1
|
Villa-Villaseñor IM, Herrera-Vargas MA, Yáñez-Rivera B, Uribe MC, Rueda-Jasso RA, Phillips-Farfán BV, Mar-Silva V, Meléndez-Herrera E, Domínguez-Domínguez O. Realistic nitrate concentrations diminish reproductive indicators in Skiffia lermae, an endemic species in critical endangered status. PeerJ 2024; 12:e17876. [PMID: 39267944 PMCID: PMC11391940 DOI: 10.7717/peerj.17876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 09/15/2024] Open
Abstract
Goodeinae is a subfamily of critically endangered fish native to central Mexico. Populations of Skiffia lermae, a species belonging to this subfamily, have significantly decreased in the past two decades. A previous study showed that S. lermae is sensitive to acute nitrate-nitrogen (NO3-N) exposure, leading to noticeable changes in both behavioral and histopathological bioindicators. The aim herein was to determine the vulnerability of S. lermae to NO3-N exposure at realistic concentrations registered in freshwater ecosystems in central Mexico where the species was historically reported. Offspring of S. lermae were chronically exposed during 60 days to concentrations of 5, 10 and 20 mg NO3-N/L, with 2 mg NO3-N/L used as the reference value (control). Survival rate, feeding behavior, aquatic surface respiration, body growth, scaled mass index, immature red blood cells, as well as histopathological changes in branchial, hepatic and gonadal tissues were evaluated. Additionally, this study analyzed water quality in freshwater ecosystems where S. lermae presently persists. The results showed decreased survival as NO3-N concentration increased, as well as increased feeding latency, aquatic surface respiration and histological damage in the gills and liver. These organs showed differential sex-dependent responses to NO3-N exposure; females were more sensitive than males. In the ovaries, a decreased density of stage III oocytes was associated with increased NO3-N concentrations. No changes were observed in body growth and number of immature red blood cells. Concentrations recorded in the three freshwater ecosystems that S. lermae inhabit were below 2 mg NO3-N/L. Together, the results could explain why the species has disappeared from more contaminated freshwater ecosystems where NO3-N levels exceed 5 mg/L. Moreover, the study warns about the risks of increasing NO3-N concentrations in the current sites where the species lives.
Collapse
Affiliation(s)
- Ivette Marai Villa-Villaseñor
- Programa Institucional de Doctorado en Ciencias Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Ma Antonia Herrera-Vargas
- Laboratorio de Ecofisiología Animal, Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Beatriz Yáñez-Rivera
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, Mexico
| | - Mari Carmen Uribe
- Laboratorio de Biología de la Reproducción Animal, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, Mexico
| | - Rebeca Aneli Rueda-Jasso
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Bryan V Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Valentin Mar-Silva
- Estancia Posdoctoral por México-CONACyT, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Esperanza Meléndez-Herrera
- Laboratorio de Ecofisiología Animal, Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
2
|
Adams MS, Mensink RP, Plat J, Joris PJ. Long-term effects of an egg-protein hydrolysate on cognitive performance and brain vascular function: a double-blind randomized controlled trial in adults with elevated subjective cognitive failures. Eur J Nutr 2024; 63:2095-2107. [PMID: 38703228 PMCID: PMC11377360 DOI: 10.1007/s00394-024-03394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Short-term intake of the egg-protein hydrolysate Newtricious (NWT)-03 improved executive function, but underlying mechanisms and long-term effects, including other cognitive domains, are unknown. METHODS A 36-week randomized controlled trial involving 44 overweight/obese individuals experiencing elevated Subjective Cognitive Failures (SCF; aged 60-75 years) assessed the impact of daily consumption of 5.7 g of NWT-03 or placebo powders on cognitive performance (psychomotor speed, executive function, memory) and Cerebral Blood Flow (CBF), a marker of brain vascular function. Cognitive performance was evaluated using a neurophysiological test battery (CANTAB) and CBF was measured using magnetic resonance imaging perfusion method Arterial Spin Labeling (ASL). Serum samples were collected to determine brain-derived neurotrophic factor (BDNF) concentrations. RESULTS Anthropometrics, and energy and nutrient intakes remained stable throughout the trial. NWT-03 was well tolerated, and compliance was excellent (median: 99%; range: 87-103%). No overall intervention effects were observed on cognitive performance or CBF, but post-hoc analyses revealed significant improvements on executive function in women, but not men. Specifically, a reduction of 74 ms in reaction latency on the multitasking task (95% CI: -134 to -15; p = 0.02), a reduction of 9 between errors (95%CI: -14 to -3; p < 0.001), and a reduction of 9 total errors (95%CI: -15 to -3; p < 0.001) on the spatial working memory task were found in women. No intervention effects were observed on serum BDNF concentrations (p = 0.31). CONCLUSION Long-term consumption of NWT-03 improved multitasking abilities and working memory in women with elevated SCF. Brain vascular function remained unaffected. Sex differences in executive function require additional clarification.
