1
|
Lu EH, Rusyn I, Chiu WA. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:28-62. [PMID: 39390665 PMCID: PMC11614695 DOI: 10.1080/10937404.2024.2412571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory dose-response assessments traditionally rely on in vivo data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several "traditional" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including in silico, in vitro, and in vivo approaches, might be applied across KDMs. Further, the false dichotomy between "traditional" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve in vitro dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.
Collapse
Affiliation(s)
- En-Hsuan Lu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
2
|
Kang DW, Kim JH, Choi GW, Cho SJ, Cho HY. PBPK model-based gender-specific risk assessment of N-nitrosodimethylamine (NDMA) using human biomonitoring data. Arch Toxicol 2024; 98:3269-3288. [PMID: 39096368 DOI: 10.1007/s00204-024-03828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Despite several screening levels for NDMA reported in water, soil, air, and drugs, the human risk assessment using biomonitoring concentrations has not been performed. In this study, gender-specific exposure guidance values were determined in humans, then biomonitoring measurements in healthy Korean subjects (32 men and 40 women) were compared to the exposure guidance values to evaluate the current exposure level to NDMA. For the human risk assessment of NDMA, the gender-specific physiologically based pharmacokinetic (PBPK) model was developed in humans using proper physiological parameters, partition coefficients, and biochemical parameters. Using the PBPK model, a Monte Carlo simulation was performed to describe the magnitudes of inter-individual variability and uncertainty on the single model predictions. The PBPK modeling and Monte Carlo simulation allowed the estimation of the relationship between external dose and blood concentration for the risk assessment. The procedure for the human risk assessment was summarized as follows: (1) estimating a steady-state blood concentration (Cavg) corresponding to the daily no observed adverse effect level (NOAEL) administration in rats; (2) applying uncertainty factors (UFs) for deriving the human Cavg; (3) determining the exposure guidance values as screening criteria; (4) interpreting the human biomonitoring measurements by forward and reverse dosimetry approaches. Using the biomonitoring concentrations, current daily exposures to NDMA were estimated to be 3.95 μg/day/kg for men and 10.60 μg/day/kg for women, respectively. The result of the study could be used as a basis for implementing further risk management and regulatory decision-making for NDMA.
Collapse
Affiliation(s)
- Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seok-Jin Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
3
|
Hasselgren C, Kenyon M, Anger LT, Cornwell P, Watt E, Bercu J. Analysis of non-mutagenic substances in the context of drug impurity assessment - Few are potent toxicants. Regul Toxicol Pharmacol 2024; 150:105645. [PMID: 38761967 DOI: 10.1016/j.yrtph.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
ICH Q3A/B guidelines provide qualification thresholds for impurities or degradation products in new drug substances and products. However, the guidelines note that certain impurities/degradation products may warrant further safety evaluation for being unusually potent or toxic. The purpose of this study was to confirm that especially toxic non-mutagenic compounds are rare and to identify classes of compounds that could warrant lower qualification thresholds. A total of 2815 compounds were evaluated, of which 2213 were assessed as non-mutagenic. For the purpose of this analysis, compounds were considered potent when the point of departure was ≤0.2 mg/kg/day based on the qualification threshold (1 mg/day or 0.02 mg/kg/day for a 50 kg human) in a new drug substance, with an additional 10-fold margin. Only 54 of the entire set (2.4%) would be considered potent based on this conservative potency analysis, confirming that the existing ICH Q3A/B qualification thresholds are appropriate for the majority of impurities. If the Q3A/B threshold, without the additional 10-fold margin is used, 14 compounds (0.6%) are considered "highly potent". Very few non-mutagenic structural classes were identified, including organothiophosphates and derivatives, polychlorinated benzenes and polychlorinated polycyclic aliphatics, that correlate with potential high potency, consistent with prior publications.
