionizing radiation in different areas of human life. Previous work on synthetic radioprotectors has achieved limited progress because of the numerous issues associated with toxicity. Compounds extracted from plants have potential to serve as lead candidates for developing ideal radioprotectors due to their low cost, safety and selectivity. Polyphenols are the most abundant and commonly dispersed group of biologically active molecules possessing broad range of pharmacological activities. Polyphenols have displayed efficacy for radioprotection during various investigations and can be administered at high doses with lesser toxicity. Detoxification of free radicals, modulating inflammatory responses, DNA repair, stimulation of hematopoietic recovery, and immune functions are the main mechanisms for radiation protection with polyphenols. Epicatechin, epigallocatechin-3-gallate, apigenin, caffeic acid phenylethylester, and silibinin provide cytoprotection together with the suppression of many pro-inflammatory cytokines owing to their free radical scavenging, anti-oxidant, and anti-inflammatory properties. Curcumin, resveratrol, quercetin, gallic acid, and rutin's radioprotective properties are regulated primarily by direct or indirect decline in cellular stress. Thus, polyphenols may serve as potential candidates for radioprotection in the near future, however, extensive investigations are still required to better understand their protection mechanisms.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000. Pakistan
| | - Ghulam Hussain
- Neurochemical biology and Genetics Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Ammara Riaza
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Iqra Sarfraza
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Arif Hussaina
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Khatereh Khorsandid
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran. Iran
| | - Ngit S Laie
- Institute for Research in Molecular Medicine Universiti Sains Malaysia, Pulau Pinang. Malaysia
| | - Syed M Hussaina
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| |
Collapse
|
15
|
Das U, Saha T, Das SK. Antioxidant Properties of Trianthema Portulacastrum and Protection Against Ionizing Radiation-Induced Liver Damage Ex vivo. Indian J Clin Biochem 2021; 37:192-198. [PMID: 35463107 PMCID: PMC8993979 DOI: 10.1007/s12291-021-00964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/17/2021] [Indexed: 11/27/2022]
Abstract
Antioxidants in fruits and vegetables protect cells against radiation induced damage. Trianthema portulacastrum is used as vegetables from ancient time. The effects of T. Portulacastrum ethanolic extracts against γ-radiation induced liver tissue damage ex vivo were evaluated in this study. Antioxidant phytochemicals present in T. Portulacastrum includes flavonoids [3.3 ± 0.15 to 10 ± 0.16 mg catethin equivalent (CE)/g fresh weight (fw)], ascorbic acid (0.15 ± 0.03 to 0.21 ± 0.03 mg/g fw), glutathione s-transferase (GST) (1.57 ± 0.06 to 3.59 ± 0.05 nmole/mg fw/min), superoxide dismutase (SOD) (1.6 ± 0.03 to 1.79 ± 0.04 U/min), peroxidase (3.26 ± 0.18 to 6.38 ± 0.03 U/g fw) and catalase (0.51 ± 0.03 to 2.84 ± 0.15 mg H2O2 decomposed/g fw/min). Total phenolic content varied from 122.9 ± 8.7 to 302.8 ± 15.7 mg gallic acid equivalent/g extract, and flavonoid content varied from 316.7 ± 33.3 to 800.7 ± 28.9 CE mg/g extract. The IC50 value of Nitric oxide (NO•) scavenging activity of extracts varies from 208.7 to 387.4 µg/ ml. Pre-treatment with the T. portulacastrum extracts mitigated the 4-Gy gamma(γ) radiation-induced oxidative stress related parameters in hepatic tissue such as TBARS, catalase, nitrite, Glutathione reductase (GR), SOD and GST in dose dependent manner. The ethanolic extract of the stem from T. Portulacastrum demonstrated highest protection in comparison to leaf and whole plant extracts. This study demonstrated the hepatoprotective efficacy of T. portulacastrum extracts against γ-radiation in ex-vivo condition was possibly due to its potential antioxidant properties of phenolic and flavonoids present in extracts.
Collapse
Affiliation(s)
- Uttam Das
- Department of Biochemistry, College of Medicine and JNM Hospital, WBUHS, Kalyani, Nadia, West Bengal 741235 India
| | - Tanmay Saha
- Department of Biochemistry, College of Medicine and JNM Hospital, WBUHS, Kalyani, Nadia, West Bengal 741235 India
| | - Subir Kumar Das
- Department of Biochemistry, College of Medicine and JNM Hospital, WBUHS, Kalyani, Nadia, West Bengal 741235 India
| |
Collapse
|
16
|
Sharma T, Airao V, Buch P, Vaishnav D, Parmar S. Sesamol protects hippocampal CA1 neurons and reduces neuronal infarction in global model of cerebral ischemia in rats. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Jayaraj P, Narasimhulu CA, Rajagopalan S, Parthasarathy S, Desikan R. Sesamol: a powerful functional food ingredient from sesame oil for cardioprotection. Food Funct 2020; 11:1198-1210. [PMID: 32037412 DOI: 10.1039/c9fo01873e] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phytophenols are important bioactive food based chemical entities, largely present in several natural sources. Among them, sesamol is one of the key natural phenols found in sesame seeds, Piper cubeba etc. Several studies have reported that sesame oil is a potent cardioprotective functional food. Papers on the utility of sesamol in sesame oil (the chemical name of sesamol is methylenedioxyphenol, MDP) have appeared in the literature, though there is no single concise review on the usefulness of sesamol in sesame oil in CVD in the literature. Cardiovascular disease (CVD) is the most challenging health problem encountered by the global population. There has been increasing interest in the growth of effective cardiovascular therapeutics, specifically of natural origin. Among various natural sources of chemicals, phytochemicals are micronutrients and bio-compatible scaffolds having an extraordinary efficacy at multiple disease targets with minimal or no adverse effect. This review offers a perspective on the existing literature on functional ingredients in sesame oil with particular focus on sesamol and its derivatives having nutritional and cardioprotective properties. This is demonstrated to have shown a specifically modulating oxidative enzyme myeloperoxidase (MPO) and other proteins which are detrimental to human well-being. The molecular mechanism of cardioprotection by this food ingredient is primarily attributed to the methylenedioxy group present in the sesamol component.
