1
|
Schönemann AM, Moreno Abril SI, Diz AP, Beiras R. The bisphenol A metabolite MBP causes proteome alterations in male Cyprinodon variegatus fish characteristic of estrogenic endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118936. [PMID: 35124124 DOI: 10.1016/j.envpol.2022.118936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 105-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 μg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.
Collapse
Affiliation(s)
- Alexandre M Schönemann
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Sandra Isabel Moreno Abril
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain
| | - Angel P Diz
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Ricardo Beiras
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain.
| |
Collapse
|
2
|
Rehberger K, Wernicke von Siebenthal E, Bailey C, Bregy P, Fasel M, Herzog EL, Neumann S, Schmidt-Posthaus H, Segner H. Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss. ENVIRONMENT INTERNATIONAL 2020; 142:105836. [PMID: 32563011 DOI: 10.1016/j.envint.2020.105836] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs), such as ethinylestradiol (EE2), are well studied for their impact on the reproductive system of fish. EEDCs may also impact the immune system and, as a consequence, the disease susceptibility of fish. It is currently not yet known whether the low concentrations of EEDCs that are able to disrupt the reproductive system of trout are effective in disrupting the immune system and the fish host resistance towards pathogens, too, or whether such immunodisruptive effects would occur only at higher EEDC concentrations. Therefore, in the present study we compare the effect thresholds of low 17α-ethinylestradiol concentrations (1.5 and 5.5 EE2 ng/L) on the reproductive system, the immune system, the energy expenditures and the resistance of juvenile rainbow trout (Oncorhynchus mykiss) against the parasite Tetracapsuloides bryosalmonae - the etiological agent of proliferative kidney disease (PKD) of salmonids. The parasite infection was conducted without injection and under low pathogen exposure concentrations. The disease development was followed over 130 days post infection - in the presence or absence of EE2 exposure. The results show that the long-term EE2 exposure affected, at both concentrations, reproductive parameters like the mRNA levels of hepatic vitellogenin and estrogen receptors. At the same concentrations, EE2 exposure modulated the immune parameters: mRNA levels of several immune genes were altered and the parasite intensity as well as the disease severity (histopathology) were significantly reduced in EE2-exposed fish compared to infected control fish. The combination of EE2 exposure and parasite infection was energetically costly, as indicated by the decreased values of the swim tunnel respirometry. Although further substantiation is needed, our findings suggest that EE2 exerts endocrine disruptive and immunomodulating activities at comparable effect thresholds, since reproductive and immune parameters were affected by the same, low EE2 concentrations.
Collapse
Affiliation(s)
- Kristina Rehberger
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | - Christyn Bailey
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Bregy
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Fasel
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Silvia Neumann
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Rastgar S, Alijani Ardeshir R, Zabihi E, Movahedinia A, Salati AP. Immunotoxicity of estrogen and nonylphenol on apoptosis and expression of ERs in goldfish macrophage: Opening new avenue for discovering the role of experimental model systems and sexes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:159-167. [PMID: 30780113 DOI: 10.1016/j.aquatox.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The expression of estrogen receptors (ERs) and their roles in important cell processes such as apoptosis in the macrophages exposed to estrogen/xenoestrogen have remained a complex secret. This study focused on the expression of estrogen receptors (ERs) and the stimulation of apoptosis in the macrophages from the two sexes of goldfish (Carassius auratus) exposed to 17-βestradiol (E2) and nonylphenol (NP) under in vivo and in vitro conditions. For the in vivo experiment, fish were exposed to NP (10-6 M and 10-7 M) and E2 (10-6 M) for 24 days. Then, the head kidney macrophages from the male and the female goldfish were isolated and assayed. For the in vitro experiments, the macrophages derived from the two sexes were cultured in L-15 medium and exposed to E2 (150 nM) and NP (10 nM and 150 nM) for 3 days. The results showed that the three isoforms of ERs (ERα, ERβ1, ERβ2) were expressed in the goldfish macrophages. After the exposure of macrophages to NP and E2, sex-specific increase of ERs expression and apoptosis were observed (P < 0.05). The expression of ERα after NP treatment showed the highest alteration, with the response being concentration-dependent. The most alteration of ERs expression were observed in the in vivo experiment. This study provides insight to understand how exposure of the goldfish macrophages to E2 and NP can up-regulate the transcript levels of estrogen receptor subtypes and stimulate apoptosis.
Collapse
Affiliation(s)
- Sara Rastgar
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Rashid Alijani Ardeshir
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, University of Mazandaran, Babolsar, Iran
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural resources, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran.
| |
Collapse
|
4
|
Diaz de Cerio O, Bilbao E, Izagirre U, Etxebarria N, Moreno G, Díez G, Cajaraville MP, Cancio I. Toxicology tailored low density oligonucleotide microarray for the thicklip grey mullets (Chelon labrosus): Biomarker gene transcription profile after caging in a polluted harbour. MARINE ENVIRONMENTAL RESEARCH 2018; 140:265-277. [PMID: 30042060 DOI: 10.1016/j.marenvres.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
In aquatic organisms inhabiting polluted waters genes are activated to build an adaptive/compensatory defence against the possible effects of pollutants. Such responses can be used as biomarkers of exposure to chemical compounds, outlining the molecular mechanisms activated under specific pollution scenarios. With the aim of exploiting such approach in environmental health assessment, toxicologically relevant gene fragments were sequenced in the thicklip grey mullet (Chelon labrosus) and a toxicologically tailored low-density (160 genes) oligonucleotide microarray was customised. The tool was validated comparing organ/sex specific gene expression profiles and characterising responses under laboratory exposure to model chemicals. Finally, juvenile mullets were caged in a polluted harbour and hepatic gene expression profiles analysed after 5 and 21 days of deployment. Cages were deployed in the inner (IH) and outer (OH) Pasaia harbour, Bay of Biscay. Mussels (Mytilus galloprovincialis) were also caged as biological matrix for chemical bioaccumulation analysis and stress biomarkers measurements. Slightly higher concentrations of chemicals (metals, tributyltin, PAHs, phthalates) were quantified in IH than in OH, fish bile metabolites also revealing higher availability of PAHs in IH. Lysosome membrane stability in mussels was reduced, indicating stress condition in both sites. The developed microarray discriminated mullets showing distinctive expression profiles depending on site and deployment time. Genes related to immune and hypoxia responses were regulated comparing IH and OH at day 5. Phase I and II biotransformation genes, such as cyp2, cyp3 and ugt, were up-regulated in IH, together with the aryl hydrocarbon receptor 2 (ahr2) and the ahr repressor. Similarly, TBT-binding proteins and genes involved in lipid metabolism (pparγ, cyp7) were up-regulated with deployment time. Even if nowadays higher throughput approaches for gene expression analyses are available, the developed mullet tool constitutes a comprehensive tool to assess molecular responses of mullets exposed to pollutants, although it remains to be explored whether it can be applied to assess pollutant exposure in active pollution monitorings and in environmental health assessment.
Collapse
Affiliation(s)
- O Diaz de Cerio
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - E Bilbao
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - U Izagirre
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - N Etxebarria
- IBEA Res Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Analytical Chemistry Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - G Moreno
- International Seafood Sustainability Foundation (ISSF), 805 15th Street NW, Washington, DC, 20005, USA
| | - G Díez
- AZTI, Marine Research Division, Txatxarramendi irla z/g, 48395, Sukarrieta, Bizkaia, Spain
| | - M P Cajaraville
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - I Cancio
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain.
| |
Collapse
|
5
|
Orozco-Hernández L, Gutiérrez-Gómez AA, SanJuan-Reyes N, Islas-Flores H, García-Medina S, Galar-Martínez M, Dublán-García O, Natividad R, Gómez-Oliván LM. 17β-Estradiol induces cyto-genotoxicity on blood cells of common carp (Cyprinus carpio). CHEMOSPHERE 2018; 191:118-127. [PMID: 29031051 DOI: 10.1016/j.chemosphere.2017.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/18/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
17β-Estradiol, a natural hormone present at high concentrations in aquatic ecosystems, affects and modifies endocrine function in animals. In recent years research workers have expressed concern over its potential effects on aquatic organisms; however, little is known about its capacity to induce genetic damage or the pro-apoptotic effects of such damage on fish. Therefore, this study aimed to evaluate 17β-estradiol-induced cyto-genotoxicity in blood cells of the common carp Cyprinus carpio exposed to different concentrations (1 ng, 1 μg and 1 mg L-1). Peripheral blood samples were collected and evaluated by comet assay, micronucleus test, determination of caspase-3 activity and TUNEL assay at 12, 24, 48, 72 and 96 h of exposure. Increases in frequency of micronuclei, TUNEL-positive cells and caspase-3 activity were observed, particularly at the highest concentration. In contrast, the comet assay detected significant increases at 24 and 96 h with the 1 μg and 1 ng L-1 concentrations respectively. The set of assays used in the present study constitutes a reliable early warning biomarker for evaluating the toxicity induced by this type of emerging contaminants on aquatic species.
Collapse
Affiliation(s)
- Luis Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Adriana Andrea Gutiérrez-Gómez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, Ciudad de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, Ciudad de México, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Reyna Natividad
- Chemical Engineering Lab., Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México, 50200, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| |
Collapse
|
6
|
Feswick A, Munkittrick KR, Martyniuk CJ. Estrogen-responsive gene networks in the teleost liver: What are the key molecular indicators? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:366-374. [PMID: 29126055 DOI: 10.1016/j.etap.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
An overarching goal of environmental genomics is to leverage sensitive suites of markers that are robust and reliable to assess biological responses in a range of species inhabiting variable environments. The objective of this study was to identify core groups of transcripts and molecular signaling pathways that respond to 17alpha-ethylinestadiol (EE2), a ubiquitous estrogenic contaminant, using transcriptome datasets generated from six independent laboratories. We sought to determine which biomarkers and gene networks were those most robust and reliably detected in multiple laboratories. Six laboratories conducted microarray analysis in pieces of the same liver from male fathead minnows exposed to ∼15ng/L EE2 for 96h. There were common transcriptional networks identified in every dataset. These included down-regulation of gene networks associated with blood clotting, complement activation, triglyceride storage, and xenobiotic metabolism. Noteworthy was that more than ∼85% of the gene networks were suppressed by EE2. Leveraging both these data and those mined from the Comparative Toxicogenomics Database (CTD), we narrowed in on an EE2-responsive transcriptional network. All transcripts in this network responded ∼±5-fold or more to EE2, increasing reliability of detection. This network included estrogen receptor alpha, transferrin, myeloid cell leukemia 1, insulin like growth factor 1, insulin like growth factor binding protein 2, and methionine adenosyltransferase 2A. This estrogen-responsive interactome has the advantage over single markers (e.g. vitellogenin) in that these entities are directly connected to each other based upon evidence of expression regulation and protein binding. Thus, it represents an interacting functional suite of estrogenic markers. Vitellogenin, the gold standard for estrogenic exposures, can show high individual variability in its response to estrogens, and the use of a multi-gene approach for estrogenic chemicals is expected to improve sensitivity. In our case, the coefficient of variation was significantly lowered by the gene network (∼67%) compared to Vtg alone, supporting the use of this transcriptional network as a sensitive alternative for detecting estrogenic effluents and chemicals. We propose that screening chemicals for estrogenicity using interacting genes within a defined expression network will improve sensitivity, accuracy, and reduce the number of animals required for endocrine disruption assessments.
