1
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
2
|
Liu M, Li B, Yin Z, Yin L, Luo Y, Zeng Q, Zhang D, Wu A, Chen L. Targeting mitochondrial dynamics: A promising approach for intracerebral hemorrhage therapy. Life Sci 2025; 361:123317. [PMID: 39674268 DOI: 10.1016/j.lfs.2024.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a major global health issue with high mortality and disability rates. Following ICH, the hematoma exerts direct pressure on brain tissue, and blood entering the brain directly damages neurons and the blood-brain barrier. Subsequently, oxidative stress, inflammatory responses, apoptosis, brain edema, excitotoxicity, iron toxicity, and metabolic dysfunction around the hematoma further exacerbate brain tissue damage, leading to secondary brain injury (SBI). Mitochondria, essential for energy production and the regulation of oxidative stress, are damaged after ICH, resulting in impaired ATP production, excessive reactive oxygen species (ROS) generation, and disrupted calcium homeostasis, all of which contribute to SBI. Therefore, a central factor in SBI is mitochondrial dysfunction. Mitochondrial dynamics regulate the shape, size, distribution, and quantity of mitochondria through fusion and fission, both of which are crucial for maintaining their function. Fusion repairs damaged mitochondria and preserves their health, while fission helps mitochondria adapt to cellular stress and removes damaged mitochondria through mitophagy. When this balance is disrupted following ICH, mitochondrial dysfunction worsens, oxidative stress and metabolic failure are exacerbated, ultimately contributing to SBI. Targeting mitochondrial dynamics offers a promising therapeutic approach to restoring mitochondrial function, reducing cellular damage, and improving recovery. This review explores the latest research on modulating mitochondrial dynamics and highlights its potential to enhance outcomes in ICH patients.
Collapse
Affiliation(s)
- Mengnan Liu
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Binru Li
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China.
| | - Zhixue Yin
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Lu Yin
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Ye Luo
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Qi Zeng
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Dechou Zhang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Department of Cardiology, The Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Luzhou 646000, Sichuan, China; Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Li Chen
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
3
|
Rehman AS, Kumar P, Parvez S. Dopamine-D2-agonist targets mitochondrial dysfunction via diminishing Drp1 mediated fission and normalizing PGC1-α/SIRT3 pathways in a rodent model of Subarachnoid Haemorrhage. Neuroscience 2025; 564:60-78. [PMID: 39542343 DOI: 10.1016/j.neuroscience.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/28/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The adverse impact of disturbmitochondrialbiogenesis onearly brain injury (EBI) following subarachnoid haemorrhage (SAH) has been broadly recognized and is closely associated with oxidative stress and neuronal apoptosis. Previous studies have indicated the therapeutic potential of Ropinirole, a dopamine D2 agonist, in Ischemic Stroke. However, there is a lack of evidence regarding the ability of Ropinirole to enhance mitochondrial biogenesis and quality control after subarachnoid haemorrhage. The objective of this study is to investigate the effects of Ropinirole specific doses (10 & 20 mg/kg b. wt.) on mitochondria dysfunction in endovascular perforation SAH model in male Wistar rat. An endovascular perforation model was established using male Wistar rats that had sustained SAH injury. After the SAH injury, SAH grading on blood clot, Nissl staining, and neurobehavioral assessment were used to determine the severity. ROS and MMP, which are indicators of oxidative stress, were examined using flow cytometry. The findings demonstrated that the use of Ropinirole improved neurobehavioral outcomes, decreased brain edema, and reduced oxidative stress and mitochondrial based apoptosis. Further research showed that, Ropinirole therapy inhibit Drp1-mediated fission by accelerating the activity of fusion protein Mfn2/OPA1 along with regulating the translocation of PGC1-α and SIRT3 through restricting cytochrome C inside mitochondria to maintain mitochondrial metabolism. Ropinirole exerted neuroprotective effects by improving mitochondrial activity in a PGC1-α/SIRT3-dependent way via regulating Drp1 mediated fission. The effective treatment for SAH-induced EBI may involve increasing biogenesis and inhibiting excessive mitochondrial fission with Ropinirole.
Collapse
Affiliation(s)
- Ahmed Shaney Rehman
- Department of Medical Elementology & Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Suhel Parvez
- Department of Medical Elementology & Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Zhang D, Li F, Sun C, Chen C, Qin H, Wu X, Jiang M, Zhou K, Yao C, Hu Y. Inhibition of PGAM5 hyperactivation reduces neuronal apoptosis in PC12 cells and experimental vascular dementia rats. Arch Gerontol Geriatr 2024; 131:105732. [PMID: 39754994 DOI: 10.1016/j.archger.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia. METHODS Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method. Neuronal damage was detected in vivo and in vitro in different groups using different concentrations of the PGAM5-specific inhibitor LFHP-1c, and necroptosis and mitochondrial dynamics-related factors were determined. RESULTS In vivo experiments, 10 mg/kg-1 and 20 mg/kg-1 LFHP-1c improved cognitive deficits, reduced neuronal edema and vacuoles, increased the number of nissl bodies, and it could modulate the expression of Caspase family and Bcl-2 family related proteins and mRNAs and ameliorate neuronal damage. Simultaneously, in vitro experiments, 5 μM, 10 μM and 20 μM LFHP-1c increased the activity and migration number of model cells, reduced the number of apoptotic cells, ameliorated the excessive accumulation of intracellular reactive oxygen species, inhibited the over-activation of caspase-family and Bcl-2-family related proteins and mRNAs, and improved the mitochondrial dynamics of the fission and fusion states. Moreover, in vivo and in vitro experiments have shown that LFHP-1c can also upregulate the expression level of BDNF, inhibit the expression content of TNF-α and ROS, regulate the expression of proteins and mRNAs related to the RIPK1/RIPK3/MLKL pathway and mitochondrial dynamics, and reduce neuronal apoptosis. CONCLUSIONS Inhibition of PGAM5 expression level can reduce neuronal damage caused by chronic cerebral ischemia and hypoxia, which mainly prevents necroptosis by targeting the RIPK1/RIPK3/MLKL signaling pathway and regulates the downstream mitochondrial dynamics homeostasis system to prevent excessive mitochondrial fission, thus improving cognition and exerting cerebroprotective effects.
Collapse
Affiliation(s)
- Ding Zhang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Fangcun Li
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chunying Sun
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Canrong Chen
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Hongling Qin
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Xuzhou Wu
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Minghe Jiang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Keqing Zhou
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chun Yao
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| | - Yueqiang Hu
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| |
Collapse
|
5
|
Li S, Cao J, Yang Z, Jin S, Yang L, Chen H. Licorice and dried ginger decoction inhibits inflammation and alleviates mitochondrial dysfunction in chronic obstructive pulmonary disease by targeting siglec-1. Int Immunopharmacol 2024; 146:113789. [PMID: 39708484 DOI: 10.1016/j.intimp.2024.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. Licorice and dried ginger decoction (LGD) is traditional Chinese medicine prescription with multiple effects. Glycyrrhetinic acid (GA) is the main bioactive components of LGD, which has been proven to have a relieving effect on various inflammatory diseases. Siglec-1 is a cell surface sialoadhesin and has been confirmed to be overexpressed in COPD and facilitate inflammatory reaction. This study is aimed to probe the interaction between LGD, GA, and siglec-1. METHODS Cigarette smoke (CS) combined with lipopolysaccharide (LPS) treatment was utilized to construct a COPD rat model. Cigarette smoke extract (CSE) was utilized to induce alveolar macrophage NR8383 to construct a COPD cell model. HE staining was applied for measuring histopathological changes of COPD rats. Enzyme-linked immunosorbent assay (ELISA), reverse transcription real-time polymerase chain reaction (RT-qPCR), and western blot were applied for testing the concentrations and expressions of proinflammatory factors. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS) analysis was utilized to determine the combination between siglec-1 and GA. JC-1 assay was utilized to evaluate mitochondrial function. Reactive oxygen species (ROS) production was tested by dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining. RESULTS LGD treatment notably alleviated lung injury and inflammatory response in COPD rats. In CSE-induced cells, LGD treatment suppressed the contents of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8. Sialic-acid-binding Ig-like lectin 1 (Siglec-1) expression induced by CS was decreased after LGD treatment. Furthermore, we proved that GA could target siglec-1 to regulate the inflammatory response in COPD rats and cells. Additionally, GA could reduce ROS production and alleviate mitochondrial dysfunction to suppress COPD progression. CONCLUSION LGD inhibits inflammation and alleviates mitochondrial dysfunction in COPD by targeting siglec-1.
Collapse
Affiliation(s)
- Sensen Li
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Key Laboratory of Chronic Disease Research, School of Medicine, Huanghuai University, Zhumadian, Henan 463000, China.
| | - Juan Cao
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Key Laboratory of Chronic Disease Research, School of Medicine, Huanghuai University, Zhumadian, Henan 463000, China
| | | | - Shaoju Jin
- Department of Pharmacology, Luohe Medical College, Luohe, Henan 462002, China.
| | - Lei Yang
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Key Laboratory of Chronic Disease Research, School of Medicine, Huanghuai University, Zhumadian, Henan 463000, China.
| | - Hao Chen
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China.
| |
Collapse
|
6
|
Fang Y, Zhang X, Liu C, Wang K, Rong X, Zhu B. A highly specific colorimetric fluorescent probe for rapid detection of hypobromous acid and its application in the environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124822. [PMID: 39084019 DOI: 10.1016/j.saa.2024.124822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
The highly reactive hypobromous acid (HOBr), which is generated after chlorination process of tap water, acts as a precursor of toxic brominated disinfection by-products (Br-DBPs) and further reacts with organic matter. In addition, HOBr produced from the oxidation of Br- during the degradation of pollutants by peroxymonosulfate (PMS, HSO5-) can be considered as the cause of the expedited degradation of pollutants. Therefore, it is particularly important to detect HOBr level in the water environment. Resazurin was selected as a fluorescent probe for selective recognition of HOBr in the water environment. The probe exhibited excellent spectral performance and showed high sensitivity to HOBr (LOD = 515 nM). This method has a relatively ideal recovery rate for HOBr detection in environmental water samples. Furthermore, the HOBr production during the chlorination disinfection process was simulated and the HOBr generated from this process was detected by the probe. Importantly, the process of HOBr recognition by the probe is accompanied by the change of color. Based on this, the relationship between the change of color B/G value and HOBr concentration was successfully constructed. The probe was loaded on the filter paper to make a test strip, which was utilized to the detection of HOBr. Collectively, this work provided a promising and powerful method for HOBr detection in the environment.
