1
|
Mao G, Tang J, Xu M, Okeke ES, Dong F, Chen Y, Gao J, Feng W, Zhao T, Wu X, Yang L. Role of autonomic nervous system in BDE-209 maternal exposure induced immunotoxicity in female offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:4397-4416. [PMID: 38808594 DOI: 10.1002/tox.24353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Decabrominated diphenyl ether (BDE-209) is a typical persistent organic pollutant that can cross the placental barrier, increasing the exposure risk for offspring. Norepinephrine (NE) from nerve terminals and acetylcholine (Ach) can bind to specific receptors on immune cells, inhibit the immune function of the body then cause immunotoxicity. However, whether maternal exposure to BDE-209 could lead to immunotoxicity in the offspring by acting on the sympathetic and parasympathetic nervous systems remains unclear. In view of this, the pregnancy and lactation rat BDE-209 exposure model was established and the results demonstrated that pregnancy and lactation BDE-209 exposure could induce immunotoxicity to female offspring via affecting immunopathology (hematological and biochemical parameters, organ indices, and spleen histopathological), decreasing humoral immunity (serum hemolysin, immunoglobulins, and cytokine productions), damaging cellular immunity (splenic lymphocytes and spleen cytokine productions), and restraining nonspecific immunity. Moreover, a dramatically significant correlation was observed between spleen nerve indices and immunity indices. Additionally, the mechanism revealed that maternal BDE-209 exposure caused offspring immunotoxicity through (1) activating MHC/PKCθ/NF-κB pathway; (2) promoting sympathetic nervous pathway, by upregulating the expression of β2AR protein, which in turn elevating cAMP, following activate PKA and phosphorylate CREB, ultimately leading to immunotoxicity;(3) activating parasympathetic nerve pathway by reducing the binding with Ach and α7nAchR, upregulating the expression of JAK2 and phosphorylating STAT3, induced immunotoxicity of female offspring.
Collapse
Affiliation(s)
- Guanghua Mao
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Junjie Tang
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Muge Xu
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Enugu, Nigeria
| | - Fangyuan Dong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yao Chen
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jinlin Gao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Weiwei Feng
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Xiangyang Wu
- School of the Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
3
|
Lin M, Ma S, Tang J, Yu Y, Li G, Fan R, Zhang G, Mai B, An T. Polybrominated diphenyl ethers and bromophenols in paired serum, hair, and urine samples of e-waste dismantlers: Insights into hair as an indicator of endogenous exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161980. [PMID: 36739029 DOI: 10.1016/j.scitotenv.2023.161980] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are important pollutants during dismantling activities of electronic waste (e-waste) in China due to its large production and usage. Bromophenols (BPs), which are a kind of flame retardants and diphenyl ether bond cleavage metabolites of PBDEs, are often neglected in the assessment of human exposure to e-waste. Herein, 22 PBDEs and 19 BPs were determined in paired serum, hair, and urine samples collected from workers and residents of a typical e-waste dismantling site in southern China. Both PBDE and BP congeners were more frequently detected in hair than serum and urine samples. The medians of ΣPBDEs and ΣBPs were 350 and 547 ng/g dw in hair internal (hair-In) of occupational population, respectively, which were significantly higher than non-occupational population. However, a non-significant difference was found in levels of ΣPBDEs and ΣBPs in serum and urine between occupational and non-occupational populations, suggesting that hair analysis could easily differentiate between the exposure intensities of PBDEs and BPs to populations than serum and urine analyses. Moreover, levels of BPs in hair-In were 1-2 orders of magnitude higher than those in hair external (hair-Ex), while a non-significant difference was found in the levels of PBDEs. This result indicated that BPs might have originated from endogenous contribution. Notably, as the predominant congeners, the level of 2,4,6-tribromophenol (2,4,6-TBP) in hair-In was 3-8 times higher than that of BDE-209, while level of 2,4,6-TBP in hair-Ex was 1-3 times lower than that of BDE-209. Furthermore, in vivo experiments performed on Sprague-Dawley rats following a 28-day oral treatment with BDE-209 and 2,4,6-TBP verified that endogenous accumulation of 2,4,6-TBP in hair could be attributed to the metabolism of BDE-209 and exposure to 2,4,6-TBP. In conclusion, compared with PBDEs, biomonitoring phenolic compounds or metabolites with hair could better reflect human endogenous exposure.
Collapse
Affiliation(s)
- Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Eberle C, Stichling S. Environmental health influences in pregnancy and risk of gestational diabetes mellitus: a systematic review. BMC Public Health 2022; 22:1572. [PMID: 35982427 PMCID: PMC9389831 DOI: 10.1186/s12889-022-13965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications globally. Environmental risk factors may lead to increased glucose levels and GDM, which in turn may affect not only the health of the mother but assuming hypotheses of "fetal programming", also the health of the offspring. In addition to traditional GDM risk factors, the evidence is growing that environmental influences might affect the development of GDM. We conducted a systematic review analyzing the association between several environmental health risk factors in pregnancy, including climate factors, chemicals and metals, and GDM. Methods We performed a systematic literature search in Medline (PubMed), EMBASE, CINAHL, Cochrane Library and Web of Science Core Collection databases for research articles published until March 2021. Epidemiological human and animal model studies that examined GDM as an outcome and / or glycemic outcomes and at least one environmental risk factor for GDM were included. Results Of n = 91 studies, we classified n = 28 air pollution, n = 18 persistent organic pollutants (POP), n = 11 arsenic, n = 9 phthalate n = 8 bisphenol A (BPA), n = 8 seasonality, n = 6 cadmium and n = 5 ambient temperature studies. In total, we identified two animal model studies. Whilst we found clear evidence for an association between GDM and air pollution, ambient temperature, season, cadmium, arsenic, POPs and phthalates, the findings regarding phenols were rather inconsistent. There were clear associations between adverse glycemic outcomes and air pollution, ambient temperature, season, POPs, phenols, and phthalates. Findings regarding cadmium and arsenic were heterogeneous (n = 2 publications in each case). Conclusions Environmental risk factors are important to consider in the management and prevention of GDM. In view of mechanisms of fetal programming, the environmental risk factors investigated may impair the health of mother and offspring in the short and long term. Further research is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13965-5.
