1
|
Wuerger LTD, Sprenger H, Krasikova K, Templin M, Stahl A, Herfurth UM, Sieg H, Braeuning A. A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol 2024; 98:2919-2935. [PMID: 38832940 PMCID: PMC11324782 DOI: 10.1007/s00204-024-03796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Okadaic acid (OA), a prevalent marine biotoxin found in shellfish, is known for causing acute gastrointestinal symptoms. Despite its potential to reach the bloodstream and the liver, the hepatic effects of OA are not well understood, highlighting a significant research gap. This study aims to comprehensively elucidate the impact of OA on the liver by examining the transcriptome, proteome, and phosphoproteome alterations in human HepaRG liver cells exposed to non-cytotoxic OA concentrations. We employed an integrative multi-omics approach, encompassing RNA sequencing, shotgun proteomics, phosphoproteomics, and targeted DigiWest analysis. This enabled a detailed exploration of gene and protein expression changes, alongside phosphorylation patterns under OA treatment. The study reveals concentration- and time-dependent deregulation in gene and protein expression, with a significant down-regulation of xenobiotic and lipid metabolism pathways. Up-regulated pathways include actin crosslink formation and a deregulation of apoptotic pathways. Notably, our results revealed that OA, as a potent phosphatase inhibitor, induces alterations in actin filament organization. Phosphoproteomics data highlighted the importance of phosphorylation in enzyme activity regulation, particularly affecting proteins involved in the regulation of the cytoskeleton. OA's inhibition of PP2A further leads to various downstream effects, including alterations in protein translation and energy metabolism. This research expands the understanding of OA's systemic impact, emphasizing its role in modulating the phosphorylation landscape, which influences crucial cellular processes. The results underscore OA's multifaceted effects on the liver, particularly through PP2A inhibition, impacting xenobiotic metabolism, cytoskeletal dynamics, and energy homeostasis. These insights enhance our comprehension of OA's biological significance and potential health risks.
Collapse
Affiliation(s)
- Leonie T D Wuerger
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Heike Sprenger
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ksenia Krasikova
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Uta M Herfurth
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
2
|
Wuerger LTD, Kudiabor F, Alarcan J, Templin M, Poetz O, Sieg H, Braeuning A. Okadaic Acid Activates JAK/STAT Signaling to Affect Xenobiotic Metabolism in HepaRG Cells. Cells 2023; 12:770. [PMID: 36899906 PMCID: PMC10000888 DOI: 10.3390/cells12050770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Okadaic acid (OA) is a marine biotoxin that is produced by algae and accumulates in filter-feeding shellfish, through which it enters the human food chain, leading to diarrheic shellfish poisoning (DSP) after ingestion. Furthermore, additional effects of OA have been observed, such as cytotoxicity. Additionally, a strong downregulation of the expression of xenobiotic-metabolizing enzymes in the liver can be observed. The underlying mechanisms of this, however, remain to be examined. In this study, we investigated a possible underlying mechanism of the downregulation of cytochrome P450 (CYP) enzymes and the nuclear receptors pregnane X receptor (PXR) and retinoid-X-receptor alpha (RXRα) by OA through NF-κB and subsequent JAK/STAT activation in human HepaRG hepatocarcinoma cells. Our data suggest an activation of NF-κB signaling and subsequent expression and release of interleukins, which then activate JAK-dependent signaling and thus STAT3. Moreover, using the NF-κB inhibitors JSH-23 and Methysticin and the JAK inhibitors Decernotinib and Tofacitinib, we were also able to demonstrate a connection between OA-induced NF-κB and JAK signaling and the downregulation of CYP enzymes. Overall, we provide clear evidence that the effect of OA on the expression of CYP enzymes in HepaRG cells is regulated through NF-κB and subsequent JAK signaling.