Collapse
Affiliation(s)
- Yikun Fang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
7
|
Cai H, He J, Zheng W, Cheng H, Ge X, Bao Y, Wei Y, Zhou Y, Liang X, Chen X, Liu C, Wang F, Yang X. Zinc Mitigates the Combined Neurotoxicity of Binary Metal Mixtures via Mitophagy and Mitochondrial Fusion. Mol Neurobiol 2024:10.1007/s12035-024-04648-w. [PMID: 39673661 DOI: 10.1007/s12035-024-04648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Environmental metal mixtures can cause combined neurotoxicity, but the underlying mechanism remains unclear. Mitochondria are crucial for energy metabolism in the nervous system, and their dysfunction leads to neurodegeneration. Zinc (Zn) is a coenzyme of many mitochondrial enzymes that controls mitochondrial function. This study investigated the role of Zn in the neurotoxicity induced by Mn + Pb and Pb + As mixtures. Zn supplementation improved the survival rate and learning ability of Caenorhabditis elegans following their exposure to mixtures of Mn + Pb and Pb + As by enhancing their mitochondrial morphology, membrane potential, and respiratory chain. Similarly, in HT22 cells, Zn mitigated the decrease in cellular activity and increase in apoptosis induced by the Mn + Pb and Pb + As mixtures by improving mitochondrial morphology and function. Mechanistically, Zn activated the PINK1 and MFN-2/OPA-1 pathways, promoting mitophagy and mitochondrial fusion. However, inhibition of mitophagy reversed the protective effect of Zn, indicating its reliance on mitophagy for neuroprotection. Our study demonstrated that Zn alleviates the combined neurotoxicity of Mn + Pb and Pb + As mixtures by enhancing mitophagy and mitochondrial fusion, suggesting that Zn supplementation is a potential treatment for metal-induced neurotoxicity.
Collapse
Affiliation(s)
- Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Wanting Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanfeng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Zhao Y, Jia Q, Hao G, Han L, Gao Y, Zhang X, Yan Z, Li B, Wu Y, Zhang B, Li Y, Qin J. JiangyaTongluo decoction ameliorates tubulointerstitial fibrosis via regulating the SIRT1/PGC-1α/mitophagy axis in hypertensive nephropathy. Front Pharmacol 2024; 15:1491315. [PMID: 39726785 PMCID: PMC11669701 DOI: 10.3389/fphar.2024.1491315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction With the increasing prevalence of hypertension, the incidence of kidney diseases is also increasing, resulting in a serious public burden. Jiangya Tongluo decoction (JYTL), a recognized prescription in traditional Chinese medicine (TCM), is commonly used to calm an overactive liver and reduce excess yang, while also promoting blood flow to alleviate obstructions in the meridians. Previous research has indicated that JYTL may help mitigate kidney damage caused by hypertension; however, the underlying mechanisms have not been thoroughly assessed. Methods First, an amalgamation of UPLC-QE/MS and network pharmacology techniques was employed to pinpoint potential active components, primary targets, and crucial action mechanisms of JYTL in treating hypertensive nephropathy (HN). Then, we used spontaneous hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) to evaluate the efficacy of JYTL on HN with valsartan as a positive reference. We also conducted DCFH-DA fluorescence staining in rat renal tissues to detect the level of ROS. Western blotting and immunohistochemistry were performed to investigate further the effect of JYTL decoction on key targets and signaling pathways. Results Through UPLC-QE/MS and network analysis, 189 active ingredients and 5 hub targets were identified from JYTL. GSEA in the MitoCarta3.0 database and PPI network analysis revealed that JYTL predominantly engages in the Sirt1-mitophagy signaling pathway. Tanshinone iia, quercetin, and adenosine in JYTL are the main active ingredients for treating HN. In vivo validation showed that JYTL decoction could improve kidney function, ameliorate tubulointerstitial fibrosis (TIF), and improve mitochondrial function by inhibiting ROS production and regulating mitochondrial dynamics in SHRs. JYTL treatment could also increase the expression of SIRT1, PGC-1α, Nrf1, and TFAM, and activate PINK1/Parkin-mediated mitophagy. Conclusion JYTL decoction may exert renal function protective and anti-fibrosis effects in HN by ameliorating mitochondrial function and regulating the SIRT1/PGC-1α-mitophagy pathway.
Collapse
Affiliation(s)
- Yun Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Han
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziming Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiping Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boya Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yubo Li
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianguo Qin
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Zhang B, Wang J, Zhang Y, Liu M, Zhang X. Individual and joint associations of exposure to per- and polyfluoroalkyl substances with children's mitochondrial DNA copy number, and modified by estimated glomerular filtration rate. ENVIRONMENTAL RESEARCH 2024; 266:120598. [PMID: 39667485 DOI: 10.1016/j.envres.2024.120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND The association between per- and polyfluoroalkyl substances (PFAS) and mitochondrial DNA copy number (mtDNAcn) in children, and the potential impact of estimated glomerular filtration rate (eGFR) on this association, remains unclear. METHODS We conducted a panel study with up to 3 surveys over 3 seasons in Weinan and Guangzhou, China. A total of 284 children aged 4-12 years were available, with 742 measurements of 11 PFAS and mtDNAcn. Linear mixed-effect (LME), quantile g-computation (qgcomp), weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were used to investigate the associations of individuals and a mixture of PFAS with mtDNAcn, and the modifying effect of eGFR on these associations. RESULTS Legacy PFAS, including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorooctane sulfonate (PFOS) and emerging PFAS, 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), were significantly associated with decreased mtDNAcn in a linear dose-response manner (FDR <0.05). The multiple PFAS model showed each doubling increase in PFOA related to a 6.36% (95%CI: -10.22%, -2.34%) decrement in mtDNAcn. Meanwhile, the PFAS mixture was dose-responsive related to decreased mtDNAcn, with PFOA being the largest contributor, followed by PFUnDA and PFNA. Notably, eGFR modified the inverse association between PFOA and mtDNAcn (P-int = 0.039), with a more pronounced decrement in children with an eGFR below the 20th value (101.71 mL/min/1.73m2). In addition, age significantly modified the relationship between PFOA and decreased mtDNAcn (P-int = 0.028), with a stronger association in those aged 7 years or older. CONCLUSION Both individual and the mixture of legacy and emerging PFAS exposure were associated with decreased mtDNAcn in children, with PFOA as the main contributor and modification of eGFR.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
de Quadros T, Jaramillo ML, Barreto C, da Rosa RD, de Melo MS, Nazari EM. Modulation of mitochondrial dynamics genes and mtDNA during embryonic development and under UVB exposure. Comp Biochem Physiol A Mol Integr Physiol 2024; 300:111790. [PMID: 39662740 DOI: 10.1016/j.cbpa.2024.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Studies using the embryos of the freshwater prawn Macrobrachium olfersii have reported changes in embryonic cells after exposure to ultraviolet B (UVB) radiation, such as DNA damage and apoptosis activation. Considering the importance of mitochondria in embryonic cells, this study aimed to characterize the aspects of mitochondrial morphofunctionality in M. olfersii embryos and mitochondrial responses to UVB radiation exposure. The coding sequences of genes Tfam, Nrf1, Mfn1, and Drp1 were identified from the transcriptome of M. olfersii embryos. The phylogenetic relationship showed strong amino acid identity and a highly conserved nature of the sequences. Additionally, the number of mitochondrial DNA (mtDNA) copies were higher in the early embryonic days. The results showed that the expression of the analyzed genes was highly regulated during embryonic development, increasing their levels near hatching. Furthermore, when embryos were exposed to UVB radiation, mitochondrial biogenesis was activated, recognized by higher levels of transcripts of genes Tfam and Nrf1, accompanied by mitochondrial fission. Additionally, these mitochondrial events were supported by an increase of mtDNA copies. Our results showed that UVB radiation was able to change the mitochondrial morphofunctionality, and under the current knowledge, certainly compromise embryonic cellular integrity. Additionally, mitochondria is an important cellular target of this radiation and its responses can be used to assess environmental stress caused by UVB radiation in embryos of aquatic species.
Collapse
Affiliation(s)
- Thaline de Quadros
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Michael Lorenz Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Cairé Barreto
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Rafael Diego da Rosa
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil.
| |
Collapse
|
11
|
Cappuccio E, Holzknecht M, Petit M, Heberle A, Rytchenko Y, Seretis A, Pierri CL, Gstach H, Jansen-Dürr P, Weiss AKH. FAHD1 and mitochondrial metabolism: a decade of pioneering discoveries. FEBS J 2024. [PMID: 39642098 DOI: 10.1111/febs.17345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
This review consolidates a decade of research on fumarylacetoacetate hydrolase domain containing protein 1 (FAHD1), a mitochondrial oxaloacetate tautomerase and decarboxylase with profound implications in cellular metabolism. Despite its critical role as a regulator in mitochondrial metabolism, FAHD1 has remained an often-overlooked enzyme in broader discussions of mitochondrial function. After more than 12 years of research, it is increasingly clear that FAHD1's contributions to cellular metabolism, oxidative stress regulation, and disease processes such as cancer and aging warrant recognition in both textbooks and comprehensive reviews. The review delves into the broader implications of FAHD1 in mitochondrial function, emphasizing its roles in mitigating reactive oxygen species (ROS) levels and regulating complex II activity, particularly in cancer cells. This enzyme's significance is further highlighted in the context of aging, where FAHD1's activity has been shown to influence cellular senescence, mitochondrial quality control, and the aging process. Moreover, FAHD1's involvement in glutamine metabolism and its impact on cancer cell proliferation, particularly in aggressive breast cancer subtypes, underscores its potential as a therapeutic target. In addition to providing a comprehensive account of FAHD1's biochemical properties and structural insights, the review integrates emerging hypotheses regarding its role in metabolic reprogramming, immune regulation, and mitochondrial dynamics. By establishing a detailed understanding of FAHD1's physiological roles and therapeutic potential, this work advocates for FAHD1's recognition in foundational texts and resources, marking a pivotal step in its integration into mainstream metabolic research and clinical applications in treating metabolic disorders, cancer, and age-related diseases.
