1
|
Sato T, Hamazaki M, Inoue Y, Aoki S, Koshiishi Y, Shirasuna K, Iwata H. Effect of a low ethanol concentration during in vitro maturation of bovine oocytes and subsequent embryo development. Theriogenology 2023; 208:158-164. [PMID: 37331264 DOI: 10.1016/j.theriogenology.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
The present study investigated the effects of low ethanol exposure on bovine oocytes. Cumulus-oocyte complexes (COCs) were aspirated for the antral follicles of slaughterhouse-derived ovaries. These COCs were incubated in maturation medium containing 0, 0.1, and 0.2% ethanol for 21 h and subjected to fertilization and in vitro development, and then the rates of nuclear maturation, mitochondrial DNA copy number (Mt-cn) and protein (TOMM40), ATP content and lipid content in oocyte, fertilization, and blastulation were examined. Furthermore, COCs were incubated with 0 or 0.1% ethanol and then mitochondrial membrane potential (MMP) and the glucose consumption of COCs was determined. In addition, gene expression in oocytes was examined by RNA sequencing. Ethanol (0.1 and 0.2%) increased Mt-cn and Mt-protein levels whereas 0.2% ethanol increased the blastulation rate and ATP content in oocytes and decreased lipid content in oocytes. Ethanol (0.1%) increased MMP in oocytes and decreased glucose consumption of COCs. Eight stage embryos derived from 0.1% ethanol treated oocytes had higher levels of trimethyl-H3K9 compared with that of nontreated counterpart. RNA sequencing revealed that differentially expressed genes were associated with glycolysis/gluconeogenesis, carbon metabolism, sphingolipid metabolism, amino acid metabolism, and fatty acid degradation pathways. In conclusion, even 0.1% concentrations of ethanol during in vitro maturation considerably affects oocyte metabolism and histone configuration of embryos.
Collapse
Affiliation(s)
- Takuya Sato
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan
| | - Mao Hamazaki
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan
| | - Yuki Inoue
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan
| | - Sogo Aoki
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan
| | | | - Koumei Shirasuna
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan
| | - Hisataka Iwata
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan.
| |
Collapse
|
2
|
Huang CH, Wang FT, Chan WH. Low-dose silver nanoparticles plus methyl mercury exert embryotoxic effects on mouse blastocysts via endoplasmic reticulum stress and mitochondrial apoptosis. Toxicol Res (Camb) 2022; 11:460-474. [PMID: 35782646 PMCID: PMC9244727 DOI: 10.1093/toxres/tfac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 07/30/2023] Open
Abstract
The health and environmental impacts of the increasing commercial use of silver nanoparticles (AgNPs) are a growing concern. Methyl mercury (MeHg) is a potent toxin that biotransforms from mercury or inorganic mercury compounds in waterways and causes dangerous environmental contamination. However, the potential interactions and combined effects of AgNPs and MeHg are yet to be established. In the current study, we showed that low/non-embryotoxic doses of AgNPs and MeHg interact synergistically to induce embryotoxicity and further explored the underlying mechanisms affecting mouse embryo development. Notably, co-treatment with noncytotoxic concentrations of AgNPs (10 μM) and MeHg (0.1 μM) triggered apoptotic processes and embryotoxicity in mouse blastocysts and evoked intracellular reactive oxygen species (ROS) generation, which was effectively blocked by preincubation with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox), a classic antioxidant. Further experiments demonstrated that ROS serve as a key upstream inducer of endoplasmic reticulum (ER) stress and mitochondria-dependent apoptotic processes in AgNP/MeHg-induced injury of mouse embryo implantation and pre- and postimplantation development. Our results collectively indicate that AgNP and MeHg at non-embryotoxic concentrations can synergistically evoke ROS, ultimately causing embryotoxicity through promotion of ER stress and mitochondria-dependent apoptotic signaling cascades.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Zhongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Section 2, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Wen-Hsiung Chan
- Corresponding author: Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| |
Collapse
|
3
|
Huang CH, Wang FT, Hsuuw YD, Huang FJ, Chan WH. Non-embryotoxic dosage of alternariol aggravates ochratoxin A-triggered deleterious effects on embryonic development through ROS-dependent apoptotic processes. Toxicol Res (Camb) 2021; 10:1211-1222. [PMID: 34956623 DOI: 10.1093/toxres/tfab112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 12/29/2022] Open
Abstract
Alternariol (AOH) and ochratoxin A (OTA), two mycotoxins found in many foods worldwide, exhibit cytotoxicity and embryotoxicity, triggering apoptosis and cell cycle arrest in several mammalian cells and mouse embryos. The absorption rate of AOH from dietary foodstuff is low, meaning that the amount of AOH obtained from the diet rarely approaches the cytotoxic threshold. Thus, the potential harm of dietary consumption of AOH is generally neglected. However, previous findings from our group and others led us to question whether a low dosage of AOH could aggravate the cytotoxicity of other mycotoxins. In the present study, we examined how low dosages of AOH affected OTA-triggered apoptosis and embryotoxicity and investigated the underlying regulatory mechanism in mouse blastocysts. Our results revealed that non-cytotoxic concentrations of AOH (1 and 2 μM) could enhance OTA (8 μM)-triggered apoptotic processes and embryotoxicity in mouse blastocysts. We also found that AOH can enhance OTA-evoked intracellular reactive oxygen species (ROS) generation and that this could be prevented by pretreatment with the potent ROS scavenger, N-acetylcysteine. Finally, we observed that this ROS generation acts as a key inducer of caspase-dependent apoptotic processes and subsequent impairments of embryo implantation and pre- and post-implantation embryonic development. In sum, our results show that non-cytotoxic dosages of AOH can aggravate OTA-triggered apoptosis and embryotoxicity through ROS- and caspase-dependent signaling pathways.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City 11217, Taiwan
| | - Yan-Der Hsuuw
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Fu-Jen Huang
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
| |
Collapse
|
4
|
Huang CH, Wang FT, Chan WH. Alternariol exerts embryotoxic and immunotoxic effects on mouse blastocysts through ROS-mediated apoptotic processes. Toxicol Res (Camb) 2021; 10:719-732. [PMID: 34484663 PMCID: PMC8403814 DOI: 10.1093/toxres/tfab054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/06/2023] Open
Abstract
Alternariol (AOH), a mycotoxin belonging to the genus Alternaria, has been shown to induce cytotoxicity, including apoptosis and cell cycle arrest, in several mammalian cell types. However, its effects on early-stage embryonic development require further investigation. Here, we have shown that AOH exerts embryotoxic effects on mouse blastocyst-stage embryos and long-term adverse effects on immunity in one-day-old newborn mice of the next generation. Significant apoptosis and decrease in total cell number, predominantly through loss of inner cell mass (ICM), and to a minor extent, trophectoderm (TE) cells, were observed in AOH-treated blastocysts. Moreover, AOH exerted detrimental effects on pre- and post-implantation embryo development potential and induced a decrease in fetal weight in in vitro development and embryo transfer assays. Injection of pregnant mice with AOH (1, 3 and 5 mg/kg body weight/day) for 4 days resulted in apoptosis of blastocyst-stage embryos and injurious effects on embryonic development from the zygote to blastocyst stage or embryo degradation and a further decrease in fetal weight. Furthermore, AOH exerted a long-term impact on the next generation, triggering a significant increase in total oxidative stress content and expression of genes encoding antioxidant proteins. Lower expression of CXCL1, IL-1β and IL-8 related to innate immunity was detected in liver tissue extracts obtained from one-day-old newborns of AOH-injected pregnant mice (5 mg/kg body weight/day) relative to their non-treated counterparts. In addition, ROS served as an upstream regulator of AOH-triggered apoptotic processes and impairment of embryonic development. Our collective results highlight the potential of AOH as an embryotoxic and immunotoxic risk factor during embryo and infant development stages in mice.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City 11217, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
| |
Collapse
|
5
|
Zhang Z, He C, Gao Y, Zhang L, Song Y, Zhu T, Zhu K, Lv D, Wang J, Tian X, Ma T, Ji P, Cui W, Liu G. α-ketoglutarate delays age-related fertility decline in mammals. Aging Cell 2021; 20:e13291. [PMID: 33450127 PMCID: PMC7884030 DOI: 10.1111/acel.13291] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022] Open
Abstract
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α-ketoglutarate (α-KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α-KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α-KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α-KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down-regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α-KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Changjiu He
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Education Ministry of China College of Animal Science and Technology Huazhong Agricultural University Wuhan China
| | - Yu Gao
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- College of Animal Science and Technology Xinjiang Agricultural University Wulumuqi China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Yukun Song
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- College of Animal Science and Technology Xinjiang Agricultural University Wulumuqi China
| | - Tianqi Zhu
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Kuanfeng Zhu
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Jing Wang
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Xiuzhi Tian
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
| | - Teng Ma
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| | - Wei Cui
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
- Department of Surgery & Cancer Imperial College London London United Kingdom
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture Beijing Key Laboratory for Animal Genetic Improvement College of Animal Science and Technology China Agricultural University Beijing China
| |
Collapse
|
6
|
Huang CH, Wang FT, Chan WH. Enniatin B induces dosage-related apoptosis or necrosis in mouse blastocysts leading to deleterious effects on embryo development. Drug Chem Toxicol 2020; 45:1449-1460. [PMID: 33106064 DOI: 10.1080/01480545.2020.1838537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current study has focused on the effects of enniatin B (ENN B, a major mycotoxin produced by Fusarium fungi) on early embryonic development. In in vitro analysis, mouse blastocysts were incubated in medium with ENN B (0-40 μM) or 0.5% DMSO (control group) for 24 hours. In an animal study, blastocysts were collected from mice which were intravenously injected with ENN B (1, 3, 5, and 7mg/kg body weight/day) for 4 days in order to analyze apoptosis and necrosis via Annexin V/PI staining assay; and proliferation using dual differential staining. Exposure to low ENN B concentration (10 μM in vitro and 3 mg/kg/day in vivo) promoted Reactive Oxygen Species (ROS) generation and apoptosis in the Inner Cell Mass (ICM), the mass of cells inside the blastocyst, impairing post-implantation development alone. On the other hand, exposure to a higher ENN B concentration (40 μM in vitro and 7 mg/kg/day in vivo) induced ROS generation and decreased in intracellular ATP which encouraged necrotic processes in both trophectoderm (TE) and ICM of blastocysts leading to impaired implantation and post-implantation development. Moreover, 5 and 7 mg/kg/day ENN B intraperitoneal injection to female mice for 4 days has caused downregulation of CXCL1, IL-1β and IL-8 expressions and increased ROS generation in the liver of newborn mice. Over all, ENN B can induce apoptosis and/or necrosis depending on the treatment dosage in mouse blastocysts. ENN B-induced necrosis in blastocysts may exert long-term harmful effects on next-generation newborns.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