Collapse
Affiliation(s)
- Leonie T. D. Wuerger
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Felicia Kudiabor
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
3
|
Wuerger LT, Hammer HS, Hofmann U, Kudiabor F, Sieg H, Braeuning A. Okadaic acid influences xenobiotic metabolism in HepaRG cells. EXCLI JOURNAL 2022; 21:1053-1065. [PMID: 36172076 PMCID: PMC9489895 DOI: 10.17179/excli2022-5033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Okadaic acid (OA) is an algae-produced lipophilic marine biotoxin that accumulates in the fatty tissue of filter-feeding shellfish. Ingestion of contaminated shellfish leads to the diarrheic shellfish poisoning syndrome. Furthermore, several other effects of OA like genotoxicity, liver toxicity and tumor-promoting properties have been observed, probably linked to the phosphatase-inhibiting properties of the toxin. It has been shown that at high doses OA can disrupt the physical barrier of the intestinal epithelium. As the intestine and the liver do not only constitute a physical, but also a metabolic barrier against xenobiotic exposure, we here investigated the impact of OA on the expression of cytochrome P450 (CYP) enzymes and transporter proteins in human HepaRG cells liver cells in vitro at non-cytotoxic concentrations. The interplay of OA with known CYP inducers was also studied. Data show that the expression of various xenobiotic-metabolizing CYPs was downregulated after exposure to OA. Moreover, OA was able to counteract the activation of CYPs by their inducers. A number of transporters were also mainly downregulated. Overall, we demonstrate that OA has a significant effect on xenobiotic metabolism barrier in liver cells, highlighting the possibility for interactions of OA exposure with the metabolism of drugs and xenobiotics.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Helen S. Hammer
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany
| | - Felicia Kudiabor
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany,*To whom correspondence should be addressed: Holger Sieg, German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany, E-mail:
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
4
|
Dietrich J, Schindler M, Lampen A, Braeuning A, Hessel-Pras S. Comparison of long-term versus short-term effects of okadaic acid on the apoptotic status of human HepaRG cells. Chem Biol Interact 2020; 317:108937. [PMID: 31926150 DOI: 10.1016/j.cbi.2020.108937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/14/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023]
Abstract
The biotoxin okadaic acid (OA) is a lipophilic secondary metabolite of marine microalgae. Therefore, OA accumulates in the fatty tissue of various shellfish and may thus enter the food chain. The ingestion of OA via contaminated marine species can lead to the diarrhetic shellfish poisoning syndrome characterized by the occurrence of a series of acute gastrointestinal symptoms in humans. In addition, genotoxicity and tumor-promoting properties of OA might constitute a long-term threat to human health. In order to deepen our understanding of the molecular effects of OA, we compared long-term (14 d) and short-term (24 h and 48 h) apoptotic effects of the compound on human HepaRG hepatocarcinoma cells. Cells were treated either with single doses for 24 and 48 h, respectively, or seven times over a period of 14 d, so that the cumulated quantities of OA in the long-term approach were equal to the single doses upon short-term treatment. Both short-term treatment scenarios led to the induction of apoptosis. Specific caspase activation assays and transcriptional analysis of mRNAs encoding proteins involved in the regulation of apoptosis suggest that OA-induced apoptosis occurs presumably by activation of the intrinsic apoptotic pathway. In contrast, effects were much less pronounced in case of long-term treatment. This is possibly linked to cellular protective mechanisms against low amounts of toxins, e.g. transporter-mediated efflux. In conclusion, our results show a clear concentration- and time-dependency of OA-mediated apoptotic effects in HepaRG cells and contribute to the elucidation of molecular effects of OA.
Collapse
Affiliation(s)
- Jessica Dietrich
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Magdalena Schindler
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany.