Collapse
Affiliation(s)
- Claudia Eberle
- Medicine With Specialization in Internal Medicine and General Medicine, Hochschule Fulda, University of Applied Sciences, Leipziger Strasse 123, 36037, Fulda, Germany.
| | - Stefanie Stichling
- Medicine With Specialization in Internal Medicine and General Medicine, Hochschule Fulda, University of Applied Sciences, Leipziger Strasse 123, 36037, Fulda, Germany
| |
Collapse
|
5
|
Qi Y. Effects of decabromodiphenyl ether (BDE-209) on ultrasonic vocalizations emitted by rat pups during isolation. Neurotoxicol Teratol 2022; 93:107118. [DOI: 10.1016/j.ntt.2022.107118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
6
|
Marty MS, Sauer UG, Charlton A, Ghaffari R, Guignard D, Hallmark N, Hannas BR, Jacobi S, Marxfeld HA, Melching-Kollmuss S, Sheets LP, Urbisch D, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny-part III: how is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelopmental effects? Crit Rev Toxicol 2022; 52:546-617. [PMID: 36519295 DOI: 10.1080/10408444.2022.2130166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chen S, Che S, Li S, Wan J, Ruan Z. High-fat diet exacerbated decabromodiphenyl ether-induced hepatocyte apoptosis via intensifying the transfer of Ca 2+ from endoplasmic reticulum to mitochondria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118297. [PMID: 34624399 DOI: 10.1016/j.envpol.2021.118297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ether (PBDE) as the flame retardant is heavily used in daily necessities, causing adverse health effects on humans. This study aimed to evaluate the hepatotoxicity of decabromodiphenyl ether (BDE-209), the most widely used PBDE, in lean and high-fat diet (HFD)-treated obese mice and elucidate the underlying mechanism. Firstly, the increasing levels of TG and proinflammatory factors in the liver and ALT and AST in serum demonstrated the hepatic damage caused by BDE-209 and further exacerbated by HFD. Tunel image revealed that BDE-209 induced more severe hepatocyte apoptosis with the assistant of HFD. Next, the mechanism analysis showed that the pro-apoptotic action of BDE-209 was in an endoplasmic reticulum (ER)/Ca2+ flux/mitochondria-dependent manner, concluded from the impairment of mitochondrial membrane potential, the enhancive protein expression of p-PERK/PERK, p-IRE1/IRE1, ATF6, CHOP, Bax/Bcl-2, cleaved caspase-3/caspase-3, IP3R1 and Sig-1R, and the over-transfer of Ca2+ from ER to mitochondria. Such proposed mechanism was further confirmed by the IP3R1 siRNA transfection cell experiment, where apoptotic rate was reduced in parallel with the reduced mitochondrial Ca2+ level. Finally, the higher expression of PACS-2 protein and the expanded ER contributed to the enriched ER-mitochondria interaction, reflected by the closer distance between ER and mitochondria visually displayed in the TEM image in HFD groups. This change was conducive to the rapid delivery of apoptosis signals via Ca2+, as proven, mechanically explaining the strengthening effect of HFD on BDE-209 hepatotoxicity. These findings detailedly explained the mechanism of BDE-209 hepatotoxicity and clarified the auxiliary effect of HFD, providing a theoretical basis for further studying other analogs.
Collapse
Affiliation(s)
- Sunni Chen
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Shiqi Li
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Jin Wan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
8
|
Myhre O, Zimmer KE, Hudecova AM, Hansen KEA, Khezri A, Berntsen HF, Berg V, Lyche JL, Mandal S, Duale N, Ropstad E. Maternal exposure to a human based mixture of persistent organic pollutants (POPs) affect gene expression related to brain function in mice offspring hippocampus. CHEMOSPHERE 2021; 276:130123. [PMID: 33714876 DOI: 10.1016/j.chemosphere.2021.130123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Male and female mice pups were exposed to a low and high dose of a human relevant mixture of persistent organic pollutants (POPs) during pregnancy and lactation. Most compounds detected in the dams were found in offspring brains. The mice offspring exhibited changed expression of hippocampal genes involved in cognitive function (Adora2a, Auts2, Crlf1, Chrnb2, Gdnf, Gnal, Kcnh3), neuroinflammation (Cd47, Il1a), circadian rhythm (Per1, Clock), redox signalling (Hmox2) and aryl hydrocarbon receptor activation (Cyp1b1). A few genes were differentially expressed in males versus females. Mostly, similar patterns of gene expression changes were observed between the low and high dose groups. Effects on learning and memory function measured in the Barnes maze (not moving, escape latency) were found in the high dose group when combined with moderate stress exposure (air flow from a fan). Mediation analysis indicated adaptation to the effects of exposure since gene expression compensated for learning disabilities (escape latency, walking distance and time spent not moving in the maze). Additionally, random forest analysis indicated that Kcnh3, Gnal, and Crlf1 were the most important genes for escape latency, while Hip1, Gnal and the low exposure level were the most important explanatory factors for passive behaviour (not moving). Altogether, this study showed transfer of POPs to the offspring brains after maternal exposure, modulating the expression level of genes involved in brain function.