Collapse
Affiliation(s)
- Catrin Hasselgren
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, 94080, USA.
| | - Michelle Kenyon
- Drug Safety Research and Development, Pfizer Research and Development, Groton, CT, 06340, USA
| | - Lennart T Anger
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Paul Cornwell
- Nonclinical Safety Assessment, Eli Lilly & Co, Indianapolis, IN, 46285, USA
| | - Eric Watt
- Drug Safety Research and Development, Pfizer Research and Development, Groton, CT, 06340, USA
| | - Joel Bercu
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, CA, 94404, USA
| |
Collapse
|
4
|
vom Saal FS, Antoniou M, Belcher SM, Bergman A, Bhandari RK, Birnbaum LS, Cohen A, Collins TJ, Demeneix B, Fine AM, Flaws JA, Gayrard V, Goodson WH, Gore AC, Heindel JJ, Hunt PA, Iguchi T, Kassotis CD, Kortenkamp A, Mesnage R, Muncke J, Myers JP, Nadal A, Newbold RR, Padmanabhan V, Palanza P, Palma Z, Parmigiani S, Patrick L, Prins GS, Rosenfeld CS, Skakkebaek NE, Sonnenschein C, Soto AM, Swan SH, Taylor JA, Toutain PL, von Hippel FA, Welshons WV, Zalko D, Zoeller RT. The Conflict between Regulatory Agencies over the 20,000-Fold Lowering of the Tolerable Daily Intake (TDI) for Bisphenol A (BPA) by the European Food Safety Authority (EFSA). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:45001. [PMID: 38592230 PMCID: PMC11003459 DOI: 10.1289/ehp13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng / kg body weight ( BW ) / day . BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.
Collapse
Affiliation(s)
- Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Michael Antoniou
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London, UK
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ake Bergman
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden
| | - Ramji K. Bhandari
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Linda S. Birnbaum
- Scientist Emeritus and Former Director, National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- Scholar in Residence, Duke University, Durham, North Carolina, USA
| | - Aly Cohen
- Integrative Rheumatology Associates, Princeton, New Jersey, USA
| | - Terrence J. Collins
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Barbara Demeneix
- Comparative Physiology Laboratory, Natural History Museum, Paris, France
| | - Anne Marie Fine
- Environmental Medicine Education International, Mancos, Colorado, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois Urbana—Champaign, Urbana-Champaign, Illinois, USA
| | - Veronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), University of Toulouse, Toulouse, France
| | - William H. Goodson
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas, USA
| | - Jerrold J. Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Raleigh, North Carolina, USA
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Christopher D. Kassotis
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, UK
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London, UK
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | | | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Retha R. Newbold
- Scientist Emeritus, NTP, NIEHS, Research Triangle Park, North Carolina, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Lyn Patrick
- Environmental Medicine Education International, Mancos, Colorado, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cheryl S. Rosenfeld
- Biomedical Sciences, Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri—Columbia, Columbia, Missouri, USA
- MU Institute of Data Science and Informatics, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Niels E. Skakkebaek
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ana M. Soto
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julia A. Taylor
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Pierre-Louis Toutain
- Royal Veterinary College, University of London, London, UK
- NTHERES, INRAE, ENVT, Université de Toulouse, Toulouse, France
| | - Frank A. von Hippel
- Department of Community, Environment & Policy, University of Arizona, Tucson, Arizona, USA
| | - Wade V. Welshons
- Department of Biomedical Sciences, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Daniel Zalko
- ToxAlim (Research Centre in Food Toxicology), University of Toulouse, Toulouse, France
| | - R. Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Audira G, Lee JS, Vasquez RD, Roldan MJM, Lai YH, Hsiao CD. Assessments of carbon nanotubes toxicities in zebrafish larvae using multiple physiological and molecular endpoints. Chem Biol Interact 2024; 392:110925. [PMID: 38452846 DOI: 10.1016/j.cbi.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
In recent years, carbon nanotubes (CNTs) have become one of the most promising materials for the technology industry. However, due to the extensive usage of these materials, they may be released into the environment, and cause toxicities to the organism. Here, their acute toxicities in zebrafish embryos and larvae were evaluated by using various assessments that may provide us with a novel perspective on their effects on aquatic animals. Before conducting the toxicity assessments, the CNTs were characterized as multiwall carbon nanotubes (MWCNTs) functionalized with hydroxyl and carboxyl groups, which improved their solubility and dispersibility. Based on the results, abnormalities in zebrafish behaviors were observed in the exposed groups, indicated by a reduction in tail coiling frequency and alterations in the locomotion as the response toward photo and vibration stimuli that might be due to the disruption in the neuromodulatory system and the formation of reactive oxygen species (ROS) by MWCNTs. Next, based on the respiratory rate assay, exposed larvae consumed more oxygen, which may be due to the injuries in the larval gill by the MWCNTs. Finally, even though no irregularity was observed in the exposed larval cardiac rhythm, abnormalities were shown in their cardiac physiology and blood flow with significant downregulation in several cardiac development-related gene expressions. To sum up, although the following studies are necessary to understand the exact mechanism of their toxicity, the current study demonstrated the environmental implications of MWCNTs in particularly low concentrations and short-term exposure, especially to aquatic organisms.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung, 900391, Taiwan
| | - Ross D Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila, 1015, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, 1015, Philippines; The Graduate School, University of Santo Tomas, Manila, 1015, Philippines
| | - Marri Jmelou M Roldan
- Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Espana Blvd., Manila, 1015, Philippines
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan.