Collapse
Affiliation(s)
- April Feswick
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Kelly R Munkittrick
- Executive Director of Cold Regions and Water Initiatives, Wilfred Laurier University
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
7
|
Dong M, Seemann F, Humble JL, Liang Y, Peterson DR, Ye R, Ren H, Kim HS, Lee JS, Au DWT, Lam YW. Modification of the plasma complement protein profile by exogenous estrogens is indicative of a compromised immune competence in marine medaka (Oryzias melastigma). FISH & SHELLFISH IMMUNOLOGY 2017; 70:260-269. [PMID: 28882797 DOI: 10.1016/j.fsi.2017.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Growing evidence suggests that the immune system of teleost is vulnerable to xenoestrogens, which are ubiquitous in the marine environment. This study detected and identified the major circulatory immune proteins deregulated by 17α-ethinylestradiol (EE2), which may be linked to fish susceptibility to pathogens in the marine medaka, Oryzias melastigma. Fish immune competence was determined using a host resistance assay to pathogenic bacteria Edwardsiella tarda. Females were consistently more susceptible to infection-induced mortality than males. Exposure to EE2 could narrow the sex gap of mortality by increasing infection-induced death in male fish. Proteomic analysis revealed that the major plasma immune proteins of adult fish were highly sexually dimorphic. EE2 induced pronounced sex-specific changes in the plasma proteome, with the male plasma composition clearly becoming "feminised". Male plasma was found to contain a higher level of fibrinogens, WAP63 and ependymin-2-like protein, which are involved in coagulation, inflammation and regeneration. For the first time, we demonstrated that expression of C1q subunit B (C1Q), an initiating factor of the classical complement pathway, was higher in males and was suppressed in both sexes in response to EE2 and bacterial challenge. Moreover, cleavage and post-translational modification of C3, the central component of the complement system, could be altered by EE2 treatment in males (C3dg down; C3g up). Multiple regression analysis indicated that C1Q is possibly an indicator of fish survival, which warrants further confirmation. The findings support the potential application of plasma immune proteins for prognosis/diagnosis of fish immune competence. Moreover, this study provides the first biochemical basis of the sex-differences in fish immunity and how these differences might be modified by xenoestrogens.
Collapse
Affiliation(s)
- Miao Dong
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Joseph L Humble
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Yimin Liang
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Rui Ye
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Honglin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Yun Wah Lam
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
8
|
Rehberger K, Werner I, Hitzfeld B, Segner H, Baumann L. 20 Years of fish immunotoxicology - what we know and where we are. Crit Rev Toxicol 2017; 47:509-535. [PMID: 28425344 DOI: 10.1080/10408444.2017.1288024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite frequent field observations of impaired immune response and increased disease incidence in contaminant-exposed wildlife populations, immunotoxic effects are rarely considered in ecotoxicological risk assessment. The aim of this study was to review the literature on immunotoxic effects of chemicals in fish to quantitatively evaluate (i) which experimental approaches were used to assess immunotoxic effects, (ii) whether immune markers exist to screen for potential immunotoxic activities of chemicals, and (iii) how predictive those parameters are for adverse alterations of fish immunocompetence and disease resistance. A total of 241 publications on fish immunotoxicity were quantitatively analyzed. The main conclusions included: (i) To date, fish immunotoxicology focused mainly on innate immune responses and immunosuppressive effects. (ii) In numerous studies, the experimental conditions are poorly documented, as for instance age or sex of the fish or the rationale for the selected exposure conditions is often missing. (iii) Although a broad variety of parameters were used to assess immunotoxicity, the rationale for the choice of measured parameters was often not given, remaining unclear how they link to the suspected immunotoxic mode of action of the chemicals. (iv) At the current state of knowledge, it is impossible to identify a set of immune parameters that could reliably screen for immunotoxic potentials of chemicals. (v) Similarly, in fish immunotoxicology there is insufficient understanding of how and when chemical-induced modulations of molecular/cellular immune changes relate to adverse alterations of fish immunocompetence, although this would be crucial to include immunotoxicity in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Kristina Rehberger
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Inge Werner
- b Swiss Centre for Applied Ecotoxicology , Dübendorf , Switzerland
| | | | - Helmut Segner
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Lisa Baumann
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| |
Collapse
|
9
|
Abbasi NA, Arukwe A, Jaspers VLB, Eulaers I, Mennilo E, Ibor OR, Frantz A, Covaci A, Malik RN. Oxidative stress responses in relationship to persistent organic pollutant levels in feathers and blood of two predatory bird species from Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:26-33. [PMID: 27939994 DOI: 10.1016/j.scitotenv.2016.11.197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/26/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
To date, knowledge of persistent organic pollutant (POP) mediated oxidative stress responses in avian species is rather limited. We therefore investigated whether exposure to polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs) in two predatory bird species, namely black kite (Milvus migrans) and spotted owlet (Athene brama), was associated to activities of antioxidant enzymes, such as glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and catalase (CAT), or expression of GPx and superoxide dismutase (SOD) genes. As part of this investigation, we evaluated whether feathers were suitable to reflect internal body burdens and their associated oxidative stress effects. p,p'-DDE was unanimously recorded with highest concentrations in feathers and blood of both species. In general, the non-significant associations reflect that feathers are not always a suitable indicator for internal body burdens of POPs, depending on the feather type and the age of the bird. The activity of GST and GR was significantly higher in spotted owlet whereas GPx and CAT was higher (albeit not significant) in spotted owlet and black kite respectively. In comparison, mRNA expression of GPx, SOD and Cu,ZnSOD was significantly higher in black kite. Regression analysis showed that the activity of GST and GR was significantly associated with p,p'-DDE in blood of spotted owlet. Similarly, activity of CAT and GR was significantly correlated with BDE-100 in feathers of spotted owlet. In comparison, mRNA expression of SOD was found significantly associated with ∑PBDEs in blood of spotted owlet as well as p,p'-DDE in feathers of black kite. Significant associations of various POPs with biological responses may suggest that POP exposure may be contributing to oxidative stress in the studied bird of prey species. This first investigation indicates the necessity for further research on cause-effect relationships between POP exposures and changes in general health of free ranging birds.
Collapse
Affiliation(s)
- Naeem Akhtar Abbasi
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Augustine Arukwe
- Environmental Toxicology, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Veerle L B Jaspers
- Environmental Toxicology, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Igor Eulaers
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, 4000 Roskilde, Denmark
| | - Elvira Mennilo
- Department of Veterinary Sciences, University of Pisa, Italy
| | - Oju Richard Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Nigeria
| | - Adrien Frantz
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75005 Paris, France
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
10
|
Thornton LM, LeSueur MC, Yost AT, Stephens DA, Oris JT, Sellin Jeffries MK. Characterization of basic immune function parameters in the fathead minnow (Pimephales promelas), a common model in environmental toxicity testing. FISH & SHELLFISH IMMUNOLOGY 2017; 61:163-172. [PMID: 28027985 DOI: 10.1016/j.fsi.2016.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
The fathead minnow (Pimephales promelas) is an environmental sentinel species, commonly used in toxicity testing. However, there is a lack of data regarding basic immune function in this species. To improve the usefulness of the fathead minnow as a model for basic immune function and immunotoxicity, this study sought to 1) compare the differential expression of immune function genes in naïve fathead minnows and 2) determine the effects of pathogen exposure on immune gene expression and spleen index. To accomplish this, kidney, spleen and liver tissue were collected three days post injection (dpi) from adult male fathead minnows from each of the following groups: 1) uninjected control 2) sham-injected (Hank's balanced salt solution) and 3) pathogen-injected (Yersinia ruckeri). Spleen tissue was also collected at seven and 14 dpi. Differential tissue expression of immune function genes was evaluated in naïve minnows and expression patterns were similar to those found in other fish species, with liver tissue generally having the highest amount of expression. Following pathogen injection, the expression of complement component 3 (c3) (4.4-fold, kidney; 2.5-fold, liver), interleukin 11 (il11) (4.8-fold, kidney; 15.2-fold, liver) and interleukin 1β (il1β) (8.2-fold, kidney; 17.2-fold, spleen; 2.6-fold, liver) were significantly upregulated. Elastase 2 (elas2) was significantly downregulated (5.8-fold) in liver tissue. A significant increase in spleen index at seven dpi was also observed in pathogen-injected minnows. This study has identified endpoints that are part of the normal response to pathogen in fathead minnows, an essential step toward the development of the fathead minnow as a model for immunotoxicity evaluations.
Collapse
Affiliation(s)
- Leah M Thornton
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States; Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Meriel C LeSueur
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Alexandra T Yost
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Dane A Stephens
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - James T Oris
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Marlo K Sellin Jeffries
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States; Department of Biology, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
11
|
Macnab V, Katsiadaki I, Tilley CA, Barber I. Oestrogenic pollutants promote the growth of a parasite in male sticklebacks. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:92-100. [PMID: 26922400 PMCID: PMC4827130 DOI: 10.1016/j.aquatox.2016.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
Aquatic environments are especially susceptible to anthropogenic chemical pollution. Yet although knowledge on the biological effects of pollutants on aquatic organisms is increasing, far less is known about how ecologically-important interspecific interactions are affected by chemicals. In particular, the consequences of anthropogenic pollution for the interaction of hosts and parasites are poorly understood. Here, we examine how exposure to 17β-oestradiol (E2)-a natural oestrogen and a model endocrine disrupting chemical (EDC) -affects infection susceptibility and emergent infection phenotypes in an experimental host-parasite system; three spined sticklebacks (Gasterosteus aculeatus) infected with the common, debilitating cestode Schistocephalus solidus. We exposed individual sticklebacks to a 0ngl(-1) (control), 10ngl(-1) or 100ngl(-1) E2 treatment before feeding them infective stages of S. solidus. E2 exposure significantly elevated vitellogenin (VTG) levels-a biomarker of exposure to xenoestrogens-in both female and male fish, and reduced their body condition. Susceptibility to parasite infection was unaffected by EDC exposure; however, E2 treatment and fish sex interacted significantly to determine the growth rate of parasites, which grew quickest in male hosts held under the higher (100ngl(-1)) E2 treatment. Tissue VTG levels and parasite mass correlated positively across the whole sample of experimentally infected fish, but separate regressions run on the male and female datasets demonstrated a significant relationship only among male fish. Hence, among males-but not females-elevated VTG levels elicited by E2 exposure led to more rapid parasite growth. We outline plausible physiological mechanisms that could explain these results. Our results demonstrate that oestrogenic pollutants can alter host-parasite interactions by promoting parasite growth, and that male hosts may be disproportionately affected. Because ecologically-relevant effects of infection on host antipredator responses, growth, energetics and reproductive development all depend on parasite mass in this host-parasite system, our results indicate that EDCs can mediate the ecological consequences of infections. We therefore consider the implications of our results for the ecology of hosts and parasites in polluted environments.