Collapse
Affiliation(s)
- Premkumar Jayaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India.
| | | | | | | | | |
Collapse
|
18
|
Fouad D, Al-Obaidi E, Badr A, Ataya FS, Abdel-Gaber R. Modulatory effect of Ficus carica on oxidative stress and hematological changes induced by gamma-radiation in male albino rats. Biologia (Bratisl) 2020; 75:1313-1324. [DOI: 12. fouad, d., al-obaidi, e., badr, a.et al.modulatory effect of ficus carica on oxidative stress and hematological changes induced by gamma-radiation in male albino rats.biologia.(2019).doi:10.2478/s11756-019-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2023]
|
19
|
Bosebabu B, Cheruku SP, Chamallamudi MR, Nampoothiri M, Shenoy RR, Nandakumar K, Parihar VK, Kumar N. An Appraisal of Current Pharmacological Perspectives of Sesamol: A Review. Mini Rev Med Chem 2020; 20:988-1000. [DOI: 10.2174/1389557520666200313120419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
Sesame (Sesamum indicum L.) seeds have been authenticated for its medicinal value in both
Chinese and Indian systems of medicine. Its numerous potential nutritional benefits are attributed to its
main bioactive constituents, sesamol. As a result of those studies, several molecular mechanisms are
emerging describing the pleiotropic biological effects of sesamol. This review summarized the most
interesting in vitro and in vivo studies on the biological effects of sesamol. The present work summarises
data available from Pubmed and Scopus database. Several molecular mechanisms have been elucidated
describing the pleiotropic biological effects of sesamol. Its major therapeutic effects have been
elicited in managing oxidative and inflammatory conditions, metabolic syndrome and mood disorders.
Further, compelling evidence reflected the ability of sesamol in inhibiting proliferation of the inflammatory
cell, prevention of invasion and angiogenesis via affecting multiple molecular targets and
downstream mechanisms. Sesamol is a safe, non‐toxic chemical that mediates anti‐inflammatory
effects by down‐regulating the transcription of inflammatory markers such as cytokines, redox status,
protein kinases, and enzymes that promote inflammation. In addition, sesamol also induces apoptosis
in cancer cells via mitochondrial and receptor‐mediated pathways, as well as activation of caspase cascades.
In the present review, several pharmacological effects of sesamol are summarised namely, antioxidant,
anti-cancer, neuroprotective, cardioprotective, anti-inflammatory, hypolipidemic, radioprotective,
anti-aging, anti-ulcer, anti-dementia, anti-depressant, antiplatelet, anticonvulsant, anti-anxiolytic,
wound healing, cosmetic (skin whitening), anti-microbial, matrix metalloproteinase (MMPs) inhibition,
hepatoprotective activity and other biological effects. Here we have summarized the proposed
mechanism behind these pharmacological effects.
Collapse
Affiliation(s)
- Bellamkonda Bosebabu
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rekha R. Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Vipan K. Parihar
- Department of Radiation Oncology, University of California, Irvine, CA 92697- 2695, United States
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
20
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
21
|
Majdaeen M, Banaei A, Abedi-Firouzjah R, Ebrahimnejad Gorji K, Ataei G, Momeni F, Zamani H. Investigating the radioprotective effect of sesamol oral consumption against gamma irradiation in mice by micronucleus and alkaline comet assays. Appl Radiat Isot 2020; 159:109091. [DOI: 10.1016/j.apradiso.2020.109091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
|
22
|
Castro-González L, Alvarez-Idaboy JR, Galano A. Computationally Designed Sesamol Derivatives Proposed as Potent Antioxidants. ACS OMEGA 2020; 5:9566-9575. [PMID: 32363309 PMCID: PMC7191856 DOI: 10.1021/acsomega.0c00898] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 05/14/2023]
Abstract
Oxidative stress has been recognized to play an important role in several diseases, such as Parkinson's and Alzheimer's disease, which justifies the beneficial effects of antioxidants in ameliorating the deleterious effects of these health disorders. Sesamol, in particular, has been investigated for the treatment of several conditions because of its antioxidant properties. This article reports a rational computational design of new sesamol derivatives. They were constructed by adding four functional groups (-OH, -NH2, -COOH, and -SH) in three different positions of the sesamol molecular framework. A total of 50 derivatives between mono-, di-, and trisubstituted compounds were obtained. All the derivatives were evaluated and compared with a reference set of commercial neuroprotective drugs. The estimated properties are absorption, distribution, metabolism, excretion, toxicity, and synthetic accessibility. Selection and elimination scores were used to choose a first set of promising candidates. Acid-based properties and reactivity indexes were then estimated using the density functional theory. Four sesamol derivatives were finally selected, which are hypothesized to be potent antioxidants, even better than sesamol and Trolox for that purpose.
