1
|
Wang WC, Chang J, Lee CH, Chiang YW, Leu SJ, Mao YC, Chiang JR, Yang CK, Wu CJ, Yang YY. Phage display-derived alpaca nanobodies as potential therapeutics for Naja atra snake envenomation. Appl Environ Microbiol 2024; 90:e0012124. [PMID: 38980046 PMCID: PMC11337809 DOI: 10.1128/aem.00121-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Naja atra, the Chinese cobra, is a major cause of snake envenomation in Asia, causing hundreds of thousands of clinical incidents annually. The current treatment, horse serum-derived antivenom, has unpredictable side effects and presents manufacturing challenges. This study focused on developing new-generation snake venom antidotes by using microbial phage display technology to derive nanobodies from an alpaca immunized with attenuated N. atra venom. Following confirmation of the immune response in the alpaca, we amplified VHH genes from isolated peripheral blood mononuclear cells and constructed a phage display VHH library of 1.0 × 107 transformants. After four rounds of biopanning, the enriched phages exhibited increased binding activity to N. atra venom. Four nanobody clones with high binding affinities were selected: aNAH1, aNAH6, aNAH7, and aNAH9. Specificity testing against venom from various snake species, including two Southeast Asian cobra species, revealed nanobodies specific to the genus Naja. An in vivo mouse venom neutralization assay demonstrated that all nanobodies prolonged mouse survival and aNAH6 protected 66.6% of the mice from the lethal dosage. These findings highlight the potential of phage display-derived nanobodies as valuable antidotes for N. atra venom, laying the groundwork for future applications in snakebite treatment.IMPORTANCEChinese cobra venom bites present a formidable medical challenge, and current serum treatments face unresolved issues. Our research applied microbial phage display technology to obtain a new, effective, and cost-efficient treatment approach. Despite interest among scientists in utilizing this technology to screen alpaca antibodies against toxins, the available literature is limited. This study makes a significant contribution by introducing neutralizing antibodies that are specifically tailored to Chinese cobra venom. We provide a comprehensive and unbiased account of the antibody construction process, accompanied by thorough testing of various nanobodies and an assessment of cross-reactivity with diverse snake venoms. These nanobodies represent a promising avenue for targeted antivenom development that bridges microbiology and biotechnology to address critical health needs.
Collapse
Affiliation(s)
- Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wei Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
- Foundation for Poison Control, Taipei, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Chiao Mao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Medicine, National Defense Medical Centre, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jen-Ron Chiang
- Bioproduction Plants, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Kai Yang
- Interdisciplinary Research on Ecology and Sustainability, National Dong Hwa University, Hualien, Taiwan
| | - Chao-Jung Wu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Soopairin S, Patikorn C, Taychakhoonavudh S. Preclinical testing of expired antivenoms and its uses in real-world experience: a systematic review. Emerg Med J 2024; 41:551-559. [PMID: 38844330 DOI: 10.1136/emermed-2023-213707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/15/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Limited access to antivenoms is a global challenge in treating snakebite envenoming. In emergency situations where non-expired antivenoms are not readily available, expired antivenoms may be used to save lives with the risk of deteriorating quality, efficacy and safety. Therefore, we aimed to systematically review and summarise the sparse preclinical evidence of neutralising efficacy of expired antivenoms and real-world experience of using expired antivenoms in humans. METHODS We searched for articles published until 1 March 2023 in PubMed, Scopus, Web of Science and Embase. Studies demonstrating the preclinical studies evaluating expired antivenoms or studies describing the real-world experience of using expired antivenoms were included. Narrative synthesis was applied to summarise the evidence of expired antivenoms. RESULTS Fifteen studies were included. Ten were preclinical studies and five were real-world experiences of using expired antivenoms in humans. The expired duration of antivenoms in the included studies ranged from 2 months to 20 years. The quality of expired antivenoms was evaluated in one study, and they met the standard quality tests. Five studies demonstrated that the expired antivenoms' immunological concentration and venom-binding activity were comparable to non-expired ones but could gradually deteriorate after expiration. Studies consistently exhibited that expired antivenoms, compared with non-expired antivenoms, were effective when stored in proper storage conditions. The safety profile of using expired antivenoms was reported in two included studies. However, it was inconclusive due to limited information. CONCLUSION Even though the quality and efficacy of expired antivenoms are comparable to non-expired antivenoms in preclinical studies, the information is limited in terms of real-world experiences of using expired antivenoms and their safety. Therefore, the use of expired antivenoms may be generally inconclusive due to scarce data. Further investigations may be needed to support the extension of antivenoms' expiration date according to their potential efficacy after expiration.
Collapse
Affiliation(s)
- Sutinee Soopairin
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanthawat Patikorn
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthira Taychakhoonavudh
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Desai N, Pande S, Salave S, Singh TRR, Vora LK. Antitoxin nanoparticles: design considerations, functional mechanisms, and applications in toxin neutralization. Drug Discov Today 2024; 29:104060. [PMID: 38866357 DOI: 10.1016/j.drudis.2024.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The application of nanotechnology has significantly advanced the development of novel platforms that enhance disease treatment and diagnosis. A key innovation in this field is the creation of antitoxin nanoparticles (ATNs), designed to address toxin exposure. These precision-engineered nanosystems have unique physicochemical properties and selective binding capabilities, allowing them to effectively capture and neutralize toxins from various biological, chemical, and environmental sources. In this review, we thoroughly examine their therapeutic and diagnostic potential for managing toxin-related challenges. We also explore recent advancements and offer critical insights into the design and clinical implementation of ATNs.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | | | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
4
|
Naz H, Chamola R, Sarafraz J, Razabizadeh M, Jain S. An efficient densenet-based deep learning model for Big-4 snake species classification. Toxicon 2024; 243:107744. [PMID: 38701904 DOI: 10.1016/j.toxicon.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Snakebite poses a significant health threat in numerous tropical and subtropical nations, with around 5.4 million cases reported annually, which results in 1.8-2.7 million instances of envenomation, underscoring its critical impact on public health. The 'BIG FOUR' group comprises the primary committers responsible for most snake bites in India. Effective management of snakebite victims is essential for prognosis, emphasizing the need for preventive measures to limit snakebite-related deaths. The proposed initiative seeks to develop a transfer learning-based image classification algorithm using DenseNet to identify venomous and non-venomous snakes automatically. The study comprehensively evaluates the image classification results, employing accuracy, F1-score, Recall, and Precision metrics. DenseNet emerges as a potent tool for multiclass snake image classification, achieving a notable accuracy rate of 86%. The proposed algorithm intends to be incorporated into an AI-based snake-trapping device with artificial prey made with tungsten wire and vibration motors to mimic heat and vibration signatures, enhancing its appeal to snakes. The proposed algorithm in this research holds promise as a primary tool for preventing snake bites globally, offering a path toward automated snake capture without human intervention. These findings are significant in preventing snake bites and advancing snakebite mitigation strategies.
Collapse
Affiliation(s)
- Huma Naz
- School of Computer Science and Engineering, University of Petroleum and Energy Studies Dehradun, India
| | - Rahul Chamola
- Department of Mechanical Engineering, School of Advanced Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| | - Jaleh Sarafraz
- UMR7179 CNRS/MNHN, Département Àdaptations du vivant, Museum National d'Histoire Naturelle, Paris, France
| | - Mahdi Razabizadeh
- Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Siddharth Jain
- Department of Mechanical Engineering, School of Advanced Engineering, University of Petroleum and Energy Studies, Dehradun, India
| |
Collapse
|
5
|
Chowdhury MAW, Müller J, Ghose A, Amin R, Sayeed AA, Kuch U, Faiz MA. Combining species distribution models and big datasets may provide finer assessments of snakebite impacts. PLoS Negl Trop Dis 2024; 18:e0012161. [PMID: 38768190 PMCID: PMC11142713 DOI: 10.1371/journal.pntd.0012161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Snakebite is a major poverty-related neglected tropical disease. An integrated scientific approach is needed to understand the dynamics of this important health issue. Our objective was to estimate snakebite occurrence in a tropical area by using a blend of ecological modelling and robust statistical analysis. METHODS The present study used climatic, environmental, and human population density data to determine the area with snakebite occurrence-probability for the first time in Bangladesh. We also analysed a large, 16-year dataset of hospitalized snakebite cases to reveal the epidemiology of snakebite in the south-eastern zone of the country. FINDINGS Our results show that cobra bite is the most commonly occurring venomous snakebite in humans (around ~12% of the total yearly snakebite records), and men are more frequently bitten than women (2/3 of human victims are men). Most bites occur during the rainy season for cobra and green pit viper, while krait bites are not restricted to any particular season. As snakebite incidents are closely related to climate conditions, we can model snakebite risk using temperature and precipitation variables. Whereas there is a lack of snakebite reports from several parts of the study area in official records, our models predict that the entire study area is favourable for snakebite incidents. Based on the combined evidence we estimate that about 200,000 snakebite events occur every year in the south-eastern part of Bangladesh alone. Considering future global climate change, our model projections show that snakebite incidence in Bangladesh might not significantly decrease in the future (- 2070-); however, the distribution of probabilities might change, with a predicted increase of snakebite incidence in the hilly areas of the country. CONCLUSIONS Using climatic data to predict snakebite incidence in Bangladesh allowed us to provide estimations of the total annual number of snakebite cases in the study area. As in most countries, the scarcity of accurate epidemiological data in official records might have masked the real magnitude of this problem. Our analysis suggests that the problem of snakebite envenoming in Bangladesh might be worse than currently perceived. A long-term sustainable snakebite program plan should be designed and institutionalized, considering climatic, geographical and human demographic variables, to obtain better data and facilitate the implementation of accurate snakebite management programs for this country.
