1
|
Wu Y, Song J, Zhang Q, Yan S, Sun X, Yi W, Pan R, Cheng J, Xu Z, Su H. Association between organophosphorus pesticide exposure and depression risk in adults: A cross-sectional study with NHANES data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120445. [PMID: 36265728 DOI: 10.1016/j.envpol.2022.120445] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus pesticides (OPPs) are widely used pesticides, and previous studies showed that OPPs can increase the risk of central nervous system disorders (e.g., Parkinson's and Alzheimer's disease). However, few studies have comprehensively explored their association with depression in general adults. We analyzed data from 5206 participants aged 20 years or more based on four National Health and Nutrition Examination Survey (NHANES) cycles. OPPs exposure was estimated using measures of urinary concentrations for six OPPs metabolites. Survey-weighted generalized linear regression model (SWGLM) was used to explore the association of OPPs metabolites with depression. Subgroup analyses were performed by age (≦60 years and >60 years) and gender. The weighted quantile sum (WQS) regression model was used to explore the overall association of six OPPs metabolites with depression. In addition, The Bayesian kernel machine regression (BKMR) model was applied to investigate the interaction and joint effects of multiple OPPs metabolites with depression. The SWGLM showed that dimethyl phosphate (DMP) and dimethyl thiophosphate (DMTP), whether taken as continuous or quartile variables, had a positive correlation with depression. Diethyl phosphate (DEP) and dimethyl dithiophosphate (DMDTP) in the highest quartile were positively associated with depression compared to the lowest quartile. In subgroup analysis, we found that the effects of the above chemicals on depression existed in the male and young middle-aged population, while DMP was present in the female. There was a significant combined overall effect of six OPPs metabolites with depression [OR = 1.232, 95%CI: (1.011, 1.504)] in WQS. Furthermore, the BKMR model also showed a positive trend in the overall effect of six OPPs metabolites with depression. In conclusion, our results suggest that exposure to OPPs may increase the risk of depression in US adults. Men and young and middle-aged populations are more vulnerable to OPPs and the mixture of OPPs metabolites may induce depression.
Collapse
Affiliation(s)
- Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Qin Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Australia
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
2
|
Hirai A, Yamazaki R, Kobayashi A, Kimura T, Nomiyama K, Shimma S, Nakayama SMM, Ishizuka M, Ikenaka Y. Detection of Changes in Monoamine Neurotransmitters by the Neonicotinoid Pesticide Imidacloprid Using Mass Spectrometry. TOXICS 2022; 10:696. [PMID: 36422903 PMCID: PMC9695199 DOI: 10.3390/toxics10110696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Monoamine neurotransmitters (MAs), including dopamine (DA) and serotonin (5-HT), regulate brain functions such as behavior, memory, and learning. Neonicotinoids are pesticides that are being used more frequently. Neonicotinoid exposure has been observed to produce neurological symptoms, such as altered spontaneous movements and anxiety-like behaviors, which are suspected to be caused by altered MA levels. However, current neurotoxicity tests are not sufficiently sensitive enough to make these determinations. In this study, we performed some behavior tests, and derivatization reagents to improve the ionization efficiency, which was applied to liquid chromatography mass spectrometry (LC-MS/MS) to reveal the effect of neonicotinoid administration on MAs in the brain. We orally administered the neonicotinoid imidacloprid (0, 10, and 50 mg/kg body weight) to C57BL/6NCrSlc mice. In the behavior tests, a decrease in activity was observed. The LC-MS/MS quantification of MAs in various brain regions showed a decrease in some MA levels in the olfactory bulb and the striatum. These results showed, for the first time, that even a low dose of imidacloprid could alter MA levels in various parts of the brain.
Collapse
Affiliation(s)
- Anri Hirai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Ryo Yamazaki
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa
| |
Collapse
|
3
|
Rodrigues JVF, Vidigal APP, Minassa VS, Batista TJ, de Lima RMS, Funck VR, Antero LS, Resstel LBM, Coitinho JB, Bertoglio LJ, Sampaio KN, Beijamini V. A single dose of the organophosphate triazophos induces fear extinction deficits accompanied by hippocampal acetylcholinesterase inhibition. Neurotoxicol Teratol 2020; 82:106929. [DOI: 10.1016/j.ntt.2020.106929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022]
|
4
|
Mora S, Martín-González E, Prados-Pardo Á, Moreno J, López MJ, Pilar-Cuellar F, Castro E, Díaz Á, Flores P, Moreno M. Increased vulnerability to impulsive behavior after streptococcal antigen exposure and antibiotic treatment in rats. Brain Behav Immun 2020; 89:675-688. [PMID: 32798664 DOI: 10.1016/j.bbi.2020.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
RATIONALE The inflammation induced by Group A Streptococcus (GAS) infection has been viewed as a vulnerability factor in mental disorders characterized by inhibitory control deficits, such as attention-deficit/hyperactivity disorder or obsessive-compulsive disorder. Antibiotic treatment reduces GAS symptoms; however, its effects on impulsivity have not been fully assessed. OBJECTIVES We investigated whether GAS exposure during early adolescence might be a vulnerability factor for adult impulsivity, if antibiotic treatment acts as a protective factor, and whether these differences are accompanied by changes in the inflammatory cytokine frontostriatal regions. METHODS Male Wistar rats were exposed to the GAS antigen or to vehicle plus adjuvants at postnatal day (PND) 35 (with two boosts), and they received either ampicillin (supplemented in the drinking water) or water alone from PND35 to PND70. Adult impulsivity was assessed using two different models, the 5-choice serial reaction time task (5-CSRT task) and the delay discounting task (DDT). The levels of interleukin-6 (IL-6) and IL-17 were measured in the prefrontal cortex (PFc), and the tumor necrosis factor α levels (TNFα) were measured in the PFc and nucleus accumbens (NAcc). RESULTS GAS exposure and ampicillin treatment increased the waiting impulsivity by a higher number of premature responses when the animals were challenged by a long intertrial interval during the 5-CSRT task. The GAS exposure revealed higher impulsive choices at the highest delay (40 s) when tested by DDT, while coadministration with ampicillin prevented the impulsive choice. GAS exposure and ampicillin reduced the IL-6 and IL-17 levels in the PFc, and ampicillin treatment increased the TNFα levels in the NAcc. A regression analysis revealed a significant contribution of GAS exposure and TNFα levels to the observed effects. CONCLUSIONS GAS exposure and ampicillin treatment induced an inhibitory control deficit in a different manner depending on the form of impulsivity measured here, with inflammatory long-term changes in the PFc and NAcc that might increase the vulnerability to impulsivity-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Santiago Mora
- Department of Psychology and Health Research Centre, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Elena Martín-González
- Department of Psychology and Health Research Centre, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Ángeles Prados-Pardo
- Department of Psychology and Health Research Centre, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Joaquín Moreno
- Department of Biology and Geology, CeiA3 and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - María José López
- Department of Biology and Geology, CeiA3 and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Fuencisla Pilar-Cuellar
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC-SODERCAN, 39011 Santander, Spain; Department of Physiology and Pharmacology, University of Cantabria, 39011 Santander, Spain
| | - Elena Castro
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC-SODERCAN, 39011 Santander, Spain; Department of Physiology and Pharmacology, University of Cantabria, 39011 Santander, Spain
| | - Álvaro Díaz
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC-SODERCAN, 39011 Santander, Spain; Department of Physiology and Pharmacology, University of Cantabria, 39011 Santander, Spain
| | - Pilar Flores
- Department of Psychology and Health Research Centre, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Margarita Moreno
- Department of Psychology and Health Research Centre, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| |
Collapse
|
5
|
Combination effect of exercise training and eugenol supplementation on the hippocampus apoptosis induced by chlorpyrifos. Mol Biol Rep 2020; 47:5985-5996. [PMID: 32780254 DOI: 10.1007/s11033-020-05672-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the combination effect of exercise training and eugenol supplementation on the hippocampus apoptosis induced by CPF. 64 adult male albino rats were randomly selected and devided into eight groups of eight including: control, exercise (EXE), chlorpyrifos (CPF), Control + Oil (Co + Oil), Control + DMSO (Co + DMSO), chlorpyrifos + eugenol (CPF + Sup), chlorpyrifos + exercise (CPF + Exe) and, chlorpyrifos + exercise + eugenol (CPF + Exe + Eu). Four experimental groups received intraperitoneal injection (5 days a week) of 3.0 mg/kg body weight CPF in DMSO for 6 consecutive weeks. The exercise groups performed aerobic 5 days per week over 4 weeks. Eugenol were administered by gavage. Finally, the animals were sacrificed using CO2 gas (a half of the rats were anesthetized with ketamine and xylazine and then perfused) to evaluate hippocampus histology and parameters. The results of this study showed that CPF injection significantly decreased BDNF, AChE and ATP in CA1 area of the hippocampus (p ˂ 0.05). Also, CA1 apoptosis by tunnel assay, it was found that CPF receiving groups with different dosage, showed a significant increase compared to other groups, which was confirmed by increasing cytochrome C and procaspase-3 in CPF groups (p ˂ 0.05). The result of this study show that 4 weeks of exercise training and eugenol supplementation does not improve the destructive effects of CPF in CA1 area of the hippocampus. As a result, it is recommended that future studies longer periods for treatment with exercise and eugenol supplementation.