Collapse
Affiliation(s)
- Vicki Macnab
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester LE1 7RH, UK
| | | | - Ceinwen A Tilley
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester LE1 7RH, UK
| | - Iain Barber
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
12
|
Gismondi E, Mazzucchelli G, De Pauw E, Joaquim-Justo C, Thomé JP. Gender differences in responses in Gammarus pulex exposed to BDE-47: A gel-free proteomic approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:205-213. [PMID: 26256056 DOI: 10.1016/j.ecoenv.2015.07.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
Very few ecotoxicological studies have considered differences in toxic effects on male and female organisms. Here, we investigated protein expression differences in caeca of Gammarus pulex males and females under control conditions (unexposed) and after 96h exposure to BDE-47. Using gel-free proteomic analysis, we have identified 45 proteins, of which 25 were significantly differently expressed according to sex and/or BDE-47 exposure. These proteins were involved in several biological processes such as energy metabolism, chaperone proteins, or transcription/translation. In unexposed amphipods, 11 proteins were significantly over-expressed in females, and 6 proteins were over-expressed in males. Under BDE-47 stress, 7 proteins were differently impacted according to sex. For example, catalase was over-expressed in exposed females and under-expressed in exposed males, as compared to respective controls. Conversely, proteins involved in energy metabolism were up-regulated in males and down-regulated in females. Our proteomic study showed differences in responses of males and females to BDE-47 exposure, emphasizing that sex is a confounding factor in ecotoxicological assessment. However, due to the limited information existing in databases on Gammarids, it was difficult to define a BDE-47 mechanism of action. The gel-free proteomic seems to be a promising method to develop in future ecotoxicological studies and thus, to improve our understanding of the mechanism of action of xenobiotics.
Collapse
Affiliation(s)
- E Gismondi
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liège University, Belgium.
| | - G Mazzucchelli
- Laboratory of Mass Spectrometry, GIGA-R, Liège University, Belgium
| | - E De Pauw
- Laboratory of Mass Spectrometry, GIGA-R, Liège University, Belgium
| | - C Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liège University, Belgium
| | - J P Thomé
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liège University, Belgium
| |
Collapse
|
13
|
Transcriptomic profiling of male European eel (Anguilla anguilla) livers at sexual maturity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:28-35. [PMID: 26253995 DOI: 10.1016/j.cbd.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Abstract
The European eel Anguilla anguilla has a complex life cycle that includes freshwater, seawater and morphologically distinct stages as well as two extreme long distance migrations. Eels do not feed as they migrate across the Atlantic to the Sargasso Sea but nevertheless reach sexual maturity before spawning. It is not yet clear how existing energy stores are used to reach the appropriate developmental state for reproduction. Since the liver is involved in energy metabolism, protein biosynthesis and endocrine regulation it is expected to play a key role in the regulation of reproductive development. We therefore used microarrays to identify genes that may be involved in this process. Using this approach, we identified 231 genes that were expressed at higher and 111 genes that were expressed at lower levels in sexually mature compared with immature males. The up-regulated set includes genes involved in lipid metabolism, fatty acid synthesis and transport, mitochondrial function, steroid transport and bile acid metabolism. Several genes with putative enzyme functions were also expressed at higher levels at sexual maturity while genes involved in immune system processes and protein biosynthesis tended to be down-regulated at this stage. By using a high-throughput approach, we have identified a subset of genes that may be linked with the mobilization of energy stores for sexual maturation and migration. These results contribute to an improved understanding of eel reproductive biology and provide insight into the role of the liver in other teleosts with a long distance spawning migrations.
Collapse
|
14
|
Lavergne E, Pedron N, Calves I, Claireaux G, Mazurais D, Zambonino-Infante J, Le Bayon N, Cahu C, Laroche J. Does the chronic chemical contamination of a European flounder population decrease its thermal tolerance? MARINE POLLUTION BULLETIN 2015; 95:658-664. [PMID: 25636829 DOI: 10.1016/j.marpolbul.2015.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/02/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Juvenile flounders (Platichthys flesus), collected in two estuaries with similar temperature regimes (the heavily polluted Seine and the moderately contaminated Vilaine), were submitted to a common garden experiment. After an acclimation period, both populations were challenged by a thermal stress (9-24°C for 15days, then maintenance at 24°C for 19days). The condition factor of the Vilaine fish increased in both conditions, while it decreased for the heated Seine flounders after 34days. The expression of genes related to the energetic metabolism was measured in the liver. The expression levels for ATP-F0 and COII were significantly reduced for heated vs. standard fish from both estuaries, while a decrease of the 12S expression was detected only in heated vs. standard fish from the Seine estuary. Thus, it is suggested that highly contaminated fish from Seine could display a lower tolerance to thermal stress, compared to moderately contaminated fish from Vilaine.
Collapse
Affiliation(s)
- Edouard Lavergne
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France.
| | - Nicolas Pedron
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Isabelle Calves
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| | - Guy Claireaux
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| | - David Mazurais
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - José Zambonino-Infante
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Nicolas Le Bayon
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Chantal Cahu
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Jean Laroche
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| |
Collapse
|
15
|
Arkoosh MR, Van Gaest AL, Strickland SA, Hutchinson GP, Krupkin AB, Dietrich JP. Dietary Exposure to Individual Polybrominated Diphenyl Ether Congeners BDE-47 and BDE-99 Alters Innate Immunity and Disease Susceptibility in Juvenile Chinook Salmon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6974-6981. [PMID: 25938634 DOI: 10.1021/acs.est.5b01076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), used as commercial flame-retardants, are bioaccumulating in threatened Pacific salmon. However, little is known of PBDE effects on critical physiological functions required for optimal health and survival. BDE-47 and BDE-99 are the predominant PBDE congeners found in Chinook salmon collected from the Pacific Northwest. In the present study, both innate immunity (phagocytosis and production of superoxide anion) and pathogen challenge were used to evaluate health and survival in groups of juvenile Chinook salmon exposed orally to either BDE-47 or BDE-99 at environmentally relevant concentrations. Head kidney macrophages from Chinook salmon exposed to BDE-99, but not those exposed to BDE-47, were found to have a reduced ability in vitro to engulf foreign particles. However, both congeners increased the in vitro production of superoxide anion in head kidney macrophages. Salmon exposed to either congener had reduced survival during challenge with the pathogenic marine bacteria Listonella anguillarum. The concentration response curves generated for these end points were nonmonotonic and demonstrated a requirement for using multiple environmentally relevant PBDE concentrations for effect studies. Consequently, predicting risk from toxicity reference values traditionally generated with monotonic concentration responses may underestimate PBDE effect on critical physiological functions required for optimal health and survival in salmon.
Collapse
|
16
|
Singh A, Havixbeck JJ, Smith MK, Shu Z, Tierney KB, Barreda DR, El-Din MG, Belosevic M. UV and hydrogen peroxide treatment restores changes in innate immunity caused by exposure of fish to reuse water. WATER RESEARCH 2015; 71:257-273. [PMID: 25622003 DOI: 10.1016/j.watres.2015.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/24/2014] [Accepted: 01/01/2015] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to assess the innate immunity of goldfish exposed to reuse water, and UV/H2O2-treated reuse water, using a real-time flow-through exposure system. The reuse water generated by ultrafiltration of finished wastewater from the municipal wastewater treatment plant was analyzed for the presence of a panel of 20 herbicides/fungicides and 46 pharmaceuticals and personal care products (PPCP). There was a seasonal variation in the profile and concentrations of xenobiotics in reuse water with lowest levels occurring in the summer. The innate immunity parameters assessed were cytokine (IFNγ, IL-1β, IL-10, TNFα2), and cytokine receptor (TNFR1, TNFR2, IFNGR1, IFNGR2) gene expression, and phagocytosis of kidney leukocyte subpopulations. Assessment of innate immunity parameters was done after acute (7 days) and sub chronic (30 and 60 days) exposure to reuse water, UV/H2O2-treated reuse water, and activated carbon-treated reuse water (ACT; control), during spring, summer and fall of 2012. Temporal (acute versus sub chronic) as well as seasonal differences in innate immunity of fish exposed to reuse water were observed. The acute exposure of fish to reuse water caused significant down-regulation in cytokine gene expression in different organs of fish (kidney, spleen, liver) and phagocytic ability of different kidney leukocyte subpopulations. The immune gene expression and phagocytosis of kidney leukocytes of fish returned to ACT control levels after sub chronic exposure suggesting that fish have habituated to the reuse water exposure. The changes in gene expression after acute exposure were related to variations in the profile of xenobiotics in reuse water during different seasons. The efficiency of xenobiotic removal using UV/H2O2 ranged between 1.6 and 100% indicating that treatment of reuse water using high dose UV/H2O2 was only partially effective in removing the xenobiotics, as assessed by both chemical analyses and measurement of innate immune responsiveness of the fish. Furthermore, exposure of fish to reuse water and UV/H2O2-treated reuse water generated in the spring and fall caused greater changes in innate immunity after acute exposure, compared to fish exposed to ACT reuse water, indicating that the remediation of reuse water, should be considered in order to protect aquatic and public health.
Collapse
Affiliation(s)
- Arvinder Singh
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeffrey J Havixbeck
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Matthew K Smith
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Zengquan Shu
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Massart S, Milla S, Redivo B, Flamion E, Mandiki SNM, Falisse E, Kestemont P. Influence of short-term exposure to low levels of 17α-ethynylestradiol on expression of genes involved in immunity and on immune parameters in rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:57-69. [PMID: 25456220 DOI: 10.1016/j.aquatox.2014.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/29/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Fish are exposed to endocrine-disrupting chemicals (EDC), which are well known to disturb not only the reproductive system but also the immune system in vertebrates. However, the mechanisms by which these compounds are able to modify fish immunity are not well understood. In order to test the EE2 effects on immunity in selected organs, we exposed rainbow trout male juveniles for 3 weeks to EE2 concentrations ranging from 0.01 to 1 μg/L. The results of this study suggest that EE2 affects the immunity of rainbow trout in a tissue dependent manner. This molecule affects both cellular and humoral immune systems. Indeed, blood leukocyte populations, as well as hepatic and plasma lysozyme, plasma MPO and renal complement activities, are modulated by EE2. Moreover, EE2 alters the gene expression of some mucus compounds, hepatic expression of complement sub-unit and lysozyme, or genes involved in the hepatic phagocytosis and transport of immunoglobulin across the liver.