Collapse
Affiliation(s)
- Mohammad Abdul Wahed Chowdhury
- Department of Zoology, University of Chittagong, Chattogram, Bangladesh
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Venom Research Centre, Department of Medicine, Chittagong Medical College, Chattogram, Bangladesh
| | - Johannes Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aniruddha Ghose
- Venom Research Centre, Department of Medicine, Chittagong Medical College, Chattogram, Bangladesh
- Department of Medicine, Chittagong Medical College, Chattogram, Bangladesh
| | - Robed Amin
- Venom Research Centre, Department of Medicine, Chittagong Medical College, Chattogram, Bangladesh
- Directorate General of Health Services, Ministry of Health and Family Welfare, Dhaka, Bangladesh
| | - Abdullah Abu Sayeed
- Venom Research Centre, Department of Medicine, Chittagong Medical College, Chattogram, Bangladesh
- Department of Medicine, Chittagong Medical College, Chattogram, Bangladesh
| | - Ulrich Kuch
- Venom Research Centre, Department of Medicine, Chittagong Medical College, Chattogram, Bangladesh
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Mohammad Abul Faiz
- Venom Research Centre, Department of Medicine, Chittagong Medical College, Chattogram, Bangladesh
- Dev Care Foundation, Chattogram, Bangladesh
| |
Collapse
|
6
|
Guadarrama-Martínez A, Neri-Castro E, Boyer L, Alagón A. Variability in antivenom neutralization of Mexican viperid snake venoms. PLoS Negl Trop Dis 2024; 18:e0012152. [PMID: 38717980 PMCID: PMC11078402 DOI: 10.1371/journal.pntd.0012152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Each year, 3,800 cases of snakebite envenomation are reported in Mexico, resulting in 35 fatalities. The only scientifically validated treatment for snakebites in Mexico is the use of antivenoms. Currently, two antivenoms are available in the market, with one in the developmental phase. These antivenoms, produced in horses, consist of F(ab')2 fragments generated using venoms from various species as immunogens. While previous studies primarily focused on neutralizing the venom of the Crotalus species, our study aims to assess the neutralization capacity of different antivenom batches against pit vipers from various genera in Mexico. METHODOLOGY We conducted various biological and biochemical tests to characterize the venoms. Additionally, we performed neutralization tests using all three antivenoms to evaluate their effectiveness against lethal activity and their ability to neutralize proteolytic and fibrinogenolytic activities. RESULTS Our results reveal significant differences in protein content and neutralizing capacity among different antivenoms and even between different batches of the same product. Notably, the venom of Crotalus atrox is poorly neutralized by all evaluated batches despite being the primary cause of envenomation in the country's northern region. Furthermore, even at the highest tested concentrations, no antivenom could neutralize the lethality of Metlapilcoatlus nummifer and Porthidium yucatanicum venoms. These findings highlight crucial areas for improving existing antivenoms and developing new products. CONCLUSION Our research reveals variations in protein content and neutralizing potency among antivenoms, emphasizing the need for consistency in venom characteristics as immunogens. While Birmex neutralizes more LD50 per vial, Antivipmyn excels in specific neutralization. The inability of antivenoms to neutralize certain venoms, especially M. nummifer and P. yucatanicum, highlights crucial improvement opportunities, given the medical significance of these species.
Collapse
Affiliation(s)
- Alid Guadarrama-Martínez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Leslie Boyer
- Department of Pathology, University of Arizona, Tucson, Arizona, United States of America
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
7
|
Borri J, Gutiérrez JM, Knudsen C, Habib AG, Goldstein M, Tuttle A. Landscape of toxin-neutralizing therapeutics for snakebite envenoming (2015-2022): Setting the stage for an R&D agenda. PLoS Negl Trop Dis 2024; 18:e0012052. [PMID: 38530781 PMCID: PMC10965046 DOI: 10.1371/journal.pntd.0012052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Progress in snakebite envenoming (SBE) therapeutics has suffered from a critical lack of data on the research and development (R&D) landscape. A database characterising this information would be a powerful tool for coordinating and accelerating SBE R&D. To address this need, we aimed to identify and categorise all active investigational candidates in development for SBE and all available or marketed products. METHODOLOGY/PRINCIPAL FINDINGS In this landscape study, publicly available data and literature were reviewed to canvas the state of the SBE therapeutics market and research pipeline by identifying, characterising, and validating all investigational drug and biologic candidates with direct action on snake venom toxins, and all products available or marketed from 2015 to 2022. We identified 127 marketed products and 196 candidates in the pipeline, describing a very homogenous market of similar but geographically bespoke products and a diverse but immature pipeline, as most investigational candidates are at an early stage of development, with only eight candidates in clinical development. CONCLUSIONS/SIGNIFICANCE Further investment and research is needed to address the shortfalls in products already on the market and to accelerate R&D for new therapeutics. This should be accompanied by efforts to converge on shared priorities and reshape the current SBE R&D ecosystem to ensure translation of innovation and access.
Collapse
Affiliation(s)
- Juliette Borri
- Policy Cures Research, Sydney, New South Wales, Australia
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - Abdulrazaq G. Habib
- Infectious and Tropical Diseases Unit, Department of Medicine, Bayero University, Kano, Nigeria
| | - Maya Goldstein
- Policy Cures Research, Sydney, New South Wales, Australia
| | - Andrew Tuttle
- Policy Cures Research, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Uko SO, Malami I, Ibrahim KG, Lawal N, Bello MB, Abubakar MB, Imam MU. Revolutionizing snakebite care with novel antivenoms: Breakthroughs and barriers. Heliyon 2024; 10:e25531. [PMID: 38333815 PMCID: PMC10850593 DOI: 10.1016/j.heliyon.2024.e25531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Snakebite envenoming (SBE) is a global public health concern, primarily due to the lack of effective antivenom for treating snakebites inflicted by medically significant venomous snakes prevalent across various geographic locations. The rising demand for safe, cost-effective, and potent snakebite treatments highlights the urgent need to develop alternative therapeutics targeting relevant toxins. This development could provide promising discoveries to create novel recombinant solutions, leveraging human monoclonal antibodies, synthetic peptides and nanobodies. Such technologies as recombinant DNA, peptide and epitope mapping phage display etc) have the potential to exceed the traditional use of equine polyclonal antibodies, which have long been used in antivenom production. Recombinant antivenom can be engineered to target certain toxins that play a critical role in snakebite pathology. This approach has the potential to produce antivenom with improved efficacy and safety profiles. However, there are limitations and challenges associated with these emerging technologies. Therefore, identifying the limitations is critical for overcoming the associated challenges and optimizing the development of recombinant antivenoms. This review is aimed at presenting a thorough overview of diverse technologies used in the development of recombinant antivenom, emphasizing their limitations and offering insights into prospects for advancing recombinant antivenoms.
Collapse
Affiliation(s)
- Samuel Odo Uko
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciecnes, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P. O. Box 2000, Zarqa, 13110, Jordan
| | - Nafiu Lawal
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| |
Collapse
|
9
|
Sørensen CV, Fernández J, Adams AC, Wildenauer HHK, Schoffelen S, Ledsgaard L, Pucca MB, Fiebig M, Cerni FA, Tulika T, Voldborg BG, Karatt-Vellatt A, Morth JP, Ljungars A, Grav LM, Lomonte B, Laustsen AH. Antibody-dependent enhancement of toxicity of myotoxin II from Bothrops asper. Nat Commun 2024; 15:173. [PMID: 38228619 PMCID: PMC10791742 DOI: 10.1038/s41467-023-42624-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 01/18/2024] Open
Abstract
Improved therapies are needed against snakebite envenoming, which kills and permanently disables thousands of people each year. Recently developed neutralizing monoclonal antibodies against several snake toxins have shown promise in preclinical rodent models. Here, we use phage display technology to discover a human monoclonal antibody and show that this antibody causes antibody-dependent enhancement of toxicity (ADET) of myotoxin II from the venomous pit viper, Bothrops asper, in a mouse model of envenoming that mimics a snakebite. While clinical ADET related to snake venom has not yet been reported in humans, this report of ADET of a toxin from the animal kingdom highlights the necessity of assessing even well-known antibody formats in representative preclinical models to evaluate their therapeutic utility against toxins or venoms. This is essential to avoid potential deleterious effects as exemplified in the present study.
Collapse
Affiliation(s)
- Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Anna Christina Adams
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Helen H K Wildenauer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Sanne Schoffelen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, BR-69310-000, Brazil
| | - Michael Fiebig
- Absolute Antibody Ltd, Wilton Centre, Redcar, Cleveland, TS10 4RF, UK
| | - Felipe A Cerni
- Postgraduate Program in Tropical Medicine, University of the State of Amazonas, Manaus, BR-69040-000, Brazil
| | - Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Bjørn G Voldborg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | | | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Lise M Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San Jose, Costa Rica.