| |
Collapse
|
6
|
Lee I, Scrochi C, Chon O, Cancellieri MA, Ghosh A, O'Brien J, Ring B, McNamara C, Api AM. Detailed aggregate exposure analysis shows that exposure to fragrance ingredients in consumer products is low: Many orders of magnitude below thresholds of concern. Regul Toxicol Pharmacol 2024; 148:105569. [PMID: 38286303 DOI: 10.1016/j.yrtph.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
The Research Institute for Fragrance Materials (RIFM) and Creme Global Cremeglobal.com partnered to develop an aggregate exposure model for fragrance ingredients. The model provides a realistic estimate of the total exposure of fragrance ingredients to individuals across a population. The Threshold of Toxicological Concern (TTC) and Dermal Sensitization Threshold (DST) were used to demonstrate the magnitude of low exposure to fragrance materials. The total chronic systemic, inhalation, and dermal 95th percentile exposures on approximately 3000 fragrance ingredients in RIFM's inventory were compared to their respective TTC or DST. Additionally, representative fragrance ingredients were randomly selected and analyzed for exposure distribution by product type (i.e., cosmetic/personal care, household care, oral care, and air care) and route of exposure. It was found that 76 % of fragrance ingredients fall below their respective TTC limits when compared to 95th percentile systemic exposure, while 99 % are below inhalation TTC limits. The lowest 95th percentile aggregate exposure by product type was from household care products, then air care, and oral care products. The highest exposure was from personal care/cosmetic products. The volume of use for most fragrance ingredients (63 %) was <1 metric ton, estimating that environmental exposure to fragrance ingredients is likely low.
Collapse
Affiliation(s)
- Isabelle Lee
- Research Institute for Fragrance Materials, Inc, Mahwah, NJ, USA.
| | - Cesar Scrochi
- Creme Global, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin, 2, Ireland
| | - Olive Chon
- Research Institute for Fragrance Materials, Inc, Mahwah, NJ, USA
| | | | - Ambarnil Ghosh
- Creme Global, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin, 2, Ireland
| | - John O'Brien
- Creme Global, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin, 2, Ireland
| | - Brendan Ring
- Creme Global, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin, 2, Ireland
| | - Cronan McNamara
- Creme Global, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin, 2, Ireland
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc, Mahwah, NJ, USA
| |
Collapse
|
7
|
Noga M, Michalska A, Jurowski K. The prediction of acute toxicity (LD 50) for organophosphorus-based chemical warfare agents (V-series) using toxicology in silico methods. Arch Toxicol 2024; 98:267-275. [PMID: 38051368 PMCID: PMC10761519 DOI: 10.1007/s00204-023-03632-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Nerve agents are organophosphate chemical warfare agents that exert their toxic effects by irreversibly inhibiting acetylcholinesterase, affecting the breakdown of the neurotransmitter acetylcholine in the synaptic cleft. Due to the risk of exposure to dangerous nerve agents and for animal welfare reasons, in silico methods have been used to assess acute toxicity safely. The next-generation risk assessment (NGRA) is a new approach for predicting toxicological parameters that can meet modern requirements for toxicological research. The present study explains the acute toxicity of the examined V-series nerve agents (n = 9) using QSAR models. Toxicity Estimation Software Tool (ver. 4.2.1 and ver. 5.1.2), QSAR Toolbox (ver. 4.6), and ProTox-II browser application were used to predict the median lethal dose. The Simplified Molecular Input Line Entry Specification (SMILES) was the input data source. The results indicate that the most deadly V-agents were VX and VM, followed by structural VX analogues: RVX and CVX. The least toxic turned out to be V-sub x and Substance 100A. In silico methods for predicting various parameters are crucial for filling data gaps ahead of experimental research and preparing for the upcoming use of nerve agents.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Agata Michalska
- Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland.