| |
Collapse
|
5
|
Okadaic acid activates Wnt/β-catenin-signaling in human HepaRG cells. Arch Toxicol 2019; 93:1927-1939. [PMID: 31115591 DOI: 10.1007/s00204-019-02489-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
The lipophilic phycotoxin okadaic acid (OA) occurs in the fatty tissue and hepatopancreas of filter-feeding shellfish. The compound provokes the diarrhetic shellfish poisoning (DSP) syndrome after intake of seafood contaminated with high levels of the DSP toxin. In animal experiments, long-term exposure to OA is associated with an elevated risk for tumor formation in different organs including the liver. Although OA is a known inhibitor of the serine/threonine protein phosphatase 2A, the mechanisms behind OA-induced carcinogenesis are not fully understood. Here, we investigated the influence of OA on the β-catenin-dependent Wnt-signaling pathway, addressing a major oncogenic pathway relevant for tumor development. We analyzed OA-mediated effects on β-catenin and its biological function, cellular localization, post-translational modifications, and target gene expression in human HepaRG hepatocarcinoma cells treated with non-cytotoxic concentrations up to 50 nM. We detected concentration- and time-dependent effects of OA on the phosphorylation state, cellular redistribution as well as on the amount of transcriptionally active β-catenin. These findings were confirmed by quantitative live-cell imaging of U2OS cells stably expressing a green fluorescent chromobody which specifically recognize hypophosphorylated β-catenin. Finally, we demonstrated that nuclear translocation of β-catenin mediated by non-cytotoxic OA concentrations results in an upregulation of Wnt-target genes. In conclusion, our results show a significant induction of the canonical Wnt/β-catenin-signaling pathway by OA in human liver cells. Our data contribute to a better understanding of the molecular mechanisms underlying OA-induced carcinogenesis.
Collapse
|
6
|
Dietrich J, Grass I, Günzel D, Herek S, Braeuning A, Lampen A, Hessel-Pras S. The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells. Toxicol In Vitro 2019; 58:150-160. [PMID: 30926360 DOI: 10.1016/j.tiv.2019.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
Okadaic acid (OA) is a lipophilic phycotoxin that accumulates in the hepatopancreas and fatty tissue of shellfish. Consumption of highly OA-contaminated seafood leads to diarrhetic shellfish poisoning which provokes severe gastrointestinal symptoms associated with a disruption of the intestinal epithelium. Since the molecular mechanisms leading to intestinal barrier disruption are not fully elucidated, we investigated the influence of OA on intestinal tight junction proteins (TJPs) in differentiated Caco-2 cells. We found a concentration- and time-dependent deregulation of genes encoding for intestinal TJPs of the claudin family, occludin, as well as zonula occludens (ZO) 1 and 2. Immunofluorescence staining showed concentration-dependent effects on the structural organization of TJPs already after treatment with a subtoxic but human-relevant concentration of OA. In addition, changes in the structural organization of cytoskeletal F-actin as well as its associated protein ZO-1 were observed. In summary, we demonstrated effects of OA on TJPs in intestinal Caco-2 cells. TJP expressions were affected after treatment with food-relevant OA concentrations. These results might explain the high potential of OA to disrupt the intestinal barrier in vivo as its first target. Thereby the present data contribute to a better understanding of the OA-dependent induction of molecular effects within the intestinal epithelium.
Collapse
Affiliation(s)
- Jessica Dietrich
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Irina Grass
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Saadet Herek
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
7
|
Jiao YH, Dou M, Wang G, Li HY, Liu JS, Yang X, Yang WD. Exposure of okadaic acid alters the angiogenesis in developing chick embryos. Toxicon 2017; 133:74-81. [PMID: 28476539 DOI: 10.1016/j.toxicon.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
Okadaic acid (OA) is a common phycotoxin, which concerns diarrheic shellfish poisoning (DSP) in human being. It has been known that OA can induce disorganization in cytoskeletal architecture and cell-cell contact, cause chromosome loss, apoptosis, DNA damage and inhibit phosphatases, suggesting its potential embryotoxicity. In this paper, we found that low concentration of OA (50 nM, 100 nM and 200 nM) significantly reduced the density of vascular plexus in yolk-sac membrane (YSM) of chick embryo, while high concentration of OA (500 nM) distinctly depressed the blood vessel density in chorioallantoic membrane (CAM). After exposed to OA, MDA level and SOD activity increased significantly in CAM tissues. However, addition of vitamin C could rescue OA-suppressed angiogenesis in CAM of chick embryo. After exposure of OA, Ang-2 expression was down-regulated in CAM tissues. Taking together, we proposed that OA interfered with angiogenesis in developing chick embryo, through, at least partly, the induction of excessive ROS generation.