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
11
|
Soopairin S, Patikorn C, Taychakhoonavudh S. Antivenom preclinical efficacy testing against Asian snakes and their availability in Asia: A systematic review. PLoS One 2023; 18:e0288723. [PMID: 37467278 DOI: 10.1371/journal.pone.0288723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Cross-neutralizing strategy has been applied to improve access to antivenoms, a key to reducing mortality and disability of snakebite envenoming. However, preclinical studies have been conducted to identify antivenoms' cross-neutralizing ability when clinical studies may not be considered ethical. Therefore, this study aimed to identify and summarize scattered evidence regarding the preclinical efficacy of antivenoms against Asian snakes. METHODOLOGY/PRINCIPLE FINDINGS In this systematic review, we searched for articles published until May 30, 2022, in PubMed, Scopus, Web of Science, and Embase. Preclinical studies that reported the available antivenoms' neutralizing ability against Asian snake lethality were included. Quality assessment was performed using the Systematic Review Centre for Laboratory animal Experimentation's risk of bias tool and the adapted the Animal Research Reporting In Vivo Experiments guidelines. The availability of effective antivenoms against Asian snakes was analyzed by comparing data from included studies with snakebite-information and data platforms developed by the World Health Organization. Fifty-two studies were included. Most studies assessed the antivenom efficacy against snakes from Southeast Asia (58%), followed by South Asia (35%) and East Asia (19%). Twenty-two (49%) medically important snakes had antivenom(s) with confirmed neutralizing ability. Situation analyses of the availability of effective antivenoms in Asia demonstrated that locally produced antivenoms did not cover all medically important snakes in each country. Among countries without local antivenom production, preclinical studies were conducted only in Bangladesh, Sri Lanka, and Malaysia. Risk of bias assessment was limited in some domains because of unreported data. CONCLUSIONS/SIGNIFICANCE Cross-neutralizing of antivenoms against some medically important snakes in Asia was confirmed. This strategy may improve access to geographically effective antivenoms and bypass investment in novel antivenom development, especially in countries without local antivenom production. A database should be developed to aid the development of a snakebite-information system.
Collapse
Affiliation(s)
- Sutinee Soopairin
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanthawat Patikorn
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthira Taychakhoonavudh
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Warrell DA, Williams DJ. Clinical aspects of snakebite envenoming and its treatment in low-resource settings. Lancet 2023; 401:1382-1398. [PMID: 36931290 DOI: 10.1016/s0140-6736(23)00002-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/26/2022] [Accepted: 12/18/2022] [Indexed: 03/16/2023]
Abstract
There is increasing recognition of the public health importance of snakebite envenoming. Worldwide annual incidence is likely to be 5 million bites, with mortality exceeding 150 000 deaths, and the resulting physical and psychological morbidity leads to substantial social and economic repercussions. Prevention through community education by trained health workers is the most effective and economically viable strategy for reducing risk of bites and envenoming. Clinical challenges to effective treatment are most substantial in rural areas of low-resource settings, where snakebites are most common. Classic skills of history taking, physical examination, and use of affordable point-of-care tests should be followed by monitoring of evolving local and systemic envenoming. Despite the profusion of new ideas for interventions, hyperimmune equine or ovine plasma-derived antivenoms remain the only specific treatment for snakebite envenoming. The enormous interspecies and intraspecies complexity and diversity of snake venoms, revealed by modern venomics, demands a radical redesign of many current antivenoms.
Collapse
Affiliation(s)
- David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Experimental Medicine Division, John Radcliffe Hospital, Headington, UK.
| | - David J Williams
- Regulation and Prequalification Department, World Health Organization, Geneva, Switzerland
| |
Collapse
|
13
|
Lin CC, Shih CP, Wang CC, Ouyang CH, Liu CC, Yu JS, Lo CH. The Clinical Usefulness of Taiwan Bivalent Freeze-Dried Hemorrhagic Antivenom in Protobothrops mucrosquamatus- and Viridovipera stejnegeri-Envenomed Patients. Toxins (Basel) 2022; 14:toxins14110794. [PMID: 36422968 PMCID: PMC9699225 DOI: 10.3390/toxins14110794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Snakebites from Protobothrops mucrosquamatus (Taiwan habus) and Viridovipera stejnegeri (green bamboo vipers) account for the most venomous snakebites in Taiwan. The bivalent freeze-dried hemorrhagic (FH) antivenom is employed to treat these two snakebite patients without a strict clinical trial. We evaluated the clinical usefulness of Taiwan bivalent freeze-dried hemorrhagic (FH) antivenom in Taiwan habu- and green bamboo viper-envenomed patients. We checked ELISA- based serum venom antigen levels before and after FH antivenom to evaluate FH's ability to neutralize patients' serum snake venom and its usefulness in reducing limb swelling after snakebites. Patients who had higher serum venom antigen levels had more severe limb swelling. Of the 33 enrolled patients, most of their snake venom antigen levels were undetected after the appliance of antivenom. Most enrolled patients (25/33) had their limb swelling subside within 12 h after antivenom treatment. The failure to reduce limb swelling was probably due to an inadequate antivenom dose applied in more severely envenomated patients. Our data indicate the feasibility of the FH antivenom in effectively eliminating venom and resolving the affected limb swelling caused by Taiwan habu and green bamboo viper bites.
Collapse
Affiliation(s)
- Chih-Chuan Lin
- Department of Emergency Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence:
| | - Chia-Pang Shih
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Chia-Cheng Wang
- Department of Traumatology and Emergency Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Hsiang Ouyang
- Department of Traumatology and Emergency Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Chih-Hong Lo
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
14
|
Li Q, Zeng L, Deng H, Liang Q. Adverse reactions to four types of monovalent antivenom used in the treatment of snakebite envenoming in South China. Toxicon 2022; 219:106935. [DOI: 10.1016/j.toxicon.2022.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
|
15
|
Bolon I, Picek L, Durso AM, Alcoba G, Chappuis F, Ruiz de Castañeda R. An artificial intelligence model to identify snakes from across the world: Opportunities and challenges for global health and herpetology. PLoS Negl Trop Dis 2022; 16:e0010647. [PMID: 35969634 PMCID: PMC9426939 DOI: 10.1371/journal.pntd.0010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/30/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Snakebite envenoming is a neglected tropical disease that kills an estimated 81,000 to 138,000 people and disables another 400,000 globally every year. The World Health Organization aims to halve this burden by 2030. To achieve this ambitious goal, we need to close the data gap in snake ecology and snakebite epidemiology and give healthcare providers up-to-date knowledge and access to better diagnostic tools. An essential first step is to improve the capacity to identify biting snakes taxonomically. The existence of AI-based identification tools for other animals offers an innovative opportunity to apply machine learning to snake identification and snakebite envenoming, a life-threatening situation.
Methodology
We developed an AI model based on Vision Transformer, a recent neural network architecture, and a comprehensive snake photo dataset of 386,006 training photos covering 198 venomous and 574 non-venomous snake species from 188 countries. We gathered photos from online biodiversity platforms (iNaturalist and HerpMapper) and a photo-sharing site (Flickr).
Principal findings
The model macro-averaged F1 score, which reflects the species-wise performance as averaging performance for each species, is 92.2%. The accuracy on a species and genus level is 96.0% and 99.0%, respectively. The average accuracy per country is 94.2%. The model accurately classifies selected venomous and non-venomous lookalike species from Southeast Asia and sub-Saharan Africa.
Conclusions
To our knowledge, this model’s taxonomic and geographic coverage and performance are unprecedented. This model could provide high-speed and low-cost snake identification to support snakebite victims and healthcare providers in low-resource settings, as well as zoologists, conservationists, and nature lovers from across the world.
Collapse
Affiliation(s)
- Isabelle Bolon
- Institute of Global Health, Department of Community Health and Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Lukáš Picek
- Department of Cybernetics, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia
- PiVa AI s.r.o, Plzeň, Czechia
| | - Andrew M. Durso
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Gabriel Alcoba
- Institute of Global Health, Department of Community Health and Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Médecins Sans Frontières—Doctors Without Borders, Geneva, Switzerland
| | - François Chappuis
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Community Health and Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Rafael Ruiz de Castañeda
- Institute of Global Health, Department of Community Health and Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Virus-like particles displaying conserved toxin epitopes stimulate polyspecific, murine antibody responses capable of snake venom recognition. Sci Rep 2022; 12:11328. [PMID: 35790745 PMCID: PMC9256628 DOI: 10.1038/s41598-022-13376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Antivenom is currently the first-choice treatment for snakebite envenoming. However, only a low proportion of antivenom immunoglobulins are specific to venom toxins, resulting in poor dose efficacy and potency. We sought to investigate whether linear venom epitopes displayed on virus like particles can stimulate an antibody response capable of recognising venom toxins from diverse medically important species. Bioinformatically-designed epitopes, corresponding to predicted conserved regions of group I phospholipase A2 and three finger toxins, were engineered for display on the surface of hepatitis B core antigen virus like particles and used to immunise female CD1 mice over a 14 weeks. Antibody responses to all venom epitope virus like particles were detectable by ELISA by the end of the immunisation period, although total antibody and epitope specific antibody titres were variable against the different epitope immunogens. Immunoblots using pooled sera demonstrated recognition of various venom components in a diverse panel of six elapid venoms, representing three continents and four genera. Insufficient antibody yields precluded a thorough assessment of the neutralising ability of the generated antibodies, however we were able to test polyclonal anti-PLA2 IgG from three animals against the PLA2 activity of Naja nigricollis venom, all of which showed no neutralising ability. This study demonstrates proof-of-principle that virus like particles engineered to display conserved toxin linear epitopes can elicit specific antibody responses in mice which are able to recognise a geographically broad range of elapid venoms.