Collapse
Affiliation(s)
- Elia Cappuccio
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Max Holzknecht
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Michèle Petit
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Anne Heberle
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Yana Rytchenko
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Athanasios Seretis
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Ciro L Pierri
- Department of Pharmacy-Pharmaceutical Sciences, Università di Bari, Italy
| | - Hubert Gstach
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Austria
| | - Pidder Jansen-Dürr
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Alexander K H Weiss
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| |
Collapse
|
12
|
Aschner M, Skalny AV, Lu R, Martins AC, Tizabi Y, Nekhoroshev SV, Santamaria A, Sinitskiy AI, Tinkov AA. Mitochondrial pathways of copper neurotoxicity: focus on mitochondrial dynamics and mitophagy. Front Mol Neurosci 2024; 17:1504802. [PMID: 39703721 PMCID: PMC11655512 DOI: 10.3389/fnmol.2024.1504802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable. Therefore, the objective of the present narrative review was to discuss the role of mitochondrial dysfunction in Cu-induced neurotoxicity with special emphasis on its influence on brain mitochondrial fusion and fission, as well as mitochondrial clearance by mitophagy. Existing data demonstrate that, in addition to mitochondrial electron transport chain inhibition, membrane damage, and mitochondrial reactive oxygen species (ROS) overproduction, Cu overexposure inhibits mitochondrial fusion by down-regulation of Opa1, Mfn1, and Mfn2 expression, while promoting mitochondrial fission through up-regulation of Drp1. It has been also demonstrated that Cu exposure induces PINK1/Parkin-dependent mitophagy in brain cells, that is considered a compensatory response to Cu-induced mitochondrial dysfunction. However, long-term high-dose Cu exposure impairs mitophagy, resulting in accumulation of dysfunctional mitochondria. Cu-induced inhibition of mitochondrial biogenesis due to down-regulation of PGC-1α further aggravates mitochondrial dysfunction in brain. Studies from non-brain cells corroborate these findings, also offering additional evidence that dysregulation of mitochondrial dynamics and mitophagy may be involved in Cu-induced damage in brain. Finally, Cu exposure induces cuproptosis in brain cells due mitochondrial proteotoxic stress, that may also contribute to neuronal damage and pathogenesis of certain brain diseases. Based on these findings, it is assumed that development of mitoprotective agents, specifically targeting mechanisms of mitochondrial quality control, would be useful for prevention of neurotoxic effects of Cu overload.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anatoly V. Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sergey V. Nekhoroshev
- Problem Research Laboratory, Khanty-Mansiysk State Medical Academy, Khanty-Mansiysk, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Anton I. Sinitskiy
- Department of Biochemistry, South Ural State Medical University, Chelyabinsk, Russia
| | - Alexey A. Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
13
|
Zhuang Y, Jiang W, Zhao Z, Li W, Deng Z, Liu J. Ion channel-mediated mitochondrial volume regulation and its relationship with mitochondrial dynamics. Channels (Austin) 2024; 18:2335467. [PMID: 38546173 PMCID: PMC10984129 DOI: 10.1080/19336950.2024.2335467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
The mitochondrion, one of the important cellular organelles, has the major function of generating adenosine triphosphate and plays an important role in maintaining cellular homeostasis, governing signal transduction, regulating membrane potential, controlling programmed cell death and modulating cell proliferation. The dynamic balance of mitochondrial volume is an important factor required for maintaining the structural integrity of the organelle and exerting corresponding functions. Changes in the mitochondrial volume are closely reflected in a series of biological functions and pathological changes. The mitochondrial volume is controlled by the osmotic balance between the cytoplasm and the mitochondrial matrix. Thus, any disruption in the influx of the main ion, potassium, into the cells can disturb the osmotic balance between the cytoplasm and the matrix, leading to water movement between these compartments and subsequent alterations in mitochondrial volume. Recent studies have shown that mitochondrial volume homeostasis is closely implicated in a variety of diseases. In this review, we provide an overview of the main influencing factors and research progress in the field of mitochondrial volume homeostasis.
Collapse
Affiliation(s)
- Yujia Zhuang
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
- Clinical College of Shantou University Medical College, Shantou, China
| | - Wenting Jiang
- Operating room, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
He J, Qin W, Zhang Y, Yan J, Han X, Gao J, Li Q, Jiao K. Upregulated Mitochondrial Dynamics Is Responsible for the Procatabolic Changes of Chondrocyte Induced by α2-Adrenergic Signal Activation. Cartilage 2024; 15:440-452. [PMID: 37646151 PMCID: PMC11520003 DOI: 10.1177/19476035231189841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE Activation of sympathetic tone is important for cartilage degradation in osteoarthritis (OA). Recent studies reported that sympathetic signals can affect the mitochondrial function of target cells. It is unknown whether this effect exits in chondrocytes and affects chondrocyte catabolism. The contribution of mitochondrial dynamics in the activation of α2-adrenergic signal-mediated chondrocyte catabolism was investigated in this study. DESIGN Primary chondrocytes were stimulated with norepinephrine (NE) alone, or pretreated with an α2-adrenergic receptor (Adra2) antagonist (yohimbine) and followed by stimulation with NE. Changes in chondrocyte metabolism and their mitochondrial dynamics were investigated. RESULTS We demonstrated that NE stimulation induced increased gene and protein expressions of matrix metalloproteinase-3 and decreased level of aggrecan by chondrocytes. This was accompanied by upregulated mitochondriogenesis and the number of mitochondria, when compared with the vehicle-treated controls. Mitochondrial fusion and fission, and mitophagy also increased significantly in response to NE stimulation. Inhibition of Adra2 attenuated chondrocyte catabolism and mitochondrial dynamics induced by NE. CONCLUSIONS The present findings indicate that upregulation of mitochondrial dynamics through mitochondriogenesis, fusion, fission, and mitophagy is responsible for activation of α2-adrenergic signal-mediated chondrocyte catabolism. The hypothesis that "α2-adrenergic signal activation promotes cartilage degeneration in temporomandibular joint osteoarthritis (TMJ-OA) by upregulating mitochondrial dynamics in chondrocytes" is validated. This represents a new regulatory mechanism in the chondrocytes of TMJ-OA that inhibits abnormal activation of mitochondrial fusion and fission is a potential regulator for improving mitochondrial function and inhibiting chondrocyte injury and contrives a potentially innovative therapeutic direction for the prevention of TMJ-OA.
Collapse
Affiliation(s)
- Jiaying He
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yusong Zhang
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Qihong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
15
|
Mesquita PHC, Rhodes EM, Yap KN, Mueller BJ, Hill GE, Hood WR, Kavazis AN. Mitochondrial remodelling supports migration in white-crowned sparrows ( Zonotrichia leucophrys). Proc Biol Sci 2024; 291:20242409. [PMID: 39657813 PMCID: PMC11631445 DOI: 10.1098/rspb.2024.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
The migratory movements undertaken by birds are among the most energetically demanding behaviours observed in nature. Mitochondria are the source of aerobic energy production on which migration depends, but a key component of mitochondrial function, mitochondrial remodelling, has not been investigated in the context of bird migration. We measured markers of mitochondrial remodelling in the skeletal muscles of the Gambel's (migratory) and Nuttall's (non-migratory) white-crowned sparrows within and outside migratory periods. Gambel's were collected in (i) a non-migration period (baseline), (ii) preparation to depart for spring migration (pre-migration) and (iii) active autumn migration (mid-migration). Nuttall's were collected at timepoints corresponding to baseline and mid-migration in Gambel's. Across all sampling periods, we found that migratory birds had greater mitochondrial remodelling compared with non-migratory birds. Furthermore, birds from the migratory population also displayed flexibility, increasing several markers of mitochondrial remodelling (e.g. NRF1, OPA1 and Drp1) pre- and during migration. Further, the greater levels of mitochondrial remodelling and its upregulation during migration were specific to the pectoralis muscle used in flapping flight. Our study is the first to show that mitochondrial remodelling supports migration in Gambel's white-crowned sparrows, indicating a highly specific and efficient phenotype supporting the increased energetic demands of migration.
Collapse
Affiliation(s)
- Paulo H. C. Mesquita
- School of Kinesiology, Auburn University, Auburn, AL36849, USA
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Emma M. Rhodes
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim7491, Norway
| | | | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
| | - Wendy R. Hood
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
| | | |
Collapse
|
16
|
Bhardwaj V, Kumari S, Dhapola R, Sharma P, Beura SK, Singh SK, Vellingiri B, HariKrishnaReddy D. Shedding light on microglial dysregulation in Alzheimer's disease: exploring molecular mechanisms and therapeutic avenues. Inflammopharmacology 2024:10.1007/s10787-024-01598-6. [PMID: 39609333 DOI: 10.1007/s10787-024-01598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/26/2024] [Indexed: 11/30/2024]
Abstract
Alzheimer's disease (AD) stands out as the foremost prevalent neurodegenerative disorder, characterized by a complex etiology. Various mechanisms have been proposed to elucidate its onset, encompassing amyloid-beta (Aβ) toxicity, tau hyperphosphorylation, oxidative stress and reactive gliosis. The hallmark of AD comprises Aβ and tau aggregation. These misfolded protein aggregates trigger the activation of glial cells, primarily microglia. Microglial cells serve as a major source of inflammatory mediators and their cytotoxic activation has been implicated in various aspects of AD pathology. Activated microglia can adopt M1 or M2 phenotypes, where M1 promotes inflammation by increasing pro-inflammatory cytokines and M2 suppresses inflammation by boosting anti-inflammatory factors. Overexpressed pro-inflammatory cytokines include interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in adjacent brain regions. Furthermore, microglial signaling pathways dysregulated in AD are myeloid differentiation primary-response protein 88 (Myd 88), colony-stimulating factor-1 receptor (CSF1R) and dedicator of cytokinesis 2 (DOCK2), which alter the physiology. Despite numerous findings, the causative role of microglia-mediated neuroinflammation in AD remains elusive. This review concisely explores cellular and molecular mechanisms of activated microglia and their correlation with AD pathogenesis. Additionally, it highlights promising therapeutics targeting microglia modulation, currently undergoing preclinical and clinical studies, for developing effective treatment for AD.
