1
|
Chen J, Dai XY, Li XW, Tang YX, Xu XW, Li JL. Lycopene mitigates atrazine-induced hypothalamic neural stem cell senescence by modulating the integrated stress response pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156114. [PMID: 39418974 DOI: 10.1016/j.phymed.2024.156114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Atrazine, a widely used herbicide, has become a major pollutant in agricultural water bodies. Pesticide contamination, including atrazine, is linked to a high incidence of age-related neurodegenerative diseases, suggesting its neurotoxic potential. Lycopene, a potent antioxidant, is renowned for its diverse pharmacological effects, especially its neuroprotective properties. However, the underlying pharmacological mechanisms of lycopene and its impact on potential pathways against atrazine-induced hypothalamic damage have not been elucidated. PURPOSE Our study aimed to elucidate how lycopene ameliorates hypothalamic injury triggered by atrazine exposure, with a special focus on the pluripotency of neural stem cells (NSCs) and pathways involved in cell senescence. METHODS Mice were administered lycopene and/or atrazine via gavage for 21 days. The C17.2 NSC cell line and specific molecular inhibitors were utilized to examine the potential protective effects of lycopene in vitro. Morphological changes and ultrastructural damage in the hypothalamus were observed by hematoxylin-eosin staining and transmission electron microscopy, respectively. The mechanisms of action of lycopene were explored through various methods, including senescence β-galactosidase staining, multiplex immunofluorescence, Western blotting and qRT‒PCR. RESULTS Our results indicated that lycopene notably ameliorated atrazine-induced histological and ultrastructural damage, as well as the loss of intact and mature neurons in mouse hypothalami. Additionally, hypothalamic NSCs (HtNSCs) and microglia were recruited to areas of neuronal injury after atrazine exposure; intriguingly, lycopene treatment reduced this recruitment. Through in vivo and in vitro assays, we elucidated the outcomes of atrazine-induced HtNSC recruitment and neuronal loss, along with the neuroprotective mechanisms of lycopene. Mechanistically, lycopene prevents atrazine-induced senescence in HtNSCs and enhances their proliferation and differentiation by inhibiting the integrated stress response (ISR) signaling pathway, thus promoting the renewal of damaged neurons in the hypothalamus. CONCLUSIONS Collectively, the results of the present study reveal, for the first time, that lycopene mitigates atrazine-induced HtNSC senescence by modulating the ISR signaling pathway. These findings offer novel insights into the role of lycopene in preventing and alleviating NSC senescence and suggest its potential development as a new therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Zhao H, Qian H, Cui J, Ge Z, Shi J, Huo Y, Zhang Y, Ye L. Endocrine toxicity of atrazine and its underlying mechanisms. Toxicology 2024; 505:153846. [PMID: 38815618 DOI: 10.1016/j.tox.2024.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Atrazine (ATR) is one of the most widely utilized herbicides globally and is prevalent in the environment due to its extensive use and long half-life. It can infiltrate the human body through drinking water, ingestion, and dermal contact, and has been recognized as an environmental endocrine disruptor. This study aims to comprehensively outline the detrimental impacts of ATR on the endocrine system. Previous research indicates that ATR is harmful to various bodily systems, including the reproductive system, nervous system, adrenal glands, and thyroi d gland. The toxic effects of ATR on the endocrine system and its underlying molecular mechanisms are summarized as follows: influencing the expression of kisspeptin in the HPG axis, consequently affecting steroid synthesis; disrupting DNA synthesis and meiosis, as well as modifying DNA methylation levels, leading to reproductive and developmental toxicity; impacting dopamine by altering Nurr1, VMAT2, and DAT expression, consequently affecting dopamine synthesis and transporter expression, and influencing other neurotransmitters, resulting in neurotoxicity; and changing adipose tissue synthesis and metabolism by reducing basal metabolism, impairing cellular oxidative phosphorylation, and inducing insulin resistance. Additionally, a compilation of natural products used to mitigate the toxic effects of ATR has been provided, encompassing melatonin, curcumin, quercetin, lycopene, flavonoids, vitamin C, vitamin E, and other natural remedies. It is important to note that existing research predominantly relies on in vitro and ex vivo experiments, with limited population-based empirical evidence available.