Collapse
Affiliation(s)
- Laura
M. Castro-González
- Departamento
de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
| | - Juan Raúl Alvarez-Idaboy
- Departamento
de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
| | - Annia Galano
- Departamento
de Química, Universidad Autónoma
Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa. C. P., México DF 09340, Mexico
| |
Collapse
|
23
|
Modulatory effect of Ficus carica on oxidative stress and hematological changes induced by gamma-radiation in male albino rats. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00375-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Khayyal MT, Abdel-Naby DH, El-Ghazaly MA. Propolis extract protects against radiation-induced intestinal mucositis through anti-apoptotic mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24672-24682. [PMID: 31240658 DOI: 10.1007/s11356-019-05782-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Intestinal mucositis is a common side effect during radiotherapy that could be largely prevented by compounds possessing anti-inflammatory or anti-oxidant properties, including extracts of propolis containing a high proportion of flavonoids. A specially formulated aqueous extract of propolis (PWE) has been prepared in such a way to preclude the inclusion of flavonoids but contain mostly organic aromatic acids to study whether it would still protect against radiation-induced intestinal mucositis and to study the possible involvement of apoptotic pathways. Rats were exposed to a gamma radiation dose of 8 Gy from a Cesium-137 source in order to inflict intestinal mucositis. Three days before exposure, rats were given PWE orally and treatment continued for 2 more days. Twenty-four hours later, rats were sacrificed, the small intestine was excised, and sections were examined histologically. Different parameters for apoptosis, inflammation, and oxidative stress were determined in the serum and in intestinal homogenates. Radiation exposure led to histological and biochemical signs of intestinal damage. This was associated with an increase in apoptotic indicators and derangement in oxidative stress parameters. All deranged parameters were largely prevented by PWE. The findings provide evidence that the protective effect of PWE against intestinal radiation damage involves not only its anti-inflammatory and anti-oxidant effects but also its anti-apoptotic properties as well.
Collapse
Affiliation(s)
- Mohamed T Khayyal
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt.
| | - Doaa H Abdel-Naby
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmad El-Zomor Street, Nasr City, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmad El-Zomor Street, Nasr City, Cairo, Egypt
| |
Collapse
|
25
|
Majdalawieh AF, Mansour ZR. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. Eur J Pharmacol 2019; 855:75-89. [PMID: 31063773 DOI: 10.1016/j.ejphar.2019.05.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Sesamol is a natural phenolic compound and a major lignan isolated from sesame seeds (Sesamum indicum) and sesame oil. The therapeutic potential of sesamol was investigated intensively, and there is compelling evidence that sesamol acts as a metabolic regulator that possesses antioxidant, anti-mutagenic, anti-hepatotoxic, anti-inflammatory, anti-aging, and chemopreventive properties. Various studies have reported that sesamol exerts potent anti-cancer effects. Herein, we provide a comprehensive review that summarizes the in vitro and in vivo anti-cancer activity of sesamol in several cancer cell lines and animal models. The protective role that sesamol plays against oxidative stress through its radical scavenging ability and lipid peroxidation lowering potential is analyzed. The ability of sesamol to regulate apoptosis and various stages of the cell cycle is also outlined. Moreover, the signaling pathways that sesamol seems to target to execute its antioxidant, anti-inflammatory, and pro-apoptotic/anti-proliferative roles are discussed. The signaling pathways that sesamol targets include the p53, MAPK, JNK, PI3K/AKT, TNFα, NF-κB, PPARγ, caspase-3, Nrf2, eNOS, and LOX pathways. The mechanisms of action that sesamol executes to deliver its anti-cancer effects are delineated. In sum, there is ample evidence suggesting that sesamol possesses potent anti-cancer properties in vitro and in vivo. A thorough understanding of the molecular targets of sesamol and the mechanisms of action underlying its anti-cancer effects is necessary for possible employment of sesamol as a chemotherapeutic agent in cancer prevention and therapy.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Zeenah R Mansour
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
26
|
The prevention of radiation-induced DNA damage and apoptosis in human intestinal epithelial cells by salvianic acid A. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Hassan AI, Ibrahim RY. Some genetic profiles in liver of Ehrlich ascites tumor-bearing mice under the stress of irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amal I. Hassan
- Department of Radioisotopes, Nuclear Research Centre, Atomic Energy Authority, Malaeb El-Gamaa St., P.O. 12311, Dokki, Giza, 11231, Egypt
| | - Rasha Y.M. Ibrahim
- Department of Radioisotopes, Nuclear Research Centre, Atomic Energy Authority, Malaeb El-Gamaa St., P.O. 12311, Dokki, Giza, 11231, Egypt
| |
Collapse
|
28
|
Zhang H, Li Y, Chen Y, Ying Z, Su W, Zhang T, Dong Y, Htoo JK, Zhang L, Wang T. Effects of dietary methionine supplementation on growth performance, intestinal morphology, antioxidant capacity and immune function in intra-uterine growth-retarded suckling piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:868-881. [PMID: 30941824 DOI: 10.1111/jpn.13084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/02/2023]
Abstract
This study investigated the effects of dietary supplementation with L -methionine (L -Met), DL -methionine (DL -Met) and calcium salt of the methionine hydroxyl analog (MHA-Ca) on growth performance, intestinal morphology, antioxidant capacity and immune function in intra-uterine growth-retarded (IUGR) suckling piglets. Six normal birthweight (NBW) female piglets and 24 same-sex IUGR piglets were selected at birth. Piglets were fed nutrient adequate basal diet supplemented with 0.08% L -alanine (NBW-CON), 0.08% L -alanine (IUGR-CON), 0.12% L -Met (IUGR-LM), 0.12% DL -Met (IUGR-DLM) and 0.16% MHA-Ca (IUGR-MHA-Ca) from 7 to 21 days of age respectively (n = 6). The results indicated that IUGR decreased average daily milk (dry matter) intake and average daily gain and increased feed conversion ratio of suckling piglets (p < 0.05). Compared with the NBW-CON piglets, IUGR also impaired villus morphology and reduced antioxidant capacity and immune homeostasis in the intestine of IUGR-CON piglets (p < 0.05). Supplementation with L -Met enhanced jejunal villus height (VH) and villus area and ileal VH of IUGR piglets compared with IUGR-CON piglets (p < 0.05). Similarly, DL -Met supplementation increased VH and the ratio of VH to crypt depth in the jejunum compared with IUGR-CON pigs (p < 0.05). Supplementation with L -Met and DL -Met (0.12%) tended to increase reduced glutathione content and reduced glutathione: oxidized glutathione ratio and decrease protein carbonyl concentration in the jejunum of piglets when compared with the IUGR-CON group (p < 0.10). However, supplementation with MHA-Ca had no effect on the intestinal redox status of IUGR piglets (p > 0.10). In conclusion, supplementation with either L -Met or DL -Met has a beneficial effect on the intestinal morphology and antioxidant capacity of IUGR suckling piglets.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Postdoctoral Research Station of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weipeng Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tao Zhang
- Evonik Degussa (China) Co., Ltd, Beijing, China
| | - Yan Dong
- Evonik Degussa (China) Co., Ltd, Beijing, China
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Abstract
Radiotherapy is one of the most efficient ways to treat cancer. However, deleterious effects, such as acute and chronic toxicities that reduce the quality of life, may result. Naturally occurring compounds have been shown to be non-toxic over wide dose ranges and are inexpensive and effective. Additionally, pharmacological strategies have been developed that use radioprotectors to inhibit radiation-induced toxicities. Currently available radioprotectors have several limitations, including toxicity. In this review, we present the mechanisms of proven radioprotectors, ranging from free radical scavenging (the best-known mechanism of radioprotection) to molecular-based radioprotection (e.g., upregulating expression of heat shock proteins). Finally, we discuss naturally occurring compounds with radioprotective properties in the context of these mechanisms.