Collapse
Affiliation(s)
- Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P. O. Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Karin E Zimmer
- Department of Preclinical Sciences and Pathology, Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Alexandra M Hudecova
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Kristine E A Hansen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Abdolrahman Khezri
- Department of Preclinical Sciences and Pathology, Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Hanne F Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway; National Institute of Occupational Health, P.O. Box 8149 Dep, N-0033, Oslo, Norway.
| | - Vidar Berg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Jan L Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | | | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, P. O. Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| |
Collapse
|
9
|
Zhang X, Cheng X, Lei B, Zhang G, Bi Y, Yu Y. A review of the transplacental transfer of persistent halogenated organic pollutants: Transfer characteristics, influential factors, and mechanisms. ENVIRONMENT INTERNATIONAL 2021; 146:106224. [PMID: 33137703 DOI: 10.1016/j.envint.2020.106224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Persistent halogenated organic pollutants (HOPs) are a class of toxic chemicals, which may have adverse effects on fetuses via transplacental transfer from their mothers. Here, we review reported internal exposure levels of various HOPs (organochlorinated pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, short- and medium-chain chlorinated paraffins, and per- and poly-fluoroalkyl substances) in placenta, and both maternal and umbilical cord sera. We also present analyses of the transplacental transfer and placental distribution characteristics of each class of compounds, and discuss effects of several factors on the transfer and accumulation efficiencies of HOPs, as well as the main mechanisms of HOPs' transfer across the placental barrier. Reported compound-specific transplacental transfer efficiencies and distribution efficiencies, expressed as umbilical cord:maternal serum and placental:maternal serum concentration ratios (RCM and RPM, respectively), are summarized. Average published RCM values of the HOPs range from 0.24 to 3.08 (lipid-adjusted) and from 0.04 to 3.1 (based on wet weights), and are highest for perfluoroalkylcarboxylates (PFCAs) and tetrabromobisphenol A. Average published RPM values range from 0.14 to 1.02 (lipid-adjusted) and from 0.30 to 1.4 (based on wet weights). The broad RCM and RPM ranges may reflect effects of various factors, inter alia physicochemical properties of HOPs, metabolic capacities of mothers and fetuses, placental maturity, and differential expression of influx/efflux transporters in the placenta. Generally, HOPs' RCM values decline linearly with molecular size, and are curvilinearly related to solubility. Plasma protein binding affinity and the difference between maternal and fetal metabolic capacities may also affect some HOPs' transfer efficiencies. HOPs' molecular size may be influential. Transplacental transport of HOPs likely occurs mostly through passive diffusion, although influx/efflux transporters expressed on maternal and/or fetal sides of the placenta may also facilitate or hinder their transport. Overall, the review highlights clear gaps in our understanding of mechanisms involved in HOPs' transplacental transport.
Collapse
Affiliation(s)
- Xiaolan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaomeng Cheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bingli Lei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Yuhao Bi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Zhai J, Geng X, Ding T, Li J, Tang J, Chen D, Cui L, Wang Q. An increase of estrogen receptor α protein level regulates BDE-209-mediated blood-testis barrier disruption during spermatogenesis in F1 mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4801-4820. [PMID: 30565106 DOI: 10.1007/s11356-018-3784-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Deca-bromodiphenyl ether (BDE-209) regulates various aspects of spermatogenesis and male fertility through its effect on estrogen receptor α (ERα), but the underlying mechanism remains unclear. Because molecular mechanisms such as remodeling of the blood-testis barrier (BTB) play crucial roles in spermatogenesis, we investigated the disruptive effects of ERα agonists on the BTB in spermatogenesis. In this study, 0, 300, and 500 mg/kg/day of BDE-209 were administered to pregnant adult mice by oral gavage from gestation day 7 to postnatal day 21. SerW3 cells were treated with methylpiperidino pyrazole (MPP) for 30 min before being treated with 50 μg/mL of BDE-209. BDE-209 increases ERα in time- and dose-dependent manners and decreases formin 1 and BTB-associated protein in F1 male mice. Furthermore, BDE-209 impairs the structure and function of the BTB. Activation of ERα signaling could disrupt the BTB, leading to spermatogenesis dysfunction. The results identified the role of ERα in BTB disruption during spermatogenesis and suggested that BTB disruption occurs because of exposure to BDE-209, which could potentially affect spermatogenesis. In conclusion, Sertoli cells seem to be the primary target of BDE-209 in the perinatal period, and this period constitutes a critical window of susceptibility to BDE-209. Also, the SerW3 cell model may not be a particularly useful cell model for studying the function of the cytoskeleton.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| | - Xiya Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Tao Ding
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jing Tang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Daojun Chen
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Longjiang Cui
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Qizhi Wang
- School of Energy and Environment, Southeast University, Sipailou Rd 2, Nanjing, 210018, China
| |
Collapse
|
11
|
Du L, Sun W, Li XM, Li XY, Liu W, Chen D. DNA methylation and copy number variation analyses of human embryonic stem cell-derived neuroprogenitors after low-dose decabromodiphenyl ether and/or bisphenol A exposure. Hum Exp Toxicol 2018; 37:475-485. [PMID: 28597690 DOI: 10.1177/0960327117710535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The polybrominated diphenyl ether flame retardants decabromodiphenyl ether (BDE-209) and bisphenol A (BPA) are environmental contaminants that can cross the placenta and exert toxicity in the developing fetal nervous system. Copy number variants (CNVs) play a role in a number of genetic disorders and may be implicated in BDE-209/BPA teratogenicity. In this study, we found that BDE-209 and/or BPA exposure decreased neural differentiation efficiency of human embryonic stem cells (hESCs), although there was a >90% induction of neuronal progenitor cells (NPCs) from exposed hESCs. However, the mean of CNV numbers in the NPCs with BDE-209 + BPA treatment was significantly higher compared to the other groups, whereas DNA methylation was lower and DNA methyltransferase(DNMT1 and DNMT3A) expression were significantly decreased in all of the BDE-209 and/or BPA treatment groups compared with the control groups. The number of CNVs in chromosomes 3, 4, 11, 22, and X in NPCs with BDE-209 and/or BPA exposure was higher compared to the control group. In addition, CNVs in chromosomes 7, 8, 14, and 16 were stable in hESCs and hESCs-derived NPCs irrespective of BDE-209/BPA exposure, and CNVs in chromosomes 20 q11.21 and 16 p13.11 might be induced by neural differentiation. Thus, BDE-209/BPA exposure emerges as a potential source of CNVs distinct from neural differentiation by itself. BDE-209 and/or BPA exposure may cause genomic instability in cultured stem cells via reduced activity of DNA methyltransferase, suggesting a new mechanism of human embryonic neurodevelopmental toxicity caused by this class of environmental toxins.