7
|
Huang CH, Wang FT, Chan WH. Dose-dependent beneficial and harmful effects of berberine on mouse oocyte maturation and fertilization and fetal development. Toxicol Res (Camb) 2020; 9:431-443. [PMID: 32905254 DOI: 10.1093/toxres/tfaa043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
Previous studies have shown that berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, suppresses growth and induces apoptosis in some tumor cell lines. It has also been shown that berberine possesses anti-atherosclerosis and antioxidant activities in hyperlipidemic model rats. Our previous study in mice found that berberine causes harmful effects on preimplantation and postimplantation embryonic development, both in vitro and in vivo, by triggering reactive oxygen species (ROS)-mediated apoptotic cascades in mouse blastocysts. In the current investigation, we further showed that berberine treatment has distinct dose-dependent effects on oocyte maturation and subsequent development. Preincubation of oocytes with 2.5 μM berberine significantly enhanced maturation and in vitro fertilization (IVF) rates, with subsequent beneficial effects on embryonic development. In contrast, preincubation with 10 μM berberine negatively impacted mouse oocyte maturation, decreased IVF rates and impaired subsequent embryonic development. Similar dose-dependent effects were also demonstrated in vivo. Specifically, intravenous injection of berberine significantly enhanced mouse oocyte maturation, IVF rate and early-stage embryo development after fertilization at a dose of 1 mg/kg body weight but significantly impaired oocyte maturation and IVF rates and caused harmful effects on early embryonic development at a dose of 5 mg/kg. Mechanistically, we found that berberine enhanced intracellular ROS production and apoptosis of oocytes at a concentration of 10 μM but actually significantly decreased total intracellular ROS content and had no apoptotic effect at a concentration of 2.5 μM. Moreover, pretreatment of oocytes with Ac-DEVD-cho, a caspase-3-specific inhibitor, effectively blocked berberine-induced negative impacts on oocyte maturation, fertilization and subsequent development. Collectively, these findings establish the dose-dependent beneficial versus deleterious effects of berberine and suggest that the mechanism underlying the deleterious effects of berberine involves a caspase-3-dependent apoptotic process acting downstream of an increase in intracellular ROS levels.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, hongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology, Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
| |
Collapse
|
8
|
Huang CH, Wang FT, Chan WH. Dosage-related beneficial and deleterious effects of ginsenoside Rb1 on mouse oocyte maturation and fertilization and fetal development. ENVIRONMENTAL TOXICOLOGY 2019; 34:1001-1012. [PMID: 31112002 DOI: 10.1002/tox.22771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Ginsenoside Rb1 (GRb1), the major saponin component of ginseng root, has a wide range of therapeutic applications for various diseases. Previously, our group showed that GRb1 triggers ROS-mediated apoptotic cascades in mouse blastocysts, leading to decreased cell viability and impairment of pre- and postimplantation embryonic development, both in vitro and in vivo. In this study, we further found that GRb1 exerted dose-dependent effects on oocyte maturation and sequent development in vitro. Oocytes preincubated with 25 μg/mL GRB1 displayed significantly enhanced maturation and in vitro fertilization (IVF) rates, along with progression of subsequent embryonic development. In contrast, treatment with 50 and 100 μg/mL GRB1 led to impairment of mouse oocyte maturation, decreased IVF rates, and injurious effects on subsequent embryonic development. In vivo, intravenous injection of 1 mg/kg body weight GRb1 significantly promoted mouse oocyte maturation, IVF, and early-stage embryo development after fertilization while administration of 5 mg/kg body weight GRb1 led to a marked decrease in oocyte maturation and IVF rates concomitant with impairment of early embryonic development in our animal model. In terms of the mechanisms underlying the regulatory effects of GRb1 demonstrated increased intracellular reactive oxygen species (ROS) production and apoptosis in the 100 μg/mL GRb1 treatment group. However, we observed a significant decrease in total intracellular ROS content and inhibition of apoptosis events in the 25 μg/mL GRb1 treatment group, signifying that the intracellular ROS content serves as a key upstream regulator of GRb1 that influences its dose-dependent beneficial or deleterious effects on oocyte maturation and sequent embryonic development. For further clarification of the mechanisms underlying GRb1-triggered injurious effects, oocytes were pretreated with Ac-DEVD-CHO, a caspase-3-specific inhibitor, which effectively blocked injury to oocyte maturation, fertilization, and sequent development. In sum, study findings highlight the potential involvement of p53-, p21-, and caspase-3-dependent regulatory signaling cascades in GRb1-mediated apoptotic processes.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
9
|
FoxO transcription factors 1 regulate mouse preimplantation embryo development. J Assist Reprod Genet 2019; 36:2121-2133. [PMID: 31396850 DOI: 10.1007/s10815-019-01555-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The aim of the present study is to investigate role of FoxO transcription factors in preimplantation embryo development by knocking down FoxO1, FoxO3, and FoxO4 genes and also to assess cell cycle arrest related proteins, p53 and p21, and apoptosis-related proteins, fas ligand (FASL), and cleaved caspase 3. METHODS Knockdown of FoxOs using siRNA was confirmed utilizing RT-PCR and qRT-PCR in gene level and using immunofluorescence in protein level. Following knockdown of FoxO1, FoxO3, and FoxO4 in two-cell mouse embryos with or without resveratrol treatment; developmental competence of embryos and expression patterns of SIRT1, p53, p21, FASL, and CLEAVED CASPASE 3 proteins in embryos by immunofluorescence were assessed after 48 h. ROS levels were measured in knockdown embryos. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to determine resveratrol dose. RESULTS Successful knockdown of FoxO genes in mouse embryos utilizing a non-invasive siRNA method was achieved. Significantly, knockdown of FoxO genes impaired preimplantation embryo development which cannot be prevented by resveratrol treatment. Immunofluorescence results showed that resveratrol could protect embryos from cell cycle arrest and apoptosis. FOXO proteins regulate apoptosis and cell cycle related proteins in mouse preimplantation embryos. Moreover, there might be an autofeedback mechanism where FOXO1, FOXO3, and FOXO4 regulate SIRT1 protein expression. CONCLUSIONS These results suggest that FOXO transcription factors could contribute to mouse preimplantation embryo development, and it remains to investigate whether they have crucial roles in human preimplantation embryo and infertility.
Collapse
|
10
|
Huang CH, Wang FT, Chan WH. Prevention of ochratoxin A-induced oxidative stress-mediated apoptotic processes and impairment of embryonic development in mouse blastocysts by liquiritigenin. ENVIRONMENTAL TOXICOLOGY 2019; 34:573-584. [PMID: 30698892 DOI: 10.1002/tox.22724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Ochratoxin A (OTA), a mycotoxin constituent of a range of food commodities, including coffee, wine, beer, grains, and spices, exerts toxicological and pathological effects in vivo, such as nephrotoxicity, hepatotoxicity, and immunotoxicity. In a previous report, we highlighted the potential of OTA to induce apoptosis via reactive oxygen species (ROS) generation in mouse blastocysts that led to impaired preimplantation and postimplantation embryo development in vitro and in vivo. Here, we have shown that liquiritigenin (LQ), a type of flavonoid isolated from Glycyrrhiza radix, effectively protects against OTA-mediated apoptosis and inhibition of cell proliferation in mouse blastocysts. Preincubation of blastocysts with LQ clearly prevented OTA-triggered impairment of preimplantation and postimplantation embryonic development and fetal weight loss, both in vitro and in vivo. Detailed investigation of regulatory mechanisms revealed that OTA mediated apoptosis and embryotoxicity through ROS generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-9 and caspase-3, which were effectively prevented by LQ. The embryotoxic effects of OTA were further validated in an animal model in vivo. Intravenous injection of dams with OTA (3 mg/kg/day) led to apoptosis of blastocysts, impairment of embryonic development from zygote to blastocyst stage and decrease in day 18 fetal weight. Notably, preinjection of dams with LQ (5 mg/kg/day) effectively prevented OTA-induced apoptosis and toxic effects on embryo development. Our collective results clearly demonstrate that OTA exposure via injection has the potential to damage preimplantation and postimplantation embryonic development against which LQ has a protective effect.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
11
|
Tang C, Zhang W, Cai H, Ye Z, Zhang X, Tan W. Resveratrol improves ex vivo expansion of CB-CD34 + cells via downregulating intracellular reactive oxygen species level. J Cell Biochem 2019; 120:7778-7787. [PMID: 30485505 DOI: 10.1002/jcb.28052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Intracellular reactive oxygen species (ROS) play important roles in the ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs). In this study, the effects of resveratrol (RES), on the ex vivo expansion of HSPCs were investigated by analyzing CD34+ cells expansion and biological functions, with the objective to optimize ex vivo culture conditions for CD34 + cells. Among the five tested doses (0, 0.1, 1, 10, 20, and 50 μM), 10 μM RES was demonstrated to be the most favorable for ex vivo CD34 + cells expansion. In the primary cultures, 10 μM RES favored higher expansion folds of CD34 + cells, CD34 + CD38 - cells, and colony-forming units (CFUs) ( P < 0.05). It was found that the percentages of primitive HSPCs (CD34 + CD38 - CD45R - CD49f + CD90 + cells) in 10 μM RES cultures were higher than those without RES. Further, in the secondary cultures, expanded CD34 + cells derived from primary cultures with 10 μM RES exhibited significantly higher total cells and CD34 + cells expansion ( P < 0.05). In the semisolid cultures, the frequency of CFU-GM and total CFUs of 10 μM RES group were both higher than those of without RES group, demonstrating that CD34 + cells expanded with 10 μM RES possessed better biological function. Furthermore, the addition of 10 μM RES downregulated the intracellular ROS level via strengthening the scavenging capability of ROS, and meanwhile reducing the percentages of apoptotic cells in cultures. Collectively, RES could stimulate the ex vivo expansion of CD34 + cells, preserved more primitive HSPCs and maintain better biological function by alleviating intracellular ROS level and cell apoptosis in cultures.