Collapse
|
6
|
Bharatiya R, Chagraoui A, De Deurwaerdere S, Argiolas A, Melis MR, Sanna F, De Deurwaerdere P. Chronic Administration of Fipronil Heterogeneously Alters the Neurochemistry of Monoaminergic Systems in the Rat Brain. Int J Mol Sci 2020; 21:ijms21165711. [PMID: 32784929 PMCID: PMC7461054 DOI: 10.3390/ijms21165711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Fipronil (FPN), a widely used pesticide for agricultural and non-agricultural pest control, is possibly neurotoxic for mammals. Brain monoaminergic systems, involved in virtually all brain functions, have been shown to be sensitive to numerous pesticides. Here, we addressed the hypothesis that chronic exposure to FPN could modify brain monoamine neurochemistry. FPN (10 mg/kg) was chronically administered for 21 days through oral gavage in rats. Thereafter, the tissue concentrations of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid; serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA); and noradrenaline (NA) were measured in 30 distinct brain regions. FPN significantly decreased DA and its metabolite levels in most striatal territories, including the nucleus accumbens and the substantia nigra (SN). FPN also diminished 5-HT levels in some striatal regions and the SN. The indirect index of the turnovers, DOPAC/DA and 5-HIAA/5-HT ratios, was increased in numerous brain regions. FPN reduced the NA content only in the nucleus accumbens core. Using the Bravais–Pearson test to study the neurochemical organization of monoamines through multiple correlative analyses across the brain, we found fewer correlations for NA, DOPAC/DA, and 5-HIAA/5-HT ratios, and an altered pattern of correlations within and between monoamine systems. We therefore conclude that the chronic administration of FPN in rats induces massive and inhomogeneous changes in the DA and 5-HT systems in the brain.
Collapse
Affiliation(s)
- Rahul Bharatiya
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux CEDEX, France;
| | - Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, 76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Salomé De Deurwaerdere
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux CEDEX, France;
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, 09100 Cagliari, Italy
- Institute of Neuroscience, National Research Council, Cagliari Section, University of Cagliari, 09100 Cagliari, Italy
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, 09100 Cagliari, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Correspondence: (F.S.); (P.D.D.); Tel.: +39-070-675-4330 (F.S.); +33-557-571-290 (P.D.D.)
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux CEDEX, France;
- Correspondence: (F.S.); (P.D.D.); Tel.: +39-070-675-4330 (F.S.); +33-557-571-290 (P.D.D.)
| |
Collapse
|
7
|
Peris-Sampedro F, Guardia-Escote L, Basaure P, Cabré M, Colomina MT. Improvement of APOE4-dependent non-cognitive behavioural traits by postnatal cholinergic stimulation in female mice. Behav Brain Res 2020; 384:112552. [DOI: 10.1016/j.bbr.2020.112552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 02/08/2023]
|
8
|
Alfonso M, Durán R, Fajardo D, Justo L, Faro LR. Mechanisms of action of paraoxon, an organophosphorus pesticide, on in vivo dopamine release in conscious and freely moving rats. Neurochem Int 2019; 124:130-140. [DOI: 10.1016/j.neuint.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
|
9
|
Atropine counteracts the depressive-like behaviour elicited by acute exposure to commercial chlorpyrifos in rats. Neurotoxicol Teratol 2019; 71:6-15. [DOI: 10.1016/j.ntt.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
|
10
|
Faro LRF, Fajardo D, Durán R, Alfonso M. Characterization of acute intrastriatal effects of paraoxon on in vivo dopaminergic neurotransmission using microdialysis in freely moving rats. Toxicol Lett 2018; 299:124-128. [PMID: 30292885 DOI: 10.1016/j.toxlet.2018.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/08/2018] [Accepted: 09/28/2018] [Indexed: 11/26/2022]
Abstract
Paraoxon (POX) is an extremely neurotoxic organophosphorous compound (OP) which main toxic mechanism is the irreversible inhibition of cholinesterase. Although the cholinergic system has always been linked as responsible for its acute effects, experimental studies have suggested that the dopaminergic system also may be a potential target for OPs. Based on this, in this study, the acute intrastriatal effects of POX on dopaminergic neurotransmission were characterized in vivo using brain microdialysis in freely moving rats. In situ administration of POX (5, 25 and 50 nmol, 60 min) significantly increased the striatal dopamine overflow (to 435 ± 79%, 1066 ± 120%, and 1861 ± 332%, respectively), whereas a lower concentration (0.5 nmol) did not affect dopamine levels. Administration of POX (25 nmol) to atropine (15 nmol) pretreated animals, produced an increase in dopamine overflow that was ∼63% smaller than those observed in animals not pretreated. Administration of POX (25 nmol) to mecamylamine (35 nmol) pretreated animals did not significantly affect the POX-induced dopamine release. Our results suggest that acute administration of POX increases the dopamine release in a concentration-dependent way, being this release dependent on acetylcholinesterase inhibition and mediated predominantly by the activation of striatal muscarinic receptors, once the muscarinic antagonist atropine partially blocks the POX-induced dopamine release.
Collapse
Affiliation(s)
- Lilian R F Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain.
| | - Daniel Fajardo
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | - Rafael Durán
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | - Miguel Alfonso
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| |
Collapse
|
11
|
Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis 2018; 117:82-113. [PMID: 29859868 DOI: 10.1016/j.nbd.2018.05.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Abstract
The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10 μM) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5 mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.
Collapse
|
12
|
Martínez MA, Ares I, Rodríguez JL, Martínez M, Martínez-Larrañaga MR, Anadón A. Neurotransmitter changes in rat brain regions following glyphosate exposure. ENVIRONMENTAL RESEARCH 2018; 161:212-219. [PMID: 29156344 DOI: 10.1016/j.envres.2017.10.051] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/19/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
The effects of glyphosate oral exposure (35, 75, 150 and 800mg/kg bw, 6 days) on brain region monoamine levels of male Wistar rats were examined. Glyphosate-treated rats (35, 75, 150 and 800mg/kg bw, 6 days), had no visible injury, i.e., no clinical signs of dysfunction were observed. After last dose of glyphosate, serotonin (5-HT), dopamine (DA) and norepinephrine (NE) and its metabolites levels were determined in the brain regions striatum, hippocampus, prefrontal, cortex, hypothalamus and midbrain, by HPLC. Glyphosate caused statistically significant changes in the 5-HT and its metabolite 5-hydroxy-3-indolacetic acid (5-HIAA), DA and its metabolites 3,4-hydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and NE and its metabolite 3-metoxy-4-hydroxyphenylethyleneglycol (MHPG) levels in a brain regional- and dose-related manner. Moreover, glyphosate, dose-dependent, evoked a statistically significant increase in 5-HT turnover in striatum and hypothalamus and in DA turnover in prefrontal cortex and hippocampus, and a statistically significant decrease in NE turnover in prefrontal cortex and hypothalamus. The present findings indicate that glyphosate significantly altered central nervous system (CNS) monoaminergic neurotransmitters in a brain regional- and dose-related manner, effects that may contribute to the overall spectrum of neurotoxicity caused by this herbicide.
Collapse
Affiliation(s)
- María-Aránzazu Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Irma Ares
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - José-Luis Rodríguez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Marta Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - María-Rosa Martínez-Larrañaga
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Arturo Anadón
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Maya N, Evans J, Nasuhoglu D, Isazadeh S, Yargeau V, Metcalfe CD. Evaluation of wastewater treatment by ozonation for reducing the toxicity of contaminants of emerging concern to rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:274-284. [PMID: 28815790 DOI: 10.1002/etc.3952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/17/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Although conventional wastewater treatment technologies are effective at removing many contaminants of emerging concern (CECs) from municipal wastewater, some contaminants are not removed efficiently. Ozonation may be a treatment option for reducing the concentrations of recalcitrant CECs in wastewater, but this process may generate toxic transformation products. In the present study, we conducted semibatch experiments to ozonate municipal wastewater effluent spiked with 5 commonly detected CECs. The purpose of the present study was to evaluate whether ozonation increased or decreased biological responses indicative of sublethal toxicity in juvenile rainbow trout (Oncorhynchus mykiss) injected intraperitoneally (i.p.) with extracts prepared from ozonated and nonozonated wastewater effluent. Blood, liver, and brain tissues were collected from the fish at 72 h post injection for analysis of a battery of biomarkers. In fish i.p. injected with the extracts from nonozonated wastewater effluent, significant induction of plasma vitellogenin (VTG) was observed, but ozonation of the municipal wastewater effluent spiked with CECs significantly reduced this estrogenic response. However, in fish injected with extracts from spiked municipal wastewater effluent after ozonation, the balance of hepatic glutathione in its oxidized (glutathione disulfide [GSSG]) form was altered, indicating oxidative stress. Levels of the neurotransmitter serotonin were significantly elevated in brain tissue from trout injected with the extracts from ozonated spiked municipal wastewater effluent, a biological response that has not been previously reported in fish. Other in vivo biomarkers showed no significant changes across treatments. These results indicate that ozonation reduces the estrogenicity of wastewater, but may increase other sublethal responses. The increase in biomarker responses after ozonation may be because of the formation of biologically active products of transformation of CECs, but further work is needed to confirm this conclusion. Environ Toxicol Chem 2018;37:274-284. © 2017 SETAC.