Collapse
Affiliation(s)
- Micah S Adams
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Piazza CE, Mattos JJ, Lima D, Siebert MN, Zacchi FL, Dos Reis ÍMM, Ferrari FL, Balsanelli E, Toledo-Silva G, de Souza EM, Bainy ACD. Hepatic transcriptome, transcriptional effects and antioxidant responses in Poecilia vivipara exposed to sanitary sewage. MARINE POLLUTION BULLETIN 2024; 203:116426. [PMID: 38692005 DOI: 10.1016/j.marpolbul.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Aquatic environments are subject to threats from multiple human activities, particularly through the release of untreated sanitary sewage into the coastal environments. These effluents contain a large group of natural or synthetic compounds referred to as emerging contaminants. Monitoring the types and quantities of toxic substances in the environment, especially complex mixtures, is an exhausting and challenging task. Integrative effect-based tools, such as biomarkers, are recommended for environmental quality monitoring programs. In this study, fish Poecilia vivipara were exposed for 24 and 96 h to raw untreated sewage diluted 33 % (v/v) in order to identify hepatic genes to be used as molecular biomarkers. Through a de novo hepatic transcriptome assembly, using Illumina MiSeq, 54,285 sequences were assembled creating a reference transcriptome for this guppy species. Transcripts involved in biotransformation systems, antioxidant defenses, ABC transporters, nuclear and xenobiotic receptors were identified and evaluated by qPCR. Sanitary sewage induced transcriptional changes in AhR, PXR, CYP2K1, CYP3A30, NQO1, UGT1A1, GSTa3, GSTmu, ST1C1, SOD, ABCC1 and SOX9 genes from liver of fish, particularly after 96 h of exposure. Changes in hepatic enzyme activities were also observed. The enzymes showed differences in fish exposed to both periods, while in the gills there was a prevalence of significant results after 96 h. The observed differences were associated to gender and/or to sewage exposure. The obtained results support the use of P. vivipara as sentinel and model organism for ecotoxicological studies and evidence the importance of understanding the differential responses associated to gender.
Collapse
Affiliation(s)
- Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Ísis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Fernanda Luiza Ferrari
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Guilherme Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Mineiro R, Santos C, Gonçalves I, Lemos M, Cavaco JEB, Quintela T. Regulation of ABC transporters by sex steroids may explain differences in drug resistance between sexes. J Physiol Biochem 2023:10.1007/s13105-023-00957-1. [PMID: 36995571 DOI: 10.1007/s13105-023-00957-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Drug efficacy is dependent on the pharmacokinetics and pharmacodynamics of therapeutic agents. Tight junctions, detoxification enzymes, and drug transporters, due to their localization on epithelial barriers, modulate the absorption, distribution, and the elimination of a drug. The epithelial barriers which control the pharmacokinetic processes are sex steroid hormone targets, and in this way, sex hormones may also control the drug transport across these barriers. Thus, sex steroids contribute to sex differences in drug resistance and have a relevant impact on the sex-related efficacy of many therapeutic drugs. As a consequence, for the further development and optimization of therapeutic strategies, the sex of the individuals must be taken into consideration. Here, we gather and discuss the evidence about the regulation of ATP-binding cassette transporters by sex steroids, and we also describe the signaling pathways by which sex steroids modulate ATP-binding cassette transporters expression, with a focus in the most important ATP-binding cassette transporters involved in multidrug resistance.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Manuel Lemos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - José Eduardo B Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação Para o Desenvolvimento Do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
5
|
Piazza CE, Mattos JJ, Brocardo GS, Bainy ACD. Effects of 4-n-nonylphenol in liver of male and female viviparous fish (Poecilia vivipara). CHEMOSPHERE 2022; 308:136565. [PMID: 36152831 DOI: 10.1016/j.chemosphere.2022.136565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/25/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