Collapse
|
30
|
Colorimetric detection of low dose gamma radiation based on the aggregation of gold nanoparticles and its application for the blood irradiation. Talanta 2018; 187:308-313. [DOI: 10.1016/j.talanta.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/21/2018] [Accepted: 05/02/2018] [Indexed: 11/20/2022]
|
31
|
Refaat R, Sarhan D, Kotb M, El-Abd E, El-Bassiouni E. Post-irradiation protective effects of ectoine on brain and testicles in male mice. Pharmacol Rep 2018; 70:304-308. [PMID: 29477038 DOI: 10.1016/j.pharep.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/19/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND The present study aimed to investigate the possible post-irradiation protective effects of ectoine on CNS and testes of male mice. METHODS The study included thirty male Swiss albino mice (20-22 gm). Mice were divided into five groups (six each); controls (injected intraperitoneally with 0.2ml saline), irradiated group 1 (received six Gy whole body x-irradiation single dose, injected with saline, and sacrificed after one day), irradiated group 2 (x-irradiated, injected with saline, and sacrificed after one week), ectoine group 1 (x-irradiated, injected with 200mg/kg ectoine, and sacrificed after one day), and ectoine group 2 (x-irradiated, injected daily with 200mg/kg ectoine, and sacrificed after one week). IL-1β, IL-6, IL-10, PGE2, MDA, GSH, GSSG, and GSH/GSSG ratio were evaluated in CNS and testes. RESULTS IL-1β, IL-6, IL-10, PGE2, and MDA are significantly elevated in the CNS and testes of x-irradiated groups when compared with controls. IL-1β, IL-6, IL-10, and PGE2 significantly elevated at one week than one day while MDA significantly decreased. A significant decrease in the concentration of GSH and in the GSH/GSSG ratios coupled with an opposite effect on GSSG was noted. Ectoine treatment significantly ameliorated the biochemical effects induced by whole body x-irradiation. All the tested parameters tended to go back to near control values. It was noted that the modulating action was dependent on the accumulation of ectoine as it was more effective after repeated administration. CONCLUSION Ectoine has post-irradiation protective effects on CNS and testes via its action on inflammatory and oxidative stress pathways.
Collapse
Affiliation(s)
- Rowaida Refaat
- Department of Pharmacology, Medical Research Institute (MRI), Alexandria University, Egypt
| | - Dalia Sarhan
- Department of Pharmacology, Medical Research Institute (MRI), Alexandria University, Egypt
| | - Metwali Kotb
- Department of Medical Biophysics, Medical Research Institute (MRI), Alexandria University, Egypt
| | - Eman El-Abd
- Radiation Sciences Department, Medical Research Institute (MRI), Alexandria University, Egypt.
| | - Emad El-Bassiouni
- Department of Pharmacology, Medical Research Institute (MRI), Alexandria University, Egypt.
| |
Collapse
|
32
|
Mohamed NE, Ashour SE. Role of ethanolic extract of Morus alba leaves on some biochemical and hematological alterations in irradiated male rats. Int J Radiat Biol 2018; 94:374-384. [PMID: 29393711 DOI: 10.1080/09553002.2018.1433888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The present study aimed to evaluate the protective role of "Morus alba Linn (Family: Moraceae) commonly known as mulberry" leaves extract against hazardous effects of gamma rays in male rats. MATERIALS AND METHODS Thirty six male albino rats were divided into six groups (six rats/group); (1) control group received 1 ml distilled water, (2) low dose of extract (100 mg/kg) group treated daily with low oral dose of ethanolic extract of mulberry leaves (100 mg/kg body weight (b.wt.)) for 21 consecutive days, (3) high dose of extract (200 mg/kg) group treated daily with high oral dose of ethanolic extract of mulberry leaves (200 mg/kg b.wt.) for the same period, (4) irradiated group rats were subjected to whole body gamma irradiation at a shot dose of 7 Gy, (5) low dose of extract + irradiated group treated daily with low oral dose of ethanolic extract of mulberry leaves (100 mg/kg b.wt.) for 21 consecutive days then rats were exposed to gamma irradiation at a single dose of 7 Gy, (6) high dose of extract + irradiation group treated daily with high oral dose of ethanolic extract of mulberry leaves (200 mg/kg b.wt.) for 21 consecutive days then rats were exposed to gamma irradiation at a single dose of 7 Gy. Rats were sacrificed 1, 7, 15 days post gamma irradiation in all groups. Blood samples were taken at three intervals time in the six groups. RESULTS The results showed that whole body irradiation of rats induced significant decrease (p < 0.05) in red blood cells (RBCs), hemoglobin (Hb), hematocrit percentage (HCT%), platelet, white blood cells (WBCs), lymphocytes, neutrophils, serum glucose-6-phosphate dehydrogenase (G-6-PD) and insulin. The data also showed significant increase (p < 0.05) in serum total lipids, phospholipids, cholesterol, triglycerides, lactate dehydrogenase (LDH), creatine kinase (CK), and plasma glucose. Administration of mulberry leaves extract, either low or high concentrations to rats prior to irradiation caused significant improvement in the studied parameters. CONCLUSIONS Mulberry leaves extract prior to exposure to gamma irradiation has radio protector against hazardous effect of irradiation in male rats.