Collapse
|
17
|
Adrião AAX, dos Santos AO, de Lima EJSP, Maciel JB, Paz WHP, da Silva FMA, Pucca MB, Moura-da-Silva AM, Monteiro WM, Sartim MA, Koolen HHF. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front Immunol 2022; 13:842576. [PMID: 35615352 PMCID: PMC9126284 DOI: 10.3389/fimmu.2022.842576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.
Collapse
Affiliation(s)
- Asenate A. X. Adrião
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Aline O. dos Santos
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Emilly J. S. P. de Lima
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Jéssica B. Maciel
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Weider H. P. Paz
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| | - Felipe M. A. da Silva
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
- Multidisciplinary Support Center, Federal University of Amazonas, Manaus, Brazil
| | - Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Ana M. Moura-da-Silva
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Laboratory of Immunopathology, Institute Butantan, São Paulo, Brazil
| | - Wuelton M. Monteiro
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Marco A. Sartim
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- University Nilton Lins, Manaus, Brazil
| | - Hector H. F. Koolen
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
18
|
Miersch S, de la Rosa G, Friis R, Ledsgaard L, Boddum K, Laustsen AH, Sidhu SS. Synthetic antibodies block receptor binding and current-inhibiting effects of α-cobratoxin from Naja kaouthia. Protein Sci 2022; 31:e4296. [PMID: 35481650 PMCID: PMC8994502 DOI: 10.1002/pro.4296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
Each year, thousands of people fall victim to envenomings caused by cobras. These incidents often result in death due to paralysis caused by α-neurotoxins from the three-finger toxin (3FTx) family, which are abundant in elapid venoms. Due to their small size, 3FTxs are among the snake toxins that are most poorly neutralized by current antivenoms, which are based on polyclonal antibodies of equine or ovine origin. While antivenoms have saved countless lives since their development in the late 18th century, an opportunity now exists to improve snakebite envenoming therapy via the application of new biotechnological methods, particularly by developing monoclonal antibodies against poorly neutralized α-neurotoxins. Here, we describe the use of phage-displayed synthetic antibody libraries and the development and characterization of six synthetic antibodies built on a human IgG framework and developed against α-cobratoxin - the most abundant long-chain α-neurotoxin from Naja kaouthia venom. The synthetic antibodies exhibited sub-nanomolar affinities to α-cobratoxin and neutralized the curare-mimetic effect of the toxin in vitro. These results demonstrate that phage display technology based on synthetic repertoires can be used to rapidly develop human antibodies with drug-grade potencies as inhibitors of venom toxins.
Collapse
Affiliation(s)
- Shane Miersch
- The Donnelly CentreUniversity of TorontoTorontoOntarioCanada
| | | | - Rasmus Friis
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
| | - Line Ledsgaard
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
| | | | - Andreas H. Laustsen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
| | | |
Collapse
|
19
|
Steegemans I, Sisay K, Nshimiyimana E, Gebrewold G, Piening T, Menberu Tessema E, Sahelie B, Alcoba G, Gebretsadik FS, Essink D, Collin S, Lucero E, Ritmeijer K. Treatment outcomes among snakebite patients in north-west Ethiopia-A retrospective analysis. PLoS Negl Trop Dis 2022; 16:e0010148. [PMID: 35139079 PMCID: PMC8863263 DOI: 10.1371/journal.pntd.0010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/22/2022] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Millions of people are bitten by venomous snakes annually, causing high mortality and disability, but the true burden of this neglected health issue remains unknown. Since 2015, Médecins Sans Frontières has been treating snakebite patients in a field hospital in north-west Ethiopia. Due to the poor market situation for effective and safe antivenoms for Sub-Saharan Africa, preferred antivenom was not always available, forcing changes in choice of antivenom used. This study describes treatment outcomes and the effectiveness and safety of different antivenoms used. METHODOLOGY / PRINCIPAL FINDINGS This retrospective observational study included 781 snakebite patients presenting at the field hospital between 2015 and 2019. Adjusted odds ratios, 95%-CI and p-values were used to compare the treatment outcome of patients treated with Fav-Afrique (n = 149), VacSera (n = 164), and EchiTAb-PLUS-ICP (n = 156) antivenom, and to identify the risk of adverse reactions for each antivenom. Whereas only incidental snakebite cases presented before 2015, after treatment was made available, cases rapidly increased to 1,431 in 2019. Envenomation was mainly attributed to North East African saw-scaled viper (Echis pyramidum) and puff adder (Bitis arietans). Patients treated with VacSera antivenom showed lower chance of uncomplicated treatment outcome (74.4%) compared to Fav-Afrique (93.2%) and EchiTAb-PLUS-ICP (90.4%). VacSera and EchiTAb-PLUS-ICP were associated with 16- and 6-fold adjusted odds of treatment reaction compared to Fav-Afrique, respectively, and VacSera was weakly associated with higher odds of death. CONCLUSIONS / SIGNIFICANCE Snakebite frequency is grossly underreported unless treatment options are available. Although EchiTAb-PLUS-ICP showed favorable outcomes in this retrospective analysis, prospective randomized trials are needed to evaluate the effectiveness and safety of the most promising antivenoms for Sub-Saharan Africa. Structural investment in sustained production and supply of antivenom is urgently needed.
Collapse
Affiliation(s)
- Inge Steegemans
- Médecins Sans Frontières, Amsterdam, The Netherlands
- VU University, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | - Simon Collin
- Federal University of Espírito Santo, Vitória, Brazil
| | | | | |
Collapse
|
20
|
Palasuberniam P, Chan YW, Tan KY, Tan CH. Snake Venom Proteomics of Samar Cobra (Naja samarensis) from the Southern Philippines: Short Alpha-Neurotoxins as the Dominant Lethal Component Weakly Cross-Neutralized by the Philippine Cobra Antivenom. Front Pharmacol 2022; 12:727756. [PMID: 35002690 PMCID: PMC8740184 DOI: 10.3389/fphar.2021.727756] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The Samar Cobra, Naja samarensis, is endemic to the southern Philippines and is a WHO-listed Category 1 venomous snake species of medical importance. Envenomation caused by N. samarensis results in neurotoxicity, while there is no species-specific antivenom available for its treatment. The composition and neutralization of N. samarensis venom remain largely unknown to date. This study thus aimed to investigate the venom proteome of N. samarensis for a comprehensive profiling of the venom composition, and to examine the immunorecognition as well as neutralization of its toxins by a hetero-specific antivenom. Applying C18 reverse-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (LC-MS/MS), three-finger toxins (3FTx) were shown to dominate the venom proteome by 90.48% of total venom proteins. Other proteins in the venom comprised snake venom metalloproteinases, phospholipases A2, cysteine-rich secretory proteins, venom nerve growth factors, L-amino acid oxidases and vespryn, which were present at much lower abundances. Among all, short-chain alpha-neurotoxins (SαNTX) were the most highly expressed toxin within 3FTx family, constituting 65.87% of the total venom proteins. The SαNTX is the sole neurotoxic component of the venom and has an intravenous median lethal dose (LD50) of 0.18 μg/g in mice. The high abundance and low LD50 support the potent lethal activity of N. samarensis venom. The hetero-specific antivenom, Philippine Cobra Antivenom (PCAV, raised against Naja philippinensis) were immunoreactive toward the venom and its protein fractions, including the principal SαNTX. In efficacy study, PCAV was able to cross-neutralize the lethality of SαNTX albeit the effect was weak with a low potency of 0.20 mg/ml (defined as the amount of toxin completely neutralized per milliliter of the antivenom). With a volume of 5 ml, each vial of PCAV may cross-neutralize approximately 1 mg of the toxin in vivo. The findings support the potential para-specific use of PCAV in treating envenomation caused by N. samarensis while underscoring the need to improve the potency of its neutralization activity, especially against the highly lethal alpha-neurotoxins.
Collapse
Affiliation(s)
- Praneetha Palasuberniam
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Yi Wei Chan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Affiliation(s)
- Ravikar Ralph
- Department of Internal Medicine, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | - Sanjib Kumar Sharma
- Department of Internal Medicine, B.P. Koirala Institute of Health Sciences, Dharan, 76500, Nepal
| | - Isabela Ribeiro
- Dynamic Portfolio, Drugs for Neglected Diseases initiative (DNDi), 15 Chemin Louis-Dunant, 1202, Geneva, Switzerland
| | - François Chappuis
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 6, Geneva, CH 1211, Switzerland
| |
Collapse
|
22
|
Mender MM, Bolton F, Berry C, Young M. Antivenom: An immunotherapy for the treatment of snakebite envenoming in sub-Saharan Africa. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:435-477. [PMID: 35305724 DOI: 10.1016/bs.apcsb.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Snakebite envenoming (SBE) leads to significant morbidity and mortality, resulting in over 90,000 deaths and approximately 400,000 amputations annually. In sub-Saharan Africa (SSA) alone, SBE accounts for over 30,000 deaths per annum. Since 2017, SBE has been classified as a priority Neglected Tropical Disease (NTD) by the World Health Organisation (WHO). The major species responsible for mortality from SBE within SSA are from the Bitis, Dendroaspis, Echis and Naja genera. Pharmacologically active toxins such as metalloproteinases, serine proteinases, 3-finger toxins, kunitz-type toxins, and phospholipase A2s are the primary snake venom components. These toxins induce cytotoxicity, coagulopathy, hemorrhage, and neurotoxicity in envenomed victims. Antivenom is currently the only available venom-specific treatment for SBE and contains purified equine or ovine polyclonal antibodies, collected from donor animals repeatedly immunized with low doses of adjuvanted venom. The resulting plasma or serum contains a high titre of specific antibodies, which can then be collected and stored until required. The purified antibodies are either whole IgG, monovalent fragment antibody (Fab) or divalent fragment antibody F(ab')2. Despite pharmacokinetic and pharmacodynamic differences, all three are effective in the treatment of SBE. No antivenom is without adverse reactions but, the level of their impact and severity varies from benign early adverse reactions to the rarely occurring fatal anaphylactic shock. However, the major side effects are largely reversible with immediate administration of adrenaline and corticosteroids. There are 16 different antivenoms marketed within SSA, but the efficacy and safety profiles are only published for less than 50% of these products.