| |
Collapse
|
8
|
Magurany KA, English JC, Cox KD. Application of the threshold of toxicological concern (TTC) in the evaluation of drinking water contact chemicals. Toxicol Mech Methods 2023:1-17. [PMID: 38031359 DOI: 10.1080/15376516.2023.2279041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The Threshold of Toxicological Concern (TTC) is an approach for assessing the safety of chemicals with low levels of exposure for which limited toxicology data are available. The original TTC criteria were derived for oral exposures from a distributional analysis of a dataset of 613 chemicals that identified 5th percentile no observed effect level (NOEL) values grouped within three tiers of compounds having specific structural functional groups and/or toxic potencies known as Cramer I, II and III classifications. Subsequent assessments of the TTC approach have established current thresholds to be scientifically robust. While the TTC has gained acknowledgment and acceptance by many regulatory agencies and organizations, use of the TTC approach in evaluating drinking water chemicals has been limited. To apply the TTC concept to drinking water chemicals, an exposure-based approach that incorporates the current weight of evidence for the target chemical is presented. Such an approach provides a comparative point of departure to the 5th percentile TTC NOEL using existing data, while conserving the allocation of toxicological resources for quantitative risk assessment to chemicals with greater exposure or toxicity. This approach will be considered for incorporation into NSF/ANSI/CAN 600, a health effects standard used in the safety evaluation of chemicals present in drinking water from drinking water contact additives and materials certified to NSF/ANSI/CAN 60 and 61, respectively.
Collapse
Affiliation(s)
| | | | - Kevin D Cox
- Water Toxics Unit, Michigan Department of Environment, Great Lakes and Energy (EGLE), Lansing, MI, USA
| |
Collapse
|
9
|
Chen Q, Cao X, Yan B, Guo Z, Xi Z, Li J, Ci N, Yan M, Ci L. Ecotoxicological evaluation of functional carbon nanodots using zebrafish (Danio rerio) model at different developmental stages. CHEMOSPHERE 2023; 333:138970. [PMID: 37207902 DOI: 10.1016/j.chemosphere.2023.138970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Considering functional carbon nanodots (FCNs) are potential to be applied in many areas, their risk and toxicity to organisms are imperative to be evaluated. Thus, this study conducted acute toxicity test of zebrafish (Danio rerio) at embryonic and adult stage to estimate the toxicity of FCNs. Results show that the toxic effects of FCNs and nitrogen doped FCNs (N-FCNs) at their 10% lethal concentration (LC10) values on zebrafish are expressed in developmental retardation, cardiovascular toxicity, renal damage and hepatotoxicity. There are interactive relationships between these effects, but the main reason should be ascribed to the undesirable oxidative damage induced by high doses of materials, as well as the biodistribution of FCNs and N-FCNs in vivo. Even so, FCNs and N-FCNs can promote the antioxidant activity in zebrafish tissues to cope with the oxidative stress. FCNs and N-FCNs are not easy to cross the physical barriers in zebrafish embryos or larvae, and can be excreted from intestine by adult fish, which proves their biosecurity to zebrafish. In addition, because of the differences in physicochemical properties, especially nano-size and surface chemical property, FCNs show higher biosecurity to zebrafish than N-FCNs. The effects of FCNs and N-FCNs on hatching rates, mortality rates and developmental malformations are dose-dependent and time-dependent. The LC50 values of FCNs and N-FCNs on zebrafish embryo at 96 hpf are 1610 mg/L and 649 mg/L, respectively. According to the Acute Toxicity Rating Scale of the Fish and Wildlife Service, the toxicity grades of FCNs and N-FCNs are both defined as "practically nontoxic", and FCNs are "Relatively Harmless" to embryos because their LC50 values are above 1000 mg/L. Our results prove the biosecurity of FCNs-based materials for future practical application.