Collapse
Affiliation(s)
- Naglaa Elshahat Mohamed
- a Department of Biological Applications , Nuclear Research Center , Abou Zaabel , Qalyubia , Egypt
| | - Saleh E Ashour
- b Hot Labs Centre , Atomic Energy Authority , Abou Zaabel , Qalyubia , Egypt
| |
Collapse
|
33
|
Kumar A, Choudhary S, Adhikari JS, Chaudhury NK. Sesamol ameliorates radiation induced DNA damage in hematopoietic system of whole body γ-irradiated mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:79-90. [PMID: 28766757 DOI: 10.1002/em.22118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 05/27/2023]
Abstract
Ionizing radiation exposure is harmful and at high doses can lead to acute hematopoietic radiation syndrome. Therefore, agents that can protect hematopoietic system are important for development of radioprotector. Sesamol is a potential molecule for development of radioprotector due to its strong free radical scavenging and antioxidant properties. In the present study, sesamol was evaluated for its role in DNA damage and repair in hematopoietic system of γ-irradiated CB57BL/6 mice and compared with amifostine. C57BL/6 male mice were administered with sesamol 20 mg/kg (i.p.) followed by 2 Gy whole body irradiation (WBI) at 30 min. Mice were sacrificed at 0.5, 3, 24 h postirradiation; bone marrow, splenocytes, and peripheral blood lymphocytes were isolated to measure DNA damages and repair using alkaline comet,γ-H2AXand micronucleus assays. An increase in % of tail DNA was observed in all organs of WBI mice. Whereas in pre-administered sesamol reduced %DNA in tail (P ≤ 0.05). Sesamol has also reduced formation of radiation induced γ-H2AX foci after 0.5 h in these organs and further lowered to respective control values at 24 h of WBI. Similar reduction of % DNA in tail and γ-H2AX foci were observed with amifostine (P ≤ 0.05). Analysis of mnPCE frequency at 24 h has revealed similar extent of protection by sesamol and amifostine. Interestingly, both sesamol and amifostine, alone and with radiation, also increased the granulocytes count significantly compared to the control (P ≤ 0.05). These findings suggest that sesamol has strong potential to protect hematopoietic system by lowering radiation induced DNA damages and can prevent acute hematopoietic syndrome in mice. Environ. Mol. Mutagen. 59:79-90, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arun Kumar
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Sandeep Choudhary
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Jawahar S Adhikari
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Nabo K Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| |
Collapse
|
34
|
Abd El-Hady AM, Gewefel HS, Badawi MA, Eltahawy NA. Gamma-aminobutyric acid ameliorates gamma rays-induced oxidative stress in the small intestine of rats. THE JOURNAL OF BASIC AND APPLIED ZOOLOGY 2017; 78:2. [DOI: 10.1186/s41936-017-0005-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
35
|
Antioxidant potential and hypolipidemic effect of whey protein against gamma irradiation induced damages in rats. Appl Radiat Isot 2017; 129:103-107. [DOI: 10.1016/j.apradiso.2017.07.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/15/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
|
36
|
Saberi H, Keshavarzi B, Shirpoor A, Gharalari FH, Rasmi Y. Rescue effects of ginger extract on dose dependent radiation-induced histological and biochemical changes in the kidneys of male Wistar rats. Biomed Pharmacother 2017; 94:569-576. [PMID: 28780473 DOI: 10.1016/j.biopha.2017.07.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 11/17/2022] Open
Abstract
Radiation is an essential modality in the management of cancer therapy, but its acute and chronic side effects on the normal organs limit the helpfulness of radiotherapy. The deleterious effects of radiation begin with oxidative stress and inflammatory reaction to radiolytic hydrolysis and formation of free radicals. The aim of the current study was to investigate the effect of dose dependent whole body radiation exposure on histological and biochemical alterations in rat kidney. It was also planned to find out whether ginger extract mitigated the deleterious effects of different doses of radiation in rat kidney. Male Wistar rats were exposed to three doses (2, 4, and 8Gy) of γ- ray with or without a 10day pretreatment with ginger extract. After 10days of whole body γ- ray exposure, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant increase in 8-OHdG, CRP, cystatin C (in 8Gy), plasma urea and creatinine levels, as well as a significant decrease in total antioxidant capacity of radiation groups compared to those of the control group. Ginger extract administration once daily for 10 consecutive days before exposure to 2-4-8Gy radiotherapy, which ameliorated histological and biochemical alterations in kidneys of the rats entirely or partially compared to those in the ethanol group rats. These findings indicate that whole body exposure to radiation induces kidney damage through oxidative DNA damage and inflammatory reactions, and that these effects can be alleviated using ginger pretreatment as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
- Hassan Saberi
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Behnaz Keshavarzi
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Yousef Rasmi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
37
|
Mishra K, Alsbeih G. Appraisal of biochemical classes of radioprotectors: evidence, current status and guidelines for future development. 3 Biotech 2017; 7:292. [PMID: 28868219 DOI: 10.1007/s13205-017-0925-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
The search for efficient radioprotective agents to protect from radiation-induced toxicity, due to planned or accidental radiation exposure, is still ongoing worldwide. Despite decades of research and development of widely different biochemical classes of natural and derivative compounds, a safe and effective radioprotector is largely unmet. In this comprehensive review, we evaluated the evidence for the radioprotective performance of classical thiols, vitamins, minerals, dietary antioxidants, phytochemicals, botanical and bacterial preparations, DNA-binding agents, cytokines, and chelators including adaptogens. Where radioprotection was demonstrated, the compounds have shown moderate dose modifying factors ranging from 1.1 to 2.7. To date, only few compounds found way to clinic with limited margin of dose prescription due to side effects. Most of these compounds (amifostine, filgratism, pegfilgrastim, sargramostim, palifermin, recombinant salmonella flagellin, Prussian blue, potassium iodide) act primarily via scavenging of free radicals, modulation of oxidative stress, signal transduction, cell proliferation or enhance radionuclide elimination. However, the gain in radioprotection remains hampered with low margin of tolerance. Future development of more effective radioprotectors requires an appropriate nontoxic compound, a model system and biomarkers of radiation exposure. These are important to test the effectiveness of radioprotection on physiological tissues during radiotherapy and field application in cases of nuclear eventualities.