Collapse
Affiliation(s)
- Chaochun Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Weiwei Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaoyang Ye
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xu Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wensong Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Wu M, Ma L, Xue L, Ye W, Lu Z, Li X, Jin Y, Qin X, Chen D, Tang W, Chen Y, Hong Z, Zhang J, Luo A, Wang S. Resveratrol alleviates chemotherapy-induced oogonial stem cell apoptosis and ovarian aging in mice. Aging (Albany NY) 2019; 11:1030-1044. [PMID: 30779707 PMCID: PMC6382418 DOI: 10.18632/aging.101808] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Chemotherapy-induced ovarian aging not only increases the risk for early menopause-related complications but also results in infertility in young female cancer survivors. Oogonial stem cells have the ability to generate new oocytes and thus provide new opportunities for treating ovarian aging and female infertility. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural phenol derived from plants, that has been shown to have positive effects on longevity and redox flow in lipid metabolism and a preventive function against certain tumors. To evaluate whether resveratrol could promote the repair of oogonial stem cells damage in a busulfan/cyclophosphamide (Bu/Cy)-induced accelerated ovarian aging model, female mice were administered 30 and 100 mg/kg/d resveratrol through a gavage for 2 weeks. We demonstrated that resveratrol (30 mg/kg/d) relieved oogonial stem cells loss and showed an attenuating effect on Bu/Cy-induced oxidative apoptosis in mouse ovaries, which may be attributed to the attenuation of oxidative levels in ovaries. Additionally, we also showed that Res exerted a dose-dependent effect on oogonial stem cells and attenuated H2O2-induced cytotoxicity and oxidative stress injury by activating Nrf2 in vitro. Therefore, resveratrol could be of a potential therapeutic drug used to prevent chemotherapy-induced ovarian aging.
Collapse
Affiliation(s)
- Meng Wu
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China,*Equal contribution
| | - Lingwei Ma
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China,*Equal contribution
| | - Liru Xue
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenlei Ye
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhiyong Lu
- 2Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xiang Li
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Jin
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xian Qin
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Chen
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weicheng Tang
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingying Chen
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zixin Hong
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinjin Zhang
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Aiyue Luo
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shixuan Wang
- 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
13
|
Huang CH, Wang FT, Chan WH. Enniatin B1 exerts embryotoxic effects on mouse blastocysts and induces oxidative stress and immunotoxicity during embryo development. ENVIRONMENTAL TOXICOLOGY 2019; 34:48-59. [PMID: 30259633 DOI: 10.1002/tox.22656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
Enniatins are mycotoxins of Fusarium fungi that naturally exist as mixtures of cyclic depsipeptides. Previous reports have documented hazardous effects of enniatins on cells, such as apoptosis. However, their effects on pre- and post-implantation embryonic development require further clarification. Here, we showed for the first time that enniatin B1 (ENN B1) exerts cytotoxic effects on mouse blastocyst-stage embryos and induces intracellular oxidative stress and immunotoxicity in mouse fetuses. Co-incubation of blastocysts with ENN B1 triggered significant apoptosis and led to a decrease in total cell number predominantly through loss of inner cell mass. In addition, ENN B1 appeared to exert hazardous effects on pre and postimplantation embryo development potential in an in vitro development assay. Treatment of blastocysts with 1-10 μM ENN B1 led to increased resorption of post-implantation embryos and decreased fetal weight in the embryo transfer assay in a dose-dependent manner. Importantly, in an in vivo model, intravenous injection with ENN B1 (1, 3, and 5 mg/kg body weight/d) for 4 days resulted in apoptosis of blastocyst-stage embryos and impairment of embryonic development from the zygote to blastocyst stage, subsequent degradation of embryos, and further decrease in fetal weight. Intravenous injection with 5 mg/kg body weight/d ENN B1 additionally induced a significant increase in total reactive oxygen species (ROS) content and transcription levels of genes encoding antioxidant proteins in mouse fetal liver. Moreover, ENN B1 triggered apoptosis through ROS generation and strategies to prevent apoptotic processes effectively rescued ENN B1-mediated hazardous effects on embryonic development. Transcription levels of CXCL1, IL-1β, and IL-8 related to innate immunity were downregulated after intravenous injection of ENN B1. These results collectively highlight the potential of ENN B1 to exert cytotoxic effects on embryos as well as oxidative stress and immunotoxicity during mouse embryo development.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
14
|
Huang CH, Yeh JM, Chan WH. Hazardous impacts of silver nanoparticles on mouse oocyte maturation and fertilization and fetal development through induction of apoptotic processes. ENVIRONMENTAL TOXICOLOGY 2018; 33:1039-1049. [PMID: 29964317 DOI: 10.1002/tox.22590] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles (AgNPs) are antibacterial materials widely used in numerous products and medical supplies. Previously, we showed that AgNPs trigger apoptotic processes in mouse blastocysts, leading to a decrease in cell viability and impairment of preimplantation and postimplantation embryonic development in vitro and in vivo. In the present study, we further investigated the hazardous effects of AgNPs on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent preimplantation and postimplantation development in vitro and in vivo. Data from in vitro experiments revealed that AgNPs impair mouse oocyte maturation, decrease IVF rates, and induce injury effects on subsequent embryonic development to a significant extent. In an animal model, intravenous injection of AgNPs (5 mg/kg body weight) led to a significant decrease in mouse oocyte maturation and IVF concomitant with impairment of early embryonic development in vivo. Importantly, pretreatment with N-acetylcysteine effectively prevented AgNP-triggered reactive oxygen species (ROS) production and apoptosis, clearly suggesting a critical role of ROS as an upstream initiator or key regulator of AgNP-induced hazardous effects on oocyte maturation and sequent embryonic development. Furthermore, preincubation of oocytes with Ac-DEVD-cho, a caspase-3-specific inhibitor, effectively prevented hazardous effects, highlighting the potential involvement of caspase-dependent apoptotic signaling cascades in AgNP-mediated events. Expression levels of p53 and p21 of blastocysts were upregulated upon preincubation of mouse oocytes with AgNPs. Our collective results imply that cell apoptosis in mouse blastocysts derived from the AgNP-pretreated oocytes via intracellular ROS generation, which is further mediated through p53-, p21-, and caspase-3-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan
| | - Jui-Ming Yeh
- Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Safaeinejad Z, Kazeminasab F, Kiani-Esfahani A, Ghaedi K, Nasr-Esfahani MH. Multi-effects of Resveratrol on stem cell characteristics: Effective dose, time, cell culture conditions and cell type-specific responses of stem cells to Resveratrol. Eur J Med Chem 2018; 155:651-657. [DOI: 10.1016/j.ejmech.2018.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 01/17/2023]
|
16
|
Wang Y, Zhang M, Chen ZJ, Du Y. Resveratrol promotes the embryonic development of vitrified mouse oocytes after in vitro fertilization. In Vitro Cell Dev Biol Anim 2018; 54:430-438. [DOI: 10.1007/s11626-018-0262-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022]
|
17
|
Huang CH, Huang ZW, Ho FM, Chan WH. Berberine impairs embryonic development in vitro and in vivo through oxidative stress-mediated apoptotic processes. ENVIRONMENTAL TOXICOLOGY 2018; 33:280-294. [PMID: 29168595 DOI: 10.1002/tox.22515] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, has been shown to suppress growth and induce apoptosis in some tumor cell lines. However, berberine has also been reported to attenuate H2 O2 -induced oxidative injury and apoptosis. The basis for these ambiguous effects of berberine-triggering or preventing apoptosis-has not been well characterized to date. In the current investigation, we examined whether berberine exerts cytotoxic effects on mouse embryos at the blastocyst stage and affects subsequent embryonic development in vitro and in vivo. Treatment of blastocysts with berberine (2.5-10 μM) induced a significant increase in apoptosis and a corresponding decrease in trophectoderm cell number. Moreover, the implantation success rate of blastocysts pretreated with berberine was lower than that of their control counterparts. Pretreatment with berberine was also associated with increased resorption of postimplantation embryos and decreased fetal weight. In an animal model, intravenous injection of berberine (2, 4, or 6 mg/kg body weight/d) for 4 days resulted in apoptosis of blastocyst cells and early embryonic developmental injury. Berberine-induced injury of mouse blastocysts appeared to be attributable to oxidative stress-triggered intrinsic apoptotic signaling processes that impaired preimplantation and postimplantation embryonic development. Taken together, our results clearly demonstrate that berberine induces apoptosis and retards early preimplantation and postimplantation development of mouse embryos, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City 33004, Taiwan
| | - Zi-Wei Huang
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
| | - Feng-Ming Ho
- Health and Longevity Biotechnology Company; Feng-Kwan Medical Clinic, Taichung, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
18
|
Marycz K, Michalak I, Kornicka K. Advanced nutritional and stem cells approaches to prevent equine metabolic syndrome. Res Vet Sci 2018; 118:115-125. [PMID: 29421480 DOI: 10.1016/j.rvsc.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022]
Abstract
Horses metabolic disorders have become an important problem of modern veterinary medicine. Pathological obesity, insulin resistance and predisposition toward laminitis are associated with Equine Metabolic Syndrome (EMS). Based on pathogenesis of EMS, dietary and cell therapy management may significantly reduce development of this disorder. Special attention has been paid to the diet supplementation with highly bioavailable minerals and mesenchymal stem cells (MSC) which increase insulin sensitivity. In nutrition, there is a great interests in natural algae enriched via biosorption process with micro- and macroelements. In the case of cellular therapy, metabolic condition of engrafted cells may be crucial for the effectiveness of the therapy. Although, recent studies indicated on MSC deterioration in EMS individuals. Here, we described the combined nutritional and stem cells therapy for the EMS treatment. Moreover, we specified in details how EMS affects the adipose-derived stem cells (ASC) population. Presented here, combined kind of therapy- an innovative and cutting edge approach of metabolic disorders treatment may become a new gold standard in personalized veterinary medicine.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-630 Wrocław, Poland; Wroclaw Research Centre EIT+, 54-066 Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - Katarzyna Kornicka
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-630 Wrocław, Poland; Wroclaw Research Centre EIT+, 54-066 Wrocław, Poland.