Collapse
Affiliation(s)
- Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jingjing Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yingchao Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
4
|
Waye AA, Ticiani E, Veiga-Lopez A. Chemical mixture that targets the epidermal growth factor pathway impairs human trophoblast cell functions. Toxicol Appl Pharmacol 2024; 483:116804. [PMID: 38185387 PMCID: PMC11212468 DOI: 10.1016/j.taap.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Li J, Qi L, Chen Y, Lv H, Bi H. Bioinformatics analysis of the potential mechanisms of Alzheimer's disease induced by exposure to combined triazine herbicides. Ann Hum Biol 2023; 50:442-451. [PMID: 37819172 DOI: 10.1080/03014460.2023.2259242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The development of Alzheimer's disease (AD) is promoted by a combination of genetic and environmental factors. Notably, combined exposure to triazine herbicides atrazine (ATR), simazine (SIM), and propazine (PRO) may promote the development of AD, but the mechanism is unknown. AIM To study the molecular mechanism of AD induced by triazine herbicides. METHODS Differentially expressed genes (DEGs) of AD patients and controls were identified. The intersectional targets of ATR, SIM, and PRO for possible associations with AD were screened through network pharmacology and used for gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis. The binding potentials between the core targets and herbicides were validated by molecular docking and molecular dynamics. RESULTS A total of 1,062 DEGs were screened between the AD patients and controls, which identified 148 intersectional targets of herbicides causing AD that were screened by network pharmacology analysis. GO and KEGG enrichment analysis revealed that cell cycling and cellular senescence were important signalling pathways. Finally, the core targets EGFR, FN1, and TYMS were screened and validated by molecular docking and molecular dynamics. CONCLUSION Our results suggest that combined exposure to triazine herbicides might promote the development of AD, thereby providing new insights for the prevention of AD.
Collapse
Affiliation(s)
- Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ling Qi
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yuxin Chen
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haoming Lv
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Rotimi DE, Adeyemi OS. Plantain-based diet decreases oxidative stress and inflammatory markers in the testes of rats exposed to atrazine. Mol Cell Biochem 2023:10.1007/s11010-022-04639-2. [PMID: 36609901 DOI: 10.1007/s11010-022-04639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
Exposure to the herbicide atrazine (ATZ) has deleterious effects on male fertility. This fact underscores the need for measures to protect against the detrimental impact of atrazine exposure on male fertility. The study assessed the protective effects of plantain-based diet (PBD) on rat testes exposed to ATZ by exploring oxid-inflammatory homeostasis. The study evaluated the preventive and therapeutic effects of PBD in a two-phased experiment. Male rats were randomized into seven groups for therapeutic model (Control, ATZ only, ATZ recovery, ATZ + 50% PBD, ATZ + 25% PBD, ATZ + 12.5% PBD and ATZ + quercetin-QUE) while the preventive model had ten groups (Control, ATZ, 50% PBD + ATZ, 25% PBD + ATZ, 12.5% PBD + ATZ and QUE + ATZ). The oxidative stress parameters (DNA fragmentation and MDA level), purinergic activity (ATPase), acetylcholine esterase, and inflammatory markers (NO level, MPO activity, and TNF-α) were increased while the Nrf2 levels were decreased by the ATZ treatment. However, the PBD was able to restore the oxido-inflammatory parameters in the rat testes. The chemical fingerprint of the diet revealed that the diets contained 16 bioactive compounds with quercetin being the most prominent compound. Overall, treatment with PBD was able to protect and prevent the toxicity caused by ATZ by modulating the redox and inflammatory status as well as purinergic activity in the rat testes.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.,Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria. .,Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria. .,Laboratory of Sustainable Animal Environmental Systems, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan.