Collapse
Affiliation(s)
- Krishnanand Mishra
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Ghazi Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Campos KKD, Araújo GR, Martins TL, Bandeira ACB, Costa GDP, Talvani A, Garcia CCM, Oliveira LAM, Costa DC, Bezerra FS. The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke. J Nutr Biochem 2017. [DOI: 10.1016/j.jnutbio.2017.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Khattab HAH, Abdallah IZA, Yousef FM, Huwait EA. EFFICIENCY OF BORAGE SEEDS OIL AGAINST GAMMA IRRADIATION-INDUCED HEPATOTOXICITY IN MALE RATS: POSSIBLE ANTIOXIDANT ACTIVITY. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638880 PMCID: PMC5471464 DOI: 10.21010/ajtcam.v14i4.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Borage (Borago officinal L.) is an annual herbaceous plant of great interest because its oil contains a high percentage of γ-linolenic acid (GLA). The present work was carried out to detect fatty acids composition of the oil extracted from borage seeds (BO) and its potential effectiveness against γ-irradiation- induced hepatotoxicity in male rats. Materials and Methods: GC-MS analysis of fatty acids methyl esters of BO was performed to identify fatty acids composition. Sixty rats were divided into five groups (12 rats each): Control, irradiated; rats were exposed to (6.5 Gy) of whole body γ-radiation, BO (50 mg/kg b.wt), irradiated BO post-treated and irradiated BO prepost-treated. Six rats from each group were sacrificed at two time intervals 7 and 15 days post-irradiation. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transferase (GGT) levels, lipids profile, as well as serum and hepatic reduced glutathione (GSH) and lipid peroxide (malondialdehyde) (MDA) levels were assessed. Histopathological examination of liver sections were also carried out. Results: The results showed that the high contents of BO extracted by cold pressing, were linoleic acid (34.23%) and GLA (24.79%). Also, oral administration of BO significantly improved serum levels of liver enzymes, lipids profile, as well as serum and hepatic GSH and MDA levels (p<0.001) as compared with irradiated rats after 15 days post irradiation. Moreover, it exerted marked amelioration against irradiation-induced histopathological changes in liver tissues. The improvement was more pronounced in irradiated BO prepost-treated group than irradiated BO post-treated. Conclusion: BO has a beneficial role in reducing hepatotoxicity and oxidative stress induced by radiation exposure. Therefore, BO may be used as a beneficial supplement for patients during radiotherapy treatment.
Collapse
Affiliation(s)
- Hala A H Khattab
- Food and Nutrition Department, Faculty of Home Economics, King Abdulaziz University, Jeddah, Saudi Arabia.,Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Egypt
| | - Inas Z A Abdallah
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Egypt
| | - Fatimah M Yousef
- Food and Nutrition Department, Faculty of Home Economics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Etimad A Huwait
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Liu Z, Ren B, Wang Y, Zou C, Qiao Q, Diao Z, Mi Y, Zhu D, Liu X. Sesamol Induces Human Hepatocellular Carcinoma Cells Apoptosis by Impairing Mitochondrial Function and Suppressing Autophagy. Sci Rep 2017; 7:45728. [PMID: 28374807 PMCID: PMC5379556 DOI: 10.1038/srep45728] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Sesamol, a nutritional phenolic antioxidant compound enriched in sesame seeds, has been shown to have potential anticancer activities. This study aims at characterizing the antitumor efficacy of sesamol and unveiling the importance of mitochondria in sesamol-induced effects using a human hepatocellular carcinoma cell line, HepG2 cells. Results of this study showed that sesamol treatment suppressed colony formation, elicited S phase arrest during cell cycle progression, and induced both intrinsic and extrinsic apoptotic pathway in vitro with a dose-dependent manner. Furthermore, sesamol treatment elicited mitochondrial dysfunction by inducing a loss of mitochondrial membrane potential. Impaired mitochondria and accumulated H2O2 production resulted in disturbance of redox-sensitive signaling including Akt and MAPKs pathways. Mitochondrial biogenesis was inhibited as suggested by the decline in expression of mitochondrial complex I subunit ND1, and the upstream AMPK/PGC1α signals. Importantly, sesamol inhibited mitophagy and autophagy through impeding the PI3K Class III/Belin-1 pathway. Autophagy stimulator rapamycin reversed sesamol-induced apoptosis and mitochondrial respiration disorders. Moreover, it was also shown that sesamol has potent anti-hepatoma activity in a xenograft nude mice model. These data suggest that mitochondria play an essential role in sesamol-induced HepG2 cells death, and further research targeting mitochondria will provide more chemotherapeutic opportunities.