| |
Collapse
|
19
|
Huang CH, Chan WH. Protective Effects of Liquiritigenin against Citrinin-Triggered, Oxidative-Stress-Mediated Apoptosis and Disruption of Embryonic Development in Mouse Blastocysts. Int J Mol Sci 2017; 18:ijms18122538. [PMID: 29186930 PMCID: PMC5751141 DOI: 10.3390/ijms18122538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells and embryos. A previous investigation by our group revealed potentially hazardous effects of CTN on mouse oocyte maturation and pre- and post-implantation embryo development via the induction of apoptosis. The present study showed that CTN induces apoptosis and inhibits cell proliferation in the inner cell mass of mouse blastocysts. Notably, we observed for the first time that both these effects are suppressed by liquiritigenin (LQ). LQ is a type of flavonoid isolated from Glycyrrhiza radix with several biochemical and pharmacological activities, including antioxidant and anti-inflammatory properties. The preincubation of blastocysts with LQ clearly prevented CTN-induced disruption of pre- and post-implantation embryonic development and fetal weight loss, both in vitro and in vivo. CTN-induced damage processes directly promoted reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (MMP) and activation of caspase-9 and caspase-3, which were effectively blocked by LQ. Moreover, in an animal model, intravenous injection of dams with CTN (3 mg/kg/day) triggered apoptosis of blastocysts, disruption of embryonic development from the zygote to the blastocyst stage and a decrease in fetal weight. Pre-injection with LQ (5 mg/kg/day) effectively reduced apoptosis and impaired the cytotoxic effects of CTN on development. Our in vivo findings further confirm that CTN exposure via injection has the potential to impair pre- and post-implantation development, leading to apoptosis and the suppression of sequent embryonic development, which can be effectively prevented by LQ.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City 33004, Taiwan.
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
20
|
Kalisch-Smith JI, Moritz KM. Detrimental effects of alcohol exposure around conception: putative mechanisms. Biochem Cell Biol 2017; 96:107-116. [PMID: 29112458 DOI: 10.1139/bcb-2017-0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In western countries, alcohol consumption is widespread in women of reproductive age, and in binge quantities. These countries also continue to have high incidences of unplanned pregnancies, with women often reported to cease drinking after discovering their pregnancy. This suggests the early embryo may be highly exposed to the detrimental effects of alcohol during the periconception period. The periconception and pre-implantation windows, which include maturation of the oocyte, fertilisation, and morphogenesis of the pre-implantation embryo, are particularly sensitive times of development. Within the oviduct and uterus, the embryo is exposed to a unique nutritional environment to facilitate its development and establish de-novo expression of the genome through epigenetic reprogramming. Alcohol has wide-ranging effects on cellular stress, as well as hormonal, and nutrient signalling pathways, which may affect the development and metabolism of the early embryo. In this review, we summarise the adverse developmental outcomes of early exposure to alcohol (prior to implantation in animal models) and discuss the potential mechanisms for these outcomes that may occur within the protected oviductal and uterine environment. One interesting candidate is reduced retinoic acid synthesis, as it is implicated in the control of epigenetic reprogramming and cell lineage commitment, processes that have adverse consequences for the formation of the placenta, and subsequently, fetal programming.
Collapse
Affiliation(s)
- J I Kalisch-Smith
- a School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - K M Moritz
- a School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.,b Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
21
|
Rhein Induces Oxidative Stress and Apoptosis in Mouse Blastocysts and Has Immunotoxic Effects during Embryonic Development. Int J Mol Sci 2017; 18:ijms18092018. [PMID: 28930172 PMCID: PMC5618666 DOI: 10.3390/ijms18092018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022] Open
Abstract
Rhein, a glucoside chemical compound found in a traditional Chinese medicine derived from the roots of rhubarb, induces cell apoptosis and is considered to have high potential as an antitumor drug. Several previous studies showed that rhein can inhibit cell proliferation and trigger mitochondria-related or endoplasmic reticulum (ER) stress-dependent apoptotic processes. However, the side effects of rhein on pre- and post-implantation embryonic development remain unclear. Here, we show that rhein has cytotoxic effects on blastocyst-stage mouse embryos and induces oxidative stress and immunotoxicity in mouse fetuses. Blastocysts incubated with 5-20 μM rhein showed significant cell apoptosis, as well as decreases in their inner cell mass cell numbers and total cell numbers. An in vitro development assay showed that rhein affected the developmental potentials of both pre- and post-implantation embryos. Incubation of blastocysts with 5-20 μM rhein was associated with increased resorption of post-implantation embryos and decreased fetal weight in an embryo transfer assay. Importantly, in an in vivo model, intravenous injection of dams with rhein (1, 3, and 5 mg/kg body weight/day) for four days resulted in apoptosis of blastocyst-stage embryos, early embryonic developmental injury, and decreased fetal weight. Intravenous injection of dams with 5 mg/kg body weight/day rhein significantly increased the total reactive oxygen species (ROS) content of fetuses and the transcription levels of antioxidant proteins in fetal livers. Additional work showed that rhein induced apoptosis through ROS generation, and that prevention of apoptotic processes effectively rescued the rhein-induced injury effects on embryonic development. Finally, the transcription levels of the innate-immunity related genes, CXCL1, IL-1β and IL-8, were down-regulated in the fetuses of dams that received intravenous injections of rhein. These results collectively show that rhein has the potential to induce embryonic cytotoxicity and induce oxidative stress and immunotoxicity during the development of mouse embryos.
Collapse
|
22
|
Ratno Budiarto B, Chan WH. Oxidative stresses-mediated apoptotic effects of ginsenoside Rb1 on pre- and post-implantation mouse embryos in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2017; 32:1990-2003. [PMID: 27640876 DOI: 10.1002/tox.22366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/15/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
Ginsenoside Rb1, the major saponin component of ginseng root, has a wide range of therapeutic application. Previous studies have established that ginsenoside Rb1 inhibits the cell cycle and induces apoptosis. However, its side-effects, particularly those on embryonic development, have not been well characterized to date. In the current study, we examined whether ginsenoside Rb1 exerts a cytotoxic effect on mouse embryos at the blastocyst stage, and affects subsequent embryonic development in vitro and in vivo. Blastocysts treated with 25-100 μg mL-1 ginsenoside Rb1 exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rate of blastocysts pretreated with ginsenoside Rb1 was lower than that of their control counterparts. Moreover, in vitro treatment with 25-100 μg mL-1 ginsenoside Rb1 was associated with increased resorption of post-implantation embryos and decreased fetal weight. In an in vivo model, intravenous injection with ginsenoside Rb1 (1, 3, 5 mg kg-1 body weight/day) for 4 days resulted in apoptosis of blastocyst stage embryos and early embryonic developmental injury. In addition, ginsenoside Rb1 appeared to induce injury in mouse blastocysts through oxidative stresses-triggered intrinsic apoptotic signaling processes to impair sequent embryonic development. The collective results strongly indicate that ginsenoside Rb1 induces apoptosis and retards early pre- and post-implantation development of mouse embryos, both in vitro and in vivo. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1990-2003, 2017.