Collapse
Affiliation(s)
- Yu-Hu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Min Dou
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Rezvanfar MA, Hodjat M, Abdollahi M. Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sci 2016; 158:137-60. [DOI: 10.1016/j.lfs.2016.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
9
|
Perfluorooctanoic acid (PFOA) affects distinct molecular signalling pathways in human primary hepatocytes. Toxicology 2015; 333:53-62. [PMID: 25868421 DOI: 10.1016/j.tox.2015.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/24/2015] [Accepted: 04/09/2015] [Indexed: 01/20/2023]
Abstract
Perfluorooctanoic acid (PFOA) was shown to damage the liver of rodents and to impair embryonic development. At the molecular level, the hepatotoxic effects were attributed to the PFOA-mediated activation of peroxisome proliferator-activated receptor alpha (PPARα). In general, PPARα-dependent effects are less pronounced in humans than in rodents, and the hazard potential of PFOA for humans is controversially discussed. To analyse the effects of PFOA in human hepatocytes, a microarray analysis was conducted to screen for PFOA-mediated alterations in the transcriptome of human primary hepatocytes. A subsequent network analysis revealed that PFOA had an impact on several signalling pathways in addition to the well-known activation of PPARα. The microarray data confirmed earlier findings that PFOA: (i) affects the estrogen receptor ERα, (ii) activates the peroxisome proliferator-activated receptor gamma (PPARγ), and (iii) inhibits the function of the hepatocyte nuclear factor 4α (HNF4α) which is an essential factor for liver development and embryogenesis. Finally, as a novel finding, PFOA was shown to stimulate gene expression of the proto-oncogenes c-Jun and c-Fos. This was confirmed by using the HepG2 cell line as a model for human hepatocytes. PFOA stimulated cellular proliferation and the metabolic activity of the cells, and upregulated the expression of various cyclins which have a central function in the regulation of cell cycle control. Functional studies, however, indicated that PFOA had no impact on c-Jun and c-Fos phosphorylation and on AP-1-dependent gene transcription, thus demonstrating that PFOA-induced proliferation occurs largely independent of c-Jun and c-Fos.
Collapse
|
10
|
Ehlers A, These A, Hessel S, Preiss-Weigert A, Lampen A. Active elimination of the marine biotoxin okadaic acid by P-glycoprotein through an in vitro gastrointestinal barrier. Toxicol Lett 2014; 225:311-7. [DOI: 10.1016/j.toxlet.2013.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
11
|
Zhang NS, Li HY, Liu JS, Yang WD. Gene expression profiles in zebrafish (Danio rerio) liver after acute exposure to okadaic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:791-802. [PMID: 24637248 DOI: 10.1016/j.etap.2014.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Okadaic acid (OA), a main component of diarrheic shellfish poisoning (DSP) toxins, is a strong and specific inhibitor of the serine/threonine protein phosphatases PP1 and PP2A. However, not all of the OA-induced effects can be explained by this phosphatase inhibition, and controversial results on OA are increasing. To provide clues on potential mechanisms of OA other than phosphatase inhibition, here, acute toxicity of OA was evaluated in zebrafish, and changes in gene expression in zebrafish liver tissues upon exposure to OA were observed by microarray. The i.p. ED50 (6 h) of OA on zebrafish was 1.54 μg OA/g body weight (bw). Among the genes analyzed on the zebrafish array, 55 genes were significantly up-regulated and 36 down-regulated in the fish liver tissue upon exposure to 0.176 μg OA/g bw (low-dose group, LD) compared with the low ethanol control (LE). However, there were no obvious functional clusters for them. On the contrary, fish exposure to 1.760 μg OA/g bw (high-dose group, HD) yielded a great number of differential expressed genes (700 up and 285 down) compared with high ethanol control (HE), which clustered in several functional terms such as p53 signaling pathway, Wnt signaling pathway, glutathione metabolism and protein processing in endoplasmic reticulum, etc. These genes were involved in protein phosphatase activity, translation factor activity, heat shock protein binding, as well as transmembrane transporter activity. Our findings may give some useful information on the pathways of OA-induced injury in fish.