Collapse
Affiliation(s)
- L Du
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| | - W Sun
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - X M Li
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - X Y Li
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - W Liu
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| | - D Chen
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Mi XB, Bao LJ, Wu CC, Wong CS, Zeng EY. Absorption, tissue distribution, metabolism, and elimination of decabrominated diphenyl ether (BDE-209) in rats after multi-dose oral exposure. CHEMOSPHERE 2017; 186:749-756. [PMID: 28820999 DOI: 10.1016/j.chemosphere.2017.08.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Human and ecological risks of BDE-209 have drawn much attention, particularly with growing e-waste recycling activities in developing countries. To further address the issue of BDE-209 biotransformation, a laboratory-controlled study was conducted. Female Sprague-Dawley rats were dosed orally by gavage at a daily dose of 1 mg kg-1 body weight for 7 d and a depuration period of 22 d, to characterize absorption, distribution, metabolism, and elimination dynamics of BDE-209 during multi-dose exposures simulating short-term oral exposure of e-waste workers. The concentrations of BDE-209 in all tissues increased exponentially during the 7-d exposure period, indicating that multi-dose exposure could lead to increased accumulation of BDE-209 in rats. The liver accumulated the greatest amount of BDE-209 on a wet-weight basis, while adipose tissue had the highest concentration by the end of the 22-d depuration period. Half-lives of BDE-209, 207, and 197 during depuration were 1.1 ± 0.1, 2.7 ± 0.3, and 10.5 ± 3.1 d in serum and 0.9 ± 0.1, 2.2 ± 0.2, and 11.8 ± 2.3 d in liver, i.e., the half-life increased with decreasing level of bromination from deca- to octa-BDEs and was similar in both serum and liver. By contrast, the half-life of the debromination metabolite BDE-207 (21.7 ± 7.7 d) was longer in small intestine than in serum and liver, suggesting slower depletion of BDE-209 metabolites in small intestine. The metabolism of BDE-209 was not responsible for the occurrence of low brominated BDE congeners and OH and MeO-PBDEs in human tissues.
Collapse
Affiliation(s)
- Xiu-Bo Mi
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lian-Jun Bao
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Chen-Chou Wu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Charles S Wong
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Department of Environmental Studies and Sciences and Department of Chemistry, Richardson College for the Environment, University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Markowski VP, Miller-Rhodes P, Cheung R, Goeke C, Pecoraro V, Cohen G, Small DJ. Motor deficits, impaired response inhibition, and blunted response to methylphenidate following neonatal exposure to decabromodiphenyl ether. Neurotoxicol Teratol 2017; 63:51-59. [PMID: 28764964 DOI: 10.1016/j.ntt.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/30/2022]
Abstract
Decabromodiphenyl ether (decaBDE) is an applied brominated flame retardant that is widely-used in electronic equipment. After decades of use, decaBDE and other members of its polybrominated diphenyl ether class have become globally-distributed environmental contaminants that can be measured in the atmosphere, water bodies, wildlife, food staples and human breastmilk. Although it has been banned in Europe and voluntarily withdrawn from the U.S. market, it is still used in Asian countries. Evidence from epidemiological and animal studies indicate that decaBDE exposure targets brain development and produces behavioral impairments. The current study examined an array of motor and learning behaviors in a C57BL6/J mouse model to determine the breadth of the developmental neurotoxicity produced by decaBDE. Mouse pups were given a single daily oral dose of 0 or 20mg/kg decaBDE from postnatal day 1 to 21 and were tested in adulthood. Exposed male mice had impaired forelimb grip strength, altered motor output in a circadian wheel-running procedure, increased response errors during an operant differential reinforcement of low rates (DRL) procedure and a blunted response to an acute methylphenidate challenge administered before DRL testing. With the exception of altered wheel-running output, exposed females were not affected. Neither sex had altered somatic growth, motor coordination impairments on the Rotarod, gross learning deficits during operant lever-press acquisition, or impaired food motivation. The overall pattern of effects suggests that males are more sensitive to developmental decaBDE exposure, especially when performing behaviors that require effortful motor output or when learning tasks that require sufficient response inhibition for their successful completion.
Collapse
Affiliation(s)
- Vincent P Markowski
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States.
| | - Patrick Miller-Rhodes
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Randy Cheung
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Calla Goeke
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Vincent Pecoraro
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Gideon Cohen
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Deena J Small
- Department of Biochemistry, University of New England, Biddeford, ME 04005, United States
| |
Collapse
|
14
|
Jansen A, Lyche JL, Polder A, Aaseth J, Skaug MA. Increased blood levels of persistent organic pollutants (POP) in obese individuals after weight loss-A review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:22-37. [PMID: 28051929 DOI: 10.1080/10937404.2016.1246391] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipophilic persistent organic pollutants (POP) are stored in adipose tissue. Following rapid weight loss such as when induced by bariatric surgery, an increased release of potential harmful lipophilic compounds into the blood circulation may occur. Weight reduction is recommended for overweight and obese individuals in order to decrease risk of weight-related health problems. However, in cases of significant weight reduction POP become mobilized chemicals and consequently may adversely affect health, including endocrine disruption. The objective of the present investigation was to estimate quantitatively the level of mobilization of POP following weight loss over time. According to literature search criteria, 17 studies were identified with 2061 participants. Data from 5 of the studies with 270 participants were used to assess the change in blood levels of POP in percent per kilogram weight loss. Weight loss in the included studies varied from 4.4 to 64.8 kg. In all studies, the majority of POP concentrations in blood were found to rise following weight reduction. Blood concentrations following weight reduction were elevated by 2-4% per kilogram weight loss for most POP examined. The increased POP levels were still elevated 12 mo after intervention. Most research in this field, including animal studies, is carried out on a single compound or group of selected compounds, not taking the "cocktail effect" into consideration. This does not reflect the true range of POP to which humans are actually exposed. Few chronic investigations have been published and, in particular, few studies were available that compared the increase in POP concentrations with clinical consequences as individuals lost weight. These limitations call for caution in interpreting results. The benefits of losing weight still far outweigh the potential adverse health risks. However, further studies are recommended to determine the clinical significance of increased blood levels of POPs following rapid and excessive weight loss, particularly for women attending weight reduction treatment before pregnancy.