Collapse
Affiliation(s)
- Vanshu Bhardwaj
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sunil Kumar Singh
- Department of Bio-Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
17
|
Labat-de-Hoz L, Jiménez MÁ, Correas I, Alonso MA. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. Cell Mol Life Sci 2024; 81:463. [PMID: 39586895 PMCID: PMC11589041 DOI: 10.1007/s00018-024-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain. INF2 activation can occur through calmodulin binding, KAc-actin deacetylation, G-actin binding, or association with the Cdc42 GTPase. Mutations in the INF2 DID are linked to focal segmental glomerulosclerosis (FSGS), affecting podocytes, and Charcot-Marie-Tooth disease, which affects Schwann cells and leads to axonal loss. At least 80 pathogenic DID variants of INF2 have been identified, with potential for many more. These mutations disrupt INF2 regulation, leading to excessive actin polymerization. This in turn causes altered intracellular trafficking, abnormal mitochondrial dynamics, and profound transcriptional reprogramming via the MRTF/SRF complex, resulting in mitotic abnormalities and p53-mediated cell death. This sequence of events could be responsible for progressive podocyte loss during glomerular degeneration in FSGS patients. Pharmacological targeting of INF2 or actin polymerization could offer the therapeutic potential to halt the progression of FSGS and improve outcomes for patients with INF2-linked disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física (IQF) Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
18
|
Feng R, Liu J, Yao T, Yang Z, Jiang H. Neurotoxicity of Realgar: Crosstalk Between UBXD8-DRP1-Regulated Mitochondrial Fission and PINK1-Parkin-Mediated Mitophagy. Mol Neurobiol 2024:10.1007/s12035-024-04635-1. [PMID: 39570499 DOI: 10.1007/s12035-024-04635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Realgar is a toxic mineral medicine containing arsenic that is present in many traditional Chinese medicines. It has been reported that the abuse of drugs containing realgar has potential neurotoxicity, but its mechanism of toxicity has not been fully clarified. In this study, we demonstrated that arsenic in realgar promoted mitochondrial fission via UBXD8-mediated DRP1 translocation to the mitochondria and activated mitophagy via PINK1-Parkin, resulting in mitochondrial dysfunction and nerve cell death in the rat cortex. We used PC12 cells and treated them with inorganic arsenic (iAs). Mdivi-1, a mitochondrial fission inhibitor, and the siRNA UBXD8 or PINK1 were used as interventions to verify the precise mechanism by which arsenic affects realgar-induced mitochondrial instability. The results revealed that the arsenic in realgar accumulated in the brain and led to neurobehavioral abnormalities in the rats. We demonstrated that arsenic in realgar-induced high expression of UBXD8 promoted the translocation of DRP1 to the mitochondria, where it underwent phosphorylation, which led to the over-fission of the mitochondria and mitochondria-mediated apoptosis. Moreover, the over-fission of the mitochondria activates mitophagy, which is self-protective but only partially alleviates apoptosis and mitochondria dysfunction. Our findings revealed the crosstalk between mitochondrial fission and mitophagy in realgar-induced neurotoxicity. These results highlight the role of the transposition of DRP1 by UBXD8 in realgar-induced mitochondrial dysfunction and provide new ideas and data for the study of the mechanism of realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Rui Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Tiantian Yao
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Zhao Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China.
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China.
| |
Collapse
|
19
|
Zou H, Song J, Luo X, Ali W, Li S, Xiong L, Chen Y, Yuan Y, Ma Y, Tong X, Liu Z. Cadmium and polyvinyl chloride microplastics induce mitochondrial damage and apoptosis under oxidative stress in duck kidney. Poult Sci 2024; 104:104490. [PMID: 39571196 PMCID: PMC11617461 DOI: 10.1016/j.psj.2024.104490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024] Open
Abstract
Polyvinyl chloride microplastics (PVC-MPs) and Cadmium (Cd) are widely occurring water pollutants that interact with each other to exert toxic effects. As a waterfowl, Muscovy duck is more susceptible to PVC-MPs and Cd than land poultry. In this study, Muscovy duck was used as a research model, and 10 mg/L PVC-MPs and 50 mg/kg Cd were used alone and in combine to explore the effect on the kidney of Muscovy duck. We found that treatment of Cd or PVC-MPs alone changed the kidney weight, increased creatinine and urea nitrogen content, and disrupted oxidative balance and macro/trace element metabolism, while the combination of PVC-MPs+Cd reduced the accumulation of Cd in the kidney. In addition, treatment of Cd and PVC-MPs alone caused mitochondrial damage, increase or decrease of mitochondria-associated proteins (Fis1, Drp1, PGC-1α, Nrf1), and Nrf2 signaling pathway plays a key role in detoxification and alleviation of oxidative stress, and we found that PVC-MPs+Cd treatment recovered related proteins (Nrf2, Keap-1, HO-1, NQO1, AC-SOD2, SOD2) compared with the Cd and PVC-MPs alone treatment. Finally, we detected changes in apoptosis-related proteins and genes (Caspase-3, Caspase-9, Bax, Bcl-2, Cytc) and TUNEL staining, and after PVC-MPs+Cd treatment, apoptosis-related proteins/genes recovered and the apoptosis rate decreased compared with the Cd and PVC-MPs alone treatment. These results indicate that renal function is impaired, oxidative stress and trace element metabolism disorder, nuclear factor-E2 related factor 2 (Nrf2) is activated into the nucleus to induce the expression of related antioxidant proteins (such as HO-1, NQO1). These injuries can induce mitochondrial damage and eventually lead to renal cell apoptosis. To sum up, these evidence show that Cd or PVC-MPs can induce kidney oxidative damage, trace element metabolism disorder, mitochondrial damage and apoptosis.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| | - Jie Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Xianzu Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Sifan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Ling Xiong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Xishuai Tong
- Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
20
|
Minarrieta L, Annis MG, Audet-Delage Y, Kuasne H, Pacis A, St-Louis C, Nowakowski A, Biondini M, Khacho M, Park M, Siegel PM, St-Pierre J. Mitochondrial elongation impairs breast cancer metastasis. SCIENCE ADVANCES 2024; 10:eadm8212. [PMID: 39504368 PMCID: PMC11540020 DOI: 10.1126/sciadv.adm8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
Mitochondrial dynamics orchestrate many essential cellular functions, including metabolism, which is instrumental in promoting cancer growth and metastatic progression. However, how mitochondrial dynamics influences metastatic progression remains poorly understood. Here, we show that breast cancer cells with low metastatic potential exhibit a more fused mitochondrial network compared to highly metastatic cells. To study the impact of mitochondrial dynamics on metastasis, we promoted mitochondrial elongation in metastatic breast cancer cells by individual genetic deletion of three key regulators of mitochondrial fission (Drp1, Fis1, Mff) or by pharmacological intervention with leflunomide. Omics analyses revealed that mitochondrial elongation causes substantial alterations in metabolic pathways and processes related to cell adhesion. In vivo, enhanced mitochondrial elongation by loss of mitochondrial fission mediators or treatment with leflunomide notably reduced metastasis formation. Furthermore, the transcriptomic signature associated with elongated mitochondria correlated with improved clinical outcome in patients with breast cancer. Overall, our findings highlight mitochondrial dynamics as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Lucía Minarrieta
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew G. Annis
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Yannick Audet-Delage
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hellen Kuasne
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Alain Pacis
- McGill Genome Centre, Montréal, QC, Canada
- Canadian Centre for Computational Genomics (C3G), McGill University, Montréal, QC, Canada
| | - Catherine St-Louis
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alexander Nowakowski
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Marco Biondini
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Mireille Khacho
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Morag Park
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| | - Peter M. Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Julie St-Pierre
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Zhu X, Wu J, Chen X, Shi D, Hui P, Wang H, Wu Z, Wu S, Bao W, Fan H. DNA ligase III mediates deoxynivalenol exposure-induced DNA damage in intestinal epithelial cells by regulating oxidative stress and interaction with PCNA. Int J Biol Macromol 2024; 282:137137. [PMID: 39505167 DOI: 10.1016/j.ijbiomac.2024.137137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Deoxynivalenol (DON) is a widely distributed mycotoxin that is severely cytotoxic and genotoxic to animals and humans. The gut is the initial site of DON exposure and absorption, which can cause severe intestinal damage. However, the underlying mechanisms and effective therapeutic approaches remain unknown. Here, the study indicated that DON exposure caused significant DNA damage in intestinal porcine epithelial cells (IPEC-J2), enhanced significantly the expression of γ-H2AX and 8-hydroxy-2'-deoxyguanosine, and altered the mRNA expression of key genes in the DNA repair pathway. Among them, ligases3 (LIG3) is the key DNA damage/repair gene and the only ligase responsible for the replication and maintenance of mitochondrial DNA. The expression of LIG3 was significantly decreased after DON exposure and showed a dose-dependent effect, decreased expression of LIG3 exacerbates DON-induced cytotoxicity and genotoxicity, decreased cell viability, induced apoptosis and cell cycle arrest, activation of inflammatory factors and MAPK pathway. Furthermore, LIG3 directly binds and regulates PCNA and play a positive regulatory role in the cellular cytotoxicity and genotoxicity upon DON exposure. Collectively, the findings elucidate the regulatory function of LIG3 in DON-induced DNA damage, providing valuable insights into identifying molecular targets for the comprehensive prevention and control of DON contamination.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiayun Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Xiaolei Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dongfeng Shi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Peng Hui
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint international Research Laboratory of Agriculture & Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint international Research Laboratory of Agriculture & Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint international Research Laboratory of Agriculture & Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
22
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
23
|
Yu F, Shi X, Li K, Yin Y, Xu S. Naringenin counteracts LPS-induced inflammation and immune deficits in chicken thymus by alleviating mtROS/ferroptosis levels. Poult Sci 2024; 103:104179. [PMID: 39154609 PMCID: PMC11381744 DOI: 10.1016/j.psj.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
Naringenin is a flavonoid with significant anti-inflammatory and antioxidant properties. Mitochondrial dynamics, the mitochondrial respiratory chain, and mtROS are closely related to each other and regulate various biological processes. Ferroptosis is closely related to inflammatory responses and immune function in multiple tissues and organs. However, whether naringenin can alleviate LPS-induced inflammation and immune disorders in the chicken thymus via mtROS/ferroptosis has not been reported. Therefore, in this study, we constructed chicken thymus and MSB-1 cell models of LPS and naringenin based on screening for naringenin concentrations that have positive effects on inflammation and immune function to further investigate the anti-inflammatory, antiferroptosis, and maintenance of the immune function of naringenin. The results showed that 40 mg/kg naringenin alleviated LPS-induced tissue damage, elevated serum inflammatory factors, and decreased serum immune factors. The mechanism by which naringenin attenuates mtROS release by alleviating the imbalance of mitochondrial dynamics and the blockage of the respiratory chain. The effect of naringenin on alleviating LPS-induced lipid peroxidation, disruption of the GSH/GSSG system, iron overload, and GPx4 inactivation, thereby attenuating ferroptosis in thymus tissue, was inhibited by the addition of mtROS activators. In conclusion, naringenin alleviates LPS-induced ferroptosis in chicken thymus by attenuating mtROS release.