Collapse
Affiliation(s)
- Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yihui Wang
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chen Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglian Qiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhijun Diao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
41
|
Toxicity study of oxalicumone A, derived from a marine-derived fungus Penicillium oxalicum, in cultured renal epithelial cells. Mol Med Rep 2017; 15:2611-2619. [PMID: 28260084 PMCID: PMC5428325 DOI: 10.3892/mmr.2017.6283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
Oxalicumone A (POA), a novel dihydrothiophene-condensed chromone, was isolated from the marine-derived fungus Penicillium oxalicum. Previous reports demonstrated that POA exhibits strong activity against human carcinoma cells, thus it has been suggested as a bioactive anticancer agent. To research the toxic effect of POA on cultured normal epithelial human kidney-2 (HK-2) cells and evaluate its clinical safety, cell survival was evaluated by the Cell Counting Kit-8 assay and apoptosis was evaluated by Hoechst 33258 staining, flow cytometry, caspase-3 activity assay and western blotting. 2′,7′-Dichlorofluorescin diacetate and JC-1 dye staining was used to evaluate reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP), respectively. The results indicated that POA inhibited HK-2 cell growth and promoted apoptosis, by increasing levels of Fas cell surface cell receptor and the B-cell lymphoma 2 associated protein X apoptosis regulator (Bax)/B-cell lymphoma 2 apoptosis regulator (Bcl-2) ratio. POA treatment also induced release of ROS and loss of MMP in HK-2 cells. Compared with untreated control, a significant decrease was also demonstrated in superoxide dismutase activity and glutathione content with POA treatment, accompanied by enhanced release of N-acetyl-β-D-glucosaminidase, increased leakage of lactate dehydrogenase, increased malondialdehyde formation and increased release of nitric oxide. In conclusion, the present in vitro study revealed that POA exhibits antiproliferation activity on HK-2 cells, through stimulation of apoptosis and oxidative stress injury, which may be relevant to its clinical application. The present study may, therefore, offer valuable new information regarding the use of POA as a candidate novel antitumor drug for clinical use.
Collapse
|
42
|
Nariya A, Pathan A, Shah N, Chettiar S, Patel A, Dattani J, Chandel D, Rao M, Jhala D. Ameliorative effects of curcumin against lead induced toxicity in human peripheral blood lymphocytes culture. Drug Chem Toxicol 2017; 41:1-8. [PMID: 28147706 DOI: 10.3109/01480545.2015.1133637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lead, a heavy metal and multifaceted toxicant, is well studied for its distribution and toxicity in ecosystem, yet there is no consensus on its amelioration by any synthetic or phytochemical compounds. Curcumin, a known antioxidant and dietary element, is a well-known herb, for its therapeutic uses and having a wide spectrum of its beneficial properties against several adverse effects. Hence, the current study was taken into consideration to evaluate the ameliorative effects of curcumin (3.87 μM, i.e. 1.43 μg/ml) against lead acetate (doses: 10-6 M, i.e. 0.379 μg/ml and 10-4 M, i.e. 37.9 μg/ml, durations: 24 h and 69 h) induced genotoxicity and oxidative stress in human peripheral blood lymphocyte cultures (PBLC). On one hand, antigenotoxic and antioxidative potentials of curcumin against lead were simultaneously evaluated by the array of genotoxicity and oxidative stress indices. The result postulated that lead acetate showed dose- and duration-dependent increase in both genotoxicity and oxidative stress whereas curcumin, when added along with lead acetate, showed the significant amelioration in all genotoxic and oxidative stress-related indices. The study indicated that, due to alteration in antioxidant defense system, there is an adverse genotoxic effect of lead. On the other hand, curcumin, a potent antidote, can protect chromatin material against lead -mediated genotoxicity by balancing the activity of antioxidant defense system.
Collapse
Affiliation(s)
- Ankit Nariya
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| | - Ambar Pathan
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| | - Naumita Shah
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| | - Shiva Chettiar
- b GeneXplore Diagnostics and Research Centre Pvt. Ltd , Ahmedabad , Gujarat , India , and
| | - Alpesh Patel
- b GeneXplore Diagnostics and Research Centre Pvt. Ltd , Ahmedabad , Gujarat , India , and
| | - Jignasha Dattani
- c Regional Office for Health and Family Welfare , Ahmedabad , Gujarat , India
| | - Divya Chandel
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| | - Mandava Rao
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| | - Devendrasinh Jhala
- a Department of Zoology , University School of Sciences, Gujarat University , Ahmedabad , Gujarat , India
| |
Collapse
|
43
|
N-acetylcysteine attenuates intrauterine growth retardation-induced hepatic damage in suckling piglets by improving glutathione synthesis and cellular homeostasis. Eur J Nutr 2016; 57:327-338. [DOI: 10.1007/s00394-016-1322-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/29/2016] [Indexed: 01/05/2023]
|
44
|
In vivo Time-Dependent Radio-Protective Effect of Lycopene Against Whole-Body Gamma Radiation in Mice. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016. [DOI: 10.5812/ircmj.19624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Sesamol induces mitochondrial apoptosis pathway in HCT116 human colon cancer cells via pro-oxidant effect. Life Sci 2016; 158:46-56. [DOI: 10.1016/j.lfs.2016.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/06/2016] [Accepted: 06/16/2016] [Indexed: 01/08/2023]
|
46
|
Zbikowska HM, Szejk M, Saluk J, Pawlaczyk-Graja I, Gancarz R, Olejnik AK. Polyphenolic-polysaccharide conjugates from plants of Rosaceae/Asteraceae family as potential radioprotectors. Int J Biol Macromol 2016; 86:329-37. [PMID: 26848834 DOI: 10.1016/j.ijbiomac.2016.01.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 10/22/2022]
Abstract
Polyphenolic-polysaccharide macromolecular, water-soluble glycoconjugates, isolated from the selected medicinal plants of Rosaceae/Asteraceae family: from leaves of Fragaria vesca L., Rubus plicatus Whe. et N. E., and from flowering parts of Sanguisorba officinalis L., and Erigeron canadensis L., were investigated for their ability to protect proteins and lipids of human plasma against γ-radiation-induced oxidative damage. Treatment of plasma with plant conjugates (6, 30, 150 μg/ml) prior exposure to 100 Gy radiation resulted in a significant inhibition of lipid peroxidation, evaluated by TBARS levels; conjugates isolated from E. canadensis and R. plicatus and a reference flavonoid quercetin showed similar high potential (approx. 70% inhibition, at 6 μg/ml). The conjugates prevented radiation-induced oxidation of protein thiols and significantly improved plasma total antioxidant capacity, estimated with Ellman's reagent and ABTS(.+) assay, respectively. The results demonstrate by the first time a significant radioprotective capability of the polyphenolic-polysaccharide conjugates isolated from E. canadensis, R. plicatus, S. officinalis and to the less extent from F. vesca. The abilities of these substances to inhibit radiation-induced lipid peroxidation and thiol oxidation in plasma seems to be mediated, but not limited to ROS scavenging activity.