Collapse
Affiliation(s)
- Aina Jansen
- a Center for Morbid Obesity , Department of Surgery, Innlandet Hospital Trust , Gjøvik , Norway
- b Department of Food Safety and Infection Biology , Norwegian University of Life Sciences (NMBU) , Campus Adamstuen, Oslo , Norway
| | - Jan L Lyche
- b Department of Food Safety and Infection Biology , Norwegian University of Life Sciences (NMBU) , Campus Adamstuen, Oslo , Norway
| | - Anuschka Polder
- b Department of Food Safety and Infection Biology , Norwegian University of Life Sciences (NMBU) , Campus Adamstuen, Oslo , Norway
| | - Jan Aaseth
- c Innlandet Hospital Trust , Kongsvinger Hospital Division , Kongsvinger , Norway
- d Faculty of Public Health , Hedmark University of Applied Sciences , Elverum , Norway
| | - Marit Aralt Skaug
- d Faculty of Public Health , Hedmark University of Applied Sciences , Elverum , Norway
| |
Collapse
|
15
|
Souza AO, Tasso MJ, Oliveira AMC, Pereira LC, Duarte FV, Oliveira DP, Palmeira CM, Dorta DJ. Evaluation of Polybrominated Diphenyl Ether Toxicity on HepG2 Cells - Hexabrominated Congener (BDE-154) Is Less Toxic than Tetrabrominated Congener (BDE-47). Basic Clin Pharmacol Toxicol 2016; 119:485-497. [DOI: 10.1111/bcpt.12598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Alecsandra O. Souza
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Maria J. Tasso
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Alana M. C. Oliveira
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Lilian C. Pereira
- Department of Clinical Analysis, Toxicological and Bromatological; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Filipe V. Duarte
- CNC - Center for Neuroscience and Cell Biology; Faculty of Medicine; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| | - Danielle P. Oliveira
- Department of Clinical Analysis, Toxicological and Bromatological; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Carlos M. Palmeira
- CNC - Center for Neuroscience and Cell Biology; Faculty of Medicine; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| | - Daniel J. Dorta
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
16
|
Zhang C, Chen D, Liu X, Du L. Role of brominated diphenyl ether-209 in the proliferation and apoptosis of rat cultured neural stem cells in vitro. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0007-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Murtomaa-Hautala M, Viluksela M, Ruokojärvi P, Rautio A. Temporal trends in the levels of polychlorinated dioxins, -furans, -biphenyls and polybrominated diethyl ethers in bank voles in Northern Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:70-76. [PMID: 25918894 DOI: 10.1016/j.scitotenv.2015.04.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/10/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Dioxin-like chemicals and brominated flame retardants are ubiquitous in the environment, despite the introduction of international prohibitions and restrictions. These chemicals do not remain in the vicinity of their source, instead they can be transported over long distances, in fact even to pristine areas in the northern latitudes. However, there have been rather few time series experiments monitoring the trends in the levels of chlorinated and brominated forms of these chemicals in the environment. In this study, the concentrations of polychlorinated dibenzo-p-dioxins and -furans (PCDDs/Fs), polychlorinated biphenyls (PCBs) and polybrominated diethyl ethers (PBDEs) were measured in the liver and muscle of bank voles (Myodes glareolus) caught in a remote area in Finnish Lapland during 1986-2007. Five time points were selected: years 1986, 1992, 1998, 2003 and 2007. The levels of PCDDs/Fs and PCBs declined from 1986 until 2003 in both females and males, but tended to increase again in 2007. The peak levels of the most abundant PBDE congeners (PBDEs 47, 99, 100 and 153) were measured in 1998 and 2003. These results reveal that the levels of dioxin-like chemicals remain high also in rural areas in Lapland, whereas the concentrations of brominated flame retardants decreased and follow the current restriction prohibitions.
Collapse
Affiliation(s)
- Mari Murtomaa-Hautala
- The Centre for Arctic Medicine, Thule Institute, PO BOX 7300, FI-90014, University of Oulu, Finland.
| | - Matti Viluksela
- National Institute for Health and Welfare, Chemicals and Health Unit, PO BOX 95, FI-70701 Kuopio, Finland; Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Päivi Ruokojärvi
- National Institute for Health and Welfare, Chemicals and Health Unit, PO BOX 95, FI-70701 Kuopio, Finland.
| | - Arja Rautio
- The Centre for Arctic Medicine, Thule Institute, PO BOX 7300, FI-90014, University of Oulu, Finland.
| |
Collapse
|
18
|
Feng Y, Hu Q, Meng G, Wu X, Zeng W, Zhang X, Yu Y, Wang Y. Simulating long-term occupational exposure to decabrominated diphenyl ether using C57BL/6 mice: biodistribution and pathology. CHEMOSPHERE 2015; 128:118-124. [PMID: 25687576 DOI: 10.1016/j.chemosphere.2015.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Decabrominated biphenyl ether (BDE-209) is a fully brominated diphenyl ether compound used widely as an additive brominated flame retardant in a variety of consumer products. In recent years, BDE-209 has been reported to be abundant and persistent in the environment, and comparatively high burdens have been found in occupational environmental compartments and exposed individuals. In the present study, an animal model for simulating long-term occupational exposure to BDE-209 was set up. Female C57BL/6 mice (n=10) were intragastrically administered BDE-209 at a dose of 800 mg kg(-1) bw at 2-d intervals for 2 years with an internal blood level of approximately 200 ng mL(-1), which was comparable to the high level of BDE-209 detected in the occupational population, and the biodistribution and biological effects were evaluated systematically. The results showed that large amounts of the chemical accumulated in most tissues, and the preferential organs were the ovary and uterus, liver and lung. Decreased survival was observed in the exposed mice. The subsequent pathological analysis revealed hepatomegaly in the exposed mice, accompanied by obvious histopathological changes in the liver, lung, brain, spleen, kidney and ovary. No neoplastic lesions were observed in this lifetime exposure study. Although the number of experimental mice was limited, our observations offer a comprehensive understanding of the chronic toxicology of BDE-209 after continuous high-dose exposure.