Collapse
Affiliation(s)
- Nicholas Maya
- The School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Jaden Evans
- The School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Deniz Nasuhoglu
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | - Siavash Isazadeh
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | - Chris D Metcalfe
- The School of the Environment, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
14
|
Tryptophan depletion affects compulsive behaviour in rats: strain dependent effects and associated neuromechanisms. Psychopharmacology (Berl) 2017; 234:1223-1236. [PMID: 28280881 PMCID: PMC5362668 DOI: 10.1007/s00213-017-4561-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/02/2017] [Indexed: 02/02/2023]
Abstract
RATIONALE Compulsive behaviour, present in different psychiatric disorders, such as obsessive-compulsive disorder, schizophrenia and drug abuse, is associated with altered levels of monoamines, particularly serotonin (5-hydroxytryptamine) and its receptor system. OBJECTIVES The present study investigated whether 5-HT manipulation, through a tryptophan (TRP) depletion by diet in Wistar and Lister Hooded rats, modulates compulsive drinking in schedule-induced polydipsia (SIP) and locomotor activity in the open-field test. The levels of dopamine, noradrenaline, serotonin and its metabolite were evaluated, as well as the 5-HT2A and 5-HT1A receptor binding, in different brain regions. METHODS Wistar rats were selected as high (HD) or low (LD) drinkers according to their SIP behaviour, while Lister hooded rats did not show SIP acquisition. Both strains were fed for 14 days with either a TRP-free diet (T-) or a TRP-supplemented diet (T+) RESULTS: The TRP depletion diet effectively reduced 5-HT levels in the frontal cortex, amygdala and hippocampus in both strains of rats. The TRP-depleted HD Wistar rats were more sensitive to 5-HT manipulation, exhibiting more licks on SIP than did the non-depleted HD Wistar rats, while the LD Wistar and the Lister Hooded rats did not exhibit differences in SIP. In contrast, the TRP-depleted Lister Hooded rats increased locomotor activity compared to the non-depleted rats, while no differences were found in the Wistar rats. Serotonin 2A receptor binding in the striatum was significantly reduced in the TRP-depleted HD Wistar rats. CONCLUSIONS These results suggest that alterations of the serotonergic system could be involved in compulsive behaviour in vulnerable populations.
Collapse
|
15
|
Judge SJ, Savy CY, Campbell M, Dodds R, Gomes LK, Laws G, Watson A, Blain PG, Morris CM, Gartside SE. Mechanism for the acute effects of organophosphate pesticides on the adult 5-HT system. Chem Biol Interact 2015; 245:82-9. [PMID: 26721196 PMCID: PMC4732990 DOI: 10.1016/j.cbi.2015.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/03/2015] [Accepted: 12/18/2015] [Indexed: 11/07/2022]
Abstract
The neurotransmitter serotonin (5-HT) is involved in mood disorder aetiology and it has been reported that (organophosphate) OP exposure affects 5-HT turnover. The aim of this study was to elucidate the mechanism underlying OP effects on the adult 5-HT system. First, acute in vivo administration of the OP diazinon (0, 1.3, 13 or 39 mg/kg i.p.) to male Hooded Lister rats inhibited the activity of the cholinergic enzyme acetylcholinesterase in blood and in the hippocampus, dorsal raphe nucleus (DRN), striatum and prefrontal cortex. Diazinon-induced cholinesterase inhibition was greatest in the DRN, the brain's major source of 5-HT neurones. Second, acute in vivo diazinon exposure (0 or 39 mg/kg i.p.) increased the basal firing rate of DRN neurones measured ex vivo in brain slices. The excitatory responses of DRN neurones to α1-adrenoceptor or AMPA/kainate receptor activation were not affected by in vivo diazinon exposure but the inhibitory response to 5-HT was attenuated, indicating 5-HT1A autoreceptor down-regulation. Finally, direct application of the diazinon metabolite diazinon oxon to naive rat brain slices increased the firing rate of DRN 5-HT neurones, as did chlorpyrifos-oxon, indicating the effect was not unique to diazinon. The oxon-induced augmentation of firing was blocked by the nicotinic acetylcholine receptor antagonist mecamylamine and the AMPA/kainate glutamate receptor antagonist DNQX. Together these data indicate that 1) acute OP exposure inhibits DRN cholinesterase, leading to acetylcholine accumulation, 2) the acetylcholine activates nicotinic receptors on 5-HT neurones and also on glutamatergic neurones, thus releasing glutamate and activating 5-HT neuronal AMPA/kainate receptors 3) the increase in 5-HT neuronal activity, and resulting 5-HT release, may lead to 5-HT1A autoreceptor down-regulation. This mechanism may be involved in the reported increase in risk of developing anxiety and depression following occupational OP exposure. Organophosphate exposure inhibits dorsal raphe nucleus cholinesterase activity. Organophosphate oxon exposure activates 5-HT neurones in the dorsal raphe nucleus. Nicotinic and AMPA receptors mediate the oxon-induced activation of 5-HT neurones. Organophosphate exposure attenuates the response to 5-HT1A autoreceptor activation.
Collapse
Affiliation(s)
- Sarah J Judge
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Claire Y Savy
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthew Campbell
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Rebecca Dodds
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Larissa Kruger Gomes
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Grace Laws
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Anna Watson
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Peter G Blain
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher M Morris
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sarah E Gartside
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
16
|
Savy CY, Fitchett AE, McQuade R, Gartside SE, Morris CM, Blain PG, Judge SJ. Low-level repeated exposure to diazinon and chlorpyrifos decrease anxiety-like behaviour in adult male rats as assessed by marble burying behaviour. Neurotoxicology 2015; 50:149-56. [PMID: 26297601 DOI: 10.1016/j.neuro.2015.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022]
Abstract
Occupational exposure to organophosphate (OPs) pesticides is reported to increase in the risk of developing anxiety and depression. Preclinical studies using OP levels, which inhibit acetylcholinesterase activity, support the clinical observations, but little is known of the effects of exposure below this threshold. We examined the effects of low level OP exposure on behaviours and neurochemistry associated with affective disorders. Adult rats were administered either diazinon (1 mg/kg i.p.) which is present in sheep dip and flea collars, chlorpyrifos (1 mg/kg i.p.) which is present in crop sprays, or vehicle for 5 days. OP exposure did not affect acetylcholinesterase activity (blood, cerebellum, caudate putamen, hippocampus, prefrontal cortex), anhedonia-like behaviour (sucrose preference), working memory (novel object recognition), locomotor activity or anxiety-like behaviour in the open field arena. In contrast OP exposure attenuated marble burying behaviour, an ethological measure of anxiety. The diazinon-induced reduction in marble burying persisted after exposure cessation. In comparison to vehicle, dopamine levels were lowered by chlorpyrifos, but not diazinon. 5-HT levels and turnover were unaffected by OP exposure. However, 5-HT transporter expression was reduced by diazinon suggesting subtle changes in 5-HT transmission. These data indicate exposure to occupational and domestic OPs, below the threshold to inhibit acetylcholinesterase, can subtly alter behaviour and neurochemistry.