Collapse
Affiliation(s)
- Halina Malgorzata Zbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Magdalena Szejk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Izabela Pawlaczyk-Graja
- Division of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Roman Gancarz
- Division of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Alicja Klaudia Olejnik
- Chemistry Department, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
47
|
Khan S, Choudhary S, Kumar A, Tripathi AM, Alok A, Adhikari JS, Rizvi MA, Chaudhury NK. Evaluation of sesamol-induced histopathological, biochemical, haematological and genomic alteration after acute oral toxicity in female C57BL/6 mice. Toxicol Rep 2016; 3:880-894. [PMID: 28959616 PMCID: PMC5615841 DOI: 10.1016/j.toxrep.2016.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate organ-wise toxicological effects of sesamol and determine the LD50 cut-off value and GHS category following acute oral toxicity method OECD 423. An acute oral toxicity study was carried out in female C57BL/6 mice. Observations for physical behaviour and measurements on haematology, biochemistry, histology of vital organs were performed. In addition, genotoxicity assessment using comet and micronuclei assays was also performed. Acute toxicological effects were observed at 2000 mg/kg, while no adverse effects observed at 300 mg/kg. The effects of 2000 mg/kg were manifested as severe histopathological changes in all organs (femur, spleen, gastrointestine, lungs, heart, kidney, liver, stomach and brain) and excessive DNA strands breaks occurred in femoral bone marrow cells and splenocytes. A single dose of sesamol (2000 mg/kg, body weight) caused the death of two mice (out of three) within 2 h. Hence, sesamol is in GHS category 4 (>300–2000) with LD50 cut-off value of 500 mg/kg body weight. In contrast, this study is correlated with the obtained GHS category 4 and LD50 cut-off value 580 mg/kg body weight by ProTox. In conclusions, the present study has classified sesamol toxicity and assessed organ-wise acute oral toxicity of sesamol in female C57BL/6 mice. Therefore, these findings may be useful for the selection of dosages for further pre-clinical evaluation and potential drug developmental of sesamol.
Collapse
Affiliation(s)
- Shahanshah Khan
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India.,Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia-A Central University, Moulana Mohammad Ali Jauhar Marg, New Delhi 110025, India
| | - Sandeep Choudhary
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Arun Kumar
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Akanchha Mani Tripathi
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Amit Alok
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Jawahar Singh Adhikari
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Moshahid Alam Rizvi
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia-A Central University, Moulana Mohammad Ali Jauhar Marg, New Delhi 110025, India
| | - Nabo Kumar Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India
| |
Collapse
|
48
|
South Asian Medicinal Compounds as Modulators of Resistance to Chemotherapy and Radiotherapy. Cancers (Basel) 2016; 8:cancers8030032. [PMID: 26959063 PMCID: PMC4810116 DOI: 10.3390/cancers8030032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/05/2016] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer is a hyperproliferative disorder that involves transformation, dysregulation of apoptosis, proliferation, invasion, angiogenesis and metastasis. During the last 30 years, extensive research has revealed much about the biology of cancer. Chemotherapy and radiotherapy are the mainstays of cancer treatment, particularly for patients who do not respond to surgical resection. However, cancer treatment with drugs or radiation is seriously limited by chemoresistance and radioresistance. Various approaches and strategies are employed to overcome resistance to chemotherapy and radiation treatment. Many plant-derived phytochemicals have been investigated for their chemo- and radio-sensitizing properties. The peoples of South Asian countries such as India, Pakistan, Sri Lanka, Nepal, Bangladesh and Bhutan have a large number of medicinal plants from which they produce various pharmacologically potent secondary metabolites. The medicinal properties of these compounds have been extensively investigated and many of them have been found to sensitize cancer cells to chemo- and radio-therapy. This review focuses on the role of South Asian medicinal compounds in chemo- and radio-sensitizing properties in drug- and radio-resistant cancer cells. Also discussed is the role of South Asian medicinal plants in protecting normal cells from radiation, which may be useful during radiotherapy of tumors to spare surrounding normal cells.
Collapse
|
49
|
Khayyal MT, El-Hazek RM, El-Ghazaly MA. Propolis aqueous extract preserves functional integrity of murine intestinal mucosa after exposure to ionizing radiation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:901-906. [PMID: 26498266 DOI: 10.1016/j.etap.2015.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
The ability of a specially prepared water propolis extract (PWE) to preserve the functional activity of the intestinal mucosa after radiation exposure was studied. PWE was given orally (650 mg/kg) to rats five days prior to irradiation by 6 Gy and continued for further two days. Rats were sacrificed 24h later, intestinal segments were examined histologically and homogenates were used to assess relevant biochemical parameters reflecting intestinal injury. Irradiation led to a rise in the histological damage score, a rise in tissue TNF-α and TBARS, and a decrease in sucrase, alkaline phosphatase, GSH and cholecystokinin as well as a decrease in plasma citrulline. The findings reflect a decrease in intestinal functional activity. PWE preserved the intestinal integrity and largely protected against the changes induced in the histology damage score and all parameters measured, possibly as a result of the antioxidant and anti-inflammatory action of its caffeic acid content.
Collapse
Affiliation(s)
- Mohamed T Khayyal
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Rania M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
50
|
Khan S, Kumar A, Adhikari JS, Rizvi MA, Chaudhury NK. Protective effect of sesamol against60Co γ-ray-induced hematopoietic and gastrointestinal injury in C57BL/6 male mice. Free Radic Res 2015; 49:1344-61. [DOI: 10.3109/10715762.2015.1071485] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|