Collapse
Affiliation(s)
- Yan Feng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Qingliang Hu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Ge Meng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xiaomeng Wu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Weihong Zeng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xing Zhang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Yan Wang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
19
|
Liu PY, Chen XR, Zhao YX, Li YY, Qin XF, Qin ZF. Changes of polybrominated diphenyl ether concentrations in ducks with background exposure level and time. CHEMOSPHERE 2015; 118:253-260. [PMID: 25290171 DOI: 10.1016/j.chemosphere.2014.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 09/02/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
To reveal what degree bioaccumulation of polybrominated diphenyl ethers (PBDEs) depends on exposure time and other factors, we conducted a semi-field experiment for a year (June 2008-June 2009) in a village in an e-waste recycling site in Taizhou, China. Approximately one hundred of juvenile ducks (Anas domestica Linnaeus) were entrusted to a villager. The ducks lived and forged in a PBDE-polluted pond from the late March to the end of November. Fish and mudsnails that were heavily polluted by PBDEs were main food. In cold days (from December to the middle March), the ducks lived in the villager' house, and mainly fed on paddy, which contained lower concentrations of PBDEs than fish and mudsnails. The female ducks were sampled for PBDE analysis every three months. We found that the ∑PBDE concentrations in duck liver, muscle, lung and brain fluctuated greatly with the changes of exposure levels that were determined by the environment and diets, but the ∑PBDE concentrations in fat tissue increased successively with time. Congener analysis demonstrated that the successive increase in the ∑PBDE concentrations with time in fat tissue was due to the successive increase in BDE-209, -183 and -153 concentrations, with large fluctuations of low brominated congeners. The results show that PBDE concentrations in liver, muscle, lung and brain tissues heavily depends on exposure levels rather than exposure time. In fat tissue, by contrast, PBDE concentrations (mainly high brominated congeners) slightly depends on exposure levels but heavily depend on time relative to other tissues, implying that high brominated congeners seem to have longer half-lives than low brominated congeners in fat tissue.
Collapse
Affiliation(s)
- Peng-Yan Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, China
| | - Xiao-Ran Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ya-Xian Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiao-Fei Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
20
|
Tang S, Bai J, Yin H, Ye J, Peng H, Liu Z, Dang Z. Tea saponin enhanced biodegradation of decabromodiphenyl ether by Brevibacillus brevis. CHEMOSPHERE 2014; 114:255-261. [PMID: 25113210 DOI: 10.1016/j.chemosphere.2014.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/01/2014] [Accepted: 05/03/2014] [Indexed: 06/03/2023]
Abstract
Decabromodiphenyl ether (BDE209) is a ubiquitous persistent pollutant and has contaminated the environment worldwide. To accelerate BDE209 elimination and reveal the mechanism concerned, the biosurfactant tea saponin enhanced degradation of BDE209 by Brevibacillus brevis was conducted. The results revealed that tea saponin could efficiently increase the solubility of BDE209 in mineral salts medium and improve its biodegradation. The degradation efficiency of 0.5 mg L(-1) BDE209 by 1 g L(-1) biomass with surfactant was up to 55% within 5d. Contact time was a significant factor for BDE209 biodegradation. BDE209 biodegradation was coupled with bioaccumulation, ion release and utilization, and debromination to lower brominated PBDE metabolites. During the biodegradation process, B. brevis metabolically released Na(+), NH4(+), NO2(-) and Cl(-), and utilized the nutrient ions Mg(2+), PO4(3-) and SO4(2-). GC-MS analysis revealed that the structure of BDE209 changed under the action of strain and nonabromodiphenyl ethers (BDE-208, -207 and -206), octabromodiphenyl ethers (BDE-203, -197 and -196) and heptabromodiphenyl ether (BDE-183) were generated by debromination.
Collapse
Affiliation(s)
- Shaoyu Tang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jieqiong Bai
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Jinshao Ye
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
21
|
Ge J, Yun X, Liu M, Yang Y, Zhang M, Wang J. Distribution, potential source and ecotoxicological risk of polychlorinated biphenyls and polybrominated diphenyl ethers in the surface water of the Three Gorges Dam region of the Yangtze River, China. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:978-987. [PMID: 24748369 DOI: 10.1007/s10646-014-1241-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Distributions, potential sources and ecotoxicological risks of PCBs and PBDEs in surface water of the Three Gorges Dam (TGD) region (Yangtze River, China) were investigated. Samples were collected from 18 sites from upstream (UTGD) and downstream (DTGD) of the TGD. Thirty-two PCBs and ten PBDEs were analyzed. ΣPCBs from the UTGD and DTGD ranged from 10.6 to 26.1 and 1.7 to 29.8 ng L(-1), respectively. ΣPBDEs from the UTGD and DTGD ranged from 2.0 to 17.6 and 0.8 to 11.1 ng L(-1), respectively. The total concentrations of PCBs and PBDEs showed a declining trend from the UTGD to DTGD. Independent-samples t test analysis showed no statistical significance of ΣPCBs and ΣPBDEs between the UTGD and DTGD samples. Principal component analysis indicated the difference of potential sources and levels of PCBs and PBDEs in the study area. The potential eco-toxicological risk of PCBs in surface water of the TGD region is very low, whereas special attention needs to be paid to PBDEs in the study area.