Collapse
Affiliation(s)
- Claire Y Savy
- Medical Toxicology Centre, Newcastle University, Claremont Place, Newcastle upon Tyne NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Ann E Fitchett
- Medical Toxicology Centre, Newcastle University, Claremont Place, Newcastle upon Tyne NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Richard McQuade
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Sarah E Gartside
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Christopher M Morris
- Medical Toxicology Centre, Newcastle University, Claremont Place, Newcastle upon Tyne NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Peter G Blain
- Medical Toxicology Centre, Newcastle University, Claremont Place, Newcastle upon Tyne NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Sarah J Judge
- Medical Toxicology Centre, Newcastle University, Claremont Place, Newcastle upon Tyne NE2 4AA, UK; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
17
|
Ali SJ, Rajini PS. Effect of monocrotophos, an organophosphorus insecticide, on the striatal dopaminergic system in a mouse model of Parkinson’s disease. Toxicol Ind Health 2014; 32:1153-65. [DOI: 10.1177/0748233714547733] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our earlier study had shown that low concentrations of monocrotophos (MCP) elicited dopaminergic features of Parkinson’s disease (PD) in the nematode Caenorhabditis elegans. In the present study, the effect of low doses of MCP on the striatal dopaminergic neurons was investigated using the mouse model system. MCP was initially screened for its ability to cause any neurobehavioral deficits and alterations in the dopaminergic system in Swiss albino mice, aged 8 weeks and weighing 25–30 g, with repeated doses at 0.3 and 0.6 mg/kg body weight (b.w.)/day for 7 days and 30 days. Mice were treated with four intraperitoneal injections for every 2 h with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at the dosage of 14 mg/kg b.w. MCP was administered to these mice at the above-mentioned doses for 7 days. Mice administered with MCP alone revealed a significant ( p < 0.05) reduction in the dopamine (DA) content at both 7 and 30 days and showed a significant ( p < 0.05) increase in neurobehavioral deficits. Interestingly, when MCP was administered for 7 days to MPTP-treated mice, further significant decrease in both DA content and increase in neurobehavioral deficits were apparent. The extent of reactive oxygen species and lipid peroxidation were markedly increased, while the ratio of reduced to oxidized glutathione levels were significantly decreased ( p < 0.05) in the treated mice as compared to the control. Significant histopathological alterations and a marked reduction in the number of tyrosine hydroxylase positive cells were evident in striatum of mice treated with higher doses of MCP. These changes were comparable to that seen in mice treated with MPTP and post-administered lower doses of MCP. Our findings suggest that MCP per se has the propensity to induce pathological changes in the dopaminergic neurons as well as augment the degeneration in a compromised nigrostriatal system such as that in PD.
Collapse
Affiliation(s)
- Shaheen Jafri Ali
- Department of Food Protectants and Infestation Control, Council of Scientific and Industrial Research (CSIR)—Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Padmanabhan Sharda Rajini
- Department of Food Protectants and Infestation Control, Council of Scientific and Industrial Research (CSIR)—Central Food Technological Research Institute, Mysore, Karnataka, India
| |
Collapse
|
18
|
Effects of Repeated Low-Dose Exposure of the Nerve Agent VX on Monoamine Levels in Different Brain Structures in Mice. Neurochem Res 2014; 39:911-21. [DOI: 10.1007/s11064-014-1286-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
|
19
|
Berent S, Giordani B, Albers JW, Garabrant DH, Cohen SS, Garrison RP, Richardson RJ. Effects of occupational exposure to chlorpyrifos on neuropsychological function: a prospective longitudinal study. Neurotoxicology 2014; 41:44-53. [PMID: 24447827 DOI: 10.1016/j.neuro.2013.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Exposure to chlorpyrifos (CPF), an organophosphorus (OP) anticholinesterase insecticide, occurs typically in settings where multiple agents are present (e.g., agriculture) and quantitative dose measures may be absent (e.g., pesticide application). Such exposures allow few opportunities to study potential neurobehavioral effects of CPF alone. We studied the relationship between CPF exposure and behavioral function among CPF manufacturing workers, which allowed identification, measurement, and estimation of exposure and important non-exposure variables that potentially could affect study findings. METHODS A prospective longitudinal study design was used to compare neurobehavioral function over a one-year period among 53 CPF workers and 60 referent workers. Quantitative and qualitative measures were used, and potential confounders were identified and tested for possible inclusion in our statistical models. Neurobehavioral function was assessed by neuropsychological tests covering various behavioral domains that may be adversely affected by exposure to CPF in sufficient amount. RESULTS CPF workers had significantly greater CPF exposures during the study period than did referents at levels where physiologic effects on plasma butyrylcholinesterase (BuChE) activity were apparent and with higher 3,5,6-trichloro-2-pyridinol (TCPy/Cr) urinary excretion (p<0.0001) and lower average BuChE activity (p<0.01). No evidence for impaired neurobehavioral domains by either group of workers was observed at baseline, on repeat examination, or between examinations. CPF workers scored higher than referent workers on the verbal memory domain score (p=0.03) at baseline, but there were no significant changes in verbal memory over time and no significant group-by-time interactions. CONCLUSIONS The study provides important information about CPF exposure in the workplace by not supporting our working hypothesis that CPF exposure associated with various aspects of the manufacturing process would be accompanied by adverse neurobehavioral effects detectable by quantitative neurobehavioral testing. Some aspects making this workplace site attractive for study and also present limitations for the generalization of results to other situations that might have exposures that vary widely between and within different facilities and locations. For example, these results might not apply to occupations such as applicators with higher exposure or to workers with low educational levels.
Collapse
Affiliation(s)
- Stanley Berent
- Department of Psychiatry, University of Michigan, USA; Department of Neurology, University of Michigan, USA; Department of Environmental Health Sciences, University of Michigan, USA.
| | - Bruno Giordani
- Department of Psychiatry, University of Michigan, USA; Department of Neurology, University of Michigan, USA
| | - James W Albers
- Department of Neurology, University of Michigan, USA; Department of Environmental Health Sciences, University of Michigan, USA
| | - David H Garabrant
- Department of Environmental Health Sciences, University of Michigan, USA
| | | | - Richard P Garrison
- Department of Environmental Health Sciences, University of Michigan, USA
| | - Rudy J Richardson
- Department of Neurology, University of Michigan, USA; Department of Environmental Health Sciences, University of Michigan, USA
| |
Collapse
|
20
|
Carvajal F, Sanchez-Amate MDC, Lerma-Cabrera JM, Cubero I. Effects of a single high dose of Chlorpyrifos in long-term feeding, ethanol consumption and ethanol preference in male Wistar rats with a previous history of continued ethanol drinking. J Toxicol Sci 2014; 39:425-35. [DOI: 10.2131/jts.39.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Francisca Carvajal
- Department of Psychology, Universidad Autónoma de Chile
- Department of Psychology, Universidad de Almería
| | | | - José Manuel Lerma-Cabrera
- Department of Psychology, Universidad Autónoma de Chile
- Department of Psychology, Universidad de Almería
| | - Inmaculada Cubero
- Department of Psychology, Universidad Autónoma de Chile
- Department of Psychology, Universidad de Almería
| |
Collapse
|
21
|
Ahmed MAE, Ahmed HI, El-Morsy EM. Melatonin protects against diazinon-induced neurobehavioral changes in rats. Neurochem Res 2013; 38:2227-36. [PMID: 23979727 DOI: 10.1007/s11064-013-1134-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 12/29/2022]
Abstract
Diazinon is an organophosphorous pesticide with a prominent toxicity on many body organs. Multiple mechanisms contribute to diazinon-induced deleterious effects. Inhibition of acetyl-cholinesterase, cholinergic hyperstimulation, and formation of reactive oxygen species may play a role. On the other hand, melatonin is a pineal hormone with a well-known potent antioxidant activity and a remarkable modulatory effect on many behavioral processes. The present study revealed that oral diazinon administration (25 mg/kg) increased anxiety behavior in rats subjected to elevated plus maze and open-field tests possibly via the induction of changes in brain monoamines levels (dopamine, norepinephrine, and serotonin). Additionally, brain lipid peroxides measured as malondialdehyde (MDA) and tumor necrosis factor alpha (TNF-α) levels were elevated, while the activity of brain glutathione peroxidase enzyme was reduced by diazinon. Co-administration of oral melatonin (10 mg/kg) significantly attenuated the anxiogenic activity of diazinon, rebalanced brain monoamines levels, decreased brain MDA and TNF-α levels, and increased the activity of brain glutathione peroxidase enzyme.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Egypt,
| | | | | |
Collapse
|
22
|
The dynamics of autism spectrum disorders: how neurotoxic compounds and neurotransmitters interact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3384-408. [PMID: 23924882 PMCID: PMC3774444 DOI: 10.3390/ijerph10083384] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022]
Abstract
In recent years concern has risen about the increasing prevalence of Autism Spectrum Disorders (ASD). Accumulating evidence shows that exposure to neurotoxic compounds is related to ASD. Neurotransmitters might play a key role, as research has indicated a connection between neurotoxic compounds, neurotransmitters and ASD. In the current review a literature overview with respect to neurotoxic exposure and the effects on neurotransmitter systems is presented. The aim was to identify mechanisms and related factors which together might result in ASD. The literature reported in the current review supports the hypothesis that exposure to neurotoxic compounds can lead to alterations in the GABAergic, glutamatergic, serotonergic and dopaminergic system which have been related to ASD in previous work. However, in several studies findings were reported that are not supportive of this hypothesis. Other factors also might be related, possibly altering the mechanisms at work, such as time and length of exposure as well as dose of the compound. Future research should focus on identifying the pathway through which these factors interact with exposure to neurotoxic compounds making use of human studies.