Collapse
Affiliation(s)
- Sophie Massart
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Sylvain Milla
- Unit Research Animal and Functionality of Animal Products (URAFPA), University of Lorraine, F-54003 Nancy, France
| | - Baptiste Redivo
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - S N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Elodie Falisse
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium.
| |
Collapse
|
18
|
Jiang J, Wu S, Wu C, An X, Cai L, Zhao X. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2014; 41:493-500. [PMID: 25304545 DOI: 10.1016/j.fsi.2014.09.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/13/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Carbendazim is one of the most widespread environmental contaminant that can cause major concern to human and animal reproductive system. To date, very few studies have been conducted on the toxic effect of carbendazim in the non-target organism zebrafish (Danio rerio). The study presented here aimed to assess how carbendazim triggers apoptosis, immunotoxicity and endocrine disruption pathways in zebrafish during its embryo development. Our results demonstrated that the expression patterns of many key genes involved in cell apoptosis pathway (e.g. P53, Mdm2, Bbc3 and Cas8) were significantly up-regulated upon the exposure to carbendazim at the concentration of 500 μg/L, while the Bcl2 and Cas3 were down-regulated at the same concentration, interestingly, the expression level of Ogg1 decreased at all the exposure concentrations. It was also observed that the mRNA levels of CXCL-C1C, CCL1, IL-1b and TNFα which were closely related to the innate immune system, were affected in newly hatched zebrafish after exposed to different concentrations of carbendazim. Moreover, the expression of genes that are involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis including VTG, ERα, ERβ2, Dio1, Dio2, Thraa and Thrb were all down-regulated significantly after the exposure to carbendazim. The expression levels of two cytochrome P450 aromatases CYP19a and CYP19b were increased significantly after 20 and 100 μg/L carbendazim exposure, respectively. Taken together, our results indicated that carbendazim had the potential to induce cell apoptosis and cause immune toxicity as well as endocrine disruption in zebrafish during the embryo developmental stage. The information presented here also help to elucidate the environmental risks caused by the carbendazim-induced toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Shenggan Wu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Changxing Wu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xuehua An
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Leiming Cai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
19
|
Colli-Dula RC, Martyniuk CJ, Kroll KJ, Prucha MS, Kozuch M, Barber DS, Denslow ND. Dietary exposure of 17-alpha ethinylestradiol modulates physiological endpoints and gene signaling pathways in female largemouth bass (Micropterus salmoides). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:148-60. [PMID: 25203422 PMCID: PMC4252624 DOI: 10.1016/j.aquatox.2014.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 05/13/2023]
Abstract
17Alpha-ethinylestradiol (EE2), used for birth control in humans, is a potent estrogen that is found in wastewater at low concentrations (ng/l). EE2 has the ability to interfere with the endocrine system of fish, affecting reproduction which can result in population level effects. The objective of this study was to determine if dietary exposure to EE2 would alter gene expression patterns and key pathways in the liver and ovary and whether these could be associated with reproductive endpoints in female largemouth bass during egg development. Female LMB received 70ng EE2/g feed (administered at 1% of body weight) for 60 days. EE2 dietary exposure significantly reduced plasma vitellogenin concentrations by 70%. Hepatosomatic and gonadosomatic indices were also decreased with EE2 feeding by 38.5% and 40%, respectively. Transcriptomic profiling revealed that there were more changes in steady state mRNA levels in the liver compared to the ovary. Genes associated with reproduction were differentially expressed, such as vitellogenin in the liver and aromatase in the gonad. In addition, a set of genes related with oxidative stress (e.g. glutathione reductase and glutathione peroxidase) were identified as altered in the liver and genes associated with the immune system (e.g. complement component 1, and macrophage-inducible C-type lectin) were altered in the gonad. In a follow-up study with 0.2ng EE2/g feed for 60 days, similar phenotypic and gene expression changes were observed that support these findings with the higher concentrations. This study provides new insights into how dietary exposure to EE2 interferes with endocrine signaling pathways in female LMB during a critical period of reproductive oogenesis.
Collapse
Affiliation(s)
- Reyna-Cristina Colli-Dula
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Melinda S Prucha
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Marianne Kozuch
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - David S Barber
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
20
|
Osachoff HL, Osachoff KN, Wickramaratne AE, Gunawardane EK, Venturini FP, Kennedy CJ. Altered burst swimming in rainbow trout Oncorhynchus mykiss exposed to natural and synthetic oestrogens. JOURNAL OF FISH BIOLOGY 2014; 85:210-227. [PMID: 24930959 DOI: 10.1111/jfb.12403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Juvenile rainbow trout Oncorhynchus mykiss were exposed to two concentrations each of 17β-oestradiol (E2; natural oestrogen hormone) or 17α-ethinyl oestradiol (EE2; a potent synthetic oestrogen hormone) to evaluate their potential effects on burst-swimming performance. In each of six successive burst-swimming assays, burst-swimming speed (Uburst ) was lower in fish exposed to 0.5 and 1 µg l(-1) E2 and EE2 for four days compared with control fish. A practice swim (2 days prior to exposure initiation) in control fish elevated initial Uburst values, but this training effect was not evident in the 1 µg l(-1) EE2-exposed fish. Several potential oestrogen-mediated mechanisms for Uburst reductions were investigated, including effects on metabolic products, osmoregulation and blood oxygen-carrying capacity. Prior to burst-swimming trials, fish exposed to E2 and EE2 for 4 days had significantly reduced erythrocyte numbers and lower plasma glucose concentrations. After six repeated burst-swimming trials, plasma glucose, lactate and creatinine concentrations were not significantly different among treatment groups; however, plasma Cl(-) concentrations were significantly reduced in E2- and EE2-treated fish. In summary, E2 and EE2 exposure altered oxygen-carrying capacity ([erythrocytes]) and an osmoregulatory-related variable ([Cl(-) ]), effects that may underlie reductions in burst-swimming speed, which will have implications for fish performance in the wild.
Collapse
Affiliation(s)
- H L Osachoff
- Department of Biological Sciences, Simon Fraser University, Burnabya, British Columbia V5A 1S6, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Williams TD, Davies IM, Wu H, Diab AM, Webster L, Viant MR, Chipman JK, Leaver MJ, George SG, Moffat CF, Robinson CD. Molecular responses of European flounder (Platichthys flesus) chronically exposed to contaminated estuarine sediments. CHEMOSPHERE 2014; 108:152-158. [PMID: 24534155 DOI: 10.1016/j.chemosphere.2014.01.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/13/2014] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
Molecular responses to acute toxicant exposure can be effective biomarkers, however responses to chronic exposure are less well characterised. The aim of this study was to determine chronic molecular responses to environmental mixtures in a controlled laboratory setting, free from the additional variability encountered with environmental sampling of wild organisms. Flounder fish were exposed in mesocosms for seven months to a contaminated estuarine sediment made by mixing material from the Forth (high organics) and Tyne (high metals and tributyltin) estuaries (FT) or a reference sediment from the Ythan estuary (Y). Chemical analyses demonstrated that FT sediment contained significantly higher concentrations of key environmental pollutants (including polycyclic aromatic hydrocarbons (PAHs), chlorinated biphenyls and heavy metals) than Y sediment, but that chronically exposed flounder showed a lack of differential accumulation of contaminants, including heavy metals. Biliary 1-hydroxypyrene concentration and erythrocyte DNA damage increased in FT-exposed fish. Transcriptomic and (1)H NMR metabolomic analyses of liver tissues detected small but statistically significant alterations between fish exposed to different sediments. These highlighted perturbance of immune response and apoptotic pathways, but there was a lack of response from traditional biomarker genes. Gene-chemical association annotation enrichment analyses suggested that polycyclic aromatic hydrocarbons were a major class of toxicants affecting the molecular responses of the exposed fish. This demonstrated that molecular responses of sentinel organisms can be detected after chronic mixed toxicant exposure and that these can be informative of key components of the mixture.
Collapse
Affiliation(s)
- Tim D Williams
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Ian M Davies
- Marine Scotland Science, Marine Laboratory, 375 Victoria Rd., Aberdeen AB11 9DB, UK
| | - Huifeng Wu
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Amer M Diab
- Institute of Aquaculture, The University of Stirling, Stirling FK9 4LA, UK
| | - Lynda Webster
- Marine Scotland Science, Marine Laboratory, 375 Victoria Rd., Aberdeen AB11 9DB, UK
| | - Mark R Viant
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - J Kevin Chipman
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Michael J Leaver
- Institute of Aquaculture, The University of Stirling, Stirling FK9 4LA, UK
| | - Stephen G George
- Institute of Aquaculture, The University of Stirling, Stirling FK9 4LA, UK
| | - Colin F Moffat
- Marine Scotland Science, Marine Laboratory, 375 Victoria Rd., Aberdeen AB11 9DB, UK
| | - Craig D Robinson
- Marine Scotland Science, Marine Laboratory, 375 Victoria Rd., Aberdeen AB11 9DB, UK
| |
Collapse
|
22
|
Zhong H, Zhou Y, Yu F, Xiao J, Gan X, Zhang M. Seasonal changes and human chorionic gonadotrophin (hCG) effects on innate immune genes expression in goldfish (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2014; 38:303-310. [PMID: 24709628 DOI: 10.1016/j.fsi.2014.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/28/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
We profiled the expression of a group of proinflammatory immune genes, comprising TNFα-1, TNFα-2, IFN-γ, IL1β-1, IL1β-2, CCL-1, and CXCL-8 in liver, head kidney, gills, and spleen of goldfish, during the reproductive cycle and in response to injection of the hormone human chorionic gonadotrophin (hCG). Most genes showed higher expression during the breeding season in both sexes. However, activation of immune responses was much stronger in female goldfish. Injection with hCG, an analog of luteinizing hormone (LH), which is involved in numerous reproductive functions, markedly changed gene expression in most studied organs, in both male and female goldfish. Again, female goldfish were found to be more responsive than male goldfish. The strongest activation of these genes was seen 7 days post-injection; the effect was dose dependent with a lower dose being in general more effective. For several of the genes, the gills were the most responsive tissue and, in male goldfish, gills were often the only responsive tissue, suggesting an important immunological role for gills during breeding. The data suggest that increasing expression levels are regulated by LH arising during the breeding season, with greater sensitivity in female goldfish than in male goldfish. These data support an interaction between the innate immune system and the reproductive axis.
Collapse
Affiliation(s)
- Huan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Fisheries Research Institute, Nanning, Guangxi 530021, China
| | - Yi Zhou
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Fisheries Research Institute, Nanning, Guangxi 530021, China; Department of Biotechnology and Environmental Science, Changsha University, Changsha 410003, China
| | - Fan Yu
- Key Laboratory for Genetic Breeding of Aquatic Animals, Aquaculture, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Fisheries Research Institute, Nanning, Guangxi 530021, China
| | - Xi Gan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Fisheries Research Institute, Nanning, Guangxi 530021, China.
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
23
|
Williams TD, Diab AM, Gubbins M, Collins C, Matejusova I, Kerr R, Chipman JK, Kuiper R, Vethaak AD, George SG. Transcriptomic responses of European flounder (Platichthys flesus) liver to a brominated flame retardant mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:45-52. [PMID: 23948077 DOI: 10.1016/j.aquatox.2013.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
Male European flounder (Platichthys flesus) were exposed to a technical mixture of brominated diphenyl ethers (PDBEs, DE-71, Pentamix) that had been purified to remove contaminating dioxins. Controls were exposed to carrier solvent alone. Fish were exposed to decadally increasing concentrations of Pentamix via both sediment and spiked food. The GENIPOL P. flesus cDNA microarray, differentially expressed gene profiling (DEG) and quantitative PCR were employed to detect hepatic transcriptional differences between exposed fish and controls. Gene transcriptional changes were more sensitive to Pentamix exposure than biomarkers measured previously. Pentamix exposure induced transcripts coding for enzymes of xenobiotic metabolism (CYP1A, aldo-keto reductases) and elicited endocrine disruption (vitellogenin and thyroid hormone receptor alpha), with effects on CYP1A and VTG occurring at the highest exposure. Ontology analysis clearly showed dose-responsive changes indicative of oxidative stress, induction of mitochondrial dysfunction, and apoptosis. We conclude that exposure to PBDEs in both sediment and food has a significant adverse effect on a broad range of crucial biochemical processes in the livers of this widely distributed estuarine fish species, the flounder.