Collapse
Affiliation(s)
- Jing Ge
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | | | | | | | | | | |
Collapse
|
22
|
Jiang H, Lin Z, Wu Y, Chen X, Hu Y, Li Y, Huang C, Dong Q. Daily intake of polybrominated diphenyl ethers via dust and diet from an e-waste recycling area in China. JOURNAL OF HAZARDOUS MATERIALS 2014; 276:35-42. [PMID: 24858050 DOI: 10.1016/j.jhazmat.2014.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
This study was designed to estimate the human risk to polybrominated diphenyl ethers (PBDEs) exposure via two main exposure routes (dust and diet) in an e-waste recycling area in southern China. A total of 134 dust samples and 129 food samples were analyzed by gas chromatography/mass spectrometry (GC/MS). The mean concentration of ΣPBDE in in-house dust (38,685ng/g dw) was higher than that in out-house dust (24,595ng/g). For food samples, the highest concentration of ΣPBDE was found in fish and shellfish (2755ng/kg ww), followed in descending order by eggs (2423ng/kg), cereals (2239ng/kg) and meat (1799ng/kg). The estimated total daily dietary intake of PBDEs was 1671ng/day for adults and 952ng/day for children. The present study indicated that dust intake was the dominant PBDE exposure route for children, and the dietary intake was the dominant PBDE exposure route for adults. Our findings revealed high PBDE concentrations in dust and food samples collected at the center of e-waste recycling area, raising significant health concerns for residents in this particular region, especially for children.
Collapse
Affiliation(s)
- Hong Jiang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Zhenkun Lin
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yuanyuan Wu
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xiangping Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yabing Hu
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yanyan Li
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
23
|
Ge J, Liu M, Yun X, Yang Y, Zhang M, Li QX, Wang J. Occurrence, distribution and seasonal variations of polychlorinated biphenyls and polybrominated diphenyl ethers in surface waters of the East Lake, China. CHEMOSPHERE 2014; 103:256-262. [PMID: 24387912 DOI: 10.1016/j.chemosphere.2013.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the surface water of the East Lake, China were investigated in winter (2012) and summer (2013). A hundred and eight samples were collected from 36 sampling sites and analyzed for the 31 PCB and 10 PBDE congeners. Concentrations of both PCBs and PBDEs showed obvious seasonal variations. The average PCB concentrations in the East Lake ranged from 3.17 to 6.09 ng L(-1) in winter and 0.19 to 0.99 ng L(-1) in summer. CB-44, 105, 118 and 179 were dominant in both winter and summer. The average PBDE concentrations in the East Lake ranged from 2.92 to 5.54 ng L(-1) in winter and 0.67 to 1.51 ng L(-1) in summer. BDE-47 was predominant in both winter and summer, which accounted for more than 37% of the total PBDEs concentration from all sampling sites. Independent-Samples t-test showed statistical significance of ΣPCBs and ΣPBDEs between winter and summer samples. The analysis of distribution, pattern and seasonal variations indicated the different potential sources of PCBs and PBDEs in the East Lake. The potential eco-toxicological risk was also discussed in the study.
Collapse
Affiliation(s)
- Jing Ge
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mingxia Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaoyan Yun
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Miaomiao Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
24
|
Long-term exposure to decabrominated diphenyl ether impairs CD8 T-cell function in adult mice. Cell Mol Immunol 2014; 11:367-76. [PMID: 24705197 PMCID: PMC4085518 DOI: 10.1038/cmi.2014.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 02/07/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants that accumulate to high levels in human populations that are subject to occupational or regional industry exposure. PBDEs have been shown to affect human neuronal, endocrine and reproductive systems, but their effect on the immune system is not well understood. In this study, experimental adult mice were intragastrically administered 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209) at doses of 8, 80 or 800 mg/kg of body weight (bw) at 2-day intervals. Our results showed that continuous exposure to BDE-209 resulted in high levels of BDE-209 in the plasma that approached the levels found in people who work in professions with high risks of PDBE exposure. Reduced leukocytes, decreased cytokine (IFN-γ, IL-2 and TNF-α) production and lower CD8 T-cell proliferation were observed in the mice exposed to BDE-209. Additionally, mice with long-term BDE-209 exposure had lower numbers of antigen-specific CD8 T cells after immunization with recombinant Listeria monocytogenes expressing ovalbumin (rLm-OVA) and the OVA-specific CD8 T cells had reduced functionality. Taken together, our study demonstrates that continuous BDE-209 exposure causes adverse effects on the number and functionality of immune cells in adult mice.
Collapse
|
25
|
Changes in expression levels of oxidative stress-related genes in mouse epididymides by neonatal exposure to low-dose decabromodiphenyl ether. Reprod Med Biol 2013; 13:127-134. [PMID: 29699156 DOI: 10.1007/s12522-013-0173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/07/2013] [Indexed: 10/25/2022] Open
Abstract
Decabromodiphenyl ether (decaBDE), one of the polybrominated diphenyl ethers (PBDEs), is the most well-known flame retardant and is used worldwide. In a previous study, we identified adverse effects of neonatal decaBDE exposure on mouse epididymides, such as decreased epididymal weight. On the other hand, neonatal exposure to diethylstilbestrol (DES), an artificial estrogenic compound, also causes several adverse effects on epididymides. DES exposure results in decreased epididymal weight, morphological abnormalities, and permanent alterations in the expression levels of several genes. The molecular mechanisms underlying the harmful effects of decaBDE exposure remain unclear. Many studies have reported that PBDEs have estrogenic activity, which may contribute to the induction of the adverse effects of decaBDE exposure. We aimed to examine the effects of neonatal decaBDE exposure on epididymides. Our data showed that (1) no histological change was observed on epididymal tissues from neonatal decaBDE exposure, unlike the effect of DES, (2) decaBDE exposure did not induce the alterations in gene expression observed with DES exposure; instead alterations in gene expression of certain oxidative stress-related genes were observed, and (3) the expression of ubiquitin C increased in decaBDE-exposed mouse epididymides. Our present data suggest the possibility that increased oxidative stress plays a role in the harmful effects observed in mouse epididymides after decaBDE-exposure.