Collapse
|
23
|
He B, Bi K, Jia Y, Wang J, Lv C, Liu R, Zhao L, Xu H, Chen X, Li Q. Rapid analysis of neurotransmitters in rat brain using ultra-fast liquid chromatography and tandem mass spectrometry: application to a comparative study in normal and insomnic rats. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:969-78. [PMID: 23893645 DOI: 10.1002/jms.3243] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 05/24/2023]
Abstract
Neurotransmitters and their metabolites in central nervous system were known to play a significant role in sedation and hypnosis. A rapid and sensitive UFLC-MS/MS method for simultaneous determination of serotonin, 5-hydroxyindole acetic acid (5-HIAA), tryptophan (Try), dopamine (DA), norepinephrine (NE), γ-aminobutyric acid (GABA), glutamic acid (Glu) and acetylcholine (Ach) in rat brain without derivatization, ion-pairing reagent or pre-concentration was developed. Analytes and IS were separated on a Inertsil ODS-EP column (150 mm × 4.6 mm, 5 µm particles) and analyzed in a single chromatographic run in less than 9.0 min, using gradient elution with the mobile phase consisting of methanol and 0.01% acetic acid in water at a flow rate of 1.2 ml min(-1) . The detection of the analytes was performed on 4000Q UFLC-MS/MS system with turbo ion spray source in positive ion and multiple reaction monitoring mode. The developed method provided excellent linear calibration curves for the assay of analytes (R(2) ≥ 0.9915). Limits of quantification were in the range of 1.0 ng ml(-1) to 1.0 µg ml(-1) for the analytes in rat brain. Intra- and inter-day precision and accuracy of analytes were well within acceptance criteria (15%). Mean extraction recoveries of analytes and IS from rat brain were all more than 80.0%. Furthermore, the validated method was successfully applied to comparing profiles of analytes in normal and insomnic rat brains. Results indicated that there were statistically significant differences for serotonin, 5-HIAA, DA, NE, Glu and Ach, but no significant difference for Try and GABA between two groups.
Collapse
Affiliation(s)
- Bosai He
- Laboratory co-established by the province and the state, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pesticides, depression and suicide: A systematic review of the epidemiological evidence. Int J Hyg Environ Health 2013; 216:445-60. [DOI: 10.1016/j.ijheh.2012.12.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 11/22/2022]
|
25
|
Ki YW, Park JH, Lee JE, Shin IC, Koh HC. JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol Lett 2013; 218:235-45. [PMID: 23416140 DOI: 10.1016/j.toxlet.2013.02.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 12/14/2022]
Abstract
To investigate mechanisms of neuronal cell death in response to chlorpyrifos (CPF), a pesticide, we evaluated the regulation of ROS and COX-2 in human neuroblastoma SH-SY5Y cells treated with CPF. CPF treatment produced cytotoxic effects that appeared to involve an increase in ROS. In addition, CPF treatment activated MAPK pathways including JNK, ERK1/2, and p38 MAPK, and MAPK inhibitors abolished the cytotoxicity and reduced ROS generation. Our data demonstrate that CPF induced apoptosis involving MAPK activation through ROS production. Furthermore, after the CPF treatment, COX-2 expression increased. Interestingly, JNK and p38 MAPK inhibitors attenuated the CPF-induced COX-2 expression while an ERK1/2 inhibitor did not. These findings suggest that pathways involving JNK and p38 MAPK, but not ERK1/2, mediated apoptosis and are involved in the inflammatory response. In conclusion, the JNK and p38 MAPK pathways might be critical mediators in CPF-induced neuronal apoptosis by both generating ROS and up-regulating COX-2.
Collapse
Affiliation(s)
- Yeo-Woon Ki
- Department of Pharmacology, College of Medicine, Hanyang University, 133-791 Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
26
|
Cardona D, López-Granero C, Cañadas F, Llorens J, Flores P, Pancetti F, Sánchez-Santed F. Dose-dependent regional brain acetylcholinesterase and acylpeptide hydrolase inhibition without cell death after chlorpyrifos administration. J Toxicol Sci 2013; 38:193-203. [DOI: 10.2131/jts.38.193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Diana Cardona
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería,Spain
| | | | - Fernando Cañadas
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería,Spain
| | - Jordi Llorens
- Departament de Ciéncies Fisológiques II, Universitat de Barcelona, Spain
| | - Pilar Flores
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería,Spain
| | - Floria Pancetti
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Chile
| | | |
Collapse
|
27
|
Abstract
Pesticide exposure has been associated with neuropsychological and psychiatric impairments and neurodegenerative disorders. Pesticide exposure commonly causes a deficit in inhibitory control behaviours. In the present study, we investigated whether acute exposure to organophosphate (OP) chlorpyrifos (CPF) is related to long-term lack of inhibitory control; we also examined the possible neurochemical basis of this association. Lister Hooded rats were exposed to an acute dose of CPF (250 mg/kg). Seven months later, we tested inhibitory control with the 5-choice serial reaction time task (5-CSRTT). We manipulated the baseline conditions of this task and also systemically pre-administered d-amphetamine, quinpirole, dizocilpine (MK-801) or ketanserin. We also analysed the post-mortem baseline levels of monoamines and amino acids in different brain regions. On the 5-CSRT task, CPF-exposed rats showed elevated perseverative responses that persisted across manipulation of baseline conditions of the task and under most of the pharmacological challenges tested. Only D-amphetamine induced a dose-dependent amelioration of the increased perseverative responses in the CPF group. The CPF group also exhibited increased levels of dopamine metabolism in the hippocampus and decreased levels of gamma-aminobutyric acid (GABA) and glutamate in the striatum compared to the vehicle group. These findings suggest that CPF induced a long-term compulsivity that was apparent in the 5-CSRT task and associated with changes in monoaminergic and amino acid brain systems of inhibitory control function. Exposure to high doses of OP should be taken into account in studies of environmental causes for neurodegenerative, neuropsychological and neuropsychiatric disorders.
Collapse
|
28
|
Oswal DP, Garrett TL, Morris M, Lucot JB. Low-Dose Sarin Exposure Produces Long Term Changes in Brain Neurochemistry of Mice. Neurochem Res 2012; 38:108-16. [DOI: 10.1007/s11064-012-0896-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/14/2012] [Accepted: 09/21/2012] [Indexed: 11/28/2022]
|
29
|
Blanc-Lapierre A, Bouvier G, Garrigou A, Canal-Raffin M, Raherison C, Brochard P, Baldi I. Effets chroniques des pesticides sur le système nerveux central : état des connaissances épidémiologiques. Rev Epidemiol Sante Publique 2012; 60:389-400. [DOI: 10.1016/j.respe.2012.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 02/23/2012] [Accepted: 03/26/2012] [Indexed: 12/14/2022] Open
|
30
|
Bozkurt A, Yardan T, Ciftcioglu E, Baydin A, Hakligor A, Bitigic M, Bilge S. Time course of serum S100B protein and neuron-specific enolase levels of a single dose of chlorpyrifos in rats. Basic Clin Pharmacol Toxicol 2012; 107:893-8. [PMID: 20456333 DOI: 10.1111/j.1742-7843.2010.00593.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Organophosphate (OP) compounds are a large class of chemicals, many of which are used as pesticides. It is suggested that OPs specifically affect glia and neurons. Effects of acute exposure to chlorpyrifos (CPF), which is a common organophosphorus pesticide used worldwide, on neuron-specific enolase (NSE) and S100B levels in rat blood during 7 days were assessed. Rats were evaluated either before (0 hr) or 2, 12, 24, 48 and 168 hr (7 days) after injection of CPF (279 mg/kg, s.c.) or vehicle (peanut oil, 2 ml/kg, s.c.) for clinical signs of toxicity. Immediately after the evaluation of toxicity, blood samples were taken for biochemical assays. CPF administration produced decreases in body-weight and temperature, which were observed for first time at 12 hr after CPF administration and continued for 168 hr (p < 0.05-0.001). Serum S100B and NSE levels were acutely increased 2 hr after CPF administration and remained high at 12 hr (p < 0.01-0.001). NSE and S100B levels were not different in either CPF or vehicle groups at following time points. Serum butyrylcholinesterase (EC 3.1.1.8; BuChE) activity was dramatically reduced at 2 hr after CPF and remained low at each time points during 7 days (p < 0.01-0.001). Our results suggest that the usefulness of serum levels of these glia- and neuron-specific marker proteins in assessing OP toxicity, specifically CPF-induced toxicity.