| |
Collapse
|
7
|
Ndufeiya-Kumasi LC, Abarikwu SO, Ohanador R, Omoregie ES. Curcumin improves the protective effects of quercetin against atrazine-induced testicular injury in adult Wistar rats. Andrologia 2022; 54:e14445. [PMID: 35437774 DOI: 10.1111/and.14445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the beneficial protective effect of cotreatment of curcumin (CUR) and quercetin (QUE) on atrazine (ATZ)-induced testicular toxicity in rats. ATZ challenge diminished luteinizing hormone, follicular stimulating hormone, testosterone and myeloperoxidase enzyme activity, but these effects were attenuated on co-treatment with CUR and QUE. Also, co-treatment of CUR + QUE was better than separate administration of QUE at diminishing malondialdehyde and glutathione and improving tumour necrosis factor-α concentration, germ cell numbers (spermatogonia, spermatocytes and round spermatids) and epididymal sperm quality. Histologically, smaller sized tubules with degenerated epithelia and few germ cells were seen in the seminiferous tubules of the ATZ group whereas CUR + QUE pretreatment improved the histo-morphologic features of the tubules compared to the ATZ group and was also better than separate administration of QUE. We conclude that CUR can improve the protective effects of QUE against ATZ-induced testicular injury by enhancing the levels of reproductive hormones, recovering testicular biochemical parameters and improving the histological features of the testes.
Collapse
Affiliation(s)
| | - Sunny O Abarikwu
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Robinson Ohanador
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Ehimwenma S Omoregie
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
8
|
Lu YS, Yang SL, Gou CL, Wang XL, Wen X, He XR, Guo XX, Xu YY, Yu J, Qiu J, Qian YZ. Integrated metabolomics and transcriptomics analysis reveals new biomarkers and mechanistic insights on atrazine exposures in MCF‑7 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113244. [PMID: 35093817 DOI: 10.1016/j.ecoenv.2022.113244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ) is a widely used herbicide worldwide and is a long-suspected endocrine-disrupting chemical. However, most endocrine-disrupting toxicity studies on ATZ have been based on animal models and those investigating inner mechanisms have only focused on a few genes. Therefore, the possible link between ATZ and endocrine-disrupting toxicity is still unclear. In this study, multi-omics and molecular biology techniques were used to elucidate the possible molecular mechanisms underlying the effect of ATZ exposure on MCF-7 proliferation at environmentally relevant concentrations. Our study is the first report on ATZ-induced one carbon pool by folate metabolic disorder in MCF-7 cells. A concentration of 1 μM ATZ yielded the highest cell viability and was selected for further mechanistic studies. A total of 34 significantly changed metabolites were identified based on metabolomic analysis, including vitamins, amino acids, fatty acids, and corresponding derivatives. Folate and pyridoxal have potential as biomarkers of ATZ exposure. One carbon pool by folate metabolic pathway was identified based on metabolic pathway analysis of the significantly altered pathways. Moreover, FTCD and MTHFD related to this pathway were further identified based on transcriptomic analysis and protein assays. Folate and different forms of 5,6,7,8-tetrahydrofolate, which participate in purine synthesis and associate with methyl groups (SOPC, arachidonic acid, and L-tryptophan) in one carbon pool by the folate metabolic pathway, potentially promote MCF-7 cell proliferation. These findings on the key metabolites and regulation of the related differentially expressed genes in folate metabolism will shed light on the mechanism of MCF-7 cell proliferation after ATZ exposure. Overall, this study provides new insights into the mechanistic understanding of toxicity caused by endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Shang-Lin Yang
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Chun-Lin Gou
- Institute of Quality Standard and Testing Technology for Agro-Products of NingXia, Yinchuan 750002, China
| | - Xin-Lu Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xing Wen
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Xiao-Rong He
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Xiao-Xuan Guo
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Sadeghnia H, Shahba S, Ebrahimzadeh-Bideskan A, Mohammadi S, Malvandi AM, Mohammadipour A. Atrazine neural and reproductive toxicity. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1966637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hamidreza Sadeghnia
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Shabnam Mohammadi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Selvaraju V, Baskaran S, Agarwal A, Henkel R. Environmental contaminants and male infertility: Effects and mechanisms. Andrologia 2020; 53:e13646. [PMID: 32447772 DOI: 10.1111/and.13646] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The escalating prevalence of male infertility and decreasing trend in sperm quality have been correlated with rapid industrialisation and the associated discharge of an excess of synthetic substances into the environment. Humans are inevitably exposed to these ubiquitously distributed environmental contaminants, which possess the ability to intervene with the growth and function of male reproductive organs. Several epidemiological reports have correlated the blood and seminal levels of environmental contaminants with poor sperm quality. Numerous in vivo and in vitro studies have been conducted to investigate the effect of various environmental contaminants on spermatogenesis, steroidogenesis, Sertoli cells, blood-testis barrier, epididymis and sperm functions. The reported reprotoxic effects include alterations in the spermatogenic cycle, increased germ cell apoptosis, inhibition of steroidogenesis, decreased Leydig cell viability, impairment of Sertoli cell structure and function, altered expression of steroid receptors, increased permeability of blood-testis barrier, induction of peroxidative and epigenetic alterations in spermatozoa resulting in poor sperm quality and function. In light of recent scientific reports, this review discusses the effects of environmental contaminants on the male reproductive function and the possible mechanisms of action.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