Collapse
Affiliation(s)
- Bugi Ratno Budiarto
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City, 32023, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City, 32023, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
23
|
Anggelia MR, Chan WH. Impairment of preimplantation and postimplantation embryonic development through intrinsic apoptotic processes by ginsenoside Rg1 in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2017; 32:1937-1951. [PMID: 28371286 DOI: 10.1002/tox.22416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
Ginsenoside Rg1, which is the most abundant compound found in Asian ginseng (Panax ginseng), has demonstrated various pharmacological actions, including neuroprotective, immune-stimulatory, and antidiabetic effects. Pregnant women, especially in the Asian community, consume ginseng as a nutritive supplement. Thus, the effects of ginsenoside-Rg1 on embryonic development need to be investigated, such as in a mouse model. As previous investigations have found that ginsenoside Rg1 appears to either trigger or prevent apoptosis in different cell lines, the effects of this agent on apoptosis remain to be clarified. In this study, we investigated whether ginsenoside Rg1 exerts a hazardous effect on mouse blastocysts and/or affects subsequent embryonic development in vitro and in vivo. Blastocysts treated with 25-100 μM ginsenoside Rg1 exhibited significant induction of apoptosis and a corresponding decrease in the inner cell mass (ICM) cell number. Importantly, the implantation rate was lower among ginsenoside Rg1-treated blastocysts compared to untreated controls. Moreover, embryo transfer assays revealed that blastocysts treated with 100 μM ginsenoside Rg1 exhibited increased resorption of postimplantation embryos and decreased weight among surviving fetuses. In vivo, intravenous injection of mice with ginsenoside Rg1 (2, 4, or 6 mg/kg body weight/day) for 4 days was associated with increased apoptosis of blastocyst-stage embryos and negatively impacted early embryonic development. Further experiments revealed that these effects may reflect the ability of ginsenoside Rg1 to trigger oxidative stress-mediated intrinsic apoptotic signaling. Our in vitro results indicate that ginsenoside Rg1 treatment increases intracellular oxidative stress, decreases mitochondrial membrane potential, increases the Bax/Bcl-2 ratio, and activates caspase-9 and caspase-3, but not caspase-8. Taken together, our study results strongly suggest that ginsenoside Rg1 induces apoptosis and impairs the early preimplantation and postimplantation development of mouse embryos, both in vitro and in vivo.
Collapse
Affiliation(s)
- Madonna Rica Anggelia
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, 32023, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, 32023, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
24
|
Li N, Du Z, Shen Q, Lei Q, Zhang Y, Zhang M, Hua J. Resveratrol Enhances Self-Renewal of Mouse Embryonic Stem Cells. J Cell Biochem 2017; 118:1928-1935. [PMID: 28230281 DOI: 10.1002/jcb.25942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
Resveratrol (RSV) has been shown to affect the differentiation of several types of stem cells, while the detailed mechanism is elusive. Here, we aim to investigate the function of RSV in self-renewal of mouse embryonic stem cells (ESCs) and the related mechanisms. In contrast with its reported roles, we found unexpectedly that differentiated ESCs or iPSCs treated by RSV would not show further differentiation, but regained a naïve pluripotency state with higher expressions of core transcriptional factors and with the ability to differentiate into all three germ layers when transplanted in vivo. In accordance with these findings, RSV also enhanced cell cycle progression of ESCs via regulating cell cycle-related proteins. Finally, enhanced activation of JAK/STAT3 signaling pathway and suppressed activation of mTOR were found essential in enhancing the self-renewal of ESCs by RSV. Our finding discovered a novel function of RSV in enhancing the self-renewal of ESCs, and suggested that the timing of treatment and concentration of RSV determined the final effect of it. Our work may contribute to understanding of RSV in the self-renewal maintenance of pluripotent stem cells, and may also provide help to the generation and maintenance of iPSCs in vitro. J. Cell. Biochem. 118: 1928-1935, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaoyu Du
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qijing Lei
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Resveratrol protects the loss of connexin 43 induced by ethanol exposure in neonatal mouse cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:651-660. [DOI: 10.1007/s00210-017-1368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/16/2017] [Indexed: 11/26/2022]
|
26
|
Varshney P, Dey CS. Resveratrol regulates neuronal glucose uptake and insulin sensitivity via P21-activated kinase 2 (PAK2). Biochem Biophys Res Commun 2017; 485:372-378. [PMID: 28216158 DOI: 10.1016/j.bbrc.2017.02.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
We have recently reported P21-activated kinase 2 (PAK2), a serine/threonine kinase as a negative regulator of neuronal glucose uptake and insulin sensitivity. Resveratrol (RSV), a natural polyphenol with anti-oxidative, anti-inflammatory and anti-diabetic properties, regulates PAK2 activity in HepG2 and ESC-B5 cell apoptosis. However, regulation of PAK2 by RSV in neuronal insulin signaling pathway, if any, is still unknown. In the present study, RSV treatment significantly increased PAK2 activity under insulin-sensitive and insulin-resistant condition, along with a marked decrease in glucose uptake in differentiated N2A cells. Pretreatment with AMPK inhibitor, followed by RSV treatment resulted in reduction in PAK2 activity whereas glucose uptake showed an increase. However, pretreatment with Akt inhibitor and then RSV exposure significantly increased PAK2 activity, with a corresponding decrease in glucose uptake. RSV treatment increased AMPK activity and decreased Akt activity. In conclusion, RSV negatively regulates neuronal glucose uptake and insulin sensitivity via PAK2.
Collapse
Affiliation(s)
- Pallavi Varshney
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
27
|
Ding H, Xu X, Qin X, Yang C, Feng Q. Resveratrol promotes differentiation of mouse embryonic stem cells to cardiomyocytes. Cardiovasc Ther 2017; 34:283-9. [PMID: 27225714 DOI: 10.1111/1755-5922.12200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Embryonic stem cells (ESCs) are capable to differentiate into cardiomyocytes, with the potential to treat cardiovascular diseases. However, directed differentiation is still a challenge faced by scientists. As a natural substance in grapes, resveratrol (RV) is important for cardiovascular protection. The studies of RV and its effects on ESC differentiation have potential clinical applications. METHODS Using mouse embryonic stem cells (mESCs), we investigated the effects of different concentrations of RV (5, 10, 20, 50, and 100 μmol/L) exposure on mESCs viability, expression levels of cardiac marker genes in embryoid bodies (EBs) derived from mESCs, expression levels of maturity indicative cardiac markers in cardiomyocytes derived from mESCs, and the beating properties of EBs. RESULTS About 10 μmol/L of RV showed no toxicity on cell viability and was the optimal concentration to promote mESC differentiation, induce mESC differentiation to cardiomyocytes, and gain the beating properties of EBs. CONCLUSION RV can successfully direct the differentiation of mESCs into cardiomyocytes, shedding light on its future applications to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Hong Ding
- Department of Cardiology, Affiliated Hospital of Nanjing Medical University, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Xin Xu
- Department of Cardiology, Affiliated Hospital of Nanjing Medical University, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Xian Qin
- Department of Cardiology, Affiliated Hospital of Nanjing Medical University, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Chengjian Yang
- Department of Cardiology, Affiliated Hospital of Nanjing Medical University, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Qiuting Feng
- Department of Cardiology, Affiliated Hospital of Nanjing Medical University, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
28
|
Wang Q, Song JW, Liu Y, Zhao XX. Involvement of Wnt pathway in ethanol-induced inhibition of mouse embryonic stem cell differentiation. Alcohol 2017; 58:13-18. [PMID: 28109343 DOI: 10.1016/j.alcohol.2016.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022]
Abstract
Ethanol has been reported to have toxicity on embryonic stem cells (ESCs). The present study aims to address the teratogenic effects of ethanol on the growth and cardiac differentiation of ESCs. Mouse embryonic stem D3 cells were employed. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays were used to determine cytotoxicity. Quantitative real time polymerase chain reaction (qRT-PCR) and Western blotting were used to analyze the expressions of cardiac differentiation-related and Wnt signaling factors. The beating profile of cardiomyocytes was recorded to assess cardiac differentiation. Ethanol induced growth inhibition in both undifferentiated and differentiated ESCs after 5 days of exposure. Ethanol inhibited the loss of pluripotent gene expressions including Nanog, Sox2 and Oct4. The expressions of cardiac markers, Nkx2.5, Mef2c, Tbx5, dHand, αMHC, Cx43 and troponin C1, were suppressed by ethanol treatment. Furthermore, ethanol delayed cardiac differentiation of ESCs till 11 days of differentiation. The expressions of Wnt-related regulators, β-catenin and its target cyclin D1, were downregulated by ethanol. Wnt pathway agonist wnt3a could greatly rescue ethanol-induced inhibition of cardiac differentiation and Wnt-pathway-related protein expressions. These finding suggested that ethanol suppresses mouse ESC differentiation largely by inhibiting Wnt signaling pathway.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 ChangHai Road, Shanghai 200433, China
| | - Jing-Wen Song
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 ChangHai Road, Shanghai 200433, China
| | - Yang Liu
- The Institute of Health Science, Shanghai JiaoTong University School of Medicine, 320 YueYang Road, Shanghai 200031, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 ChangHai Road, Shanghai 200433, China.
| |
Collapse
|
29
|
Kornicka K, Nawrocka D, Lis-Bartos A, Marędziak M, Marycz K. Polyurethane–polylactide-based material doped with resveratrol decreases senescence and oxidative stress of adipose-derived mesenchymal stromal stem cell (ASCs). RSC Adv 2017. [DOI: 10.1039/c7ra02334k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to evaluate the influence of resveratrol (RES)-doped polyurethane (TPU)–polylactide (PLA) biomaterials on the senescence and oxidative stress factor of adipose-derived stem cells (ASCs) for tissue engineering.