4-n-Nonylphenol (NP) is one of the most toxic alkylphenols found in the environment. To evaluate the transcriptional effects of NP in the viviparous fish Poecilia vivipara, a hepatic transcriptome and qPCR analysis of genes were carried out. Guppies separated by sex were injected with two doses of NP (15 μg/g and 150 μg/g) or peanut oil (control). After 24 h, analysis of transcriptional level of Aryl Hydrocarbon Receptor (AhR), Estrogen Nuclear Receptor Alpha (ESR1), Pregnane X Receptor (PXR), Cytochromes P450 (CYP1A, CYP2K1 and CYP3A30), Glutathione S-transferase A3 and Mu 3 (GSTa3 and GSTMu3), SRY-Box Transcription Factor 9 (SOX9), Vitellogenin-1 (VIT), ATP Binding Cassette Subfamily C Member 1 (ABCC1), Multidrug Resistance-Associated Protein 2 (MRP2) and UDP Glucuronosyltransferase Family 1 Member A1 (UGT1A1) was evaluated. 205,046 transcripts were assembled and protein prediction resulted in 203,147 predicted peptides. In females, no significant changes were detected in the transcription of some phase I biotransformation and ABC transporter genes. AhR, PXR, GSTa3 and SOX9 genes where higher in the lower dose group (15 μg/g) compared to control. In male fish, no changes were observed in the transcript levels of the nuclear receptors, in endocrine disruption and phase I biotransformation genes. GSTa3 showed lower transcription in fish treated with both doses. ABCC1 was higher in guppies treated with the lower dose while MRP2 showed less transcripts. This short-term and low-dose exposure to NP caused changes that could serve as early indicators of deleterious processes. These results indicate P. vivipara as a good sentinel in biomonitoring programs.
Collapse
Affiliation(s)
- Clei E Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Giulia S Brocardo
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil.
| |
Collapse
|
6
|
Dalla C, Pavlidi P, Sakelliadou DG, Grammatikopoulou T, Kokras N. Sex Differences in Blood–Brain Barrier Transport of Psychotropic Drugs. Front Behav Neurosci 2022; 16:844916. [PMID: 35677576 PMCID: PMC9169874 DOI: 10.3389/fnbeh.2022.844916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment of neuropsychiatric disorders relies on the effective delivery of therapeutic molecules to the target organ, the brain. The blood–brain barrier (BBB) hinders such delivery and proteins acting as transporters actively regulate the influx and importantly the efflux of both endo- and xeno-biotics (including medicines). Neuropsychiatric disorders are also characterized by important sex differences, and accumulating evidence supports sex differences in the pharmacokinetics and pharmacodynamics of many drugs that act on the brain. In this minireview we gather preclinical and clinical findings on how sex and sex hormones can influence the activity of those BBB transporter systems and affect the brain pharmacokinetics of psychotropic medicines. It emerges that it is not well understood which psychotropics are substrates for each of the many and not well-studied brain transporters. Indeed, most evidence originates from studies performed in peripheral tissues, such as the liver and the kidneys. None withstanding, accumulated evidence supports the existence of several sex differences in expression and activity of transport proteins, and a further modulating role of gonadal hormones. It is proposed that a closer study of sex differences in the active influx and efflux of psychotropics from the brain may provide a better understanding of sex-dependent brain pharmacokinetics and pharmacodynamics of psychotropic medicines.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Danai-Georgia Sakelliadou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tatiana Grammatikopoulou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Nikolaos Kokras,
| |
Collapse
|
7
|
Eneberg E, Jones C, Jensen T, Langthaler K, Bundgaard C. Practical Application of Rodent Transporter Knockout Models to assess Brain Penetration in Drug Discovery. Drug Metab Lett 2022; 15:12-21. [PMID: 35196975 DOI: 10.2174/1872312815666220222091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Compound X is a drug candidate for the treatment of neurodegenerative diseases. Its brain distribution was evaluated as part of the lead identification and optimization of early drug discovery. METHODS The brain distribution of compound X was studied in genetic transporter knockout rodent models, in vivo models with a chemical inhibitor and in vitro transporter cell systems. RESULTS Compound X was found to be a substrate for human Breast Cancer-Resistance Protein (BCRP) in vitro (efflux ratio 8.1) and rodent Bcrp in vivo (Kp,uuKO/Kp,uuWT = 0.15/0.057 = 2.7, p < 0.05) but not a substrate for human P-glycoprotein (P-gp) in vitro (efflux ratio 1.0) nor rodent P-gp in vivo (Kp,uuKO/Kp,uuWT = 0.056/0.051 = 1.1, p > 0.05). When both transporters were knocked out in vivo, Kp,uu increased to 0.51 ± 0.02. Similar patterns observed across compounds with related chemistry corroborated structure-activity relationship. CONCLUSION While in vitro assays showed compound X to be a substrate for human BCRP and not P-gp, in vivo studies indicated a synergistic effect between rodent efflux transporters. However, this only accounted for ~50% of restricted BBB-transport, suggesting involvement from other efflux transporters. Given Kp,uu is a key criterion for assessing technical quality of CNS candidates before progression into clinical development, it is important to identify relevant screening assays for a better understanding of low Kp,uu and brain distribution in pre-clinical models for translation to humans.