11
|
Li P, Li X, Yao L, Wu Y, Li B. Soybean isoflavones prevent atrazine-induced neurodegenerative damage by inducing autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110065. [PMID: 31869719 DOI: 10.1016/j.ecoenv.2019.110065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/12/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Atrazine (ATR) is a widely used herbicide with documented dopaminergic (DAergic) neurotoxicity that can lead to a Parkinson's disease (PD)-like motor syndrome. However, there have been few studies on preventative interventions. The aim of the present study was to investigate the neuroprotective efficacy of soybean isoflavones (SI) and associated molecular mechanisms in a rat model of ATR-induced DAergic toxicity. Male Sprague-Dawley rats (6 weeks old) received daily intraperitoneal injection of SI (10, 50, or 100 mg/kg) or vehicle followed 1 h later by oral gavage of ATR (50 mg/kg) for 45 consecutive days. Open field and grip-strength tests indicated no differences in motor function among treatment groups. Alternatively, histopathology revealed neuronal damage in the striatum of rats receiving vehicle plus ATR that was ameliorated by SI pretreatment. SI attenuate ATR-induced oxidative stress (indicated by MDA accumulation and GSH depletion) and inflammatory damage (as evidenced by TNF-α and IL-6 elevation) in the substantia nigra. ATR increased expression of the pro-apoptotic factor Bax and reduced expression levels of the DA synthesis enzyme tyrosine hydroxylase (TH) and the anti-apoptotic factor Bcl-2 in the substantia nigra and striatum. All of these effects were reversed by SI pretreatment, suggesting that SI can inhibit ATR-induced apoptosis of DAergic neurons. ATR also inhibited autophagy in the substantial nigra as evidenced by LC3-II and Beclin-1 downregulation and increased expression of p62, whereas SI pretreatment reversed these effects, indicating autophagy induction. Furthermore, ATR increased the expression of mTOR and reduced the expression of phosphorylated S6 (p-S6) and BEX2 in the substantia nigra. Collectively, these findings suggest that SI can prevent ATR-mediated degeneration of DAergic neurons by inducing autophagy through an mTOR-dependent signaling pathway.
Collapse
Affiliation(s)
- Peng Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China.
| | - Xueting Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China.
| | - Liyan Yao
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China.
| | - Yanping Wu
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China.
| | - Baixiang Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China.
| |
Collapse
|
12
|
Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110680. [PMID: 31838026 PMCID: PMC6942667 DOI: 10.1016/j.mce.2019.110680] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Alison M Neff
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States.
| |
Collapse
|
13
|
Li J, Li X, Bi H, Li B. The MEK/ERK/CREB signaling pathway is involved in atrazine induced hippocampal neurotoxicity in Sprague Dawley rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:673-681. [PMID: 30580161 DOI: 10.1016/j.ecoenv.2018.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Atrazine (ATR) is a commonly used artificial synthetic herbicide world-wide, which has been implicated as a potential threat to human health. Previous studies have demonstrated that exposure to ATR affects hippocampus-dependent learning and memory in rodents, but the exact molecular mechanism remains to be elucidated. In this study, we investigated the effect of ATR on the hippocampus of postnatal day 35 male Sprague Dawley (SD) rats administered doses of either 10 or 100 mg/kg body weight (BW)/day of ATR for a period of 30 days. A Morris water maze (MWM) test revealed that ATR treatment impaired memory performance in the spatial probe test, especially amongst the high-dose group. Moreover, analysis by electron microscopy showed that hippocampal neuron ultrastructure in the dentate gyrus (DG) and cornu ammonis 1 (CA1) sub-regions was impaired in the ATR-treated groups. Finally, a downregulation in the mRNA and protein expression levels of members of the MEK/ERK/CREB pathway and downstream factors brain-derived neurotrophic factor (BDNF) and Zif268 was observed in hippocampal tissue following ATR treatment. Taken together, these results suggest that developmental exposure to ATR is able to induce functional and morphological lesions in the hippocampus of SD rats, and that the MEK/ERK/CREB signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Jianan Li
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Road, Nan Gang District, Harbin 150081, China
| | - Xueting Li
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Road, Nan Gang District, Harbin 150081, China
| | - Haoran Bi
- Department of Epidemiology, College of Public Health, Harbin Medical University, 157 Baojian Road, Nan Gang District, Harbin 150081, China
| | - Baixiang Li
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Road, Nan Gang District, Harbin 150081, China.