Collapse
Affiliation(s)
- Tim D Williams
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Osachoff HL, Shelley LK, Furtula V, van Aggelen GC, Kennedy CJ. Induction and recovery of estrogenic effects after short-term 17β-estradiol exposure in juvenile rainbow trout (Oncorhynchus mykiss). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:276-285. [PMID: 23564441 DOI: 10.1007/s00244-013-9890-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 03/03/2013] [Indexed: 06/02/2023]
Abstract
Estrogenic compounds found in the aquatic environment include natural and synthetic estrogen hormones as well as other less potent estrogenic xenobiotics. In this study, a comprehensive approach was used to examine effects on fish endocrine system endpoints during a short-term xenoestrogen exposure as well as after post-exposure recovery. Rainbow trout (Oncorhynchus mykiss) were exposed to an aqueous 17β-estradiol (E2) concentration of 0.473 μg l(-1) for 2 and 7 days (d) followed by a 14-d recovery period. At d2 and d7, plasma E2 concentrations in treated fish were 458- and 205-fold higher than in control fish and 23- and 16-fold higher than the exposure water concentration. E2 treatment resulted in significant increases in hepatosomatic index (HSI), plasma vitellogenin (VTG) protein concentrations, and liver VTG and estrogen receptor alpha mRNA levels. All of these parameters, with the exception of plasma VTG protein, returned to baseline values during the recovery period. Plasma cortisol concentrations were unaffected by treatment. This research shows varied time frames of the estrogen-responsive molecular-, biochemical-, and tissue-level alterations, as well as their persistence, in juvenile rainbow trout treated with aqueous E2. These results have implications for feral rainbow trout exposed to xenoestrogens and indicate the importance of evaluating a comprehensive suite of endpoints in assessing the impact of this type of environmental contaminant.
Collapse
Affiliation(s)
- H L Osachoff
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | | | | | | | | |
Collapse
|
25
|
Seemann F, Knigge T, Rocher B, Minier C, Monsinjon T. 17β-Estradiol induces changes in cytokine levels in head kidney and blood of juvenile sea bass (Dicentrarchus labrax, L., 1758). MARINE ENVIRONMENTAL RESEARCH 2013; 87-88:44-51. [PMID: 23602341 DOI: 10.1016/j.marenvres.2013.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 05/02/2023]
Abstract
The cytokine network is involved in the immune system communication. As estrogens influence the cytokine expression in mammals, this study investigated the impact of exogenous estrogenic pollutants on selected cytokines in Dicentrarchus labrax. The gene expression of Interleukin 6, Tumour Necrosis Factor α, Transforming Growth Factor β1 and Interleukin 1β was assessed and accomplished with protein measurements in the blood for the last two. Impacts through 17β-estradiol mainly occurred at the beginning of organ regionalisation, thus falling together with a developmentally induced increase of Interleukin 1β and Tumour Necrosis Factor α gene expression in 102 dph fish. 17β-estradiol depressed this modification after 35 days of exposure and the cytokine gene expression tended to be generally down-regulated independently of the 17β-estradiol concentrations after 56 days of exposure. This impact was confirmed at the protein level, showing that 17β-estradiol affects the fine control of the cytokine network in sea bass.
Collapse
Affiliation(s)
- Frauke Seemann
- Laboratoire d'Écotoxicologie - Milieux Aquatiques (LEMA), SFR SCALE 4116, Université du Havre, 25 Rue Philippe Lebon, 76058 Le Havre Cedex, France.
| | | | | | | | | |
Collapse
|
26
|
Asker N, Kristiansson E, Albertsson E, Larsson DGJ, Förlin L. Hepatic transcriptome profiling indicates differential mRNA expression of apoptosis and immune related genes in eelpout (Zoarces viviparus) caught at Göteborg harbor, Sweden. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:58-67. [PMID: 23340333 DOI: 10.1016/j.aquatox.2012.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 06/01/2023]
Abstract
The physiology and reproductive performance of eelpout (Zoarces viviparus) have been monitored along the Swedish coast for more than three decades. In this study, transcriptomic profiling was applied for the first time as an exploratory tool to search for new potential candidate biomarkers and to investigate possible stress responses in fish collected from a chronically polluted area. An oligonucleotide microarray with more than 15,000 sequences was used to assess differentially expressed hepatic mRNA levels in female eelpout collected from the contaminated area at Göteborg harbor compared to fish from a national reference site, Fjällbacka. Genes involved in apoptosis and DNA damage (e.g., SMAC/diablo homolog and DDIT4/DNA-damage-inducible protein transcript 4) had higher mRNA expression levels in eelpout from the harbor compared to the reference site, whereas mRNA expression of genes involved in the innate immune system (e.g., complement components and hepcidin) and protein transport/folding (e.g., signal recognition particle and protein disulfide-isomerase) were expressed at lower levels. Gene Ontology enrichment analysis revealed that genes involved biological processes associated with protein folding, immune responses and complement activation were differentially expressed in the harbor eelpout compared to the reference site. The differential mRNA expression of selected genes involved in apoptosis/DNA damage and in the innate immune system was verified by quantitative PCR, using the same fish in addition to eelpout captured four years later. Thus, our approach has identified new potential biomarkers of pollutant exposure and has generated hypotheses on disturbed physiological processes in eelpout. Despite a higher mRNA expression of genes related to apoptosis (e.g., diablo homolog) in eelpout captured in the harbor there were no significant differences in the number of TUNEL-positive apoptotic cells between sites. The mRNA level of genes involved in apoptosis/DNA damage and the status of the innate immune system in fish species captured in polluted environments should be studied in more detail to lay the groundwork for future biomonitoring studies.
Collapse
Affiliation(s)
- Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Tu W, Niu L, Liu W, Xu C. Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:189-195. [PMID: 23294635 DOI: 10.1016/j.ecoenv.2012.11.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/05/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Butachlor is a chloroacetanilide herbicide widely employed in weeding important crops. Recently, the study of the possible toxic effects of butachlor in non-target organisms has increased substantially. However, the endocrine disruption, developmental toxicity and immunotoxicity effects of butachlor in fish have not been fully investigated in previous studies. In the present study, zebrafish embryos were exposed to a range of butachlor concentrations from 4 to 20 μM to evaluate the embryonic toxicity of butachlor until 84 hours postfertilization (hpf). The results demonstrated that butachlor was highly toxic to zebrafish embryos, hindering the hatching process, resulting in a series of malformations and followed by mortality. The malformations observed included pericardial edema (PE) and yolk sac edema (YSE), which showed concentration-dependent responses. The analysis of endocrine gene transcription indicated that butachlor significantly induced the expression of the estrogen-responsive gene Vtg1 but had no effect on the expression of the ERα gene. The innate immune system appeared to be another possible target of butachlor. At 72 hpf, butachlor significantly up-regulated the innate immune system-related genes, including IL-1β, CC-chem, CXCL-C1c and IL-8. These data suggest that butachlor causes developmental toxicity, endocrine disruption and immune toxicity in the zebrafish embryo. Bidirectional interactions between the endocrine system and the immune system might be present, and further studies are needed to determine these possible pathways.
Collapse
Affiliation(s)
- Wenqing Tu
- Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | | | | | | |
Collapse
|
28
|
Kristiansson E, Österlund T, Gunnarsson L, Arne G, Larsson DGJ, Nerman O. A novel method for cross-species gene expression analysis. BMC Bioinformatics 2013; 14:70. [PMID: 23444967 PMCID: PMC3679856 DOI: 10.1186/1471-2105-14-70] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 02/13/2013] [Indexed: 12/27/2022] Open
Abstract
Background Analysis of gene expression from different species is a powerful way to identify evolutionarily conserved transcriptional responses. However, due to evolutionary events such as gene duplication, there is no one-to-one correspondence between genes from different species which makes comparison of their expression profiles complex. Results In this paper we describe a new method for cross-species meta-analysis of gene expression. The method takes the homology structure between compared species into account and can therefore compare expression data from genes with any number of orthologs and paralogs. A simulation study shows that the proposed method results in a substantial increase in statistical power compared to previously suggested procedures. As a proof of concept, we analyzed microarray data from heat stress experiments performed in eight species and identified several well-known evolutionarily conserved transcriptional responses. The method was also applied to gene expression profiles from five studies of estrogen exposed fish and both known and potentially novel responses were identified. Conclusions The method described in this paper will further increase the potential and reliability of meta-analysis of gene expression profiles from evolutionarily distant species. The method has been implemented in R and is freely available at
http://bioinformatics.math.chalmers.se/Xspecies/.
Collapse
Affiliation(s)
- Erik Kristiansson
- Department of Mathematical Statistics, Chalmers University of Technology/University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
29
|
Burki R, Krasnov A, Bettge K, Rexroad CE, Afanasyev S, Antikainen M, Burkhardt-Holm P, Wahli T, Segner H. Molecular crosstalk between a chemical and a biological stressor and consequences on disease manifestation in rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 127:2-8. [PMID: 22440717 DOI: 10.1016/j.aquatox.2012.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/18/2012] [Accepted: 02/21/2012] [Indexed: 05/31/2023]
Abstract
The aim of the present study was to examine the molecular and organism reaction of rainbow trout, Oncorhynchus mykiss, to the combined impact of two environmental stressors. The two stressors were the myxozoan parasite, Tetracapsuloides bryosalmonae, which is the etiological agent of proliferative kidney disease (PKD) and a natural stressor to salmonid populations, and 17β-estradiol (E2) as prototype of estrogen-active chemical stressors in the aquatic environment. Both stressors, the parasite and estrogenic contaminants, co-exist in Swiss rivers and are discussed as factors contributing to the decline of Swiss brown trout populations over the last decades. Using a microarray approach contrasting parasite-infected and non-infected rainbow trout at low or high estrogen levels, it was observed that molecular response patterns under joint exposure differed from those to the single stressors. More specifically, three major response patterns were present: (i) expression responses of gene transcripts to one stressor are weakened by the presence of the second stressor; (ii) expression responses of gene transcripts to one stressor are enhanced by the presence of the second stressor; (iii) expression responses of gene transcripts at joint treatment are dominated by one of the two stressors. Organism-level responses to concurrent E2 and parasite treatment - assessed through measuring parasite loads in the fish host and cumulative mortalities of trout - were dominated by the pathogen, with no modulating influence of E2. The findings reveal function- and level-specific responses of rainbow trout to stressor combinations, which are only partly predictable from the response to the single stressors.