Collapse
Affiliation(s)
- Mender M Mender
- School of Bioscience, Cardiff University, Cardiff, United Kingdom; Department of Research and Development, MicroPharm Ltd, Newcastle Emlyn, United Kingdom.
| | - Fiona Bolton
- Department of Research and Development, MicroPharm Ltd, Newcastle Emlyn, United Kingdom
| | - Colin Berry
- School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Mark Young
- School of Bioscience, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
23
|
Nogueira DCS, Calil IP, Santos RMMD, Andrade Filho AD, Cota G. A phase IV, prospective, observational study of the clinical safety of snake antivenoms. Rev Inst Med Trop Sao Paulo 2021; 63:e79. [PMID: 34878037 PMCID: PMC8660026 DOI: 10.1590/s1678-9946202163079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/29/2021] [Indexed: 11/21/2022] Open
Abstract
Snake envenoming is a neglected tropical disease that affects more than 2.7 million people worldwide. The treatment is based on the administration of antivenom composed of heterologous immunoglobulins, species-specific therapy involving the possibility of adverse reactions due to activation of the immune system. Considering the scarcity of prospective studies evaluating the safety of snake antivenoms, this study aimed to describe and characterize adverse events after antivenom infusion in an observational, prospective, single-centre investigation conducted in a referral centre in Brazil. A total of 47 victims of snake envenoming were included in the study, who were mostly men (75%), with ages ranging from 2 to 83 years. Twenty-two participants (47%) presented manifestations compatible with infusion-related reactions (IRRs) during or up to two hours after F(ab')2 heterologous immunoglobulin infusion. The most common clinical manifestation related to the infusion was a diffuse cutaneous rash (82%), followed by respiratory manifestations (46%) and facial swelling (23%). In four cases (9%), IRR were considered serious adverse events (SAE), characterized by haemodynamic instability, airway obstruction or hypoxia. Only one patient developed symptoms compatible with serum sickness. Although almost half of the patients treated with antivenom sera experienced IRRs, the SAE rate was 9%; in all cases, the adverse reaction was reversible by using supportive treatment, and there were no deaths. The results have shown that there is much to improve in the antivenom production process to obtain a more purified and specific product. Even so, a timely antivenom serum administration managed by well-trained health teams is safe and prevents complications after snake-related accidents.
Collapse
Affiliation(s)
| | - Iara Pinheiro Calil
- Fundação Oswaldo Cruz, Instituto René Rachou, Departamento de Pesquisa Clínica e Políticas Públicas de Doenças Infecto-Parasitárias, Belo Horizonte, Minas Gerais, Brazil
| | | | - Adebal de Andrade Filho
- Fundação Hospitalar do Estado de Minas Gerais, Hospital João XXIII, Centro de Toxicologia, Belo Horizonte, Minas Gerais, Brazil
| | - Gláucia Cota
- Fundação Oswaldo Cruz, Instituto René Rachou, Departamento de Pesquisa Clínica e Políticas Públicas de Doenças Infecto-Parasitárias, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
24
|
Potet J, Beran D, Ray N, Alcoba G, Habib AG, Iliyasu G, Waldmann B, Ralph R, Faiz MA, Monteiro WM, de Almeida Gonçalves Sachett J, di Fabio JL, Cortés MDLÁ, Brown NI, Williams DJ. Access to antivenoms in the developing world: A multidisciplinary analysis. Toxicon X 2021; 12:100086. [PMID: 34786555 PMCID: PMC8578041 DOI: 10.1016/j.toxcx.2021.100086] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Access to safe, effective, quality-assured antivenom products that are tailored to endemic venomous snake species is a crucial component of recent coordinated efforts to reduce the global burden of snakebite envenoming. Multiple access barriers may affect the journey of antivenoms from manufacturers to the bedsides of patients. Our review describes the antivenom ecosystem at different levels and identifies solutions to overcome these challenges. At the global level, there is insufficient manufacturing output to meet clinical needs, notably for antivenoms intended for use in regions with a scarcity of producers. At national level, variable funding and deficient regulation of certain antivenom markets can lead to the procurement of substandard antivenom. This is particularly true when producers fail to seek registration of their products in the countries where they should be used, or where weak assessment frameworks allow registration without local clinical evaluation. Out-of-pocket expenses by snakebite victims are often the main source of financing antivenoms, which results in the underuse or under-dosing of antivenoms, and a preference for low-cost products regardless of efficacy. In resource-constrained rural areas, where the majority of victims are bitten, supply of antivenom in peripheral health facilities is often unreliable. Misconceptions about treatment of snakebite envenoming are common, further reducing demand for antivenom and exacerbating delays in reaching facilities equipped for antivenom use. Multifaceted interventions are needed to improve antivenom access in resource-limited settings. Particular attention should be paid to the comprehensive list of actions proposed within the WHO Strategy for Prevention and Control of Snakebite Envenoming.
Collapse
Affiliation(s)
- Julien Potet
- Médecins Sans Frontières Access Campaign, Geneva, Switzerland
| | - David Beran
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Gabriel Alcoba
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Médecins Sans Frontières, Medical Department, Operational Center Geneva, Geneva, Switzerland
| | - Abdulrazaq Garba Habib
- Infectious Disease and Tropical Medicine Unit, Department of Medicine, College of Health Science, Bayero University Kano, Nigeria
| | - Garba Iliyasu
- Infectious Disease and Tropical Medicine Unit, Department of Medicine, College of Health Science, Bayero University Kano, Nigeria
| | | | - Ravikar Ralph
- Department of Internal Medicine & Poisons Information Center, Christian Medical College, Vellore, 632004, Tamil Nadu, India
| | | | - Wuelton Marcelo Monteiro
- Department of Research, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- School of Health Sciences, Universidade Do Estado Do Amazonas, Manaus, Brazil
| | | | | | | | - Nicholas I. Brown
- Global Snakebite Initiative, 19 Haig Street, Ashgrove, Qld, 4060, Australia
- University of Queensland, Australia
| | - David J. Williams
- Global Snakebite Initiative, 19 Haig Street, Ashgrove, Qld, 4060, Australia
| |
Collapse
|
25
|
Hamza M, Knudsen C, Gnanathasan CA, Monteiro W, Lewin MR, Laustsen AH, Habib AG. Clinical management of snakebite envenoming: Future perspectives. Toxicon X 2021; 11:100079. [PMID: 34430847 PMCID: PMC8374517 DOI: 10.1016/j.toxcx.2021.100079] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Snakebite envenoming is a major cause of morbidity and mortality in rural communities throughout the tropics. Generally, the main clinical features of snakebites are local swelling, tissue necrosis, shock, spontaneous systemic hemorrhage, incoagulable blood, paralysis, rhabdomyolysis, and acute kidney injury. These clinical manifestations result from complex biochemical venom constituents comprising of cytotoxins, hemotoxins, neurotoxins, myotoxins, and other substances. Timely diagnosis of envenoming and identification of the responsible snake species is clinically challenging in many parts of the world and necessitates prompt and thorough clinical assessment, which could be supported by the development of reliable, affordable, widely-accessible, point-of-care tests. Conventional antivenoms based on polyclonal antibodies derived from animals remain the mainstay of therapy along with supportive medical and surgical care. However, while antivenoms save countless lives, they are associated with adverse reactions, limited potency, and are relatively inefficacious against presynaptic neurotoxicity and in preventing necrosis. Nevertheless, major scientific and technological advances are facilitating the development of new molecular and immunologic diagnostic tests, as well as a new generation of antivenoms comprising human monoclonal antibodies with broader and more potent neutralization capacity and less immunogenicity. Repurposed pharmaceuticals based on small molecule inhibitors (e.g., marimastat and varespladib) used alone and in combination against enzymatic toxins, such as metalloproteases and phospholipase A2s, have shown promise in animal studies. These orally bioavailable molecules could serve as early interventions in the out-of-hospital setting if confirmed to be safe and efficacious in clinical studies. Antivenom access can be improved by the usage of drones and ensuring constant antivenom supply in remote endemic rural areas. Overall, the improvement of clinical management of snakebite envenoming requires sustained, coordinated, and multifaceted efforts involving basic and applied sciences, new technology, product development, effective clinical training, implementation of existing guidelines and therapeutic approaches, supported by improved supply of existing antivenoms.