Collapse
Affiliation(s)
- Fei Yu
- College of Veterinary Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xu Shi
- College of Veterinary Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ke Li
- College of Veterinary Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilin Yin
- College of Veterinary Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Laboratory of Embryo Biotechnology, College of Life Science, Department of Biotechnology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
24
|
Guo P, Wang Z, Sun L, He Z, Li J, Geng J, Zong Y, Chen W, Du R. 20 (S)-Protopanaxadiol Alleviates DRP1-Mediated Mitochondrial Dysfunction in a Depressive Model In Vitro and In Vivo via the SIRT1/PGC-1α Signaling Pathway. Molecules 2024; 29:5085. [PMID: 39519726 PMCID: PMC11547436 DOI: 10.3390/molecules29215085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Depression is a complex and common mental illness affecting physical and psychological health. Panax ginseng C. A. Mey is a traditional Chinese medicine with abundant pharmacological activity and applications in regulating mood disorders. 20 (S)-Protopanaxadiol is the major intestinal metabolite of ginsenoside and one of the active components in ginseng. In this study, we aimed to investigate the therapeutic effects of 20 (S)-Protopanaxadiol on neuronal damage and depression, which may involve mitochondrial dynamics. However, the mechanism underlying the antidepressant effects of 20 (S)-Protopanaxadiol is unelucidated. In the present study, we investigated the potential mechanisms underlying the antidepressant activity of 20 (S)-Protopanaxadiol by employing a corticosterone-induced HT22 cellular model and a chronic unpredicted mild stress (CUMS)-induced animal model in combination with a network pharmacology approach. In vitro, the results showed that 20 (S)-Protopanaxadiol ameliorated the corticosterone (CORT)-induced decrease in HT22 cell viability, decrease in 5-hydroxytryptamine (5-HT) levels, and increase in nitric oxide (NO) and malondialdehyde (MDA) levels. Furthermore, 20 (S)-Protopanaxadiol exerted improvement effects on the CORT-induced increase in HT22 cell mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and apoptosis. In vivo, the results showed that 20 (S)-Protopanaxadiol ameliorated depressive symptoms and hippocampal neuronal damage in CUMS mice, and sirtuin1 (SIRT1) and peroxisome proliferator-activated receptor-1-Alpha (PGC-1α) activity were activated in the hippocampus of mice, thereby alleviating mitochondrial dysfunction and promoting the clearance of damaged mitochondria. In both in vivo and in vitro models, after inhibiting SIRT1 expression, the protective effect of 20 (S)-Protopanaxadiol on mitochondria was significantly weakened, and dynamin-related protein 1 (DRP1)-mediated mitochondrial division was significantly reduced. These findings suggest that 20 (S)-Protopanaxadiol may exert neuroprotective and antidepressant effects by attenuating DRP1-mediated mitochondrial dysfunction and apoptosis by modulating the SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Pengli Guo
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
| | - Zixian Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
| | - Li Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| |
Collapse
|
25
|
Zhao M, Wang J, Zhu S, Wang M, Chen C, Wang L, Liu J. Mitochondrion-based organellar therapies for central nervous system diseases. Cell Commun Signal 2024; 22:487. [PMID: 39390521 PMCID: PMC11468137 DOI: 10.1186/s12964-024-01843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
As most traditional drugs used to treat central nervous system (CNS) diseases have a single therapeutic target, many of them cannot treat complex diseases or diseases whose mechanism is unknown and cannot effectively reverse the root changes underlying CNS diseases. This raises the question of whether multiple functional components are involved in the complex pathological processes of CNS diseases. Organelles are the core functional units of cells, and the replacement of damaged organelles with healthy organelles allows the multitargeted and integrated modulation of cellular functions. The development of therapies that target independent functional units in the cell, specifically, organelle-based therapies, is rapidly progressing. This article comprehensively discusses the pathogenesis of mitochondrial homeostasis disorders, which involve mitochondria, one of the most important organelles in CNS diseases, and the machanisms of mitochondrion-based therapies, as well as current preclinical and clinical studies on the efficacy of therapies targeting mitochondrial to treat CNS diseases, to provide evidence for use of organelle-based treatment strategies in the future.
Collapse
Affiliation(s)
- Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Shuaiyu Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Chong Chen
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| |
Collapse
|
26
|
Tseng WW, Chu CH, Lee YJ, Zhao S, Chang C, Ho YP, Wei AC. Metabolic regulation of mitochondrial morphologies in pancreatic beta cells: coupling of bioenergetics and mitochondrial dynamics. Commun Biol 2024; 7:1267. [PMID: 39369076 PMCID: PMC11455970 DOI: 10.1038/s42003-024-06955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Cellular bioenergetics and mitochondrial dynamics are crucial for the secretion of insulin by pancreatic beta cells in response to elevated levels of blood glucose. To elucidate the interactions between energy production and mitochondrial fission/fusion dynamics, we combine live-cell mitochondria imaging with biophysical-based modeling and graph-based network analysis. The aim is to determine the mechanism that regulates mitochondrial morphology and balances metabolic demands in pancreatic beta cells. A minimalistic differential equation-based model for beta cells is constructed that includes glycolysis, oxidative phosphorylation, calcium dynamics, and fission/fusion dynamics, with ATP synthase flux and proton leak flux as main regulators of mitochondrial dynamics. The model shows that mitochondrial fission occurs in response to hyperglycemia, starvation, ATP synthase inhibition, uncoupling, and diabetic conditions, in which the rate of proton leakage exceeds the rate of mitochondrial ATP synthesis. Under these metabolic challenges, the propensities of tip-to-tip fusion events simulated from the microscopy images of the mitochondrial networks are lower than those in the control group and prevent the formation of mitochondrial networks. The study provides a quantitative framework that couples bioenergetic regulation with mitochondrial dynamics, offering insights into how mitochondria adapt to metabolic challenges.
Collapse
Affiliation(s)
- Wen-Wei Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsiang Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - Chen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Boopathy S, Luce BE, Lugo CM, Hakim P, McDonald J, Kim HL, Ponce J, Ueberheide BM, Chao LH. Identification of SLC25A46 interaction interfaces with mitochondrial membrane fusogens Opa1 and Mfn2. J Biol Chem 2024; 300:107740. [PMID: 39222684 PMCID: PMC11459905 DOI: 10.1016/j.jbc.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier family 25 member (SLC25A46) interacts with both the outer and inner membrane dynamin family GTPases mitofusin 1/2 and optic atrophy 1 (Opa1). While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with mitofusin 1/2 and Opa1 to regulate membrane fusion is not understood. In this study, we use crosslinking mass spectrometry and AlphaFold 2 modeling to identify interfaces mediating an SLC25A46 interaction with Opa1 and Mfn2. We reveal that the bundle signaling element of Opa1 interacts with SLC25A46, and present evidence of an Mfn2 interaction involving the SLC25A46 cytosolic face. We validate these newly identified interaction interfaces and show that they play a role in mitochondrial network maintenance.
Collapse
Affiliation(s)
- Sivakumar Boopathy
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston Massachusetts, USA
| | - Bridget E Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Camila Makhlouta Lugo
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Julie McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Ha Lin Kim
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Jackeline Ponce
- Proteomics Resource Center, Division of Advanced Research Technologies, New York University Langone Health Center, New York New York, USA
| | - Beatrix M Ueberheide
- Proteomics Resource Center, Division of Advanced Research Technologies, New York University Langone Health Center, New York New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone Health Center, New York New York, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston Massachusetts, USA.
| |
Collapse
|
28
|
Wang Y, Li YJ, Li CC, Pu L, Geng WL, Gao F, Zhang Q. GRP78 mediates mitochondrial fusion and fission in cigarette smoke-induced inflammatory responses in airway epithelial cells. Inhal Toxicol 2024; 36:511-520. [PMID: 39565149 DOI: 10.1080/08958378.2024.2428163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is characterized by persistent airway inflammation, with cigarette smoke being a major contributor to epithelial injury. Recent studies have shown that abnormal mitochondrial function is closely linked to the onset and progression of airway inflammation. This study aims to explore the role and underlying molecular mechanisms of mitochondrial dynamics in cigarette smoke-induced airway inflammation. MATERIALS AND METHODS Human bronchial epithelial (HBE) cells were exposed to cigarette smoke extract (CSE) to assess the expression of mitochondrial fusion markers MFN2 and OPA1, the fission marker DRP1, and the glucose-regulated protein GRP78. The siRNA and pharmaceutics targeting DRP1, MFN2, and GRP78 were employed. Both cells and supernatants were analyzed for inflammatory factor levels and the related signaling pathways. RESULTS In this study, HBE cells exposed to CSE showed a significant decrease in the proteins MFN2 and OPA1 and an increase in DRP1. The inhibition of DRP1 expression mitigated inflammation while silencing MFN2 exacerbated it. This was similarly corroborated by the use of the DRP1 inhibitor mdivi-1 and the MFN2 activator leflunomide. Additionally, we proved that GRP78 played an important regulatory role as an essential endoplasmic reticulum protein, regulating the mitochondrial fusion/fission process and subsequently activating the NF-κB pathway to regulate airway inflammation. DISCUSSION AND CONCLUSION Taken together, these results suggested that the GRP78-mediated mitochondrial fusion and fission process played a vital role in cigarette smoke-induced airway inflammation and might be a potential therapeutic target in this regard.