| |
Collapse
|
14
|
Grasselli F, Bussolati S, Ramoni R, Grolli S, Basini G. Simazine, a triazine herbicide, disrupts swine granulosa cell functions. Anim Reprod 2018; 15:3-11. [PMID: 33365088 PMCID: PMC7746213 DOI: 10.21451/1984-3143-2017-ar960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The triazine herbicide simazine is a pesticide commonly detected in surface and ground waters,
although banned in most European countries since 2004. Concerns for humans and animal health
result from its potential endocrine disrupting action, that can lead to reproductive disorders.
The present in vitro study was undertaken to study simazine effects on
swine granulosa cell function, namely cell viability, proliferation, steroidogenesis
and NO production. Moreover, the ability of this substance to interfere with the angiogenetic
process, a crucial event in reproductive function, was taken into account. Our data document
that simazine treatment, at 0.1 or 10 μM concentration levels, stimulates granulosa
cell proliferation and viability and impairs steroidogenesis, increasing in particular
progesterone production. In addition, the in vitro angiogenesis bioassay
revealed a significant simazine stimulatory effect on immortalized porcine Aortic Endothelial
Cell proliferation. Collectively, these results show that simazine can display disruptive
effects on ovarian cell functional parameters, possibly resulting in reproductive dysfunction.
This hypothesis is also supported by the observed pro-angiogenetic properties of this herbicide,
as already suggested for different endocrine disruptors.
Collapse
|
15
|
Pogrmic-Majkic K, Samardzija D, Stojkov-Mimic N, Vukosavljevic J, Trninic-Pjevic A, Kopitovic V, Andric N. Atrazine suppresses FSH-induced steroidogenesis and LH-dependent expression of ovulatory genes through PDE-cAMP signaling pathway in human cumulus granulosa cells. Mol Cell Endocrinol 2018; 461:79-88. [PMID: 28859905 DOI: 10.1016/j.mce.2017.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/13/2017] [Accepted: 08/28/2017] [Indexed: 01/12/2023]
Abstract
Atrazine (ATR) alters female reproductive functions in different animal species. Here, we analyzed whether ATR disturbs steroidogenic and ovulatory processes in hormone-stimulated human cumulus granulosa cells and mechanism of its action. Results showed that treatment of human cumulus granulosa cells with 20 μM ATR for 48 h resulted in lower FSH-stimulated estradiol and progesterone production. ATR reduced mRNA levels of aromatase (CYP19A1), steroidogenic acute regulatory protein (STAR) and luteinizing hormone/choriogonadotropin receptor (LHCGR). Addition of hCG 48 h after FSH and ATR treatment did not trigger maximal expression of the ovulatory genes amphiregulin (AREG) and epiregulin (EREG). Mechanistic experiments showed that ATR activated cPDE and decreased cAMP level. Addition of total PDE and specific PDE4 inhibitors, IBMX and rolipram, prevented ATR's action on CYP19A1 and STAR mRNA expression in FSH-stimulated human cumulus granulosa cells. This study suggests that ATR alters steroidogenesis and ovulatory process in human cumulus granulosa cells jeopardizing female reproduction.