Collapse
Affiliation(s)
- Muhammad Hamza
- Infectious and Tropical Diseases Unit, Bayero University Kano, Nigeria
| | - Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Wuelton Monteiro
- Department of Research, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Matthew R. Lewin
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, USA
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
26
|
Gerardo CJ, Silvius E, Schobel S, Eppensteiner JC, McGowan LM, Elster EA, Kirk AD, Limkakeng AT. Association of a Network of Immunologic Response and Clinical Features With the Functional Recovery From Crotalinae Snakebite Envenoming. Front Immunol 2021; 12:628113. [PMID: 33790901 PMCID: PMC8006329 DOI: 10.3389/fimmu.2021.628113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/26/2021] [Indexed: 11/26/2022] Open
Abstract
Background The immunologic pathways activated during snakebite envenoming (SBE) are poorly described, and their association with recovery is unclear. The immunologic response in SBE could inform a prognostic model to predict recovery. The purpose of this study was to develop pre- and post-antivenom prognostic models comprised of clinical features and immunologic cytokine data that are associated with recovery from SBE. Materials and Methods We performed a prospective cohort study in an academic medical center emergency department. We enrolled consecutive patients with Crotalinae SBE and obtained serum samples based on previously described criteria for the Surgical Critical Care Initiative (SC2i)(ClinicalTrials.gov Identifier: NCT02182180). We assessed a standard set of clinical variables and measured 35 unique cytokines using Luminex Cytokine 35-Plex Human Panel pre- and post-antivenom administration. The Patient-Specific Functional Scale (PSFS), a well-validated patient-reported outcome of functional recovery, was assessed at 0, 7, 14, 21 and 28 days and the area under the patient curve (PSFS AUPC) determined. We performed Bayesian Belief Network (BBN) modeling to represent relationships with a diagram composed of nodes and arcs. Each node represents a cytokine or clinical feature and each arc represents a joint-probability distribution (JPD). Results Twenty-eight SBE patients were enrolled. Preliminary results from 24 patients with clinical data, 9 patients with pre-antivenom and 11 patients with post-antivenom cytokine data are presented. The group was mostly female (82%) with a mean age of 38.1 (SD ± 9.8) years. In the pre-antivenom model, the variables most closely associated with the PSFS AUPC are predominantly clinical features. In the post-antivenom model, cytokines are more fully incorporated into the model. The variables most closely associated with the PSFS AUPC are age, antihistamines, white blood cell count (WBC), HGF, CCL5 and VEGF. The most influential variables are age, antihistamines and EGF. Both the pre- and post-antivenom models perform well with AUCs of 0.87 and 0.90 respectively. Discussion Pre- and post-antivenom networks of cytokines and clinical features were associated with functional recovery measured by the PSFS AUPC over 28 days. With additional data, we can identify prognostic models using immunologic and clinical variables to predict recovery from SBE.
Collapse
Affiliation(s)
| | | | - Seth Schobel
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Lauren M McGowan
- Department of Surgery, Duke University, Durham, NC, United States
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, NC, United States
| | | |
Collapse
|
27
|
Tan CH, Liew JL, Chong HP, Tan NH. Protein decomplexation and proteomics: A complementary assessment method of the physicochemical purity of antivenom. Biologicals 2021; 69:22-29. [PMID: 33431232 DOI: 10.1016/j.biologicals.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
The quality of antivenom is governed by its safety and efficacy profiles. These quality characteristics are much influenced by the purity of antivenom content. Rigorous assessment and meticulous monitoring of antivenom purity at the preclinical setting is hence crucial. This study aimed to explore an integrative proteomic method to assess the physicochemical purity of four commercially available antivenoms in the region. The antivenoms were subjected to Superdex 200 HR 10/30 size-exclusion fast-protein liquid chromatography (SE-FPLC). The proteins in each fraction were trypsin-digested and analyzed by nano-ESI-liquid chromatography-tandem mass spectrometry (LC-MS/MS). SE-FPLC resolved the antivenom proteins into three major protein components of very high (>200 kDa), high (100-120 kDa) and medium (<60 kDa) molecular weights. The major components (80-95% of total proteins) in the antivenoms were proteins of 100-120 kDa consisting of mainly the light and partially digested heavy immunoglobulin chains, consistent with F(ab')2 as the active principle of the antivenoms. However, LC-MS/MS also detected substantial quantity of large proteins (e.g. alpha-2-macroglobulins), immunoglobulin aggregates and impurities e.g. albumins in some products. The method is practical and able to unveil the quantitative and qualitative aspects of antivenom protein compositions. It is therefore a potentially useful preclinical assessment tool of antivenom purity.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jia Lee Liew
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ho Phin Chong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Alangode A, Rajan K, Nair BG. Snake antivenom: Challenges and alternate approaches. Biochem Pharmacol 2020; 181:114135. [DOI: 10.1016/j.bcp.2020.114135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
|
29
|
Watson JA, Lamb T, Holmes J, Warrell DA, Thwin KT, Aung ZL, Oo MZ, Nwe MT, Smithuis F, Ashley EA. A Bayesian phase 2 model based adaptive design to optimise antivenom dosing: Application to a dose-finding trial for a novel Russell's viper antivenom in Myanmar. PLoS Negl Trop Dis 2020; 14:e0008109. [PMID: 33196672 PMCID: PMC7704047 DOI: 10.1371/journal.pntd.0008109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 11/30/2020] [Accepted: 10/10/2020] [Indexed: 01/15/2023] Open
Abstract
For most antivenoms there is little information from clinical studies to infer the relationship between dose and efficacy or dose and toxicity. Antivenom dose-finding studies usually recruit too few patients (e.g. fewer than 20) relative to clinically significant event rates (e.g. 5%). Model based adaptive dose-finding studies make efficient use of accrued patient data by using information across dosing levels, and converge rapidly to the contextually defined 'optimal dose'. Adequate sample sizes for adaptive dose-finding trials can be determined by simulation. We propose a model based, Bayesian phase 2 type, adaptive clinical trial design for the characterisation of optimal initial antivenom doses in contexts where both efficacy and toxicity are measured as binary endpoints. This design is illustrated in the context of dose-finding for Daboia siamensis (Eastern Russell's viper) envenoming in Myanmar. The design formalises the optimal initial dose of antivenom as the dose closest to that giving a pre-specified desired efficacy, but resulting in less than a pre-specified maximum toxicity. For Daboia siamensis envenoming, efficacy is defined as the restoration of blood coagulability within six hours, and toxicity is defined as anaphylaxis. Comprehensive simulation studies compared the expected behaviour of the model based design to a simpler rule based design (a modified '3+3' design). The model based design can identify an optimal dose after fewer patients relative to the rule based design. Open source code for the simulations is made available in order to determine adequate sample sizes for future adaptive snakebite trials. Antivenom dose-finding trials would benefit from using standard model based adaptive designs. Dose-finding trials where rare events (e.g. 5% occurrence) are of clinical importance necessitate larger sample sizes than current practice. We will apply the model based design to determine a safe and efficacious dose for a novel lyophilised antivenom to treat Daboia siamensis envenoming in Myanmar.
Collapse
Affiliation(s)
- James A. Watson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas Lamb
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
| | - Jane Holmes
- Centre for Statistics in Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David A. Warrell
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Min Zaw Oo
- University of Medicine 2, Yangon, Myanmar
| | - Myat Thet Nwe
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
| | - Frank Smithuis
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Laos
| |
Collapse
|
30
|
Bala AA, Jatau AI, Yunusa I, Mohammed M, Mohammed AKH, Isa AM, Wada AS, Gulma KA, Bello I, Michael GC, Malami S, Chedi BZA. Knowledge assessment of snake antivenom among healthcare practitioners involving educational intervention in northern Nigeria: a study protocol. Ther Adv Drug Saf 2020; 11:2042098620935721. [PMID: 32944213 PMCID: PMC7466874 DOI: 10.1177/2042098620935721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction Snakebite envenoming (SBE) is an important occupational and public health hazard especially in sub-Saharan Africa. For optimum management of SBE, adequate knowledge of Snake antivenom (SAV) is very critical among the healthcare practioners in this region. Information related to the knowledge of SAV use in the management of SBE, as well as SAV logistics is scarce among the Health Care Professionals (HCPs) in Nigeria, particularly in the northern region. We therefore aimed to develop, validate and utilize a tool to assess the SAV knowlegde among HCPs in northern Nigeria. We also sought to implement and evaluate an intervention that could improve the SAV knowledge among the HCPs. Methods The proposed study will be conducted in three phases: Phase I will involve the development of the item-pool to be included in the tool, followed by a face, content validity and construct validity. The tool reliability, readability and difficulty index will be determined. Phase II will involve the utilization of the tool to assess baseline SAV knowledge among the HCPs followed by an educational intervention. Multiple Linear Regression analysis will be used to determine the factors associated with SAV knowledge among the HCPs. Lastly, Phase III which will be a repeat of Phase II to assess and evaluate the knowledge after the intervention. Discussion The study design and findings may guide future implementation and streamline the intervention of improving SAV knowledge in HCPs training and practice. Lay Summary Knowledge assessment and educational intervention of snake antivenom among healthcare practitioners in northern Nigeria: a study protocol Snakebite envenoming (SBE) is an important occupational and public health hazard especially in sub-Saharan Africa. For optimum management of SBE, adequate knowledge of snake antivenom (SAV) is very critical among the healthcare practitioners. The baseline knowledge SAV dosage, mode of administration, availability, and logistics is very relevant among healthcare professionals, particularly those that are directly involved in its logistics. It is paramount that SAV is handled and used appropriately. The efforts and advocacy for the availability for more SAV will be in vain if not handled appropriately before they are used. This study protocol aims to develop a tool, to assess SAV knowledge and effects of educational interventions among healthcare professionals (HCPs) in northern Nigeria. This protocol suggests conducting studies in three phases: (a) Development and validation of SAV knowledge assessment tool, (b) Baseline assessment of SAV knowledge assessment tool among HCPs, and (c) Development, implementation and evaluation of an educational intervention to improve SAV knowledge among HCPs in northern Nigeria.