Collapse
Affiliation(s)
- Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ya-Jing Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chen-Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Pu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wan-Li Geng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qing Zhang
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
29
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
30
|
Brueck L, Roocke S, Matschke V, Richter-Unruh A, Marcus-Alic K, Theiss C, Stahlke S. FGF23 and Cell Stress in SaOS-2 Cells-A Model Reflecting X-Linked Hypophosphatemia Dynamics. Cells 2024; 13:1515. [PMID: 39329699 PMCID: PMC11430666 DOI: 10.3390/cells13181515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Our study investigates the impact of FGF23 overexpression on SaOS-2 cells to elucidate its role in cellular stress and morphology, contributing to the understanding of skeletal pathologies like X-linked hypophosphatemia (XLH). Using transmission electron microscopy and protein analysis (Western blot), we analyzed the rough endoplasmic reticulum (rER) and mitochondria in SaOS-2 cells with FGF23 overexpression compared to controls. We found significant morphological changes, including enlarged and elongated rER and mitochondria, with increased contact zones, suggesting enhanced interaction and adaptation to elevated protein synthesis and secretion demands. Additionally, we observed higher apoptosis rates of the cells after 24-72 h in vitro and upregulated proteins associated with ER stress and apoptosis, such as CHOP, XBP1 (spliced and unspliced), GRP94, eIF2α, and BAX. These findings indicate a robust activation of the unfolded protein response (UPR) and apoptotic pathways due to FGF23 overexpression. Our results highlight the critical role of ER and mitochondrial interactions in cellular stress responses and provide new insights into the mechanistic link between FGF23 signaling and cellular homeostasis. In conclusion, our study underscores the importance of analyzing UPR-related pathways in the development of therapeutic strategies for skeletal and systemic diseases and contributes to a broader understanding of diseases like XLH.
Collapse
Affiliation(s)
- Lisanne Brueck
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Sascha Roocke
- The Medical Proteome Center, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Annette Richter-Unruh
- Clinic for Children and Adolescents, Pediatric Endocrinology, St. Josefs-Hospital, D-44791 Bochum, Germany
| | - Katrin Marcus-Alic
- The Medical Proteome Center, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| |
Collapse
|
31
|
Cheng Y, Zhu L, Xie S, Lu B, Du X, Ding G, Wang Y, Ma L, Li Q. Relationship between ferroptosis and mitophagy in acute lung injury: a mini-review. PeerJ 2024; 12:e18062. [PMID: 39282121 PMCID: PMC11397134 DOI: 10.7717/peerj.18062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Acute lung injury (ALI) is one of the most deadly and prevalent diseases in the intensive care unit. Ferroptosis and mitophagy are pathological mechanisms of ALI. Ferroptosis aggravates ALI, whereas mitophagy regulates ALI. Ferroptosis and mitophagy are both closely related to reactive oxygen species (ROS). Mitophagy can regulate ferroptosis, but the specific relationship between ferroptosis and mitophagy is still unclear. This study summarizes previous research findings on ferroptosis and mitophagy, revealing their involvement in ALI. Examining the functions of mTOR and NLPR3 helps clarify the connection between ferroptosis and mitophagy in ALI, with the goal of establishing a theoretical foundation for potential therapeutic approaches in the future management of ALI.
Collapse
Affiliation(s)
- Yunhua Cheng
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Liling Zhu
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, Hunan Province, China
| | - Shuangxiong Xie
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Binyuan Lu
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Xiaoyu Du
- Medical College of Northwest Minzu University, Northwest Minzu University, Lanzhou, Gansu Province, China
| | - Guanjiang Ding
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Yan Wang
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Linchong Ma
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Qingxin Li
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| |
Collapse
|
32
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
33
|
Thapak P, Gomez-Pinilla F. The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function. Pharmacol Res 2024; 208:107389. [PMID: 39243913 DOI: 10.1016/j.phrs.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Sinha JK, Jorwal K, Singh KK, Han SS, Bhaskar R, Ghosh S. The Potential of Mitochondrial Therapeutics in the Treatment of Oxidative Stress and Inflammation in Aging. Mol Neurobiol 2024:10.1007/s12035-024-04474-0. [PMID: 39230868 DOI: 10.1007/s12035-024-04474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Mitochondria are central to cellular energy production, and their dysfunction is a major contributor to oxidative stress and chronic inflammation, pivotal factors in aging, and related diseases. With aging, mitochondrial efficiency declines, leading to an increase in ROS and persistent inflammatory responses. Therapeutic interventions targeting mitochondrial health show promise in mitigating these detrimental effects. Antioxidants such as MitoQ and MitoVitE, and supplements like coenzyme Q10 and NAD + precursors, have demonstrated potential in reducing oxidative stress. Additionally, gene therapy aimed at enhancing mitochondrial function, alongside lifestyle modifications such as regular exercise and caloric restriction can ameliorate age-related mitochondrial decline. Exercise not only boosts mitochondrial biogenesis but also improves mitophagy. Enhancing mitophagy is a key strategy to prevent the accumulation of dysfunctional mitochondria, which is crucial for cellular homeostasis and longevity. Pharmacological agents like sulforaphane, SS-31, and resveratrol indirectly promote mitochondrial biogenesis and improve cellular resistance to oxidative damage. The exploration of mitochondrial therapeutics, including emerging techniques like mitochondrial transplantation, offers significant avenues for extending health span and combating age-related diseases. However, translating these findings into clinical practice requires overcoming challenges in precisely targeting dysfunctional mitochondria and optimizing delivery mechanisms for therapeutic agents. Continued research is essential to refine these approaches and fully understand the interplay between mitochondrial dynamics and aging.
Collapse
Affiliation(s)
| | - Khanak Jorwal
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Pune, Maharashtra, 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
35
|
Kadier T, Zhang YG, Jing YX, Weng ZY, Liao SS, Luo J, Ding K, Cao C, Chen R, Meng QT. MCU inhibition protects against intestinal ischemia‒reperfusion by inhibiting Drp1-dependent mitochondrial fission. Free Radic Biol Med 2024; 221:111-124. [PMID: 38763207 DOI: 10.1016/j.freeradbiomed.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.
Collapse
Affiliation(s)
- Tulanisa Kadier
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Guo Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Xin Jing
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Yi Weng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shi-Shi Liao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Cao
- Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
36
|
Lv W, Tu Y, Xu T, Zhang Y, Chen J, Yang N, Wang Y. The Mitochondrial Distribution and Morphology Family 33 Gene FgMDM33 Is Involved in Autophagy and Pathogenesis in Fusarium graminearum. J Fungi (Basel) 2024; 10:579. [PMID: 39194905 DOI: 10.3390/jof10080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The mitochondrial distribution and morphology family 33 gene (MDM33) regulates mitochondrial homeostasis by mediating the mitochondrial fission process in yeast. The wheat head blight Fusarium graminearum contains an FgMdm33 protein that is orthologous to Saccharomyces cerevisiae Mdm33, albeit its function remains unknown. We have reported here the roles of FgMdm33 in regulating fungal morphogenesis, mitochondrial morphology, autophagy, apoptosis, and fungal pathogenicity. The ΔFgmdm33 mutants generated through a homologous recombination strategy in this study exhibited defects in terms of mycelial growth, conidia production, and virulence. Hyphal cells lacking FgMDM33 displayed elongated mitochondria and a dispensable respiratory-deficient growth phenotype, indicating the possible involvement of FgMDM33 in mitochondrial fission. The ΔFgmdm33 mutants displayed a remarkable reduction in the proteolysis of GFP-FgAtg8, whereas the formation of autophagic bodies in the hyphal cells of mutants was recorded under the induction of mitophagy. In addition, the transcriptional expression of the apoptosis-inducing factor 1 gene (FgAIF1) was significantly upregulated in the ΔFgmdm33 mutants. Cumulatively, these results indicate that FgMDM33 is involved in mitochondrial fission, non-selective macroautophagy, and apoptosis and that it regulates fungal growth, conidiation, and pathogenicity of the head blight pathogen.
Collapse
Affiliation(s)
- Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Ting Xu
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - You Zhang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junjie Chen
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Nan Yang
- The People's Government Office of Bengbu City, Bengbu 233000, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
37
|
Yin H, Liu Y, Dong Q, Wang H, Yan Y, Wang X, Wan X, Yuan G, Pan Y. The mechanism of extracellular CypB promotes glioblastoma adaptation to glutamine deprivation microenvironment. Cancer Lett 2024; 597:216862. [PMID: 38582396 DOI: 10.1016/j.canlet.2024.216862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Glioblastoma, previously known as glioblastoma multiform (GBM), is a type of glioma with a high degree of malignancy and rapid growth rate. It is highly dependent on glutamine (Gln) metabolism during proliferation and lags in neoangiogenesis, leading to extensive Gln depletion in the core region of GBM. Gln-derived glutamate is used to synthesize the antioxidant Glutathione (GSH). We demonstrated that GSH levels are also reduced in Gln deficiency, leading to increased reactive oxygen species (ROS) levels. The ROS production induces endoplasmic reticulum (ER) stress, and the proteins in the ER are secreted into the extracellular medium. We collected GBM cell supernatants cultured with or without Gln medium; the core and peripheral regions of human GBM tumor tissues. Proteomic analysis was used to screen out the target-secreted protein CypB. We demonstrated that the extracellular CypB expression is associated with Gln deprivation. Then, we verified that GBM can promote the glycolytic pathway by activating HIF-1α to upregulate the expression of GLUT1 and LDHA. Meanwhile, the DRP1 was activated, increasing mitochondrial fission, thus inhibiting mitochondrial function. To explore the specific mechanism of its regulation, we constructed a si-CD147 knockout model and added human recombinant CypB protein to verify that extracellular CypB influenced the expression of downstream p-AKT through its cell membrane receptor CD147 binding. Moreover, we confirmed that p-AKT could upregulate HIF-1α and DRP1. Finally, we observed that extracellular CypB can bind to the CD147 receptor, activate p-AKT, upregulate HIF-1α and DRP1 in order to promote glycolysis while inhibiting mitochondrial function to adapt to the Gln-deprived microenvironment.
Collapse
Affiliation(s)
- Hang Yin
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Liu
- Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China; Neurological Diseases Clinical Medical Research Center of Gansu Province, Lanzhou, China
| | - Qiang Dong
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Hongyu Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yunji Yan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoqing Wang
- Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China; Neurological Diseases Clinical Medical Research Center of Gansu Province, Lanzhou, China
| | - Xiaoyu Wan
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore, Singapore; School of Basic Medicine, Henan University, Kaifeng, China
| | - Guoqiang Yuan
- Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China; Neurological Diseases Clinical Medical Research Center of Gansu Province, Lanzhou, China.