Collapse
Affiliation(s)
- Richard Burki
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shelley LK, Osachoff HL, van Aggelen GC, Ross PS, Kennedy CJ. Alteration of immune function endpoints and differential expression of estrogen receptor isoforms in leukocytes from 17β-estradiol exposed rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2013; 180:24-32. [PMID: 23036733 DOI: 10.1016/j.ygcen.2012.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/02/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
While the endocrine system is known to modulate immune function in vertebrates, the role of 17β-estradiol (E2) in cellular immune function of teleosts is poorly understood. The cellular and molecular responses of juvenile rainbow trout (Oncorhynchus mykiss) to E2 treatment were evaluated by exposing fish to 0.47±0.02μg/L E2 (mean±SEM) for either 2 or 7d, with a subsequent 14d recovery period. After 2 and 7d of exposure to E2, hematocrit was significantly lower than in control fish. Lipopolysaccharide-induced lymphocyte proliferation was elevated on day 2 and concanavalin A-induced lymphocyte proliferation was reduced following 7d of E2 exposure. Four estrogen receptor (ER) transcripts were identified in purified trout head kidney leukocytes (HKL) and peripheral blood leukocytes (PBL). While the mRNA abundance of ERβ1 and ERβ2 was unaffected by treatment, ERα1 was up-regulated in HKL and PBL following 7d of E2 exposure. ERα2 was up-regulated in HKL after 7d of E2 exposure, but down-regulated in PBL after 2 and 7d of treatment. All parameters that were altered during the E2 exposure period returned to baseline levels following the recovery period. This study reports the presence of the full repertoire of ERs in purified HKL for the first time, and demonstrates that ERα transcript abundance in leukocytes can be regulated by waterborne E2 exposure. It also demonstrated that physiologically-relevant concentrations of E2 can modulate several immune functions in salmonids, which may have widespread implications for xenoestrogen-associated immunotoxicity in feral fish populations inhabiting contaminated aquatic environments.
Collapse
Affiliation(s)
- Lesley K Shelley
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | |
Collapse
|
31
|
Shelley LK, Ross PS, Miller KM, Kaukinen KH, Kennedy CJ. Toxicity of atrazine and nonylphenol in juvenile rainbow trout (Oncorhynchus mykiss): effects on general health, disease susceptibility and gene expression. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:217-226. [PMID: 22982499 DOI: 10.1016/j.aquatox.2012.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
Atrazine (ATZ) and nonylphenol (NP) are commonly identified contaminants in aquatic habitats; however, few studies have considered the impact of these endocrine disrupters on immune function and resistance to disease. This study examined the immunotoxicological effects of ATZ and NP at multiple levels of biological organization. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to a solvent control (0.00625%, v/v anhydrous ethanol), or sub-lethal concentrations of ATZ (59 μg/L and 555 μg/L) or NP (2.3 μg/L or 18 μg/L) for 4d. At the end of exposure, fish were assessed for a number of physiological endpoints, including a host resistance challenge, and liver gene expression was assessed using a salmonid microarray (cGRASP, 32K version 1). While the low ATZ and low NP treatments had no measurable effects on the physiological endpoints measured, fish exposed to the high ATZ concentration (555 μg/L) exhibited significantly elevated plasma cortisol, a decrease in SSI, and decreased lymphocytes and increased monocytes in peripheral blood, with suppression of early immune system processes apparent at the molecular level. In contrast, fish exposed to the high NP concentration (18 μg/L) showed physiological (e.g. significantly elevated LSI) and gene expression changes (e.g. induction of vitellogenin) consistent with estrogenic effects, as well as decreased lymphocytes in the peripheral blood and more limited alterations in immune system related pathways in the liver transcriptome. Fish exposed to high ATZ or NP concentrations incurred higher mortality than control fish following a disease challenge with Listonella anguillarum, while fish exposed to the lower concentrations were unaffected. Microarray analysis of the liver transcriptome revealed a total of 211 unique, annotated differentially regulated genes (DRGs) following high ATZ exposure and 299 DRGs following high NP exposure. Functional (enrichment) analysis revealed effects on immune system function, metabolism, oxygen homeostasis, cell cycle, DNA damage, and other processes affected by ATZ or NP exposure. Overall, this study provides evidence at multiple levels of biological organization that both ATZ and NP are immunotoxic at sub-lethal concentrations and highlights the potential risk posed by these chemicals to wild fish populations.
Collapse
Affiliation(s)
- Lesley K Shelley
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | |
Collapse
|
32
|
Burki R, Krasnov A, Bettge K, Rexroad CE, Afanasyev S, Antikainen M, Burkhardt-Holm P, Wahli T, Segner H. Pathogenic infection confounds induction of the estrogenic biomarker vitellogenin in rainbow trout. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2318-2323. [PMID: 22847860 DOI: 10.1002/etc.1966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/14/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
To examine the behavior of the estrogenic biomarker vitellogenin (VTG) under the combined impact of estrogens and pathogens, parasite-infected or noninfected rainbow trout were exposed to two doses of 17β-estradiol (E2). Infected and E2-exposed fish showed significantly lower hepatic VTG mRNA levels than healthy fish. Transcriptome data suggest that this was due to energetic constraints. Reduced responsiveness of the VTG biomarker in parasitized fish might obscure detection of low-level field exposure.
Collapse
Affiliation(s)
- Richard Burki
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Levi L, Ziv T, Admon A, Levavi-Sivan B, Lubzens E. Insight into molecular pathways of retinal metabolism, associated with vitellogenesis in zebrafish. Am J Physiol Endocrinol Metab 2012; 302:E626-44. [PMID: 22205629 DOI: 10.1152/ajpendo.00310.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retinal is the main retinoid stored in oviparous eggs of fish, amphibians, and reptiles, reaching the oocytes in association with vitellogenins, the yolk precursor proteins. During early presegmentation stages of zebrafish embryos, retinal is metabolized to retinoic acid (RA), which regulates genes involved in cell proliferation, differentiation, and tissue function and is therefore essential for normal embryonic development. While synthesis of vitellogenin and its regulation by 17β-estradiol (E(2)) were extensively investigated, pathways for retinal synthesis remain obscure. We determined the expression pattern of 46 candidate genes, aiming at identifying enzymes associated with retinal synthesis, ascertaining whether they were regulated by E(2), and finding pathways that could fulfill the demand for retinoids during vitellogenesis. Genes associated with retinal synthesis were upregulated in liver (rdh10, rdh13, sdr) and surprisingly also in intestine (rdh13) and ovary (rdh1, sdr), concomitantly with higher gene expression and synthesis of vitellogenins in liver but also in extrahepatic tissues, shown here for the first time. Vitellogenin synthesis in the ovary was regulated by E(2). Gene expression studies suggest that elevated retinal synthesis in liver, intestine, and ovary also depends on cleavage of carotenoids (by Bcdo2 or Bmco1), but in the ovary it may also be contingent on higher uptake of retinol from the circulatory system (via Stra6) and retinol synthesis from retinyl esters (by Lpl). Decrease in oxidation (by Raldh2 or Raldh3) of retinal to RA and/or degradation of RA (by Cyp26a1) may also facilitate higher hepatic retinal levels. Together, these processes enable meeting the putative demands of retinal for binding to vitellogenins. Bioinformatic tools reveal multiple hormone response elements in the studied genes, suggesting complex and intricate regulation of these processes.
Collapse
Affiliation(s)
- Liraz Levi
- Dept. of Marine Biology and Biotechnology, Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | | | | | | |
Collapse
|
34
|
Veldhoen N, Ikonomou MG, Helbing CC. Molecular profiling of marine fauna: integration of omics with environmental assessment of the world's oceans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 76:23-38. [PMID: 22036265 DOI: 10.1016/j.ecoenv.2011.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 09/16/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
Many species that contribute to the commercial and ecological richness of our marine ecosystems are harbingers of environmental change. The ability of organisms to rapidly detect and respond to changes in the surrounding environment represents the foundation for application of molecular profiling technologies towards marine sentinel species in an attempt to identify signature profiles that may reside within the transcriptome, proteome, or metabolome and that are indicative of a particular environmental exposure event. The current review highlights recent examples of the biological information obtained for marine sentinel teleosts, mammals, and invertebrates. While in its infancy, such basal information can provide a systems biology framework in the detection and evaluation of environmental chemical contaminant effects on marine fauna. Repeated evaluation across different seasons and local marine environs will lead to discrimination between signature profiles representing normal variation within the complex milieu of environmental factors that trigger biological response in a given sentinel species and permit a greater understanding of normal versus anthropogenic-associated modulation of biological pathways, which prove detrimental to marine fauna. It is anticipated that incorporation of contaminant-specific molecular signatures into current risk assessment paradigms will lead to enhanced wildlife management strategies that minimize the impacts of our industrialized society on marine ecosystems.
Collapse
Affiliation(s)
- Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C., Canada
| | | | | |
Collapse
|
35
|
Fent K, Sumpter JP. Progress and promises in toxicogenomics in aquatic toxicology: is technical innovation driving scientific innovation? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:25-39. [PMID: 22099342 DOI: 10.1016/j.aquatox.2011.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/04/2011] [Indexed: 05/08/2023]
Abstract
In the last decade, new technologies have been invented to analyze large amounts of information such as gene transcripts (transcriptomics), proteins (proteomics) and small cellular molecules (metabolomics). Many studies have been performed in the last few years applying these technologies to aquatic toxicology, mainly in fish. In this article, we summarize the current state of knowledge and question whether the application of modern technology for descriptive purposes truly represents scientific advancement in aquatic toxicology. We critically discuss the advantages and disadvantages of these technologies and emphasize the importance of these critical aspects. To date, these techniques have been used mainly as a proof of principle, demonstrating effects of model compounds. The potential to use these techniques to better analyze the mode-of-action of a toxicant or the effects of a compound within organisms has rarely been met. This is partly due to a lack of baseline data and the fact that the expression of mRNA and protein profiles is rarely linked to physiology or toxicologically meaningful outcomes. It seems premature to analyze mixtures or environmental samples until more is known about the expression profiles of individual toxicants. Gene transcription, protein, or metabolic data give only a partial view of these effects. Thus, we emphasize that data obtained by these technologies must be linked to physiological changes to fully understand their significance. The use of these techniques in aquatic toxicology is still in its infancy, data cannot yet be applied to environmental risk assessment or regulation until more emphasis is placed on interpreting the data within their physiological and toxicological contexts.
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland.
| | | |
Collapse
|
36
|
Ye RR, Lei ENY, Lam MHW, Chan AKY, Bo J, van de Merwe JP, Fong ACC, Yang MMS, Lee JS, Segner HE, Wong CKC, Wu RSS, Au DWT. Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2477-87. [PMID: 22828878 PMCID: PMC3404281 DOI: 10.1007/s11356-012-0887-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/20/2012] [Indexed: 05/11/2023]
Abstract
BDE-47 is one of the most widely found congeners of PBDEs in marine environments. The potential immunomodulatory effects of BDE-47 on fish complement system were studied using the marine medaka Oryzias melastigma as a model fish. Three-month-old O. melastigma were subjected to short-term (5 days) and long-term (21 days) exposure to two concentrations of BDE-47 (low dose at 290 ± 172 ng/day; high dose at 580 ± 344 ng/day) via dietary uptake of BDE-47 encapsulated in Artemia nauplii. Body burdens of BDE-47 and other metabolic products were analyzed in the exposed and control fish. Only a small amount of debrominated product, BDE-28, was detected, while other metabolic products were all under detection limit. Transcriptional expression of six major complement system genes involved in complement activation: C1r/s (classical pathway), MBL-2 (lectin pathway), CFP (alternative pathway), F2 (coagulation pathway), C3 (the central component of complement system), and C9 (cell lysis) were quantified in the liver of marine medaka. Endogenous expression of all six complement system genes was found to be higher in males than in females (p < 0.05). Upon dietary exposure of marine medaka to BDE-47, expression of all six complement genes were downregulated in males at day 5 (or longer), whereas in females, MBl-2, CFP, and F2 mRNAs expression were upregulated, but C3 and C9 remained stable with exposure time and dose. A significant negative relationship was found between BDE-47 body burden and mRNA expression of C1r/s, CFP, and C3 in male fish (r = -0.8576 to -0.9447). The above findings on changes in complement gene expression patterns indicate the complement system may be compromised in male O. melastigma upon dietary exposure to BDE-47. Distinct gender difference in expression of six major complement system genes was evident in marine medaka under resting condition and dietary BDE-47 challenge. The immunomodulatory effects of BDE-47 on transcriptional expression of these complement components in marine medaka were likely induced by the parent compound instead of biotransformed products. Our results clearly demonstrate that future direction for fish immunotoxicology and risk assessment of immunosuppressive chemicals must include parallel evaluation for both genders.