Collapse
Affiliation(s)
- Auwal A Bala
- Department of Pharmacology, College of Medicine and Health Sciences, Federal University Dutse, Nigeria
| | - A I Jatau
- School of Pharmacy and Pharmacology, University of Tasmania, Tasmania Australia
| | - Ismaeel Yunusa
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - M Mohammed
- School of PharmaceuticalSciences, University Sains Malaysia,11800 Penang, Malaysia
| | | | | | - A S Wada
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria
| | - Kabiru A Gulma
- School of Global Health and Bioethics, Euclid University, The Gambia
| | - Inuwa Bello
- Jigawa State Hospital Services, Dutse, Nigeria
| | - Godpower C Michael
- Department of Family medicine, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Sani Malami
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria
| | - Basheer Z A Chedi
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria
| |
Collapse
|
31
|
Ainsworth S, Menzies SK, Casewell NR, Harrison RA. An analysis of preclinical efficacy testing of antivenoms for sub-Saharan Africa: Inadequate independent scrutiny and poor-quality reporting are barriers to improving snakebite treatment and management. PLoS Negl Trop Dis 2020; 14:e0008579. [PMID: 32817682 PMCID: PMC7462309 DOI: 10.1371/journal.pntd.0008579] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/01/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The World Health Organization's strategy to halve snakebite mortality and morbidity by 2030 includes an emphasis on a risk-benefit process assessing the preclinical efficacy of antivenoms manufactured for sub-Saharan Africa. To assist this process, we systematically collected, standardised and analysed all publicly available data on the preclinical efficacy of antivenoms designed for sub-Saharan Africa. METHODOLOGY/PRINCIPAL FINDINGS Using a systematic search of publication databases, we focused on publicly available preclinical reports of the efficacy of 16 antivenom products available in sub Saharan Africa. Publications since 1999 reporting the industry standard intravenous pre-incubation method of murine in vivo neutralisation of venom lethality (median effective dose [ED50]) were included. Eighteen publications met the criteria. To permit comparison of the several different reported ED50 values, it was necessary to standardise these to microlitre of antivenom resulting in 50% survival of mice challenged per milligram of venom (μl/mg). We were unable to identify publicly available preclinical data on four antivenoms, whilst data for six polyspecific antivenoms were restricted to a small number of venoms. Only four antivenoms were tested against a wide range of venoms. Examination of these studies for the reporting of key metrics required for interpreting antivenom ED50s were highly variable, as evidenced by eight different units being used for the described ED50 values. CONCLUSIONS/SIGNIFICANCE There is a disturbing lack of (i) preclinical efficacy testing of antivenom for sub Saharan Africa, (ii) publicly available reports and (iii) independent scrutiny of this medically important data. Where reports do exist, the methods and metrics used are highly variable. This prevents comprehensive meta-analysis of antivenom preclinical efficacy, and severely reduces the utility of antivenom ED50 results in the decision making of physicians treating patients and of national and international health agencies. Here, we propose the use of a standardised result reporting checklist to resolve this issue. Implementation of these straightforward steps will deliver uniform evaluation of products across laboratories, facilitate meta-analyses, and contribute vital information for designing the clinical trials needed to achieve the WHO target of halving snakebite morbidity and mortality by 2030.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Stefanie K. Menzies
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Robert A. Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
32
|
Ramdhani N, Jonker S, van 't Kruys K, Bansie R, Zijlmans W. Snakebites in Suriname: Evaluation of the Protocolled Administration of Anti-Snake Venom in a Tertiary Care Setting. Am J Trop Med Hyg 2020; 103:1711-1716. [PMID: 32662397 DOI: 10.4269/ajtmh.20-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Venomous snakebites regularly occur in Suriname, a middle-income country located on the north coast of South America. Officially reported data on incidence and mortality are lacking. The aim of this retrospective study was to assess whether the use of our national snakebite protocol with selective administration of anti-snake venom (ASV) in patients with signs of snakebite envenoming improved clinical outcome as measured by mortality and length of stay (LOS) in the hospital. Medical records of all patients admitted at the Academic Hospital Paramaribo from 2013 to 2015, before and after the introduction of the protocol, with signs of snakebite envenoming, were reviewed for demographics, snakebite characteristics, mortality, length of hospital stay, administration of ASV, and occurrence of complications. Secondary outcome measures were the development of late complications due to a snakebite. Sixty-eight and 76 patients in 2013 and 2015, respectively, with venomous or potentially venomous snakebites were identified. One patient (1.5%) in 2013 and 29 patients (38.2%) in 2015 received ASV. In 2013 one patient died: deterioration of renal function occurred before protocolled ASV administration. No deaths were reported in 2015. There was no difference in the overall length of hospital stay between 2013 and 2015 or in the total number of late complications. In 2015, the mean LOS (±SD) for patients who did not receive ASV (n = 47) was significantly lower than that for patients who received ASV (n = 29), 2.15 ± 2.27 versus 5.31 ± 5.53 days, respectively (P = 0.001). The mean LOS (±SD) for patients who did not receive ASV in 2013 (n = 67) and 2015 (n = 47) was 4.06 ± 5.44 and 2.15 ± 2.27 days, respectively, which also differed significantly (P = 0.025). The protocolled evaluation of snakebite victims resulted in more patients being admitted to the intensive care unit and receiving ASV and a shorter length of hospital stay for the patients who did not receive ASV, and no difference in the occurrence of complications was observed in Suriname's largest hospital responsible for the acute care of snakebite victims.
Collapse
Affiliation(s)
- Navin Ramdhani
- Department of Intensive Care Unit, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Simone Jonker
- Department of Intensive Care Unit, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Kevin van 't Kruys
- Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Rakesh Bansie
- Department of Internal Medicine, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Wilco Zijlmans
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname.,Scientific Research Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| |
Collapse
|
33
|
Saganuwan SA. Comparative therapeutic index, lethal time and safety margin of various toxicants and snake antivenoms using newly derived and old formulas. BMC Res Notes 2020; 13:292. [PMID: 32546265 PMCID: PMC7296648 DOI: 10.1186/s13104-020-05134-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/10/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The assessment of clinical efficacy and toxicity is very important in pharmacology and toxicology. The effects of psychostimulants (e.g. amphetamine), psychotomimetics (e.g. Cannabis sativus) and snake antivenoms are sometimes unpredictable even at lower doses, leading to serious intoxication and fatal consequences. Hence, there is need to re-assess some formulas for calculation of therapeutic index, lethal time and safety margin with a view to identifying therapeutic agents with remarkable toxicity potentials. RESULTS The therapeutic index formula [Formula: see text] was derived from T1 = LD50/ED50 and ED50 = [Formula: see text]. Findings have shown that, therapeutic index is a function of death reversal (s), safety factor (10-4) and weight of animal (Wa). However, the new safety margin formula [Formula: see text] derived from LT50 = [Formula: see text] and MS = [Formula: see text] shows that safety margin is a function of cube root of ratio between LT50 and LD50 and ED100th. Concentration (k) of toxicant at the receptor [Formula: see text] derived from D1 × Tn = K and LD1 = [Formula: see text] shows that therapeutic index, lethal time and safety margin is a function of drug or toxicant concentration at the receptor, the drug-receptor interaction and dose of toxicant or drug administered at a particular time.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, P.M.B. 2373, Makurdi, Benue, Nigeria.
| |
Collapse
|
34
|
Souza JB, Cardoso R, Almeida-Souza HO, Carvalho CP, Correia LIV, Faria PCB, Araujo GR, Mendes MM, Rodrigues RS, Rodrigues VM, Dandekar AM, Goulart LR, Nascimento R. Generation and In-planta expression of a recombinant single chain antibody with broad neutralization activity on Bothrops pauloensis snake venom. Int J Biol Macromol 2020; 149:1241-1251. [PMID: 32035152 DOI: 10.1016/j.ijbiomac.2020.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022]
Abstract
The main systemic alterations present in bothropic envenomation are hemostasis disorders, for which the conventional treatment is based on animal-produced antiophidic sera. We have developed a neutralizing antibody against Bothrops pauloensis (B. pauloensis) venom, which is member of the genus most predominant in snakebite accidents in Brazil. Subsequently, we expressed this antibody in plants to evaluate its enzymatic and biological activities. The ability of single-chain variable fragment (scFv) molecules to inhibit fibrinogenolytic, azocaseinolytic, coagulant and hemorrhagic actions of snake venom metalloproteinases (SVMPs) contained in B. pauloensis venom was verified through proteolytic assays. The antibody neutralized the toxic effects of envenomation, particularly those related to systemic processes, by interacting with one of the predominant classes of metalloproteinases. This novel molecule is a potential tool with great antivenom potential and provides a biotechnological antidote to snake venom due to its broad neutralizing activity.