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
38
|
Sun A, Wang WX. Differentiation of cellular responses to particulate and soluble constituents in sunscreen products. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134791. [PMID: 38833954 DOI: 10.1016/j.jhazmat.2024.134791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Despite the growing awareness of potential human and environmental risks associated with sunscreens, identifying the specific constituents responsible for their potential toxicity is challenging. In this study, we applied three different types of sunscreens with contrasting compositions and compared the effects of their particulate and soluble fractions based on 15 cellular biomarkers of HaCaT cells. Multilinear regression analysis revealed that the internalized soluble fractions played a primary role in the overall cytotoxicity of sunscreen mixtures, which was primarily attributed to their biotransformation, generating metabolites with higher toxicity. The presence of plastic microspheres in sunscreens either inhibited the internalization of soluble fractions or led to their redistribution toward lysosomes. Conversely, subcellular toxicity resulting from the sunscreen mixture was predominantly influenced by particulates. Bio-transformable particulates such as ZnO dissolved in the organelles and induced higher subcellular toxicity compared to bioinert particulates such as microplastics. Subcellular biomarkers including lysosomal count, lysosomal size, mitochondrial count and mitochondrial shape emerged as the potential predictors of sunscreen presence. Our study provides important understanding of sunscreen toxicity by elucidating the differential impacts of particulate and soluble fractions in mixture contaminants.
Collapse
Affiliation(s)
- Anqi Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
39
|
Gao H, Huang X, Chen W, Feng Z, Zhao Z, Li P, Tan C, Wang J, Zhuang Q, Gao Y, Min S, Yao Q, Qian M, Ma X, Wu F, Yan W, Sheng W, Huang G. Association of copy number variation in X chromosome-linked PNPLA4 with heterotaxy and congenital heart disease. Chin Med J (Engl) 2024; 137:1823-1834. [PMID: 38973237 DOI: 10.1097/cm9.0000000000003192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Heterotaxy (HTX) is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease (CHD). The aim of this study was to analyze rare copy number variations (CNVs) in a HTX/CHD cohort and to examine the potential mechanisms contributing to HTX/CHD. METHODS Chromosome microarray analysis was used to identify rare CNVs in a cohort of 120 unrelated HTX/CHD patients, and available samples from parents were used to confirm the inheritance pattern. Potential candidate genes in CNVs region were prioritized via the DECIPHER database, and PNPLA4 was identified as the leading candidate gene. To validate, we generated PNPLA4 -overexpressing human induced pluripotent stem cell lines as well as pnpla4 -overexpressing zebrafish model, followed by a series of transcriptomic, biochemical and cellular analyses. RESULTS Seventeen rare CNVs were identified in 15 of the 120 HTX/CHD patients (12.5%). Xp22.31 duplication was one of the inherited CNVs identified in this HTX/CHD cohort, and PNPLA4 in the Xp22.31 was a candidate gene associated with HTX/CHD. PNPLA4 is expressed in the lateral plate mesoderm, which is known to be critical for left/right embryonic patterning as well as cardiomyocyte differentiation, and in the neural crest cell lineage. Through a series of in vivo and in vitro analyses at the molecular and cellular levels, we revealed that the biological function of PNPLA4 is importantly involved in the primary cilia formation and function via its regulation of energy metabolism and mitochondria-mediated ATP production. CONCLUSIONS Our findings demonstrated a significant association between CNVs and HTX/CHD. Our data strongly suggested that an increased genetic dose of PNPLA4 due to Xp22.31 duplication is a disease-causing risk factor for HTX/CHD.
Collapse
Affiliation(s)
- Han Gao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xianghui Huang
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, Fujian 361006, China
| | - Weicheng Chen
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Zhiyu Feng
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Zhengshan Zhao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Ping Li
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Chaozhong Tan
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Jinxin Wang
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Quannan Zhuang
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yuan Gao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Shaojie Min
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Qinyu Yao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Maoxiang Qian
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Feizhen Wu
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Weili Yan
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, Fujian 361006, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, Fujian 361006, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| |
Collapse
|
40
|
Tao H, Zhu P, Xia W, Chu M, Chen K, Wang Q, Gu Y, Lu X, Bai J, Geng D. The Emerging Role of the Mitochondrial Respiratory Chain in Skeletal Aging. Aging Dis 2024; 15:1784-1812. [PMID: 37815897 PMCID: PMC11272194 DOI: 10.14336/ad.2023.0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of mitochondrial homeostasis is crucial for ensuring healthy mitochondria and normal cellular function. This process is primarily responsible for regulating processes that include mitochondrial OXPHOS, which generates ATP, as well as mitochondrial oxidative stress, apoptosis, calcium homeostasis, and mitophagy. Bone mesenchymal stem cells express factors that aid in bone formation and vascular growth. Positive regulation of hematopoietic stem cells in the bone marrow affects the differentiation of osteoclasts. Furthermore, the metabolic regulation of cells that play fundamental roles in various regions of the bone, as well as interactions within the bone microenvironment, actively participates in regulating bone integrity and aging. The maintenance of cellular homeostasis is dependent on the regulation of intracellular organelles, thus understanding the impact of mitochondrial functional changes on overall bone metabolism is crucially important. Recent studies have revealed that mitochondrial homeostasis can lead to morphological and functional abnormalities in senescent cells, particularly in the context of bone diseases. Mitochondrial dysfunction in skeletal diseases results in abnormal metabolism of bone-associated cells and a secondary dysregulated microenvironment within bone tissue. This imbalance in the oxidative system and immune disruption in the bone microenvironment ultimately leads to bone dysplasia. In this review, we examine the latest developments in mitochondrial respiratory chain regulation and its impacts on maintenance of bone health. Specifically, we explored whether enhancing mitochondrial function can reduce the occurrence of bone cell deterioration and improve bone metabolism. These findings offer prospects for developing bone remodeling biology strategies to treat age-related degenerative diseases.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| |
Collapse
|
41
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
42
|
Guo Z. The role of glucagon-like peptide-1/GLP-1R and autophagy in diabetic cardiovascular disease. Pharmacol Rep 2024; 76:754-779. [PMID: 38890260 DOI: 10.1007/s43440-024-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Diabetes leads to a significantly accelerated incidence of various related macrovascular complications, including peripheral vascular disease and cardiovascular disease (the most common cause of mortality in diabetes), as well as microvascular complications such as kidney disease and retinopathy. Endothelial dysfunction is the main pathogenic event of diabetes-related vascular disease at the earliest stage of vascular injury. Understanding the molecular processes involved in the development of diabetes and its debilitating vascular complications might bring up more effective and specific clinical therapies. Long-acting glucagon-like peptide (GLP)-1 analogs are currently available in treating diabetes with widely established safety and extensively evaluated efficacy. In recent years, autophagy, as a critical lysosome-dependent self-degradative process to maintain homeostasis, has been shown to be involved in the vascular endothelium damage in diabetes. In this review, the GLP-1/GLP-1R system implicated in diabetic endothelial dysfunction and related autophagy mechanism underlying the pathogenesis of diabetic vascular complications are briefly presented. This review also highlights a possible crosstalk between autophagy and the GLP-1/GLP-1R axis in the treatment of diabetic angiopathy.
Collapse
Affiliation(s)
- Zi Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
43
|
Boopathy S, Luce BE, Lugo CM, Hakim P, McDonald J, Kim HL, Ponce J, Ueberheide BM, Chao LH. Identification of SLC25A46 interaction interfaces with mitochondrial membrane fusogens Opa1 and Mfn2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573615. [PMID: 38234813 PMCID: PMC10793391 DOI: 10.1101/2023.12.29.573615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier protein SLC25A46 interacts with both the outer and inner-membrane dynamin family GTPases Mfn1/2 and Opa1. While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with Mfn1/2 and Opa1 to regulate membrane fusion is not understood. In this study, we use crosslinking mass-spectrometry and AlphaFold 2 modeling to identify interfaces mediating a SLC25A46 interactions with Opa1 and Mfn2. We reveal that the bundle signaling element of Opa1 interacts with SLC25A46, and present evidence of a Mfn2 interaction involving the SLC25A46 cytosolic face. We validate these newly identified interaction interfaces and show that they play a role in mitochondrial network maintenance.
Collapse
|
44
|
Sun YD, Xu QG, Dai DS, Wang SX, Li XQ, Shi SH, Jiang P, Jin Y, Wang X, Zhang Y, Wang F, Liu P, Zhang BL, Li TX, Xu CS, Wu B, Cai JZ. Pim-1 kinase protects the liver from ischemia reperfusion injury by regulating dynamics-related protein 1. iScience 2024; 27:110280. [PMID: 39055921 PMCID: PMC11269306 DOI: 10.1016/j.isci.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/25/2023] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatic ischemia-reperfusion (IR) injury significantly impacts liver transplantation success, yet current treatments remain inadequate. This study explores the role of Proto-oncogene serine/threonine-protein kinase (Pim-1) in liver IR, an area previously unexplored. Utilizing a mouse liver IR in vivo model and a MIHA cell hypoxia-reoxygenation in vitro model, we observed that Pim-1 expression increases following IR, inversely correlating with serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Increased Pim-1 expression stabilizes mitochondrial membranes by modifying Drp1 phosphorylation, reducing mitochondrial fission and apoptosis, thereby mitigating liver damage. Additionally, we discovered that elevated Pim-1 expression is dependent on the trimethylation of histone H3 lysine 9 during liver IR. These findings underscore the importance and potential clinical application of targeting Pim-1 in treating hepatic IR, presenting a novel therapeutic avenue.