Collapse
Affiliation(s)
- Nai-sheng Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Wageningen University and Research Centre, Centre for Water and Climate, Alterra, PO Box 47, 6700AA Wageningen, The Netherlands
| | - Hong-ye Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China
| | - Jie-sheng Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-dong Yang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
12
|
Valdiglesias V, Prego-Faraldo MV, Pásaro E, Méndez J, Laffon B. Okadaic acid: more than a diarrheic toxin. Mar Drugs 2013; 11:4328-49. [PMID: 24184795 PMCID: PMC3853731 DOI: 10.3390/md11114328] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/08/2013] [Accepted: 10/23/2013] [Indexed: 01/04/2023] Open
Abstract
Okadaic acid (OA) is one of the most frequent and worldwide distributed marine toxins. It is easily accumulated by shellfish, mainly bivalve mollusks and fish, and, subsequently, can be consumed by humans causing alimentary intoxications. OA is the main representative diarrheic shellfish poisoning (DSP) toxin and its ingestion induces gastrointestinal symptoms, although it is not considered lethal. At the molecular level, OA is a specific inhibitor of several types of serine/threonine protein phosphatases and a tumor promoter in animal carcinogenesis experiments. In the last few decades, the potential toxic effects of OA, beyond its role as a DSP toxin, have been investigated in a number of studies. Alterations in DNA and cellular components, as well as effects on immune and nervous system, and even on embryonic development, have been increasingly reported. In this manuscript, results from all these studies are compiled and reviewed to clarify the role of this toxin not only as a DSP inductor but also as cause of alterations at the cellular and molecular levels, and to highlight the relevance of biomonitoring its effects on human health. Despite further investigations are required to elucidate OA mechanisms of action, toxicokinetics, and harmful effects, there are enough evidences illustrating its toxicity, not related to DSP induction, and, consequently, supporting a revision of the current regulation on OA levels in food.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-981167000; Fax: +34-981167172
| | - María Verónica Prego-Faraldo
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - Eduardo Pásaro
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
| | - Josefina Méndez
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - Blanca Laffon
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
| |
Collapse
|
13
|
Valdiglesias V, Fernández-Tajes J, Méndez J, Pásaro E, Laffon B. The marine toxin okadaic acid induces alterations in the expression level of cancer-related genes in human neuronal cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 92:303-311. [PMID: 23561263 DOI: 10.1016/j.ecoenv.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
Okadaic acid (OA) is one of the most common and highly distributed marine toxins. It can be accumulated in several molluscs and other marine organisms and cause acute gastrointestinal symptoms after oral consumption by humans, called diarrheic shellfish poisoning. However other toxic effects beyond these gastrointestinal symptoms were also reported. Thus, OA was found to induce important chromosomal abnormalities and other genetic injuries that can lead to severe pathologies, including cancer. Furthermore, the relationship between OA and carcinogenic processes has been previously demonstrated in in vivo studies with rodents, and also suggested in human epidemiological studies. In this context, further research is required to better understand the underlying mechanisms of OA-related tumourigenesis. In a previous study, we identified 247 genes differentially expressed in SHSY5Y neuroblastoma cells exposed to 100nM OA at different times (3, 24 and 48h) by means of suppression subtractive hybridization. These genes were involved in relevant cell functions such as signal transduction, cell cycle, metabolism, and transcription and translation processes. However, due to the high potential percentage of false positives that may be obtained by this approach, results from SSH are recommended to be analyzed by an independent method. In the present study, we selected ten genes related to cancer initiation or progression, directly or indirectly, for further quantitative PCR analysis (ANAPC13, PTTG1, CALM2, CLU, HN1, MALAT1, MAPRE2, MLLT11, SGA-81M and TAX1BP1). Results obtained showed important alterations in the expression patterns of all the genes evaluated at one or more treatment times, providing, for the first time, a possible explanation at the molecular level of the potential relationship between the consumption of OA-contaminated shellfish and the incidence of different cancers in humans. Nevertheless, given the complexity of this process, more exhaustive studies are required before drawing any final conclusion.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Psychobiology Department, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071 A Coruña, Spain
| | | | | | | | | |
Collapse
|
14
|
Valdiglesias V, Fernández-Tajes J, Pásaro E, Méndez J, Laffon B. Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization. BMC Genomics 2012; 13:46. [PMID: 22284234 PMCID: PMC3296583 DOI: 10.1186/1471-2164-13-46] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 01/27/2012] [Indexed: 12/02/2022] Open
Abstract