Collapse
Affiliation(s)
- Ayhan Bozkurt
- Department of Physiology, Ondokuz Mayıs University, School of Medicine, Samsun, Turkey.
| | | | | | | | | | | | | |
Collapse
|
31
|
Lee JE, Park JH, Shin IC, Koh HC. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol Appl Pharmacol 2012; 263:148-62. [PMID: 22714038 DOI: 10.1016/j.taap.2012.06.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 01/20/2023]
Abstract
Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
32
|
Xu F, Chang X, Lou D, Wu Q, Zhou Z. Chlorpyrifos exposure causes alternation in dopamine metabolism in PC12 cells. Toxicol Mech Methods 2012; 22:309-14. [DOI: 10.3109/15376516.2012.657260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacology (Berl) 2012; 219:661-72. [PMID: 22113449 DOI: 10.1007/s00213-011-2575-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022]
Abstract
RATIONALE Schedule-induced polydipsia (SIP), characterized by the development of excessive drinking under intermittent food reinforcement schedules, has been proposed as a model for obsessive-compulsive disorder, schizophrenia and drug abuse. OBJECTIVES The purpose of this study is to investigate if individual differences in SIP reflect psychopathological behavioural traits related to lack of inhibitory control and reactivity to novelty, and if these differences have neurochemical correlates. METHODS Outbred Wistar rats were selected for being either high (HD) or low (LD) drinkers according to their SIP behaviour. We tested locomotor reactivity to a novel environment and inhibitory control on the five-choice serial reaction time task (5-CSRTT), under baseline vs. extinction conditions and following challenge with D: -amphetamine (saline, 0.5 or 1 mg/kg). Post-mortem analyses of the monoaminergic levels in different brain regions were also analysed. RESULTS Compared to LD animals, HD rats exhibiting SIP acquisition showed no differences in spontaneous locomotor reactivity to novelty. On the 5-CSRTT, HD rats showed a greater increase in perseverative responses under extinction, a trend towards elevated premature responses on baseline, and a significantly greater elevation of premature responses to D: -amphetamine 0.5 mg/kg. The HD animals also exhibited increased serotonin activity in the amygdala, and correlational analyses between the rate of drinking on SIP and monoamine levels also revealed altered dopaminergic mesolimbic function. CONCLUSIONS These findings show that HD rats selected by SIP exhibit compulsive and impulsive behaviour based on measures of performance on the five-choice serial reaction time task and associated with changes in monoaminergic systems in limbic-striatal circuitry.
Collapse
|
34
|
Lima CS, Nunes-Freitas AL, Ribeiro-Carvalho A, Filgueiras CC, Manhães AC, Meyer A, Abreu-Villaça Y. Exposure to methamidophos at adulthood adversely affects serotonergic biomarkers in the mouse brain. Neurotoxicology 2011; 32:718-24. [DOI: 10.1016/j.neuro.2011.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/02/2011] [Accepted: 08/11/2011] [Indexed: 12/29/2022]
|
35
|
Kim MJ, Kim BK, Kim SM, Park JS, Hong JK. Profiling analysis of catecholamines and polyamines in biological samples. ANALYTICAL SCIENCE AND TECHNOLOGY 2011. [DOI: 10.5806/ast.2011.24.5.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Slotkin TA, Seidler FJ. Developmental exposure to organophosphates triggers transcriptional changes in genes associated with Parkinson's disease in vitro and in vivo. Brain Res Bull 2011; 86:340-7. [PMID: 21968025 DOI: 10.1016/j.brainresbull.2011.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
Abstract
Epidemiologic studies support a connection between organophosphate pesticide exposures and subsequent risk of Parkinson's disease (PD). We used differentiating, neuronotypic PC12 cells to compare organophosphates (chlorpyrifos, diazinon), an organochlorine (dieldrin) and a metal (Ni(2+)) for their effects on the transcription of PD-related genes. Both of the organophosphates elicited significant changes in gene expression but with differing patterns: chlorpyrifos evoked both up- and downregulation whereas diazinon elicited overall reductions in expression. Dieldrin was without effect but Ni(2+) produced a pattern resembling that of diazinon. We then exposed neonatal rats to chlorpyrifos or diazinon for the first 4 days after birth and examined the expression of PD-related genes in the brainstem and forebrain. Chlorpyrifos had no significant effect whereas diazinon produced significant increases and decreases in expression of the same PD genes that were targeted in vitro. Our results provide some of the first evidence for a mechanistic relationship between developmental organophosphate exposure and the genes known to confer PD risk in humans; but they also point to disparities between different organophosphates that reinforce the concept that their neurotoxic actions do not rest solely on their shared property as cholinesterase inhibitors. The parallel effects of diazinon and Ni(2+) also show how otherwise unrelated developmental neurotoxicants can nevertheless produce similar outcomes by converging on common molecular pathways, further suggesting a need to examine metals such as Ni(2+) as potential contributors to PD risk.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA.
| | | |
Collapse
|
37
|
Torres-Altoro MI, Mathur BN, Drerup JM, Thomas R, Lovinger DM, O'Callaghan JP, Bibb JA. Organophosphates dysregulate dopamine signaling, glutamatergic neurotransmission, and induce neuronal injury markers in striatum. J Neurochem 2011; 119:303-13. [PMID: 21848865 DOI: 10.1111/j.1471-4159.2011.07428.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The neurological effects of organophosphate (OP) pesticides, commonly used on foods and in households, are an important public health concern. Furthermore, subclinical exposure to combinations of organophosphates is implicated in Gulf War illness. Here, we characterized the effects of the broadly used insecticide chlorpyrifos (CPF) on dopamine and glutamatergic neurotransmission effectors in corticostriatal motor/reward circuitry. CPF potentiated protein kinase A (PKA)-dependent phosphorylation of the striatal protein dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32) and the glutamate receptor 1 (GluR1) subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in mouse brain slices. It also increased GluR1 phosphorylation by PKA when administered systemically. This correlated with enhanced glutamate release from cortical projections in rat striatum. Similar effects were induced by the sarin congener, diisopropyl fluorophosphate, alone or in combination with the putative neuroprotectant, pyridostigmine bromide and the pesticide N,N-diethyl-meta-toluamide (DEET). This combination, meant to mimic the neurotoxicant exposure encountered by veterans of the 1991 Persian Gulf War, also induced hyperphosphorylation of the neurofibrillary tangle-associated protein tau. Diisopropyl fluorophosphate and pyrodostigmine bromide, alone or in combination, also increased the aberrant activity of the protein kinase, Cdk5, as indicated by conversion of its activating cofactor p35 to p25. Thus, consistent with recent findings in humans and animals, organophosphate exposure causes dysregulation in the motor/reward circuitry and invokes mechanisms associated with neurological disorders and neurodegeneration.
Collapse
Affiliation(s)
- Melissa I Torres-Altoro
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
González RR, Fernández RF, Vidal JLM, Frenich AG, Pérez MLG. Development and validation of an ultra-high performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. J Neurosci Methods 2011; 198:187-94. [PMID: 21459108 DOI: 10.1016/j.jneumeth.2011.03.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
Abstract
A simple method for the simultaneous determination of glutamate, γ-aminobutyric acid (GABA), choline, acetylcholine, dopamine, 5-hydroxyindole-3-acetic (5-HIAA), serotonin, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) was developed by using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). These compounds are analysed in a single chromatographic run in less than 8 min, adding heptafluorobutyric acid (HFBA) in the mobile phase to improve the separation of the selected neurotransmitters. The analytes were detected using electrospray ionization (ESI)-MS/MS in positive mode with multiple reaction monitoring (MRM). Good linearity was obtained (R² > 0.98) and the intra and inter-day precision of the method (expressed as relative standard deviation) were lower than 26%. Limits of quantification were lower than 2.440 μg/g of brain in all the cases, allowing the sensitive determination of these compounds in rat brain extracts. Therefore, the method was successfully applied for the quantitative determination of neurotransmitters in several rat brain regions (prefrontal cortex, striatum, nucleus accumbens and amygdala), detecting glutamate, GABA and choline at concentrations higher than 1000 μg/g, 30 μg/g and 100 μg/g respectively, whereas the other compounds were found at lower concentrations.