Collapse
Affiliation(s)
| | - Dragana Samardzija
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| | - Natasa Stojkov-Mimic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| | - Jelena Vukosavljevic
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | | | - Vesna Kopitovic
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| |
Collapse
|
16
|
Figueira FH, de Quadros Oliveira N, de Aguiar LM, Escarrone AL, Primel EG, Barros DM, da Rosa CE. Exposure to atrazine alters behaviour and disrupts the dopaminergic system in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:94-102. [PMID: 28847529 DOI: 10.1016/j.cbpc.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Atrazine is an extensively used herbicide, and has become a common environmental contaminant. Effects on dopaminergic neurotransmission in mammals following exposure to atrazine have been previously demonstrated. Here, the effects of atrazine regarding behavioural and dopaminergic neurotransmission parameters were assessed in the fruit fly D. melanogaster, exposed during embryonic and larval development. Embryos (newly fertilized eggs) were exposed to two atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Negative geotaxis assay, as well as exploratory behaviour, immobility time and number of grooming episodes in an open field system were assessed. Tyrosine hydroxylase (TH) activity and gene expression of the dopaminergic system were also evaluated in newly emerged male and female flies. All analyzed parameters in male flies were not significantly affected by atrazine exposure. However female flies exposed to atrazine at 10μM presented an increase in immobility time and a reduction in exploratory activity in the open field test, which was offset by an increase in the number of grooming episodes. Also, female flies exposed to 100μM of atrazine presented an increase in immobility time. Gene expression of DOPA decarboxylase and dopamine (DA) receptors were also increased only in females. The behavioural effects of atrazine exposure observed in female flies were due to a disturbance in the dopaminergic system.
Collapse
Affiliation(s)
- Fernanda Hernandes Figueira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Natália de Quadros Oliveira
- Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Lais Mattos de Aguiar
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Ana Laura Escarrone
- Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Daniela Martí Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Carlos Eduardo da Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
17
|
Abstract
Because atrazine is a widely used herbicide, its adverse effects on the reproductive system have been extensively researched. In this study, we investigated the effects of atrazine exposure on porcine oocyte maturation and the possible mechanisms. Our results showed that the rates of oocyte maturation significantly decreased after treatment with 200 μM atrazine in vitro. Atrazine treatment resulted in abnormal spindle morphology but did not affect actin distribution. Atrazine exposure not only triggered a DNA damage response but also decreased MPF levels in porcine oocytes. Our results also revealed that atrazine worsened porcine oocyte quality by causing excessive accumulation of superoxide radicals, increasing cathepsin B activity, and decreasing the GSH level and mitochondrial membrane potential. Furthermore, atrazine decreased developmental competence of porcine oocytes up to the blastocyst stage and changed some properties: cell numbers, apoptosis, and related gene expression levels. Collectively, our results indicate that porcine oocyte maturation is defective after atrazine treatment at least through disruption of spindle morphology, MPF activity, and mitochondrial function and via induction of DNA damage, which probably reduces developmental competence.
Collapse
|
18
|
Zhang C, Li XN, Xiang LR, Qin L, Lin J, Li JL. Atrazine triggers hepatic oxidative stress and apoptosis in quails (Coturnix C. coturnix) via blocking Nrf2-mediated defense response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:49-56. [PMID: 27915142 DOI: 10.1016/j.ecoenv.2016.11.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/05/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
The bioaccumulation and environmental persistence of atrazine (ATZ) poses a severe hazard to animal ecosystem. Quail has strong sensitivity to environmental pollutant, thus it is one of the most important ecological pollution indicator. However, true proof for the effects of ATZ exposure on the liver of quails is lacking. To evaluate the liver injury and the role of Nrf2-mediated defense responses during ATZ exposure, male quails were treated with ATZ (0, 50, 250 and 500mg/kg) by oral gavage for 45 days. Histopathological and ultrastructural changes, oxidative stress indices, apoptosis-related factors and Nrf2 pathway were detected. ATZ caused irreparable mitochondrial damage and destroyed morphophysiological integrity of the quail liver. Lower level ATZ (<250mg/kg) activated Nrf2 signaling pathway to protect liver against oxidative stress and apoptosis via enhancing antioxidative activity. Higher level ATZ (>500mg/kg) induced oxidative stress and apoptosis through decrease of non-enzymatic antioxidant, antioxidant enzymes and anti-apoptosis factors and increase of apoptosis factors expressions. Taken together, our results suggested that ATZ-induced hepatotoxicity in quails was associated with blocking Nrf2-mediated defense response.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Li-Run Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lei Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China; Laboratory animal centre, Qiqihar Medical University, Qiqihar 161006, People's Republic of China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|