Collapse
Affiliation(s)
- K. Kornicka
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
- Wroclaw Research Centre EIT+
| | - D. Nawrocka
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
| | - A. Lis-Bartos
- Department of Biomaterials
- AGH University of Science and Technology
- Kraków
- Poland
| | - M. Marędziak
- Faculty of Veterinary Medicine
- University of Environmental and Life Sciences
- Wrocław
- Poland
| | - K. Marycz
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
- Wroclaw Research Centre EIT+
| |
Collapse
|
30
|
Huang FJ, Chan WH. Effects of ochratoxin a on mouse oocyte maturation and fertilization, and apoptosis during fetal development. ENVIRONMENTAL TOXICOLOGY 2016; 31:724-735. [PMID: 25504763 DOI: 10.1002/tox.22085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
We previously reported that ochratoxin A (OTA), a mycotoxin found in many foods worldwide, causes nephrotoxicity, hepatotoxicity, and immunotoxicity, and is a risk factor for abnormal embryonic development. More specifically, OTA triggers apoptotic processes in the inner cell mass of mouse blastocysts, decreasing cell viability and embryonic development. In the current study, we investigated the deleterious effects of OTA on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent pre- and postimplantation development both in vitro and in vivo. Notably, OTA significantly impaired mouse oocyte maturation, decreased IVF rates, and inhibited subsequent embryonic development in vitro. Preincubation of oocytes with OTA during in vitro maturation increased postimplantation embryonic resorption and decreased mouse fetal weight. In an in vivo animal model, provision of 1-10 μM OTA in the drinking water or intravenous injection of 1 or 2 mg/kg body weight of OTA decreased oocyte maturation and IVF, and had deleterious effects on early embryonic development. Importantly, preincubation of oocytes with a caspase-3-specific inhibitor effectively blocked these OTA-triggered deleterious effects, suggesting that the embryonic injury induced by OTA is mediated via a caspase-dependent apoptotic mechanism. Furthermore, OTA upregulated the levels of p53 and p21 in blastocyst cells derived from OTA-pretreated oocytes, indicating that such cells undergo apoptosis via p53-, p21-, and caspase-3-dependent regulatory mechanisms. This could have deleterious effects on embryonic implantation and fetal survival rates, as seen in our animal models. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 724-735, 2016.
Collapse
Affiliation(s)
- Fu-Jen Huang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Chang Gung University School of Medicine, Kaohsiung, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan
- Center for Biomedical Technology, Chung Yuan Christian University, Chung Li, Taiwan
| |
Collapse
|
31
|
Huang FJ, Chan WH. Apoptotic effects on maturation of mouse oocytes, fertilization and fetal development by puerarin. Drug Chem Toxicol 2015; 39:380-7. [DOI: 10.3109/01480545.2015.1126842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Zhao Z, Sun T, Jiang Y, Wu L, Cai X, Sun X, Sun X. Photooxidative damage in retinal pigment epithelial cells via GRP78 and the protective role of grape skin polyphenols. Food Chem Toxicol 2015; 74:216-24. [PMID: 25447759 DOI: 10.1016/j.fct.2014.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 01/01/2023]
Abstract
Blue light induced oxidative damage and ER stress are related to the pathogenesis of age-related macular degeneration (AMD). However, the mechanism of blue light-induced damage remained obscure. The objective of this work is to assess the photooxidative damage to retinal pigment epithelial cells (RPE) and oxidation-induced changes in expression of ER stress associated apoptotic proteins, and investigate the mechanism underlying the protective effects of grape skin extracts. To mimic lipofuscin-mediated photooxidation in vivo, ARPE-19 cells that accumulated A2E, one of lipofuscin fluorophores, were used as a model system to investigate the mechanism of photooxidative damage and the protective effects of grape skin polyphenols. Exposure of A2E containing ARPE-19 cells to blue light resulted in significant apoptosis and increases in levels of GRP78, CHOP, p-JNK, Bax, cleaved caspase-9, and cleaved caspase-3, indicating that photooxidative damage to RPE cells is mediated by the ER-stress-induced intrinsic apoptotic pathway. Cells in which GRP78 had been knocked down with shRNA were more vulnerable to photooxidative damage. Pre-treatment of blue-light-exposed A2E containing ARPE-19 cells, with grape skin extracts, inhibited apoptosis, in a dose dependent manner. Knockdown GRP78 blocked the protective effect of grape skin extracts.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Chan WH. Hazardous effects of sanguinarine on maturation of mouse oocytes, fertilization, and fetal development through apoptotic processes. ENVIRONMENTAL TOXICOLOGY 2015; 30:946-955. [PMID: 24677673 DOI: 10.1002/tox.21969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Previously, we reported that sanguinarine, a phytoalexin with antimicrobial, anti-oxidant, anti-inflammatory and pro-apoptotic effects, is a risk factor for normal embryonic development that triggers apoptotic processes in the inner cell mass of mouse blastocysts, causing decreased embryonic development and cell viability. In the current study, we investigated the deleterious effects of sanguinarine on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent pre- and postimplantation development both in vitro and in vivo. Notably, sanguinarine significantly impaired mouse oocyte maturation, decreased IVF rates, and inhibited subsequent embryonic development in vitro. Preincubation of oocytes with sanguinarine during in vitro maturation induced an increase in postimplantation embryo resorption and a decrease in mouse fetal weight. In an in vivo animal model, 1 to 5 μM sanguinarine, provided in drinking water, caused a decrease in oocyte maturation and IVF, and led to deleterious effects on early embryonic development. Importantly, preincubation of oocytes with a caspase-3-specific inhibitor effectively blocked sanguinarine-triggered deleterious effects, clearly implying that embryonic injury induced by sanguinarine is mediated by a caspase-dependent apoptotic mechanism.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan
- Center for Biomedical Technology, Chung Yuan Christian University, Chung Li, Taiwan
| |
Collapse
|
34
|
Time- and dose-dependent effects of ethanol on mouse embryonic stem cells. Reprod Toxicol 2015; 57:157-64. [PMID: 26073001 DOI: 10.1016/j.reprotox.2015.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 05/21/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023]
Abstract
Ethanol is a common solvent used with mouse embryonic stem (mES) cells in protocols to test chemicals for evidence of developmental toxicity. In this study, dose-response relationships for ethanol toxicity in mES cells were examined. For cells maintained in an undifferentiated state, ethanol significantly reduced viable cell numbers with estimated half maximal inhibitory concentrations of 1.5% and 0.8% ethanol after 24 and 48h, respectively, observations which correlated with significantly increased expression of apoptotic markers. For cells cultured to induce cardiomyocyte formation, up to 0.5% ethanol during the first two days failed to alter the outcome of differentiation, whereas 0.3% ethanol for 11 days significantly reduced the fraction of cultures containing contracting areas, an observation that correlated with significantly reduced cell numbers. These results suggest that ethanol is not an inert solvent at concentrations that might be used for developmental toxicity testing.
Collapse
|
35
|
Ethanol exposure induces a delay in the reacquisition of function during head regeneration in Schmidtea mediterranea. Neurotoxicol Teratol 2015; 48:28-32. [DOI: 10.1016/j.ntt.2015.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
|
36
|
Hsuuw YD, Chan WH. Apoptotic effects of dillapiole on maturation of mouse oocytes, fertilization and fetal development. Drug Chem Toxicol 2015; 38:469-76. [PMID: 25721892 DOI: 10.3109/01480545.2014.1002037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previously, we reported that dillapiole, a phenylpropanoid with antileishmanial, anti-inflammatory, antifungal and acaricidal activities, is a risk factor for normal embryonic development that triggers apoptotic processes in the inner cell mass of mouse blastocysts, leading to impaired embryonic development and cell viability. In the current study, we investigated the deleterious effects of dillapiole on mouse oocyte maturation, in vitro fertilization (IVF) and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, dillapiole induced significant impairment of mouse oocyte maturation, decrease in the IVF rate and inhibition of subsequent embryonic development in vitro. Pre-incubation of oocytes with dillapiole during in vitro maturation led to an increase in post-implantation embryo resorption and decrease in mouse fetal weight. In an in vivo animal model, 2.5, 5 or 10 μM dillapiole provided in drinking water caused a decrease in oocyte maturation and IVF, and led to deleterious effects on early embryonic development. Importantly, pre-incubation of oocytes with a caspase-3-specific inhibitor effectively blocked dillapiole-triggered deleterious effects, clearly implying that embryonic injury induced by dillapiole is mediated via a caspase-dependent apoptotic mechanism. To the best of our knowledge, this is the first study to establish the impact of dillapiole on maturation of mouse oocytes, fertilization and sequential embryonic development.
Collapse
Affiliation(s)
- Yan-Der Hsuuw
- a Department of Life Science , National Pingtung University of Science and Technology , Pingtung , Taiwan
| | - Wen-Hsiung Chan
- b Department of Bioscience Technology and Center for Nanotechnology , Chung Yuan Christian University , Chung Li , Taiwan , and.,c Center for Biomedical Technology, Chung Yuan Christian University , Chung Li , Taiwan
| |
Collapse
|
37
|
Pifithrin-α ameliorates resveratrol-induced two-cell block in mouse preimplantation embryos in vitro. Theriogenology 2014; 83:862-73. [PMID: 25542456 DOI: 10.1016/j.theriogenology.2014.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/29/2014] [Accepted: 11/20/2014] [Indexed: 12/26/2022]
Abstract
Treatment with resveratrol at concentrations greater than 0.5 μmol/L resulted in the arrest of mouse embryo development at the two-cell stage. Resveratrol-induced cytotoxicity was investigated in embryos by evaluating morphologic features by using the bromodeoxyuridine assay and acridine orange and ethidium bromide double staining. Resveratrol was found to significantly increase the expressions of p53, p21, Atf3, smac/Diablo, Bax, Bak1, Bok, and Noxa mRNA in the embryos, whereas Cullin 3 and Cdk1 expressions were decreased. Furthermore, active p53 positive signal in embryos arrested at the two-cell stage was localized in the nucleus, whereas no active p53 signal was observed in control embryos. Pretreatment with pifithrin-α, a p53 inhibitor, downregulated active p53 in two-cell embryo nuclei and ameliorated approximately 50% of the embryonic developmental defect caused by resveratrol. The findings of the present study, therefore, suggest that pifithrin-α could be used as an effective cytoprotective agent against a reproductive toxin such as resveratrol.