Collapse
Affiliation(s)
- Yan-dong Sun
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qing-guo Xu
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - De-shu Dai
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shu-xian Wang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xin-qiang Li
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shang-heng Shi
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Peng Jiang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yan Jin
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xin Wang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yong Zhang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Feng Wang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Peng Liu
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bing-liang Zhang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tian-xiang Li
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chuan-shen Xu
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bin Wu
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jin-zhen Cai
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
45
|
K Soman S, Swain M, Dagda RK. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04357-4. [PMID: 39030441 DOI: 10.1007/s12035-024-04357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
46
|
Wang T, Li X, Tao Y, Wang X, Li L, Liu J. METTL3-mediated NDUFB5 m6A modification promotes cell migration and mitochondrial respiration to promote the wound healing of diabetic foot ulcer. J Transl Med 2024; 22:643. [PMID: 38982516 PMCID: PMC11234709 DOI: 10.1186/s12967-024-05463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is the most devastating complication of diabetes mellitus (DM) and plays a major role in disability and death in DM patients. NADH: ubiquinone oxidoreductase subunit B5 (NDUFB5) plays an important role in maintaining mitochondrial respiration, but whether it is involved in regulating the progression of advanced glycation end products (AGEs)-mediated DFU is still unclear. METHODS Firstly, the role of AGEs on cell viability, migration, and mitochondrial respiration in human umbilical vein endothelial cells (HUVECs) was explored in vitro. Next, NDUFB5 expression was detected in human samples and AGEs-treated HUVECs, and NDUFB5's effect on AGEs-induced HUVECs injury and skin wound in diabetic mice was further clarified. In addition, the role of m6A modification mediated by methyltransferase-like 3 (METTL3) in regulating NDUFB5 expression and AGEs-induced HUVECs injury was investigated. RESULTS NDUFB5 promoted cell viability, migration, and mitochondrial respiration in AGEs-treated HUVECs, whereas mitochondrial fusion promoter M1 facilitated cell viability, migration, and mitochondrial oxiadative respiration in NDUFB5 knockdown HUVECs. Meanwhile, NDUFB5 promotes skin wound healing in diabetic mice. Besides, METTL3-mediated m6A modification and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) enhanced NDUFB5 expression in HUVECs. Furthermore, METTL3 promoted cell viability, migration, and mitochondrial respiration in AGEs-treated HUVECs by increasing NDUFB5. CONCLUSION METTL3-mediated NDUFB5 m6A modification inhibits AGEs-induced cell injury in HUVECs. METTL3 and NDUFB5 might serve as potential targets for DFU therapy in the future.
Collapse
Affiliation(s)
- Tao Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Xu Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Yue Tao
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Xiaojun Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Limeng Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Jianjun Liu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China.
| |
Collapse
|
47
|
Xi Q, Liu L, Zhao Q, Zhu S. KLF13 Attenuates Lipopolysaccharide-Induced Alveolar Epithelial Cell Damage by Regulating Mitochondrial Quality Control via Binding PGC-1α. J Interferon Cytokine Res 2024. [PMID: 38949897 DOI: 10.1089/jir.2023.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Sepsis is a clinically life-threatening syndrome, and acute lung injury is the earliest and most serious complication. We aimed to assess the role of kruppel-like factor 13 (KLF13) in lipopolysaccharide (LPS)-induced human alveolar type II epithelial cell damage and to reveal the possible mechanism related to peroxisome proliferator-activated receptor-γ co-activator 1-α (PGC-1α). In LPS-treated A549 cells with or without KLF13 overexpression or PGC-1α knockdown, cell viability was measured by a cell counting kit-8 assay. Enzyme-linked immunosorbent assay kits detected the levels of inflammatory factors, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining measured cell apoptosis. Besides, mitochondrial reactive oxygen species (MitoSOX) and mitochondrial membrane potential were detected using MitoSOX red- and JC-1 staining. Expression of proteins related to mitochondrial quality control (MQC) was evaluated by western blot. Co-immunoprecipitation (Co-IP) assay was used to analyze the interaction between KLF13 and PGC-1α. Results indicated that KLF13 was highly expressed in LPS-treated A549 cells. KLF13 upregulation elevated the viability and reduced the levels of inflammatory factors in A549 cells exposed to LPS. Moreover, KLF13 gain-of-function inhibited LPS-induced apoptosis of A549 cells, accompanied by upregulated BCL2 expression and downregulated Bax and cleaved caspase3 expression. Furthermore, MQC was improved by KLF13 overexpression, as evidenced by decreased MitoSOX, JC-1 monomers and increased JC-1 aggregates, coupled with the changes of proteins related to MQC. In addition, Co-IP assay confirmed the interaction between KLF13 and PGC-1α. PGC-1α deficiency restored the impacts of KLF13 upregulation on the inflammation, apoptosis, and MQC in LPS-treated A549 cells. In conclusion, KLF13 attenuated LPS-induced alveolar epithelial cell inflammation and apoptosis by regulating MQC via binding PGC-1α.
Collapse
Affiliation(s)
- Qiong Xi
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lin Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qin Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shan Zhu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Wang Z, Zhang G, Hu S, Fu M, Zhang P, Zhang K, Hao L, Chen S. Research progress on the protective effect of hormones and hormone drugs in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 176:116764. [PMID: 38805965 DOI: 10.1016/j.biopha.2024.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Ischemic heart disease (IHD) is a condition where the heart muscle does not receive enough blood flow, leading to cardiac dysfunction. Restoring blood flow to the coronary artery is an effective clinical therapy for myocardial ischemia. This strategy helps lower the size of the myocardial infarction and improves the prognosis of patients. Nevertheless, if the disrupted blood flow to the heart muscle is restored within a specific timeframe, it leads to more severe harm to the previously deprived heart tissue. This condition is referred to as myocardial ischemia/reperfusion injury (MIRI). Until now, there is a dearth of efficacious strategies to prevent and manage MIRI. Hormones are specialized substances that are produced directly into the circulation by endocrine organs or tissues in humans and animals, and they have particular effects on the body. Hormonal medications utilize human or animal hormones as their active components, encompassing sex hormones, adrenaline medications, thyroid hormone medications, and others. While several studies have examined the preventive properties of different endocrine hormones, such as estrogen and hormone analogs, on myocardial injury caused by ischemia-reperfusion, there are other hormone analogs whose mechanisms of action remain unexplained and whose safety cannot be assured. The current study is on hormones and hormone medications, elucidating the mechanism of hormone pharmaceuticals and emphasizing the cardioprotective effects of different endocrine hormones. It aims to provide guidance for the therapeutic use of drugs and offer direction for the examination of MIRI in clinical therapy.
Collapse
Affiliation(s)
- Zhongyi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Gaojiang Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Meilin Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Pingyuan Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kuo Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Sichong Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
49
|
Zhang N, Zhang P, Deng X, Zhu M, Hu Y, Ji D, Li L, Liu Y, Zeng W, Ke M. Protective Effect of Nicotinamide Riboside on Glucocorticoid-Induced Glaucoma: Mitigating Mitochondrial Damage and Extracellular Matrix Deposition. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38949632 PMCID: PMC11221610 DOI: 10.1167/iovs.65.8.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Glucocorticoid-induced glaucoma (GIG) is a prevalent complication associated with glucocorticoids (GCs), resulting in irreversible blindness. GIG is characterized by the abnormal deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), elevation of intraocular pressure (IOP), and loss of retinal ganglion cells (RGCs). The objective of this study is to investigate the effects of nicotinamide riboside (NR) on TM in GIG. Methods Primary human TM cells (pHTMs) and C57BL/6J mice responsive to GCs were utilized to establish in vitro and in vivo GIG models, respectively. The study assessed the expression of ECM-related proteins in TM and the functions of pHTMs to reflect the effects of NR. Mitochondrial morphology and function were also examined in the GIG cell model. GIG progression was monitored through IOP, RGCs, and mitochondrial morphology. Intracellular nicotinamide adenine dinucleotide (NAD+) levels of pHTMs were enzymatically assayed. Results NR significantly prevented the expression of ECM-related proteins and alleviated dysfunction in pHTMs after dexamethasone treatment. Importantly, NR protected damaged ATP synthesis, preventing overexpression of mitochondrial reactive oxygen species (ROS), and also protect against decreased mitochondrial membrane potential induced by GCs in vitro. In the GIG mouse model, NR partially prevented the elevation of IOP and the loss of RGCs. Furthermore, NR effectively suppressed the excessive expression of ECM-associated proteins and mitigated mitochondrial damage in vivo. Conclusions Based on the results, NR effectively enhances intracellular levels of NAD+, thereby mitigating abnormal ECM deposition and TM dysfunction in GIG by attenuating mitochondrial damage induced by GCs. Thus, NR has promising potential as a therapeutic candidate for GIG treatment.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pengyu Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yixin Hu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongxiao Ji
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Huaihai Hospital of Henan University, Kaifeng, Henan, China
| | - Lufan Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
50
|
Ma Z, Xie K, Xue X, Li J, Yang Y, Wu J, Li Y, Li X. Si-Wu-Tang attenuates hepatocyte PANoptosis and M1 polarization of macrophages in non-alcoholic fatty liver disease by influencing the intercellular transfer of mtDNA. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118057. [PMID: 38518965 DOI: 10.1016/j.jep.2024.118057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) represents a burgeoning challenge for public health with potential progression to malignant liver diseases. PANoptosis, an avant-garde conceptualization of cell deaths, is closely associated with mitochondrial damage and linked to multiple liver disorders. Si-Wu-Tang (SWT), a traditional Chinese herbal prescription renowned for regulating blood-related disorders and ameliorating gynecological and hepatic diseases, has been demonstrated to alleviate liver fibrosis by regulating bile acid metabolism and immune responses. AIM OF THE STUDY However, the mechanisms by which mtDNA is released from PANoptotic hepatocytes, triggering macrophage activation and hepatitis and whether this process can be reversed by SWT remain unclear. MATERIALS AND METHODS Here, sophisticated RNA-sequencing complemented by molecular approaches were applied to explore the underlying mechanism of SWT against NAFLD in methionine/choline-deficient diet (MCD)-induced mice and relative in vitro models. RESULTS We revealed that SWT profoundly repaired mitochondrial dysfunction, blocked mitochondrial permeability transition and mtDNA released to the cytoplasm, subsequently reversing hepatocyte PANoptosis and macrophage polarization both in MCD-stimulated mice and in vitro. Mechanically, loaded lipids dramatically promoted the opening of mPTP and oligomerization of VDAC2 to orchestrate mtDNA release, which was combined with ZBP1 to promote hepatocyte PANoptosis and also taken by macrophages to trigger M1 polarization via the FSTL1 and PKM2 combination. SWT effectively blocked NOXA signaling and reversed all these detrimental outcomes. CONCLUSION Our findings show that SWT protects against hepatitis-mediated hepatocyte PANoptosis and macrophage M1 polarization by influencing intrahepatic synthesis, release and intercellular transfer of mtDNA, suggesting a potential therapeutic strategy for ameliorating NAFLD.
Collapse
Affiliation(s)
- Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kaihong Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|