Collapse
Affiliation(s)
- Elin Eneberg
- Translational DMPK, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | - Christopher Jones
- Translational DMPK, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | - Thomas Jensen
- Medicinal Chemistry, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Gilmore JC, Zhang G, Cameron DW, Serghides L, Bendayan R. Impact of in-utero antiretroviral drug exposure on expression of membrane-associated transporters in mouse placenta and fetal brain. AIDS 2021; 35:2249-2258. [PMID: 34175869 DOI: 10.1097/qad.0000000000003009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Although antiretroviral therapy (ART) during pregnancy is effective in limiting vertical HIV transmission, adverse outcomes persist amongst uninfected children exposed to antiretroviral drugs in utero. Membrane-associated drug transporters, metabolic enzymes, and tight junction proteins play important roles in adult antiretroviral drug disposition and toxicity; however, the fetal expression of these proteins in the context of ART, and their impact on in-utero antiretroviral drug distribution remain poorly understood. This study aimed to characterize the role of these proteins in modulating in-utero antiretroviral drug exposure. METHODS Pregnant mice were exposed to an ART regimen consisting of lamivudine, abacavir, atazanavir, and ritonavir, at clinically relevant doses. Fetal brain, liver, placenta amniotic fluid, and maternal plasma were collected on gestational day 18.5 and concentration of antiretroviral drugs in fetal tissues was measured by LC/MS/MS, whereas transporter expression was assessed by qPCR. RESULTS Abacavir and lamivudine were detected in fetal brain and amniotic fluid, whereas atazanavir and ritonavir were detected in amniotic fluid only. Robust mRNA expression of key transporters was observed in adult and fetal tissues, and sex differences were identified in the expression of Abcc1 and Slc29a1 in the placenta. Antiretroviral drug exposure was associated with a reduction in relative placental Abcg2, Abcc1, and Slc29a1 expression. CONCLUSION These findings identify a novel effect of fetal sex and antiretroviral drug treatment on the expression of placental transporters in a mouse model, and characterize the penetration of lamivudine and abacavir into fetal brain, uncovering a potential role of transporters in modulating fetal exposure to antiretroviral drugs.