Collapse
|
38
|
Joya X, Garcia-Algar O, Salat-Batlle J, Pujades C, Vall O. Advances in the development of novel antioxidant therapies as an approach for fetal alcohol syndrome prevention. ACTA ACUST UNITED AC 2014; 103:163-77. [PMID: 25131946 DOI: 10.1002/bdra.23290] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/08/2014] [Accepted: 07/08/2014] [Indexed: 01/14/2023]
Abstract
Ethanol is the most common human teratogen, and its consumption during pregnancy can produce a wide range of abnormalities in infants known as fetal alcohol spectrum disorder (FASD). The major characteristics of FASD can be divided into: (i) growth retardation, (ii) craniofacial abnormalities, and (iii) central nervous system (CNS) dysfunction. FASD is the most common cause of nongenetic mental retardation in Western countries. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, the induction of oxidative stress is believed to be one central process linked to the development of the disease. Currently, there is no known effective strategy for prevention (other than alcohol avoidance) or treatment. In the present review we will provide the state of art in the evidence for the use of antioxidants as a potential therapeutic strategy for the treatment using whole-embryo and culture cells models of FASD. We conclude that the imbalance of the intracellular redox state contributes to the pathogenesis observed in FASD models, and we suggest that antioxidant therapy can be considered a new efficient strategy to mitigate the effects of prenatal ethanol exposure.
Collapse
Affiliation(s)
- Xavier Joya
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Red de Salud Materno-Infantil y del Desarrollo (SAMID), Programa RETICS, Instituto Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Cytotoxic effects of dillapiole on embryonic development of mouse blastocysts in vitro and in vivo. Int J Mol Sci 2014; 15:10751-65. [PMID: 24933639 PMCID: PMC4100178 DOI: 10.3390/ijms150610751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/25/2014] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
We examined the cytotoxic effects of dillapiole, a phenylpropanoid with antileishmanial, anti-inflammatory, antifungal, and acaricidal activities, on the blastocyst stage of mouse embryos, subsequent embryonic attachment and outgrowth in vitro, and in vivo implantation via embryo transfer. Blastocysts treated with 2.5–10 μM dillapiole exhibited a significant increase in apoptosis and corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with dillapiole were lower than those of their control counterparts. Moreover, in vitro treatment with 2.5–10 μM dillapiole was associated with increased resorption of post-implantation embryos and decreased fetal weight. Our results collectively indicate that dillapiole induces apoptosis and retards early post-implantation development, both in vitro and in vivo. However, the extent to which this organic compound exerts teratogenic effects on early human development is not known at present. Further studies are required to establish effective protection strategies against the cytotoxic effects of dillapiole.
Collapse
|
40
|
Khalid O, Kim JJ, Kim HS, Hoang M, Tu TG, Elie O, Lee C, Vu C, Horvath S, Spigelman I, Kim Y. Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells. Stem Cell Res 2014; 12:791-806. [PMID: 24751885 DOI: 10.1016/j.scr.2014.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/17/2022] Open
Abstract
Stem cells, especially human embryonic stem cells (hESCs), are useful models to study molecular mechanisms of human disorders that originate during gestation. Alcohol (ethanol, EtOH) consumption during pregnancy causes a variety of prenatal and postnatal disorders collectively referred to as fetal alcohol spectrum disorders (FASDs). To better understand the molecular events leading to FASDs, we performed a genome-wide analysis of EtOH's effects on the maintenance and differentiation of hESCs in culture. Gene Co-expression Network Analysis showed significant alterations in gene profiles of EtOH-treated differentiated or undifferentiated hESCs, particularly those associated with molecular pathways for metabolic processes, oxidative stress, and neuronal properties of stem cells. A genome-wide DNA methylome analysis revealed widespread EtOH-induced alterations with significant hypermethylation of many regions of chromosomes. Undifferentiated hESCs were more vulnerable to EtOH's effect than their differentiated counterparts, with methylation on the promoter regions of chromosomes 2, 16 and 18 in undifferentiated hESCs most affected by EtOH exposure. Combined transcriptomic and DNA methylomic analysis produced a list of differentiation-related genes dysregulated by EtOH-induced DNA methylation changes, which likely play a role in EtOH-induced decreases in hESC pluripotency. DNA sequence motif analysis of genes epigenetically altered by EtOH identified major motifs representing potential binding sites for transcription factors. These findings should help in deciphering the precise mechanisms of alcohol-induced teratogenesis.
Collapse
Affiliation(s)
- Omar Khalid
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Jeffrey J Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Hyun-Sung Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Michael Hoang
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Thanh G Tu
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Omid Elie
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Connie Lee
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Catherine Vu
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Steve Horvath
- Department of Human Genetics and Biostatistics, UCLA David Geffen School of Medicine, Box 957088, 4357A Gonda Center, Los Angeles, CA 90095, USA
| | - Igor Spigelman
- Division of Oral Biology & Medicine, UCLA School of Dentistry, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA 90095, USA
| | - Yong Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA.,Division of Oral Biology & Medicine, UCLA School of Dentistry, 10833 Le Conte Avenue, 73-022 CHS, Los Angeles, CA 90095, USA.,UCLA's Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod Biomed Online 2014; 29:17-31. [PMID: 24813750 DOI: 10.1016/j.rbmo.2014.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/13/2013] [Accepted: 03/06/2014] [Indexed: 01/20/2023]
Abstract
Developmental toxicity caused by exposure to a mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviours, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase susceptibility of offspring to diseases. There is evidence to suggest that the developmental toxicological mechanisms of chemicals and lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased ROS generation overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Data on the involvement of oxidative stress in the mechanism of developmental toxicity following exposure to environmental pollutants are reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on post-natal development and health outcomes. Developmental toxicity caused by exposure to mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviors, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase the susceptibility of offspring to development complications and diseases. There is evidence to suggest that the developmental toxicological mechanisms of human-made chemicals and unhealthy lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased generation of ROS overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Exposure to various environmental pollutants induces synergic and cumulative dose-additive adverse effects on prenatal development, pregnancy outcomes and neonate health. Data from the literature on the involvement of oxidative stress in the mechanism of developmental toxicity following in vivo exposure to environmental pollutants will be reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on postnatal development and health outcomes.
Collapse
|
42
|
Fan YC, Chan WH. Epigallocatechin gallate induces embryonic toxicity in mouse blastocysts through apoptosis. Drug Chem Toxicol 2013; 37:247-54. [DOI: 10.3109/01480545.2013.838778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Huang FJ, Chin TY, Chan WH. Resveratrol protects against methylglyoxal-induced apoptosis and disruption of embryonic development in mouse blastocysts. ENVIRONMENTAL TOXICOLOGY 2013; 28:431-441. [PMID: 21793156 DOI: 10.1002/tox.20734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/28/2011] [Accepted: 04/30/2011] [Indexed: 05/31/2023]
Abstract
Methylglyoxal (MG) is a glucose metabolite. Diabetic patients have increased serum levels of MG, and MG is also implicated in tissue injury during embryonic development. In the present work, we show that MG induces apoptosis in the inner cell mass of mouse blastocysts and inhibits cell proliferation. Both effects are suppressed by resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties. MG-treated blastocysts displayed lower levels of implantation (compared to controls) when plated on culture dishes in vitro and a reduced ability to proceed to later stages of embryonic development. Pretreatment with resveratrol prevented MG-induced disruption of embryonic development, both in vitro and in vivo. Further investigation of these processes revealed that MG directly promotes reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-3, whereas resveratrol effectively blocks MG-induced ROS production and the accompanying apoptotic biochemical changes. Our results collectively imply that MG triggers the mitochondrion-dependent apoptotic pathway via ROS generation, and the antioxidant activity of resveratrol prevents MG-induced toxicity.
Collapse
Affiliation(s)
- Fu-Jen Huang
- Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | |
Collapse
|
44
|
Ogony JW, Malahias E, Vadigepalli R, Anni H. Ethanol alters the balance of Sox2, Oct4, and Nanog expression in distinct subpopulations during differentiation of embryonic stem cells. Stem Cells Dev 2013; 22:2196-210. [PMID: 23470161 DOI: 10.1089/scd.2012.0513] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factors Sox2, Oct4, and Nanog regulate within a narrow dose-range embryonic stem (ES) cell pluripotency and cell lineage commitment. Excess of Oct4 relative to Sox2 guides cells to mesoendoderm (ME), while abundance of Sox2 promotes neuroectoderm (NE) formation. Literature does not address whether ethanol interferes with these regulatory interactions during neural development. We hypothesized that ethanol exposure of ES cells in early differentiation causes an imbalance of Oct4 and Sox2 that diverts cells away from NE to ME lineage, consistent with the teratogenesis effects caused by prenatal alcohol exposure. Mouse ES cells were exposed to ethanol (0, 25, 50, and 100 mM) during retinoic acid (10 nM)-directed differentiation to NE for 0-6 days, and the expression of Sox2, Oct4, and Nanog was measured in single live cells by multiparametric flow cytometry, and the cellular phenotype was characterized by immunocytochemistry. Our data showed an ethanol dose- and time-dependent asymmetric modulation of Oct4 and Sox2 expression, as early as after 2 days of exposure. Single-cell analysis of the correlated expression of Sox2, Oct4, and Nanog revealed that ethanol promoted distinct subpopulations with a high Oct4/Sox2 ratio. Ethanol-exposed cells differentiated to fewer β-III tubulin-immunoreactive cells with an immature neuronal phenotype by 4 days. We interpret these data as suggesting that ethanol diverted cells in early differentiation from the NE fate toward the ME lineage. Our results provide a novel insight into the mode of ethanol action and opportunities for discovery of prenatal biomarkers at early stages.