Background Okadaic acid (OA), a toxin produced by several dinoflagellate species is responsible for frequent food poisonings associated to shellfish consumption. Although several studies have documented the OA effects on different processes such as cell transformation, apoptosis, DNA repair or embryogenesis, the molecular mechanistic basis for these and other effects is not completely understood and the number of controversial data on OA is increasing in the literature. Results In this study, we used suppression subtractive hybridization in SHSY5Y cells to identify genes that are differentially expressed after OA exposure for different times (3, 24 and 48 h). A total of 247 subtracted clones which shared high homology with known genes were isolated. Among these, 5 specific genes associated with cytoskeleton and neurotransmission processes (NEFM, TUBB, SEPT7, SYT4 and NPY) were selected to confirm their expression levels by real-time PCR. Significant down-regulation of these genes was obtained at the short term (3 and 24 h OA exposure), excepting for NEFM, but their expression was similar to the controls at 48 h. Conclusions From all the obtained genes, 114 genes were up-regulated and 133 were down-regulated. Based on the NCBI GenBank and Gene Ontology databases, most of these genes are involved in relevant cell functions such as metabolism, transport, translation, signal transduction and cell cycle. After quantitative PCR analysis, the observed underexpression of the selected genes could underlie the previously reported OA-induced cytoskeleton disruption, neurotransmission alterations and in vivo neurotoxic effects. The basal expression levels obtained at 48 h suggested that surviving cells were able to recover from OA-caused gene expression alterations.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Psychobiology Department, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071 A Coruña, Spain
| | | | | | | | | |
Collapse
|
15
|
Valdiglesias V, Fernández-Tajes J, Costa C, Méndez J, Pásaro E, Laffon B. Alterations in metabolism-related genes induced in SHSY5Y cells by okadaic acid exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:844-856. [PMID: 22788371 DOI: 10.1080/15287394.2012.690703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Okadaic acid (OA) is a widely distributed marine toxin produced by several phytoplanktonic species and responsible for diarrheic shellfish poisoning in humans. At the molecular level OA is a specific inhibitor of several types of serine/threonine protein phosphatases. Due to this enzymic inhibition, OA was reported to induce numerous alterations in relevant cellular physiological processes, including several metabolic pathways such as glucose uptake, lipolysis and glycolysis, heme metabolism, and glycogen and protein synthesis. In order to further understand the underlying mechanisms involved in OA-induced effects on cellular metabolism, the expression levels of six genes related to different catabolic and anabolic metabolism-related processes were analyzed by real-time polymerase chain reaction. Specifically, the expression patterns of GAPDH, TOMM5, SLC25A4, COII, QARS, and RGS5 genes were determined in SHSY5Y human neuroblastoma cells exposed to OA for 3, 24, or 48 h. All these genes showed alterations in their expression levels after at least one of the OA treatments tested. These alterations provide a basis to understand the mechanisms underlying the previously described OA-induced effects on different metabolic processes, mainly regarding glucose and mitochondrial metabolism. However, other OA-induced affected genes can not be ruled out, and further studies are required to more comprehensively characterize in the mechanisms of OA-induced interaction on cell metabolism.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Real-time profiling of NK cell killing of human astrocytes using xCELLigence technology. J Neurosci Methods 2011; 200:173-80. [PMID: 21781988 DOI: 10.1016/j.jneumeth.2011.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 12/21/2022]
Abstract
We have conducted the first profiling of human Natural Killer (NK) cell mediated killing of astrocytes using xCELLigence technology. The sensitivity and applicability of xCELLigence was compared to lactate dehydrogenase (LDH) release and time-lapsed microscopy to validate the killing events. The xCELLigence technology uses electrical impedance measurements from adherent cells and converts into Cell Index (CI). NK cells did not register any Cell Index signal directly, therefore all changes in Cell Index are a direct measure of astrocyte responses. Astrocytes are insensitive to basal NK cells (non-activated NKs). Whereas NK cells activated by IL-2 prior to culture with targets rapidly kill astrocytes. This observation was supported by all methods of analysis. Using the xCELLigence we were able to monitor the longer term killing profile. This demonstrated that at all NK ratios, death was achieved if given long enough. In addition, the development of the killing phenotype was investigated by inducing lymphokine activated killing with IL-2 in the presence of the target astrocytes. In this paradigm of killing, the xCELLigence was the only assay suitable due to the prolonged time-course required for killing, which required 4-5 days to achieve maximal killing (100%). This suggested that the astrocytes can directly suppress the killing activity of the NK cells. These data highlight the sensitivity, applicability and profiling power of the xCELLigence system and support its use for further investigation of NK-killing of healthy and/or tumourogenic astrocytic cells.