Collapse
Affiliation(s)
- Julian C Gilmore
- Department of Pharmaceutical Sciences, University of Toronto, Toronto
| | - Guijun Zhang
- Clinical Investigation Unit, University of Ottawa at the Ottawa Hospital/Research Institute, Ottawa
| | - D William Cameron
- Clinical Investigation Unit, University of Ottawa at the Ottawa Hospital/Research Institute, Ottawa
| | - Lena Serghides
- Department of Immunology and Institute of Medical Sciences, University of Toronto
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Toronto
| |
Collapse
|
9
|
Sun A, Wang J. Choroid Plexus and Drug Removal Mechanisms. AAPS JOURNAL 2021; 23:61. [PMID: 33942198 DOI: 10.1208/s12248-021-00587-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
Timely and efficient removal of xenobiotics and metabolites from the brain is crucial in maintaining the homeostasis and normal function of the brain. The choroid plexus (CP) forms the blood-cerebrospinal fluid barrier and vitally removes drugs and wastes from the brain through several co-existing clearance mechanisms. The CP epithelial (CPE) cells synthesize and secrete the cerebrospinal fluid (CSF). As the CSF passes through the ventricular and subarachnoid spaces and eventually drains into the general circulation, it collects and removes drugs, toxins, and metabolic wastes from the brain. This bulk flow of the CSF serves as a default and non-selective pathway for the removal of solutes and macromolecules from the brain interstitium. Besides clearance by CSF bulk flow, the CPE cells express several multispecific membrane transporters to actively transport substrates from the CSF side into the blood side. In addition, several phase I and II drug-metabolizing enzymes are expressed in the CPE cells, which enzymatically inactivate a broad spectrum of reactive or toxic substances. This review summarizes our current knowledge of the functional characteristics and key contributors to the various clearance pathways in the CP-CSF system, overviewing recent developments in our understanding of CSF flow dynamics and the functional roles of CP uptake and efflux transporters in influencing CSF drug concentrations.
Collapse
Affiliation(s)
- Austin Sun
- Department of Pharmaceutics, University of Washington, Health Science Building Room H-272J, Box 357610, Seattle, Washington, 98195-7610, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Health Science Building Room H-272J, Box 357610, Seattle, Washington, 98195-7610, USA.
| |
Collapse
|
10
|
Antihyperuricemic Effect of Urolithin A in Cultured Hepatocytes and Model Mice. Molecules 2020; 25:molecules25215136. [PMID: 33158257 PMCID: PMC7662530 DOI: 10.3390/molecules25215136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperuricemia is defined as a disease with high uric acid (UA) levels in the blood and a strong risk factor for gout. Urolithin A (UroA) is a main microbial metabolite derived from ellagic acid (EA), which occurs in strawberries and pomegranates. In this study, we evaluated antihyperuricemic effect of UroA in both cultured hepatocytes and hyperuricemic model mice. In cultured hepatocytes, UroA significantly and dose-dependently reduced UA production. In model mice with purine bodies-induced hyperuricemia, oral administration of UroA significantly inhibited the increase in plasma UA levels and hepatic xanthine oxidase (XO) activity. In addition, DNA microarray results exhibited that UroA, as well as allopurinol, a strong XO inhibitor, induced downregulation of the expression of genes associated with hepatic purine metabolism. Thus, hypouricemic effect of UroA could be, at least partly, attributed to inhibition of purine metabolism and UA production by suppressing XO activity in the liver. These results indicate UroA possesses a potent antihyperuricemic effect and it could be a potential candidate for a molecule capable of preventing and improving hyperuricemia and gout.
Collapse
|
11
|
Wang J, Jia B, Li Y, Ren B, Liang H, Yan D, Xie H, Zhang X, Liang H. Effects of multi-walled carbon nanotubes on the enantioselective toxicity of the chiral insecticide indoxacarb toward zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122724. [PMID: 32387829 DOI: 10.1016/j.jhazmat.2020.122724] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/14/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
The mass production and usage of carbon nanotubes (CNTs) have led to the inevitable release into the environment, and the effects of CNTs on the toxicity of co-existing pollutants have been well documented. However, knowledge of the effects of CNTs on the enantioselective toxicity of chiral compounds is limited. Using zebrafish as an experimental model, the enantioselective expression of the apoptosis, CYP3C and EAAT-related genes were analyzed following exposure to multi-walled carbon nanotubes (MWCNTs) (0.05 and 0.5 mg/L), rac-/R-/S-indoxacarb (0.01 mg/L), or the combination of rac-/R-/S-indoxacarb mixed with MWCNTs for 28d. Sex-specific differences were observed in both the liver and brain of zebrafish. The expression of apoptosis and CYP3C-related genes was 16.55-44.29 times higher in the livers of males treated with R-indoxacarb than in S-indoxacarb treated groups. The EAAT-related genes were expressed at 1.38-2.56 times higher levels in the brain of females treated with R-indoxacarb than in S-indoxacarb-treated groups. In the presence of MWCNTs, the expression of caspase-3, cyp3c3, cyp3c4, eaat1a, eaat1b and eaat2 in the livers of males and brains of females treated with S-indoxacarb were 1.65-15.33 times higher than in fish treated with R-indoxacarb. Based on these results, MWCNTs affected the enantioselective toxicity of indoxacarb toward zebrafish.