Collapse
Affiliation(s)
- Joshua W Ogony
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
45
|
Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, Liu L. Resveratrol protects against age-associated infertility in mice. Hum Reprod 2013; 28:707-17. [PMID: 23293221 DOI: 10.1093/humrep/des437] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Does resveratrol counteract age-associated infertility in a mouse model of reproductive aging? SUMMARY ANSWER Long-term-oral administration of resveratrol protects against the reduction of fertility with reproductive aging in mice. WHAT IS KNOWN ALREADY Loss of oocytes and follicles and reduced oocyte quality contribute to age-associated ovarian aging and infertility. Accumulation of free radicals with age leads to DNA mutations, protein damage, telomere shortening, apoptosis and accelerated ovarian aging. Increasing evidence shows that resveratrol, enriched in certain foods, for example red grapes and wine, has anti-tumor and anti-aging effects on somatic tissues by influencing various signaling pathways, including anti-oxidation, as well as activating Sirt1 and telomerase. We investigated the potential of resveratrol to stave off ovarian aging in the inbred C57/BL6 mouse model. STUDY DESIGN, SIZE, DURATION Young C57/BL6 females (aged 2-3 months) were fed with resveratrol added to drinking water at 30 mg/l (providing ∼7.0 mg/kg/day) for 6 or 12 months, and the fertility and ovarian functions were compared among mice treated with or without resveratrol, and young mice served as reproductive controls. Experiments were repeated three times, with an average of 25 females randomly allocated to each treatment group for each repeat. PARTICIPANTS/MATERIALS, SETTING, METHODS Reproductive performance of female mice was determined by litter size, ovarian follicles and oocyte quantity and quality, and compared with age-matched controls. The impact of resveratrol on telomeres and telomerase activity, and expression of genes associated with cell senescence also was evaluated. MAIN RESULTS AND THE ROLE OF CHANCE Young mice fed with resveratrol for 12 months retained the capacity to reproduce, while age-matched controls produced no pups. Consistently, mice fed with resveratrol for 12 months exhibited a larger follicle pool than controls (P < 0.05). Furthermore, telomerase activity, telomere length and age-related gene expression in ovaries of mice fed with resveratrol resembled those of young mice, but differed (P < 0.05) from those of age-matched old mice. Resveratrol improved (P < 0.05) the number and quality of oocytes, as evidenced by spindle morphology and chromosome alignment. Also, resveratrol affected embryo development in vitro in a dose-dependent manner. LIMITATIONS, REASONS FOR CAUTION The doses of resveratrol and the experimental conditions used by different research groups have varied considerably, and the dosage influences both the effectiveness and toxicity of resveratrol. Fine-tuning the dosage of resveratrol likely will optimize its anti-aging effects on ovarian function. WIDER IMPLICATIONS OF THE FINDINGS Our data provide a proof of principle of the fertility-sparing effect of resveratrol in female mice. Although depletion of the ovarian reserve of high-quality oocytes also contributes to increased infertility with reproductive aging in women, the data obtained using a mouse model may not extrapolate directly to human reproduction, and more extensive research is needed if any clinic trials are to be attempted. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by MOST of China National Basic Research Program (grant number: 2010CB94500 and 2012CB911200). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Mengyuan Liu
- Department of Cell Biology and Genetics, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Injurious effects of emodin on maturation of mouse oocytes, fertilization and fetal development via apoptosis. Int J Mol Sci 2012. [PMID: 23203041 PMCID: PMC3509557 DOI: 10.3390/ijms131113911] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20–40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process.
Collapse
|
47
|
Chang MH, Huang FJ, Chan WH. Emodin induces embryonic toxicity in mouse blastocysts through apoptosis. Toxicology 2012; 299:25-32. [PMID: 22609528 DOI: 10.1016/j.tox.2012.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/01/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin inhibits cell proliferation and induces caspase 3-dependent apoptosis. However, its side-effects, particularly those on embryonic development, have not been well characterized as yet. In the current study, we examined the cytotoxic effects of emodin on mouse embryos at the blastocyst stage, subsequent embryonic attachment and outgrowth in vitro, and in vivo implantation by embryo transfer. Blastocysts treated with 25-75 μM emodin exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rate of blastocysts pretreated with emodin was lower than that of their control counterparts. Moreover, in vitro treatment with 25-75 μM emodin was associated with increased resorption of post-implantation embryos and decreased fetal weight. With the aid of an in vivo mouse model, we showed that consumption of drinking water containing emodin led to apoptosis and decreased cell proliferation, and inhibited early embryonic development to the blastocyst stage. Our findings support a degree of selective inhibition of retinoic acid receptors in blastocysts treated with emodin. In addition, emodin appears to induce injury in mouse blastocysts through intrinsic apoptotic signaling processes to impair sequent embryonic development. These results collectively indicate that emodin has the potential to induce embryonic cytotoxicity.
Collapse
Affiliation(s)
- Mei-Hui Chang
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan
| | | | | |
Collapse
|
48
|
Chen CC, Chan WH. Injurious effects of curcumin on maturation of mouse oocytes, fertilization and fetal development via apoptosis. Int J Mol Sci 2012; 13:4655-4672. [PMID: 22606002 PMCID: PMC3344238 DOI: 10.3390/ijms13044655] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/31/2012] [Accepted: 04/09/2012] [Indexed: 11/16/2022] Open
Abstract
Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa. Previously, we reported a cytotoxic effect of curcumin on mouse embryonic stem cells and blastocysts and its association with defects in subsequent development. In the present study, we further investigated the effects of curcumin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, curcumin induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with curcumin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments with an in vivo mouse model disclosed that consumption of drinking water containing 40 μM curcumin led to decreased oocyte maturation and in vitro fertilization as well as early embryonic developmental injury. Finally, pretreatment with a caspase-3-specific inhibitor effectively prevented curcumin-triggered injury effects, suggesting that embryo impairment by curcumin occurs mainly via a caspase-dependent apoptotic process.
Collapse
Affiliation(s)
| | - Wen-Hsiung Chan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-3-2653515; Fax: +886-3-2653599
| |
Collapse
|
49
|
Kwak SS, Cheong SA, Jeon Y, Lee E, Choi KC, Jeung EB, Hyun SH. The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 2012; 78:86-101. [PMID: 22445189 DOI: 10.1016/j.theriogenology.2012.01.024] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/03/2012] [Accepted: 01/19/2012] [Indexed: 11/19/2022]
Abstract
We investigated the effects of resveratrol, a phytoalexin with various pharmacologic activities, on in vitro maturation (IVM) of porcine oocytes. We investigated intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, as well as gene expression in mature oocytes, cumulus cells, and in vitro fertilization (IVF)-derived blastocysts, and subsequent embryonic development after parthenogenetic activation (PA) and IVF. After 44 h of IVM, no significant difference was observed in maturation of the 0.1, 0.5, and 2.0 μM resveratrol groups (83.0%, 84.1%, and 88.3%, respectively) compared with the control (84.1%), but the 10.0 μM resveratrol group showed significantly decreased nuclear maturation (75.0%) (P < 0.05). The 0.5- and 2.0-μm groups showed a significant (P < 0.05) increase in intracellular GSH levels compared with the control and 10.0 μM group. Intracellular ROS levels in oocytes matured with 2.0 μM resveratrol decreased significantly (P < 0.05) compared with those in the other groups. Oocytes treated with 2.0 μM resveratrol during IVM had significantly higher blastocyst formation rates and total cell numbers after PA (62.1% and 49.1 vs. 48.8%, and 41.4, respectively) and IVF (20.5% and 54.0 vs. 11.0% and 43.4, respectively) than the control group. Cumulus-oocytes complex treated with 2.0 μM resveratrol showed lower expression of apoptosis-related genes compared with mature oocytes and cumulus cells. Cumulus cells treated with 2.0 μM resveratrol showed higher (P < 0.05) expression of proliferating cell nuclear antigen than the control group. IVF-derived blastocysts derived from 2.0 μM resveratrol-treated oocytes also had less (P < 0.05) Bak expression than control IVF-derived blastocysts. In conclusion, 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF porcine embryos by increasing the intracellular GSH level, decreasing ROS level, and regulating gene expression during oocyte maturation.
Collapse
Affiliation(s)
- Seong-Sung Kwak
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Chungbuk, South Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Denissova NG, Nasello CM, Yeung PL, Tischfield JA, Brenneman MA. Resveratrol protects mouse embryonic stem cells from ionizing radiation by accelerating recovery from DNA strand breakage. Carcinogenesis 2011; 33:149-55. [PMID: 22049530 DOI: 10.1093/carcin/bgr236] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Resveratrol has elicited many provocative anticancer effects in laboratory animals and cultured cells, including reduced levels of oxidative DNA damage, inhibition of tumor initiation and progression and induction of apoptosis in tumor cells. Use of resveratrol as a cancer-preventive agent in humans will require that its anticancer effects not be accompanied by damage to normal tissue stem or progenitor cells. In mouse embryonic stem cells (mESC) or early mouse embryos exposed to ethanol, resveratrol has been shown to suppress apoptosis and promote survival. However, in cells exposed to genotoxic stress, survival may come at the expense of genome stability. To learn whether resveratrol can protect stem cells from DNA damage and to study its effects on genomic integrity, we exposed mESC pretreated with resveratrol to ionizing radiation (IR). Forty-eight hours pretreatment with a comparatively low concentration of resveratrol (10 μM) improved survival of mESC >2-fold after exposure to 5 Gy of X-rays. Cells pretreated with resveratrol sustained the same levels of reactive oxygen species and DNA strand breakage after IR as mock-treated controls, but repaired DNA damage more rapidly and resumed cell division sooner. Frequencies of IR-induced mutation at a chromosomal reporter locus were not increased in cells pretreated with resveratrol as compared with controls, indicating that resveratrol can improve viability in mESC after DNA damage without compromising genomic integrity.
Collapse
Affiliation(s)
- Natalia G Denissova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|