Collapse
Affiliation(s)
- Roy R. Ye
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Elva N. Y. Lei
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Michael H. W. Lam
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Alice K. Y. Chan
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Jun Bo
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Jason P. van de Merwe
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Amy C. C. Fong
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Michael M. S. Yang
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - J. S. Lee
- National Research Lab of Marine Molecular and Environmental Bioscience, Department of Chemistry College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Helmut E. Segner
- Centre for Fish and Wildlife Health, University of Bern, CH3012 Bern, Switzerland
| | - Chris K. C. Wong
- Department of Biology, Baptist University of Hong Kong, Kowloon Tong, Hong Kong
| | - Rudolf S. S. Wu
- School of Biological Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Doris W. T. Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
37
|
Viitaniemi HM, Leder EH. Sex-Biased Protein Expression in Threespine Stickleback, Gasterosteus aculeatus. J Proteome Res 2011; 10:4033-40. [DOI: 10.1021/pr200234a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Erica Helen Leder
- Section of Genetics and Physiology, Department of Biology, University of Turku, Finland
| |
Collapse
|
38
|
Casanova-Nakayama A, Wenger M, Burki R, Eppler E, Krasnov A, Segner H. Endocrine disrupting compounds: can they target the immune system of fish? MARINE POLLUTION BULLETIN 2011; 63:412-6. [PMID: 21683417 DOI: 10.1016/j.marpolbul.2011.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 05/08/2011] [Accepted: 05/09/2011] [Indexed: 05/25/2023]
Abstract
Endocrine disruption, in particular disruption by estrogen-active compounds, has been identified as an important ecotoxicological hazard in the aquatic environment. Research on the impact of endocrine disrupting compounds (EDCs) on wildlife has focused on disturbances of the reproductive system. However, there is increasing evidence that EDCs affect a variety of physiological systems other than the reproductive system. Here, we discuss if EDCs may be able to affect the immune system of fish, as this would have direct implications for individual fitness and population growth. Evidence suggesting an immunomodulatory role of estrogens in fish comes from the following findings: (a) estrogen receptors are expressed in piscine immune organs, (b) immune gene expression is modulated by estrogen exposure, and (c) pathogen susceptibility of fish increases under estrogen exposure.
Collapse
Affiliation(s)
- Ayako Casanova-Nakayama
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
39
|
Lee JK, Kim YJ, Park KS, Shin SC, Kim HJ, Song YH, Park H. Molecular and comparative analyses of type IV antifreeze proteins (AFPIVs) from two Antarctic fishes, Pleuragramma antarcticum and Notothenia coriiceps. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:197-205. [PMID: 21571089 DOI: 10.1016/j.cbpb.2011.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Antifreeze protein type IV (AFPIV) cDNAs and genomic DNAs from the Antarctic fishes Pleuragramma antarcticum (Pa) and Notothenia coriiceps (Nc) were cloned and sequenced, respectively. Each cDNA encoded 128 amino acids, with 94% similarity between the two and 83% similarity with AFPIV of the longhorn sculpin, Myoxocephalus octodecemspinosus. The genome structures of both genes consisted of four exons and three introns, and were highly conserved in terms of sequences and positions. In contrast, the third intron of PaAFPIV had additional nucleotides with inverted repeats at each end, which appeared to be a MITE-like transposable element. Comparative analysis revealed that fish AFPIVs were widely distributed across teleost fishes, well conserved in their intron positions, but more variable in intron sequences and sizes. However, the intron sequences of two Antarctic fishes were highly conserved, indicating recent radiation of notothenioids in the evolutionary lineage. The recombinant PaAFPIV and NcAFPIV were expressed in E. coli, and examined antifreeze activity. PaAFPIV and NcAFPIV gave ice crystals with star-shaped morphology, and thermal hysteresis (TH) values were 0.08°C at the concentration of 0.5mg/ml.
Collapse
Affiliation(s)
- Jong Kyu Lee
- Korea Polar Research Institute, Yeonsu-gu, Incheon, South Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Milla S, Depiereux S, Kestemont P. The effects of estrogenic and androgenic endocrine disruptors on the immune system of fish: a review. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:305-19. [PMID: 21210218 DOI: 10.1007/s10646-010-0588-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2010] [Indexed: 05/20/2023]
Abstract
During the last decade, a number of studies have shown that, in addition to their classically described reproductive function, estrogens and androgens also regulate the immune system in teleosts. Today, several molecules are known to interfere with the sex-steroid signaling. These chemicals are often referred to as endocrine disrupting contaminants (EDCs). We review the growing evidence that these compounds interfere with the fish immune system. These studies encompass a broad range of approaches from field studies to those at the molecular level. This integrative overview improves our understanding of the various endocrine-disrupting processes triggered by these chemicals. Furthermore, the research also explains why fish that have been exposed to EDCs are more sensitive to pathogens during gametogenesis. In this review, we first discuss the primary actions of sex-steroid-like endocrine disruptors in fish and the specificity of the fish immune system in comparison to mammals. Then, we review the known interactions between the immune system and EDCs and interpret the primary effects of sex steroids (estrogens and androgens) and their related endocrine disruptors on immune modulation. The recent literature suggests that immune parameters may be used as biomarkers of contamination by EDCs. However, caution should be used in the assessment of such immunotoxicity. In particular, more attention should be paid to the specificity of these biomarkers, the external/internal factors influencing the response, and the transduction pathways induced by these molecules in fish. The use of the well-known mammalian models provides a useful guide for future research in fish.
Collapse
|
41
|
Chapman RW, Mancia A, Beal M, Veloso A, Rathburn C, Blair A, Holland AF, Warr GW, Didinato G, Sokolova IM, Wirth EF, Duffy E, Sanger D. The transcriptomic responses of the eastern oyster, Crassostrea virginica, to environmental conditions. Mol Ecol 2011; 20:1431-49. [PMID: 21426432 DOI: 10.1111/j.1365-294x.2011.05018.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the mechanisms by which organisms adapt to environmental conditions is a fundamental question for ecology and evolution. In this study, we evaluate changes in gene expression of a marine mollusc, the eastern oyster Crassostrea virginica, associated with the physico-chemical conditions and the levels of metals and other contaminants in their environment. The results indicate that transcript signatures can effectively disentangle the complex interactive gene expression responses to the environment and are also capable of disentangling the complex dynamic effects of environmental factors on gene expression. In this context, the mapping of environment to gene and gene to environment is reciprocal and mutually reinforcing. In general, the response of transcripts to the environment is driven by major factors known to affect oyster physiology such as temperature, pH, salinity, and dissolved oxygen, with pollutant levels playing a relatively small role, at least within the range of concentrations found in the studied oyster habitats. Further, the two environmental factors that dominate these effects (temperature and pH) interact in a dynamic and nonlinear fashion to impact gene expression. Transcriptomic data obtained in our study provide insights into the mechanisms of physiological responses to temperature and pH in oysters that are consistent with the known effects of these factors on physiological functions of ectotherms and indicate important linkages between transcriptomics and physiological outcomes. Should these linkages hold in further studies and in other organisms, they may provide a novel integrated approach for assessing the impacts of climate change, ocean acidification and anthropogenic contaminants on aquatic organisms via relatively inexpensive microarray platforms.
Collapse
Affiliation(s)
- Robert W Chapman
- South Carolina Department of Natural Resources, Charleston, SC 29422-2559, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hook SE, Nagler JJ, Cavileer T, Verducci J, Liu Y, Hayton W, Schultz IR. Relationships between the transcriptome and physiological indicators of reproduction in female rainbow trout over an annual cycle. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:309-318. [PMID: 21086553 DOI: 10.1002/etc.407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Normal transcriptomic patterns along the brain-pituitary-gonad-liver (BPGL) axis should be better characterized if endocrine-disrupting compound-induced changes in gene expression are to be understood. Female rainbow trout were studied over a complete year-long reproductive cycle. Tissue samples from pituitary, ovary, and liver were collected for microarray analysis using the 16K Genomic Research on Atlantic Salmon Project (GRASP) microarray and for quantitative polymerase chain reaction measures of estrogen receptor (ER) isoform messenger RNA (mRNA) levels. Plasma was collected to determine levels of circulating estradiol-17β (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). As an a priori hypothesis, changes in gene expression were correlated to either circulating levels of E2, FSH, and LH, or ER mRNAs quantified by quantitative polymerase chain reaction. In the liver, most transcriptomic patterns correlated to levels of either E2, LH, or ERs. Fewer ovarian transcripts could be correlated to levels of E2, ERα, or FSH. No significant associations were obvious in the pituitary. As a post hoc hypothesis, changes in transcript abundance were compared with microarray features with known roles in gonadal maturation. Many altered transcripts in the ovary correlated to transcript levels of estradiol 17-beta-dehydrogenase 8 or 17 B HSD12, or to glycoprotein alpha chain 1 or 2. In the pituitary, genes involved with the growth axis (e.g., growth hormone, insulin-related growth factor binding protein) correlated with the most transcripts. These results suggest that transcriptional networks along the BPGL axis may be regulated by factors other than circulating steroid hormones.
Collapse
|
43
|
Cerdà J, Douglas S, Reith M. Genomic resources for flatfish research and their applications. JOURNAL OF FISH BIOLOGY 2010; 77:1045-1070. [PMID: 21039490 DOI: 10.1111/j.1095-8649.2010.02695.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Flatfishes are a group of teleosts of high commercial and environmental interest, whose biology is still poorly understood. The recent rapid development of different 'omic' technologies is, however, enhancing the knowledge of the complex genetic control underlying different physiological processes of flatfishes. This review describes the different functional genomic approaches and resources currently available for flatfish research and summarizes different areas where microarray-based gene expression analysis has been applied. The increase in genome sequencing data has also allowed the construction of genetic linkage maps in different flatfish species; these maps are invaluable for investigating genome organization and identifying genetic traits of commercial interest. Despite the significant progress in this field, the genomic resources currently available for flatfish are still scarce. Further intensive research should be carried out to develop larger genomic sequence databases, high-density microarrays and, more detailed, complete linkage maps, using second-generation sequencing platforms. These tools will be crucial for further expanding the knowledge of flatfish physiology, and it is predicted that they will have important implications for wild fish population management, improved fish welfare and increased productivity in aquaculture.