Collapse
|
17
|
Valdiglesias V, Laffon B, Pásaro E, Méndez J. Okadaic acid induces morphological changes, apoptosis and cell cycle alterations in different human cell types. ACTA ACUST UNITED AC 2011; 13:1831-40. [PMID: 21526234 DOI: 10.1039/c0em00771d] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Okadaic acid (OA) is a marine toxin produced by dinoflagellate species which is frequently accumulated in molluscs usual in the human diet. The exact action mechanism of OA has not been described yet and the results of most reported studies are often conflicting. The aim of this work was to evaluate the OA effects on morphology, cell cycle and apoptosis induction by means of light microscopy and flow cytometry, in three different types of human cells (leukocytes, HepG2 cells and SHSY5Y cells). Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction. OA induced morphological changes in all the cell types studied, and cell cycle disruption only in leukocytes and neuronal cells. SHSY5Y cells were the most sensitive to OA assault. Results obtained in the presence and absence of metabolic activation were similar, suggesting that OA acts both directly and indirectly. Furthermore, OA was found to increase the subG(1) region in the flow cytometry cell cycle analysis, suggesting induction of apoptosis. These results were confirmed by the employment of specific methodologies for studying apoptosis such as caspase 3 activation and annexin V staining. Increases in the apoptosis rate were obtained in all the cells treated in the absence of S9 fraction, accompanied by increases in caspase 3 activation, suggesting that apoptosis induced by OA is a caspase 3-dependent process. Nevertheless, in the presence of S9 fraction no apoptosis was detected, indicating a metabolic detoxifying activity, although necrosis was observed in neuroblastoma cells.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Psychobiology Department, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071 A Coruña, Spain
| | | | | | | |
Collapse
|
18
|
Atienzar FA, Tilmant K, Gerets HH, Toussaint G, Speeckaert S, Hanon E, Depelchin O, Dhalluin S. The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. ACTA ACUST UNITED AC 2011; 16:575-87. [PMID: 21518825 DOI: 10.1177/1087057111402825] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of impedance-based label-free technology applied to drug discovery is nowadays receiving more and more attention. Indeed, such a simple and noninvasive assay that interferes minimally with cell morphology and function allows one to perform kinetic measurements and to obtain information on proliferation, migration, cytotoxicity, and receptor-mediated signaling. The objective of the study was to further assess the usefulness of a real-time cell analyzer (RTCA) platform based on impedance in the context of quality control and data reproducibility. The data indicate that this technology is useful to determine the best coating and cellular density conditions for different adherent cellular models including hepatocytes, cardiomyocytes, fibroblasts, and hybrid neuroblastoma/neuronal cells. Based on 31 independent experiments, the reproducibility of cell index data generated from HepG2 cells exposed to DMSO and to Triton X-100 was satisfactory, with a coefficient of variation close to 10%. Cell index data were also well reproduced when cardiomyocytes and fibroblasts were exposed to 21 compounds three times (correlation >0.91, p < 0.0001). The data also show that a cell index decrease is not always associated with cytotoxicity effects and that there are some confounding factors that can affect the analysis. Finally, another drawback is that the correlation analysis between cellular impedance measurements and classical toxicity endpoints has been performed on a limited number of compounds. Overall, despite some limitations, the RTCA technology appears to be a powerful and reliable tool in drug discovery because of the reasonable throughput, rapid and efficient performance, technical optimization, and cell quality control.