Collapse
|
26
|
Fujimoto H, Woo GH, Morita R, Itahashi M, Akane H, Nishikawa A, Shibutani M. Increased cellular distribution of vimentin and ret in the cingulum of rat offspring after developmental exposure to decabromodiphenyl ether or 1,2,5,6,9,10-hexabromocyclododecane. J Toxicol Pathol 2013; 26:119-29. [PMID: 23914054 PMCID: PMC3695334 DOI: 10.1293/tox.26.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/04/2013] [Indexed: 01/19/2023] Open
Abstract
Abstract: To determine effects of developmental exposure to brominated flame
retardants (BFRs), weak thyroid hormone disruptors, on white matter development, white
matter-specific global gene expression analysis was performed using microdissection
techniques and microarrays in male rats exposed maternally to decabromodiphenyl ether
(DBDE), one of the representative BFRs, at 10, 100 or 1000 ppm. Based on previous gene
expression profiles of developmental hypothyroidism and DBDE-exposed cases,
vimentin+ immature astrocytes and ret proto-oncogene (Ret)+
oligodendrocytes were immunohistochemically examined after developmental exposure to
representative BFRs, i.e., DBDE, 1,2,5,6,9,10-hexabromocyclododecane (HBCD; 100, 1000 or
10,000 ppm) and tetrabromobisphenol A (TBBPA; 100, 1000 or 10,000 ppm).
Vimentin+ and Ret+ cell populations increased at ≥ 100 ppm and ≥
10 ppm DBDE, respectively. Vimentin+ and Ret+ cells increased at ≥
1000 ppm HBCD, with no effect of TBBPA. The highest dose of DBDE and HBCD revealed subtle
fluctuations in serum thyroid-related hormone concentrations. Thus, DBDE and HBCD may
exert direct effects on glial cell development at ≥ middle doses. At high doses,
hypothyroidism may additionally be an inducing mechanism, although its contribution is
rather minor.
Collapse
Affiliation(s)
- Hitoshi Fujimoto
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Chen Q, Yu L, Yang L, Zhou B. Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:141-148. [PMID: 22307006 DOI: 10.1016/j.aquatox.2012.01.008] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 12/30/2011] [Accepted: 01/10/2012] [Indexed: 05/28/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have the potential to disturb the thyroid endocrine system, but little is known of such effects or underlying mechanisms of BDE-209 in fish. In the present study, bioconcentration and metabolism of BDE-209 were investigated in zebrafish embryos exposed at concentrations of 0, 0.08, 0.38 and 1.92 mg/L in water until 14 days post-fertilization (dpf). Chemical analysis revealed that BDE-209 was accumulated in zebrafish larvae, while also metabolic products were detected, including octa- and nona-BDEs, with nona-BDEs being predominant. The exposure resulted in alterations of both triiodothyronine (T3) and thyroxine (T4) levels, indicating thyroid endocrine disruption. Gene transcription in the hypothalamic-pituitary-thyroid (HPT) axis was further examined, and the results showed that the genes encoding corticotrophin-releasing hormone (CRH) and thyroid-stimulating hormone (TSHβ) were transcriptionally significantly up-regulated. Genes involved in thyroid development (Pax8 and Nkx2.1) and synthesis (sodium/iodide symporter, NIS, thyroglobulin, TG) were also transcriptionally up-regulated. Up-regulation of mRNA for thyronine deiodinase (Dio1 and Dio2) and thyroid hormone receptors (TRα and TRβ) was also observed. However, the genes encoding proteins involved in TH transport (transthyretin, TTR) and metabolism (uridinediphosphate-glucuronosyl-transferase, UGT1ab) were transcriptionally significantly down-regulated. Furthermore, protein synthesis of TG was significantly up-regulated, while that of TTR was significantly reduced. These results suggest that the hypothalamic-pituitary-thyroid axis can be evaluated to determine thyroid endocrine disruption by BDE-209 in developing zebrafish larvae.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
28
|
Saegusa Y, Fujimoto H, Woo GH, Ohishi T, Wang L, Mitsumori K, Nishikawa A, Shibutani M. Transient aberration of neuronal development in the hippocampal dentate gyrus after developmental exposure to brominated flame retardants in rats. Arch Toxicol 2012; 86:1431-42. [DOI: 10.1007/s00204-012-0824-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/27/2012] [Indexed: 11/25/2022]
|
29
|
Polybrominated diphenyl ethers in food and human dietary exposure: A review of the recent scientific literature. Food Chem Toxicol 2012; 50:238-49. [DOI: 10.1016/j.fct.2011.11.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 11/17/2022]
|
30
|
Shibutani M, Fujimoto H, Woo GH, Inoue K, Takahashi M, Nishikawa A. Reply to Comment on “Impaired oligodendroglial development by decabromodiphenyl ether in rat offspring after maternal exposure from mid-gestation through lactation” [Reprod. Toxicol. 31(1) (2011) 86–94]. Reprod Toxicol 2011. [DOI: 10.1016/j.reprotox.2011.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Biesemeier JA, Ariano JM, Banasik M, Smith CJ, Senegal TW, Stedeford T. Sample characterization: a priori to evaluating absorption, distribution, and metabolism. Toxicology 2011; 287:160-1; author reply 162-3. [PMID: 21669248 DOI: 10.1016/j.tox.2011.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/19/2011] [Indexed: 11/29/2022]
|
32
|
Response to the Letter from Biesemeier et al. Toxicology 2011. [DOI: 10.1016/j.tox.2011.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|