Collapse
Affiliation(s)
- Roberto Romero González
- Research Group "Analytical Chemistry of Contaminants", Department of Analytical Chemistry, Almeria University, 04071 Almeria, Spain
| | | | | | | | | |
Collapse
|
39
|
Chen WQ, Yuan L, Xue R, Li YF, Su RB, Zhang YZ, Li J. Repeated exposure to chlorpyrifos alters the performance of adolescent male rats in animal models of depression and anxiety. Neurotoxicology 2011; 32:355-61. [PMID: 21453723 DOI: 10.1016/j.neuro.2011.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/16/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
Chlorpyrifos (CPF) is a broad spectrum, highly effective organophosphorus (OP) pesticide that has been largely used worldwide. Over the past decades, numerous studies have assessed the potential neurotoxic effects of either acute or chronic exposure to CPF on developing brain. Despite being an acetylcholinersterase inhibitor, the effects of CPF are not only confined to cholinergic system, but are involved in a wide variety of neurotransmitter systems, especially the serotonin (5-HT) system, which leads to long-lasting changes in 5-HT-related emotional behaviors. In our present study, 4-week-old adolescent male Sprague-Dawley rats were repeatedly exposed to CPF at daily doses of 10, 20, 40, 80, and 160 mg/kg/day (s.c., 7 days), and then subjected to a battery of emotional behavioral tests that related to serotonergic function in order to determine CPF effects in adolescent rats. Results in behavioral tests demonstrated CPF significantly increased the entries to and time spent in the open arms in the elevated plus-maze test at the dose of 40-160 mg/kg, the number of shocks in the Vogel's conflict test at the dose of 20-160 mg/kg, and significantly decreased the latency to feed in the novelty-suppressed feeding test in both dose range. Interestingly, in the forced swimming test, at the dose of 10mg/kg, CPF significantly increased the immobility time, whereas it significantly decreased the immobility time at the dose of 160 mg/kg. Our data suggest that repeated exposure to CPF elicits alterations of the emotional behaviors related to serotonergic nervous system in adolescent male rats. However, the underlying mechanism needs further investigations.
Collapse
Affiliation(s)
- Wen-Qiang Chen
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, Haidian District, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Yao D, Ru S, Katow H. The neurotoxic effects of monocrotophos on the formation of the serotonergic nervous system and swimming activity in the larvae of the sea urchin Hemicentrotus pulcherrimus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:181-187. [PMID: 21787650 DOI: 10.1016/j.etap.2010.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 05/31/2023]
Abstract
The neurotoxicity of monocrotophos (MCP) in the development of the serotonergic nervous system and swimming activity of larvae of the sea urchin, Hemicentrotus pulcherrimus, was examined. Lethal dose 50% of MCP was 43μg/ml. Overall morphology was not affected in larvae that received up to 30μg/ml of MCP soon after fertilization until the 53h post-fertilization pluteus stage. However, while 70±0.6% of larvae in 5μg/ml MCP swam actively, the proportion decreased to 30±1.7% in 30μg/ml MCP. Accordingly, immunoblotting indicated that MCP decreased the relative intensity of immunoreaction of serotonin receptor protein. Whole-mount immunohistochemistry indicated that MCP inhibited serotonergic axon growth, reduced the number of serotonergic cells at the apical ganglion, and perturbed formation of the serotonin receptor cell network. The present study demonstrated that sea urchin larva is a useful model for evaluating the working mechanism of environmental toxicants in neurogenesis and behavior.
Collapse
Affiliation(s)
- Dan Yao
- Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori 039-3501, Japan
| | | | | |
Collapse
|
41
|
Moreno M, Cardona D, Gómez MJ, Sánchez-Santed F, Tobeña A, Fernández-Teruel A, Campa L, Suñol C, Escarabajal MD, Torres C, Flores P. Impulsivity characterization in the Roman high- and low-avoidance rat strains: behavioral and neurochemical differences. Neuropsychopharmacology 2010; 35:1198-208. [PMID: 20090672 PMCID: PMC3055403 DOI: 10.1038/npp.2009.224] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/24/2009] [Accepted: 11/27/2009] [Indexed: 11/08/2022]
Abstract
The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats for rapid vs extremely poor acquisition of active avoidance behavior in a shuttle-box has generated two phenotypes with different emotional and motivational profiles. The phenotypic traits of the Roman rat lines/strains (outbred or inbred, respectively) include differences in sensation/novelty seeking, anxiety/fearfulness, stress responsivity, and susceptibility to addictive substances. We designed this study to characterize differences between the inbred RHA-I and RLA-I strains in the impulsivity trait by evaluating different aspects of the multifaceted nature of impulsive behaviors using two different models of impulsivity, the delay-discounting task and five-choice serial reaction time (5-CSRT) task. Previously, rats were evaluated on a schedule-induced polydipsia (SIP) task that has been suggested as a model of obsessive-compulsive disorder. RHA-I rats showed an increased acquisition of the SIP task, higher choice impulsivity in the delay-discounting task, and poor inhibitory control as shown by increased premature responses in the 5-CSRT task. Therefore, RHA-I rats manifested an increased impulsivity phenotype compared with RLA-I rats. Moreover, these differences in impulsivity were associated with basal neurochemical differences in striatum and nucleus accumbens monoamines found between the two strains. These findings characterize the Roman rat strains as a valid model for studying the different aspects of impulsive behavior and for analyzing the mechanisms involved in individual predisposition to impulsivity and its related psychopathologies.
Collapse
Affiliation(s)
- Margarita Moreno
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, Almería, Spain
| | - Diana Cardona
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, Almería, Spain
| | | | | | - Adolf Tobeña
- Departamento de Psiquiatria y Medicina Legal, Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Departamento de Psiquiatria y Medicina Legal, Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Leticia Campa
- Instituto de Investigaciones Biomedicas de Barcelona, CSIC-IDIBAPS, CIBERESP (CS), CIBERSAM (LC), Barcelona, Spain
| | - Cristina Suñol
- Instituto de Investigaciones Biomedicas de Barcelona, CSIC-IDIBAPS, CIBERESP (CS), CIBERSAM (LC), Barcelona, Spain
| | | | - Carmen Torres
- Departamento de Psicología, Universidad de Jaén, Jaén, Spain
| | - Pilar Flores
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, Almería, Spain
| |
Collapse
|
42
|
Cardona D, López-Crespo G, Sánchez-Amate MC, Flores P, Sánchez-Santed F. Impulsivity as long-term sequelae after chlorpyrifos intoxication: time course and individual differences. Neurotox Res 2010; 19:128-37. [PMID: 20087798 DOI: 10.1007/s12640-009-9149-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/26/2009] [Accepted: 12/30/2009] [Indexed: 12/12/2022]
Abstract
Chlorpyrifos (CPF) is a common organophosphate (OP) insecticide that has been widely used in agriculture as a pesticide. The primary mechanism of acute toxic action of OPs is initiated by acetylcholinesterase (AChE) inhibition. However, non-AChE targets have also been proposed as alternative that contributes to the acute lethal action and side effects of short or long-term exposure. Recently, we have found that a single dose of 250 mg/kg CPF produces acceleration in acquisition on schedule-induced polydipsia (SIP) procedure 6 months after its administration. Moreover, CPF animals show a higher level of impulsivity in a delay-discounting task 1 year after acute administration, and these effects are potentiated when animals are divided into high (HD) and low (LD) drinkers in SIP. In the present study, rats were injected with a subcutaneous (sc) dose of 250 mg/kg of CPF, and 10 weeks later its effect on delay-discounting task was evaluated. Consequently, these animals were evaluated based on SIP, and divided into two populations (HD and LD) according to their rates of drinking in this task. One year after OP administration, these animals were re-evaluated in a delay-discounting task. Results revealed that the CPF-administered rats prefer immediate reward and show a more impulsive choice, 10 weeks after CPF administration. Furthermore, 1 year after it administration, only animals treated with CPF that are high drinkers on SIP are more impulsive than the rest of the groups Therefore, these data suggest that some individuals are more sensitive to OP intoxication than the others, at least in terms of durability of sequelae.
Collapse
Affiliation(s)
- D Cardona
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, 04120, La Cañada, Almería, Spain.
| | | | | | | | | |
Collapse
|
43
|
López-Crespo GA, Flores P, Sánchez-Santed F, Sánchez-Amate MC. Acute high dose of chlorpyrifos alters performance of rats in the elevated plus-maze and the elevated T-maze. Neurotoxicology 2009; 30:1025-9. [PMID: 19632271 DOI: 10.1016/j.neuro.2009.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 11/28/2022]
Abstract
Chlorpyrifos (CPF) is a broad spectrum organophosphate (OP) pesticide widely used in agriculture, industry and household. Several animal studies indicate emotional disturbances after CPF exposure, although the results are sometimes puzzling. Thus, both anxiolytic and anxiogenic effects of CPF have been reported in different animal models of anxiety [Sánchez-Amate MC, Flores P, Sánchez-Santed F. Effects of chlorpyrifos in the plus-maze model of anxiety. Behav Pharmacol 2001;12:285-92; Sánchez-Amate MC, Dávila E, Cañadas F, Flores P, Sánchez-Santed F. Chlorpyrifos shares stimulus properties with pentilenetetrazol as evaluated by and operant drug discrimination task. Neurotoxicology 2002;23:795-803; López-Crespo G, Carvajal F, Flores P, Sánchez-Santed F, Sánchez-Amate MC. Time-course of biochemical and behavioural effects of a single high dose of chlorpyrifos. Neurotoxicology 2007;28:541-7]. On the other hand, other behavioural effects of CPF are time-dependent [López-Crespo G, Carvajal F, Flores P, Sánchez-Santed F, Sánchez-Amate MC. Time-course of biochemical and behavioural effects of a single high dose of chlorpyrifos. Neurotoxicology 2007;28:541-7], raising the question that the effects of CPF could be task and post-administration time dependent. To test this hypothesis, three groups of rats were treated with a single high dose of CPF (250 mg/kg); one of the groups was tested on day 5 on the elevated plus-maze, to complete our previous study on day 2 [Sánchez-Amate MC, Flores P, Sánchez-Santed F. Effects of chlorpyrifos in the plus-maze model of anxiety. Behav Pharmacol 2001;12:285-92]. The remaining groups were tested on the elevated T-maze on days 2 and 5. CPF produced an increased open arm activity on the elevated plus-maze on day 5, an increased escape latency on the elevated T-maze on day 2 and an impaired inhibitory avoidance on day 5. Data are discussed taking together all studies carried out in our laboratory, confirming that CPF effects on emotional behaviour are dependent on both task contingencies and post-administration time.