Collapse
Affiliation(s)
- J Cerdà
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA) - Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
44
|
Yudkovski Y, Ramšak A, Ausland M, Tom M. Potential of the hepatic transcriptome expression profile of the striped seabream (Lithognathus mormyrus) as an environmental biomarker. Biomarkers 2010; 15:625-38. [PMID: 20846022 DOI: 10.3109/1354750x.2010.510579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The potential of the hepatic transcriptome expression profile evaluated in a sentinel feral fish to serve as an environmental biomarker was examined. Expression profiles of Lithognathus mormyrus individuals were exhibited using cDNA microarray and were related to the set of exposure conditions at their sites and dates of collection. Expression profiles of individual fish were reasonably clustered according to the fish samples. In addition, several sample-specific gene clusters were determined, designated sample gene signatures. The selection procedure for future optimal reference RNA is discussed. The relationship between transcriptome expression and fish samples indicated a potential for using the former as an environmental biomarker.
Collapse
Affiliation(s)
- Yana Yudkovski
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | | | | |
Collapse
|
45
|
Characterization of proteins in the gonad of Limanda yokohamae from Masan Bay, Korea. Biologia (Bratisl) 2010. [DOI: 10.2478/s11756-010-0068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Katsiadaki I, Williams TD, Ball JS, Bean TP, Sanders MB, Wu H, Santos EM, Brown MM, Baker P, Ortega F, Falciani F, Craft JA, Tyler CR, Viant MR, Chipman JK. Hepatic transcriptomic and metabolomic responses in the Stickleback (Gasterosteus aculeatus) exposed to ethinyl-estradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 97:174-187. [PMID: 19665239 DOI: 10.1016/j.aquatox.2009.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 05/28/2023]
Abstract
An established three-spined stickleback (Gasterosteus aculeatus) cDNA array was expanded to 14,496 probes with the addition of hepatic clones derived from subtractive and normalized libraries from control males and males exposed to model toxicants. Microarrays and one-dimensional (1)H nuclear magnetic resonance (NMR) spectroscopy, together with individual protein and gene biomarkers were employed to investigate the hepatic responses of the stickleback to ethinyl-estradiol (EE(2)) exposure. Male fish were exposed via the water to EE(2), including environmentally relevant concentrations (0.1-100ng/l) for 4 days, and hepatic transcript and metabolite profiles, kidney spiggin protein and serum vitellogenin concentrations were determined in comparison to controls. EE(2) exposure did not significantly affect spiggin concentration but significantly induced serum vitellogenin protein at the threshold concentration of 32ng/l. (1)H NMR coupled with robust univariate testing revealed only limited changes, but these did support the predicted modulation of the amino acid profile by transcriptomics. Transcriptional induction was found for hepatic vitellogenins and choriogenins as expected, together with a range of other EE(2)-responsive genes. Choriogenins showed the more sensitive responses with statistically significant induction at 10ng/l. Real-time polymerase chain reaction (PCR) confirmed transcriptional induction of these genes. Phosvitinless vitellogenin C transcripts were highly expressed and represent a major form of the egg yolk precursors, and this is in contrast to other fish species where it is a minor component of vitellogenic transcripts. Differences in inducibility between the vitellogenins and choriogenins appear to be in accordance with the sequential formation of chorion and yolk during oogenesis in fish.
Collapse
Affiliation(s)
- Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth, Dorset, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Craft JA, Gilbert JA, Temperton B, Dempsey KE, Ashelford K, Tiwari B, Hutchinson TH, Chipman JK. Pyrosequencing of Mytilus galloprovincialis cDNAs: tissue-specific expression patterns. PLoS One 2010; 5:e8875. [PMID: 20111607 PMCID: PMC2810337 DOI: 10.1371/journal.pone.0008875] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/21/2009] [Indexed: 01/28/2023] Open
Abstract
Background Mytilus species are important in marine ecology and in environmental quality assessment, yet their molecular biology is poorly understood. Molecular aspects of their reproduction, hybridisation between species, mitochondrial inheritance, skewed sex ratios of offspring and adaptation to climatic and pollution factors are priority areas. Methodology/Principal Findings To start to address this situation, expressed genetic transcripts from M. galloprovincialis were pyrosequenced. Transcripts were isolated from the digestive gland, foot, gill and mantle of both male and female mussels. In total, 175,547 sequences were obtained and for foot and mantle, 90% of the sequences could be assembled into contiguous fragments but this reduced to 75% for the digestive gland and gill. Transcripts relating to protein metabolism and respiration dominated including ribosomal proteins, cytochrome oxidases and NADH dehydrogenase subunits. Tissue specific variation was identified in transcripts associated with mitochondrial energy metabolism, with the digestive gland and gill having the greatest transcript abundance. Using fragment recruitment it was also possible to identify sites of potential small RNAs involved in mitochondrial transcriptional regulation. Sex ratios based on Vitelline Envelop Receptor for Lysin and Vitelline Coat Lysin transcript abundances, indicated that an equal sex distribution was maintained. Taxonomic profiling of the M. galloprovincialis tissues highlighted an abundant microbial flora associated with the digestive gland. Profiling of the tissues for genes involved in intermediary metabolism demonstrated that the gill and digestive gland were more similar to each other than to the other two tissues, and specifically the foot transcriptome was most dissimilar. Conclusions Pyrosequencing has provided extensive genomic information for M. galloprovincialis and generated novel observations on expression of different tissues, mitochondria and associated microorganisms. It will also facilitate the much needed production of an oligonucleotide microarray for the organism.
Collapse
Affiliation(s)
- John A Craft
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Padmini E. Physiological adaptations of stressed fish to polluted environments: role of heat shock proteins. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:1-27. [PMID: 20652666 DOI: 10.1007/978-1-4419-6260-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fish are subjected to a wide variety of environmental stressors. Stressors affect fish at all life stages and the stress-specific responses that occur at the biochemical and physiological levels affect the overall health and longevity of such animals. In this review, the organ-specific alterations in fish that inhabit polluted environments are addressed in detail. Fish,like other vertebrates, have evolved strategies to counteract stress-mediated effects. Among the key strategies that fish have developed is the induction of HSPs. The primary functions of HSPs are to promote the proper folding or refolding of proteins, to prevent potentially damaging interactions with proteins, and aiding in the disassembly of formations of protein aggregates. Stress, a state of unbalanced tissue oxidation, causes a general disturbance in the cellular antioxidant and redox balance and evokes HSP70 overexpression. Distinct families of HSPs have diverse physiological functions, and their induction, which is regulated at the transcriptional level, is mediated by the activation of heat shock factors. Interestingly, HSPs also interact with a wide variety of signaling molecules that modulate stress-mediated apoptotic effects. Hence, HSP induction is of major importance for maintenance of cell homeostasis. HSP-mediated adaptation processes are regarded as a fundamental protective mechanism that decreases cellular sensitivity to damaging events. Thus, the adaptive expression of HSPs is a protective response that helps combat stress-induced conformational damage to proteins. Additional research is needed to gain further information on the functional significance and role of individual HSPs and to enhance the understanding of the molecular mechanisms by which they act. In addition, field studies are needed to allow comprehensive evaluation of the potential use of HSPs as biomarkers for environmental monitoring. Furthermore, the expression of HSPs in fish fluctuates in response to seasonal variation. Because HSPs serves as a tool for assessing the stressed state of individuals and/or populations, the impact of seasonal influences on constitutive and inducible factors of these proteins should also be elucidated. Such research will lead to a fundamental improvement in the understanding of the functional role of HSPs in response to natural environmental changes and may allow correlation of the action of HSPs at the molecular level with the whole organismal stress response, which, so far, remains unexplained.
Collapse
Affiliation(s)
- Ekambaram Padmini
- Department of Biochemistry, Bharathi Women's College, Chennai, 600 108, TN, India.
| |
Collapse
|
49
|
Goetz FW, Rise ML, Rise M, Goetz GW, Binkowski F, Shepherd BS. Stimulation of growth and changes in the hepatic transcriptome by 17β-estradiol in the yellow perch (Perca flavescens). Physiol Genomics 2009; 38:261-80. [DOI: 10.1152/physiolgenomics.00069.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The effects of dietary 17β-estradiol (E2) on growth and liver transcriptomics were investigated in the yellow perch ( Perca flavescens). After a 3-mo treatment, E2 significantly stimulated an increase in length and weight of juvenile male and female perch relative to control animals. The increase was significantly greater in females compared with males. Separate, unnormalized cDNA libraries were constructed from equal quantities of RNA from 6 male and 6 female livers of E2-treated and control perch, and 3,546 and 3,719 expressed sequence tags (ESTs) were obtained, respectively. To characterize E2-regulated transcripts, EST frequencies between libraries were calculated within contiguous sequences that were assembled from the combined ESTs of both libraries. Frequencies were also determined in EST transcript groupings produced by aligning all of the ESTs from both libraries at the nucleotide level. From these analyses, there were 28 annotated transcripts that were regulated by 75% between libraries and for which there were at least 5 ESTs of the same transcript between libraries. Regulation of a subset ( 14 ) of these transcripts was confirmed by quantitative reverse transcription-polymerase chain reaction (QPCR). Transcripts that were upregulated by E2 included reproduction-related proteins, binding proteins, and proteases and protease inhibitors. While not part of the transcript frequency analysis, QPCR showed significant upregulation of estrogen receptor esr1 and of insulin-like growth factor I (IGF-I) in E2 livers. E2-downregulated transcripts represented a variety of functional categories including components of the respiratory chain, lipid transport and metabolism, glycolysis, amino acid and nitrogen metabolism, binding proteins, a hydrolytic enzyme, and a transcriptional regulator. In perch it appears that exogenous estrogen drastically shifts liver metabolism toward the production of lipoproteins and carbohydrate binding proteins, and that the growth-promoting action may involve an increase in hepatic IGF-I production.
Collapse
Affiliation(s)
- Frederick W. Goetz
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Matthew L. Rise
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Marlies Rise
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Giles W. Goetz
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Frederick Binkowski
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Brian S. Shepherd
- Great Lakes WATER Institute/Agricultural Research Service/U.S. Department of Agriculture, Milwaukee, Wisconsin
| |
Collapse
|
50
|
Lie KK, Meier S, Olsvik PA. Effects of environmental relevant doses of pollutants from offshore oil production on Atlantic cod (Gadus morhua). Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:141-9. [PMID: 19379838 DOI: 10.1016/j.cbpc.2009.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
The release of produced water (PW), a by-product of offshore oil production, has increased in Norwegian waters in recent years. Alkylphenols (AP), a major component of PW, have been shown to have endocrine disrupting effects on several fish species. In the present study, four groups of female Atlantic cod (Gadus morhua) were orally exposed for 20 weeks to two different concentrations of a mixture of C4-C7 APs, PW or 17beta-estradiol. The transcriptional responses in the liver of Atlantic female cod were studied using a custom-made cDNA microarray. The largest transcriptional effects were seen in cod exposed to the lowest dose of APs. Several biological processes such as glycolysis, apoptosis and the general stress response were affected by exposure to APs. In addition, genes coding for the detoxification enzymes CYP1A and sulfotransferase 2 were up-regulated in the low exposure group. Significant reduction in gonadosomatic index (GSI) and the concentration of plasma vitellogenin were seen in both AP and 17beta-estradiol exposed cod. Exposure to PW had little effect on GSI and the regulation of stress responsive genes. The findings indicate that chronic exposure to low levels of APs may cause a stress response and delayed maturation in female cod.
Collapse
Affiliation(s)
- Kai K Lie
- National Institute of Nutrition and Seafood Research, Nordnesboder 2, N-5005 Bergen, Norway.
| | | | | |
Collapse
|