Collapse
Affiliation(s)
- Jessica B Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil.
| | - Rone Cardoso
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil
| | - Hebréia O Almeida-Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil
| | - Camila P Carvalho
- Department of Plant Pathology, University of Sao Paulo, Av. Padua Dias 11, 13418-310 Piracicaba, SP, Brazil
| | - Lucas Ian Veloso Correia
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil
| | - Paula Cristina B Faria
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil
| | - Galber R Araujo
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil
| | - Mirian M Mendes
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil
| | - Renata Santos Rodrigues
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil
| | - Veridiana M Rodrigues
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil
| | - Abhaya M Dandekar
- Plant Sciences Department, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil.
| | - Rafael Nascimento
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902 Uberlandia, MG, Brazil
| |
Collapse
|
35
|
Bolon I, Durso AM, Botero Mesa S, Ray N, Alcoba G, Chappuis F, Ruiz de Castañeda R. Identifying the snake: First scoping review on practices of communities and healthcare providers confronted with snakebite across the world. PLoS One 2020; 15:e0229989. [PMID: 32134964 PMCID: PMC7058330 DOI: 10.1371/journal.pone.0229989] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/18/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Snakebite envenoming is a major global health problem that kills or disables half a million people in the world's poorest countries. Biting snake identification is key to understanding snakebite eco-epidemiology and optimizing its clinical management. The role of snakebite victims and healthcare providers in biting snake identification has not been studied globally. OBJECTIVE This scoping review aims to identify and characterize the practices in biting snake identification across the globe. METHODS Epidemiological studies of snakebite in humans that provide information on biting snake identification were systematically searched in Web of Science and Pubmed from inception to 2nd February 2019. This search was further extended by snowball search, hand searching literature reviews, and using Google Scholar. Two independent reviewers screened publications and charted the data. RESULTS We analysed 150 publications reporting 33,827 snakebite cases across 35 countries. On average 70% of victims/bystanders spotted the snake responsible for the bite and 38% captured/killed it and brought it to the healthcare facility. This practice occurred in 30 countries with both fast-moving, active-foraging as well as more secretive snake species. Methods for identifying biting snakes included snake body examination, victim/bystander biting snake description, interpretation of clinical features, and laboratory tests. In nine publications, a picture of the biting snake was taken and examined by snake experts. Snakes were identified at the species/genus level in only 18,065/33,827 (53%) snakebite cases. 106 misidentifications led to inadequate victim management. The 8,885 biting snakes captured and identified were from 149 species including 71 (48%) non-venomous species. CONCLUSION Snakebite victims and healthcare providers can play a central role in biting snake identification and novel approaches (e.g. photographing the snake, crowdsourcing) could help increase biting snake taxonomy collection to better understand snake ecology and snakebite epidemiology and ultimately improve snakebite management.
Collapse
Affiliation(s)
- Isabelle Bolon
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrew M. Durso
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sara Botero Mesa
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Ray
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Gabriel Alcoba
- Médecins Sans Frontières, Geneva, Switzerland
- Division of Tropical and Humanitarian Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - François Chappuis
- Division of Tropical and Humanitarian Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | | |
Collapse
|
36
|
Sarmiento K, Rodríguez A, Quevedo-Buitrago W, Torres I, Ríos C, Ruíz L, Salazar J, Hidalgo-Martínez P, Diez H. Comparación de la eficacia, la seguridad y la farmacocinética de los antivenenos antiofídicos: revisión de literatura. UNIVERSITAS MÉDICA 2019. [DOI: 10.11144/javeriana.umed61-1.anti] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
En Colombia se presentan anualmente alrededor de 5000 casos de mordedura de serpiente y su tratamiento se basa en la neutralización con inmunoglobulinas completas purificadas, sin embargo, globalmente se utilizan antivenenos faboterápicos. Objetivo: Dar a conocer diferencias entre las generaciones de antivenenos, la importancia del veneno en la producción de anticuerpos, comparar aspectos farmacocinéticos y los efectos adversos en pacientes. Materiales Métodos: Se realizó una búsqueda de literatura en bases de datos utilizando combinaciones de los descriptores y términos Mesh, en inglés y español. Se cotejaron parámetros farmacocinéticos en estudios preclínicos y los efectos adversos en estudios clínicos. Resultados: Se encontraron diferencias debidas al tamaño de la fracción de la inmunoglobulina que la compone, así entre más pequeña es ésta, se observa mayor distribución a los tejidos y una vida media más corta, comparada con las moléculas más pesadas. Se encontraron estudios con disminución de efectos adversos con antivenenos faboterápicos
Collapse
|
37
|
Knudsen C, Ledsgaard L, Dehli RI, Ahmadi S, Sørensen CV, Laustsen AH. Engineering and design considerations for next-generation snakebite antivenoms. Toxicon 2019; 167:67-75. [DOI: 10.1016/j.toxicon.2019.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
|
38
|
Determination of hyaluronidase activity in Tityus spp. Scorpion venoms and its inhibition by Brazilian antivenoms. Toxicon 2019; 167:134-143. [PMID: 31207348 DOI: 10.1016/j.toxicon.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 01/29/2023]
Abstract
Hyaluronidases (HYALs) are enzymes ubiquitously found in venoms from diverse animals and seem to be related to venom spreading. HYAL activity might be important to Tityus spp. envenoming, since anti-Tityus serrulatus HYAL (TsHYAL) rabbit antibodies neutralize T. serrulatus venom (TsV) lethality. The present work aimed to verify and compare HYAL activity of venoms from other Brazilian Tityus spp. (Tityus bahiensis, Tityus stigmurus and Tityus obscurus) and to test whether anti-TsHYAL antibodies and Brazilian horse therapeutic scorpion antivenom (produced by Fundação Ezequiel Dias (FUNED), Butantan and Vital Brazil Institutes) can recognize and inhibit HYAL activity from these venoms. In ELISA assays, anti-TsHYAL and scorpion antivenoms recognized T. serrulatus, T. bahiensis and T. stigmurus venoms, however, they demonstrated weaker reaction with T. obscurus, which was also observed in Western blotting assay. Epitope mapping by SPOT assay revealed different binding patterns for each antivenom. The assay showed a weaker binding of scorpion antivenom produced by FUNED to peptides recognized by anti-TsHYAL antibodies. Anti-TsHYAL antibodies and antivenoms produced by Butantan and Vital Brazil institutes inhibited HYAL activity of all tested venoms in vitro, whereas FUNED antivenom did not show the same property. These results call attention to the importance of hyaluronidase inhibition, that can aid the improvement of antivenom production.
Collapse
|
39
|
Monzavi SM, Afshari R, Khoshdel AR, Mahmoudi M, Salarian AA, Samieimanesh F, Shirmast E, Mihandoust A. Analysis of effectiveness of Iranian snake antivenom on Viper venom induced effects including analysis of immunologic biomarkers in the Echis carinatus sochureki envenomed victims. Toxicon 2019; 158:38-46. [PMID: 30452924 DOI: 10.1016/j.toxicon.2018.11.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
Snakebite is an important toxicologic emergency with the potential of triggering local and systemic inflammation. Antivenom has remained the mainstay of treatment for snakebite envenomation. In this study we sought to investigate the effectiveness of Iranian antivenom in a series of 44 viper envenomed patients through analysis of changes in clinical severity and the levels of inflammatory markers. Clinical envenomation severity assessed by snakebite severity score (SSS) and laboratory exams of the patients were recorded before (baseline visit) and after antivenom therapy. During 12-h antivenom therapy, the median (range) score of SSS significantly decreased from 3.5 (2-10) on admission to 1 (0-5) in the last visit (P < 0.001). Moreover, a significant decrease in prothrombin time and international normalized ratio was found (P = 0.006 and 0.008; respectively). Plasma concentrations of interleukin (IL) 1-β, IL-6, IL-8, tumor necrosis factor α (TNF-α), complement hemolytic activity (CH50) were also measured in 10 severely Echis carinatus sochureki envenomed victims and 10 age and gender-matched healthy controls. Except IL-8, the baseline levels of IL-1β, IL-6 and TNF-α in victims were significantly higher than healthy controls (P = 0.005, <0.001 and < 0.001, respectively). Moreover, the baseline level of CH50 was significantly lower in the patients compared to healthy controls (P < 0.001). After 12-h antivenom therapy, the plasma levels of IL-1β, IL-6 and TNF-α significantly decreased (P = 0.032, 0.006 and 0.003, respectively), the levels of IL-8 remained relatively unchanged and the CH50 significantly increased (P = 0.011). Iranian snake antivenom was effective in treating viper bite envenomation as it reversed clinical venom effects and restored near normal underlying inflammatory status. This study is the first to ascertain and report the effectiveness of this antivenom in human subjects.
Collapse
Affiliation(s)
- Seyed Mostafa Monzavi
- Medical Toxicology Center, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Afshari
- Medical Toxicology Center, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Reza Khoshdel
- Department of Epidemiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Central Laboratory, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Farhad Samieimanesh
- Central Laboratory, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Shirmast
- Central Laboratory, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Mihandoust
- Medical Toxicology Center, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Gutiérrez JM. Global Availability of Antivenoms: The Relevance of Public Manufacturing Laboratories. Toxins (Basel) 2018; 11:toxins11010005. [PMID: 30586868 PMCID: PMC6356591 DOI: 10.3390/toxins11010005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022] Open
Abstract
Snakebite envenoming is a serious global public health problem, and international initiatives, under the coordination of the World Health Organization and its regional offices, are being developed to reduce the impact of this neglected tropical disease. The global availability of safe and effective antivenoms is one of the key aspects in this global strategy. This review discusses the role of public antivenom manufacturing laboratories for ensuring the supply of antivenoms. The difficulties faced by public laboratories are discussed, together with some tasks that need to be implemented for strengthening them. In addition, the concept of ‘redundancy’ in the supply of antivenoms is emphasized, as a way to cope with the risks associated with the provision of antivenoms by few manufacturers. In general, the public sector should play a leading role, in antivenom availability and other aspects as well, within the global struggle to reduce the mortality and morbidity caused by snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| |
Collapse
|