Collapse
Affiliation(s)
- G A López-Crespo
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Spain
| | | | | | | |
Collapse
|
44
|
Exposure to methamidophos at adulthood elicits depressive-like behavior in mice. Neurotoxicology 2009; 30:471-8. [DOI: 10.1016/j.neuro.2009.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/19/2008] [Accepted: 01/24/2009] [Indexed: 11/18/2022]
|
45
|
Frederick AL, Stanwood GD. Drugs, biogenic amine targets and the developing brain. Dev Neurosci 2009; 31:7-22. [PMID: 19372683 DOI: 10.1159/000207490] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/08/2008] [Indexed: 01/12/2023] Open
Abstract
Defects in the development of the brain have a profound impact on mature brain functions and underlying psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetylcholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by abuse of a variety of illicit drugs, neurotherapeutics and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life.
Collapse
Affiliation(s)
- Aliya L Frederick
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232-6600, USA
| | | |
Collapse
|
46
|
Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol Teratol 2009; 32:99-108. [PMID: 19268529 DOI: 10.1016/j.ntt.2009.02.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 12/31/2008] [Accepted: 02/13/2009] [Indexed: 11/21/2022]
Abstract
Chlorpyrifos (CPF) an organophosphate pesticide causes persisting behavioral dysfunction in rat models when exposure is during early development. In earlier work zebrafish were used as a complementary model to study mechanisms of CPF-induced neurotoxicity induced during early development. We found that developmental (first five days after fertilization) chlorpyrifos exposure significantly impaired learning in zebrafish. However, this testing was time and labor intensive. In the current study we tested the hypothesis that persisting effects of developmental chlorpyrifos could be detected with a brief automated assessment of startle response and that this behavioral index could be used to help determine the neurobehavioral mechanisms for persisting CPF effects. The swimming activity of adult zebrafish was assessed by a computerized video-tracking device after a sudden tap to the test arena. Ten consecutive trials (1/min) were run to determine startle response and its habituation. Additionally, habituation recovery trials were run at 8, 32 and 128 min after the end of the initial trial set. CPF-exposed fish showed a significantly (p<0.025) greater overall startle response during the 10-trial session compared to controls (group sizes: Control N=40, CPF N=24). During the initial recovery period (8 min) CPF-exposed fish showed a significantly (p<0.01) greater startle response compared to controls. To elucidate the contributions of nicotinic and muscarinic acetylcholine receptors to developmental CPF-mediated effects, the effects of developmental nicotine and pilocarpine exposure throughout the first five days after fertilization were determined. Developmental nicotine and pilocarpine exposure significantly increased startle response, though nicotine (group sizes: Control N=32, 15 mM N=12, 25 mM N=20) was much more potent than pilocarpine (group sizes: Control N=20, 100 microM N=16, 1000 microM N=12). Neither was as potent as CPF for developmental exposure increasing startle response in adulthood. Lastly, developmental CPF exposure decreased dopamine and serotonin levels and increased transmitter turnover in developing zebrafish larvae (N=4 batches of 50 embryos/treatment). Only the decline in dopamine concentrations persisted into adulthood (group sizes: Control N=14, CPF N=13). This study shows that a quick automated test of startle can detect persisting neurobehavioral impairments caused by developmental exposure to CPF. This may be helpful in screening for persisting neurobehavioral defects from a variety of toxicants.
Collapse
|
47
|
Slotkin TA, Levin ED, Seidler FJ. Developmental neurotoxicity of parathion: progressive effects on serotonergic systems in adolescence and adulthood. Neurotoxicol Teratol 2009; 31:11-7. [PMID: 18773955 PMCID: PMC2630364 DOI: 10.1016/j.ntt.2008.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 01/31/2023]
Abstract
Neonatal exposures to organophosphates that are not acutely symptomatic or that produce little or no cholinesterase inhibition can nevertheless compromise the development and later function of critical neural pathways, including serotonin (5HT) systems that regulate emotional behaviors. We administered parathion to newborn rats on postnatal days (PN) 1-4 at doses spanning the threshold for detectable cholinesterase inhibition (0.1 mg/kg/day) and the first signs of loss of viability (0.2 mg/kg/day). In adolescence (PN30), young adulthood (PN60) and full adulthood (PN100), we measured radioligand binding to 5HT(1A) and 5HT(2) receptors, and to the 5HT transporter in the brain regions comprising all the major 5HT projections and 5HT cell bodies. Parathion caused a biphasic effect over later development with initial, widespread upregulation of 5HT(1A) receptors that peaked in the frontal/parietal cortex by PN60, followed by a diminution of that effect in most regions and emergence of deficits at PN100. There were smaller, but statistically significant changes in 5HT(2) receptors and the 5HT transporter. These findings stand in strong contrast to previous results with neonatal exposure to a different organophosphate, chlorpyrifos, which evoked parallel upregulation of all three 5HT synaptic proteins that persisted from adolescence through full adulthood and that targeted males much more than females. Our results support the view that the various organophosphates have disparate effects on 5HT systems, distinct from their shared property as cholinesterase inhibitors, and the targeting of 5HT function points toward the importance of studying the impact of these agents on 5HT-linked behaviors.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Body Weight/drug effects
- Cholinesterase Inhibitors/toxicity
- Data Interpretation, Statistical
- Female
- Insecticides/toxicity
- Male
- Neurotoxicity Syndromes/psychology
- Organ Size/drug effects
- Parathion/toxicity
- Pregnancy
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/physiology
- Receptors, Serotonin, 5-HT2/drug effects
- Receptors, Serotonin, 5-HT2/physiology
- Serotonin/physiology
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Sex Characteristics
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | |
Collapse
|
48
|
Slotkin TA, Seidler FJ. Developmental neurotoxicants target neurodifferentiation into the serotonin phenotype: Chlorpyrifos, diazinon, dieldrin and divalent nickel. Toxicol Appl Pharmacol 2008; 233:211-9. [PMID: 18835401 DOI: 10.1016/j.taap.2008.08.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 01/30/2023]
Abstract
Developmental exposure to organophosphates (OP) produces long-term changes in serotonin (5HT) synaptic function and associated behaviors, but there are disparities among the different OPs. We contrasted effects of chlorpyrifos and diazinon, as well as non-OP neurotoxicants (dieldrin, Ni(2+)) using undifferentiated and differentiating PC12 cells, a well-established neurodevelopmental model. Agents were introduced at 30 microM for 24 or 72 h, treatments devoid of cytotoxicity, and we evaluated the mRNAs encoding the proteins for 5HT biosynthesis, storage and degradation, as well as 5HT receptors. Chlorpyrifos and diazinon both induced tryptophan hydroxylase, the rate-limiting enzyme for 5HT biosynthesis, but chlorpyrifos had a greater effect, and both agents suppressed expression of 5HT transporter genes, effects that would tend to augment extracellular 5HT. However, whereas chlorpyrifos enhanced the expression of most 5HT receptor subtypes, diazinon evoked overall suppression. Dieldrin evoked even stronger induction of tryptophan hydroxylase, and displayed a pattern of receptor effects similar to that of diazinon, even though they come from different pesticide classes. In contrast, Ni(2+) had completely distinct actions, suppressing tryptophan hydroxylase and enhancing the vesicular monoamine transporter, while also reducing 5HT receptor gene expression, effects that would tend to lower net 5HT function. Our findings provide some of the first evidence connecting the direct, initial mechanisms of developmental neurotoxicant action on specific transmitter pathways with their long-term effects on synaptic function and behavior, while also providing support for in vitro test systems as tools for establishing mechanisms and outcomes of related and unrelated neurotoxicants.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology Box 3813, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|