Collapse
Affiliation(s)
- Ju Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Bo Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Dongyan Yan
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Haiyan Xie
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaodong Zhang
- Inner Mongolia Institute for Drug Control, Hohhot, Inner Mongolia, 010020, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
12
|
Koehn LM, Dziegielewska KM, Møllgård K, Saudrais E, Strazielle N, Ghersi-Egea JF, Saunders NR, Habgood MD. Developmental differences in the expression of ABC transporters at rat brain barrier interfaces following chronic exposure to diallyl sulfide. Sci Rep 2019; 9:5998. [PMID: 30979952 PMCID: PMC6461637 DOI: 10.1038/s41598-019-42402-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Many pregnant women and prematurely born infants require medication for clinical conditions including cancer, cardiac defects and psychiatric disorders. In adults drug transfer from blood into brain is mostly restricted by efflux mechanisms (ATP-binding cassette, ABC transporters). These mechanisms have been little studied during brain development. Here expression of eight ABC transporters (abcb1a, abcb1b, abcg2, abcc1, abcc2, abcc3, abcc4, abcc5) and activity of conjugating enzyme glutathione-s-transferase (GST) were measured in livers, brain cortices (blood-brain-barrier) and choroid plexuses (blood-cerebrospinal fluid, CSF, barrier) during postnatal rat development. Controls were compared to animals chronically injected (4 days, 200 mg/kg/day) with known abcb1a inducer diallyl sulfide (DAS). Results reveal both tissue- and age-dependent regulation. In liver abcb1a and abcc3 were up-regulated at all ages. In cortex abcb1a/b, abcg2 and abcc4/abcc5 were up-regulated in adults only, while in choroid plexus abcb1a and abcc2 were up-regulated only at P14. DAS treatment increased GST activity in livers, but not in cortex or choroid plexuses. Immunocytochemistry of ABC transporters at the CSF-brain interface showed that PGP and BCRP predominated in neuroepithelium while MRP2/4/5 were prominent in adult ependyma. These results indicate an age-related capacity of brain barriers to dynamically regulate their defence mechanisms when chronically challenged by xenobiotic compounds.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katarzyna M Dziegielewska
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kjeld Møllgård
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elodie Saudrais
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France
| | - Nathalie Strazielle
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France.,Brain-I, Lyon, France
| | - Jean-Francois Ghersi-Egea
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France
| | - Norman R Saunders
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Wang Q, Zuo Z. Impact of transporters and enzymes from blood–cerebrospinal fluid barrier and brain parenchyma on CNS drug uptake. Expert Opin Drug Metab Toxicol 2018; 14:961-972. [DOI: 10.1080/17425255.2018.1513493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
14
|
Xiong T, Xu G, Huang XL, Lu KQ, Xie WQ, Yin K, Tu J. ATP-binding cassette transporter A1: A promising therapy target for prostate cancer. Mol Clin Oncol 2017; 8:9-14. [PMID: 29399345 DOI: 10.3892/mco.2017.1506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) has been found to mediate the transfer of cellular cholesterol across the plasma membrane to apolipoprotein A-I (apoA-I), and is essential for the synthesis of high-density lipoprotein. Mutations of the ABCA1 gene may induce Tangier disease and familial hypoalphalipoproteinemia; they may also lead to loss of cellular cholesterol homeostasis in prostate cancer, and increased intracellular cholesterol levels are frequently found in prostate cancer cells. Recent studies have demonstrated that ABCA1 may exert anticancer effects through cellular cholesterol efflux, which has been attracting increasing attention in association with prostate cancer. The aim of the present review was to focus on the current views on prostate cancer progression and the various functions of ABCA1, in order to provide new therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Ting Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Gang Xu
- Department of Diagnostics Teaching and Research, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xue-Long Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Kai-Qiang Lu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei-Quan Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Kai Yin
- Department of Diagnostics Teaching and Research, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Tu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
15
|
Disease-Induced Alterations in Brain Drug Transporters in Animal Models of Alzheimer’s Disease. Pharm Res 2017; 34:2652-2662. [DOI: 10.1007/s11095-017-2263-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
|