Collapse
|
19
|
Ehlers A, Scholz J, These A, Hessel S, Preiss-Weigert A, Lampen A. Analysis of the passage of the marine biotoxin okadaic acid through an in vitro human gut barrier. Toxicology 2011; 279:196-202. [DOI: 10.1016/j.tox.2010.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/03/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
|
20
|
β-Arrestin 1 inhibits the GTPase-activating protein function of ARHGAP21, promoting activation of RhoA following angiotensin II type 1A receptor stimulation. Mol Cell Biol 2010; 31:1066-75. [PMID: 21173159 DOI: 10.1128/mcb.00883-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of the small GTPase RhoA following angiotensin II stimulation is known to result in actin reorganization and stress fiber formation. Full activation of RhoA, by angiotensin II, depends on the scaffolding protein β-arrestin 1, although the mechanism behind its involvement remains elusive. Here we uncover a novel partner and function for β-arrestin 1, namely, in binding to ARHGAP21 (also known as ARHGAP10), a known effector of RhoA activity, whose GTPase-activating protein (GAP) function it inhibits. Using yeast two-hybrid screening, a peptide array, in vitro binding studies, truncation analyses, and coimmunoprecipitation techniques, we show that β-arrestin 1 binds directly to ARHGAP21 in a region that transects the RhoA effector GAP domain. Moreover, we show that the level of a complex containing β-arrestin 1 and ARHGAP21 is dynamically increased following angiotensin stimulation and that the kinetics of this interaction modulates the temporal activation of RhoA. Using information gleaned from a peptide array, we developed a cell-permeant peptide that serves to inhibit the interaction of these proteins. Using this peptide, we demonstrate that disruption of the β-arrestin 1/ARHGAP21 complex results in a more active ARHGAP21, leading to less-efficient signaling via the angiotensin II type 1A receptor and, thereby, attenuation of stimulated stress fiber formation.
Collapse
|
21
|
Real-time impedance analysis of host cell response to meningococcal infection. J Microbiol Methods 2010; 84:101-8. [PMID: 21078346 DOI: 10.1016/j.mimet.2010.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/28/2010] [Accepted: 11/07/2010] [Indexed: 11/21/2022]
Abstract
Measuring cell proliferation and cell death during bacterial infection involves performing end-point assays that represent the response at a single time point. A new technology from Roche Applied Science and ACEA Biosciences allows continuous monitoring of cells in real-time using specialized cell culture microplates containing micro-electrodes. The xCELLigence system enables continuous measurement and quantification of cell adhesion, proliferation, spreading, cell death and detachment, thus creating a picture of cell function during bacterial infection. Furthermore, lag and log phases can be determined to estimate optimal times to infect cells. In this study we used this system to provide valuable insights into cell function in response to several virulence factors of the meningitis causing pathogen Neisseria meningitidis, including the lipopolysaccharide (LPS), the polysaccharide capsule and the outer membrane protein Opc. We observed that prolonged time of infection with pathogenic Neisseria strains led to morphological changes including cell rounding and loss of cell-cell contact, thus resulting in changed electrical impedance as monitored in real-time. Furthermore, cell function in response to 14 strains of apathogenic Neisseria spp. (N. lactamica and N. mucosa) was analyzed. In contrast, infection with apathogenic N. lactamica isolates did not change electrical impedance monitored for 48 h. Together our data show that this system can be used as a rapid monitoring tool for cellular function in response to bacterial infection and combines high data acquisition rates with ease of handling.
Collapse
|