Collapse
Affiliation(s)
- Qiong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiufeng Cao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Biao Yan
- Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Zhijiang Guo
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhenjie Xi
- Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Jianwei Li
- Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Naixuan Ci
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Lijie Ci
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China.
| |
Collapse
|
10
|
Nikolopoulou D, Ntzani E, Kyriakopoulou K, Anagnostopoulos C, Machera K. Priorities and Challenges in Methodology for Human Health Risk Assessment from Combined Exposure to Multiple Chemicals. TOXICS 2023; 11:toxics11050401. [PMID: 37235216 DOI: 10.3390/toxics11050401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023]
Abstract
This paper reviews key elements in the assessment of human health effects from combined exposure to multiple chemicals taking into consideration current knowledge and challenges to identify areas where scientific advancement is mostly needed and proposes a decision-making scheme on the basis of existing methods and tools. The assumption of dose addition and estimation of the hazard index (HI) is considered as a starting point in component-based risk assessments. When, based on the generic HI approach, an unacceptable risk is identified, more specific risk assessment options may be implemented sequentially or in parallel depending on problem formulation, characteristics of the chemical group under assessment, exposure levels, data availability and resources. For prospective risk assessments, the reference point index/margin of exposure (RPI/MOET) (Option 1) or modified RPI/normalized MOET (mRPI/nMOET) (Option 2) approaches may be implemented focusing on the specific mixture effect. Relative potency factors (RPFs) may also be used in the RPI approach since a common uncertainty factor for each mixture component is introduced in the assessment. Increased specificity in the risk assessment may also be achieved when exposure of selected population groups is considered (Option 3/exposure). For retrospective risk assessments, human biomonitoring data available for vulnerable population groups (Option 3/susceptibility) may present more focused scenarios for consideration in human health risk management decisions. In data-poor situations, the option of using the mixture assessment factor (MAF) is proposed (Option 4), where an additional uncertainty factor is applied on each mixture component prior to estimating the HI. The magnitude of the MAF may be determined by the number of mixture components, their individual potencies and their proportions in the mixture, as previously reported. It is acknowledged that implementation of currently available methods and tools for human health risk assessment from combined exposure to multiple chemicals by risk assessors will be enhanced by ongoing scientific developments on new approach methodologies (NAMs), integrated approaches to testing and assessment (IATA), uncertainty analysis tools, data sharing platforms, risk assessment software as well as guideline development to meet legislative requirements.
Collapse
Affiliation(s)
- Dimitra Nikolopoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens, Greece
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, PC 45110 Ioannina, Greece
| | - Katerina Kyriakopoulou
- Laboratory of Environmental Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens, Greece
| | - Christos Anagnostopoulos
- Laboratory of Pesticides Residues, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens, Greece
| | - Kyriaki Machera
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens, Greece
| |
Collapse
|
11
|
Arnot JA, Toose L, Armitage JM, Sangion A, Looky A, Brown TN, Li L, Becker RA. Developing an internal threshold of toxicological concern (iTTC). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:877-884. [PMID: 36347933 PMCID: PMC9731903 DOI: 10.1038/s41370-022-00494-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Threshold of Toxicological Concern (TTC) approaches are used for chemical safety assessment and risk-based priority setting for data poor chemicals. TTCs are derived from in vivo No Observed Effect Level (NOEL) datasets involving an external administered dose from a single exposure route, e.g., oral intake rate. Thus, a route-specific TTC can only be compared to a route-specific exposure estimate and such TTCs cannot be used for other exposure scenarios such as aggregate exposures. OBJECTIVE Develop and apply a method for deriving internal TTCs (iTTCs) that can be used in chemical assessments for multiple route-specific exposures (e.g., oral, inhalation or dermal) or aggregate exposures. METHODS Chemical-specific toxicokinetics (TK) data and models are applied to calculate internal concentrations (whole-body and blood) from the reported administered oral dose NOELs used to derive the Munro TTCs. The new iTTCs are calculated from the 5th percentile of cumulative distributions of internal NOELs and the commonly applied uncertainty factor of 100 to extrapolate animal testing data for applications in human health assessment. RESULTS The new iTTCs for whole-body and blood are 0.5 nmol/kg and 0.1 nmol/L, respectively. Because the iTTCs are expressed on a molar basis they are readily converted to chemical mass iTTCs using the molar mass of the chemical of interest. For example, the median molar mass in the dataset is 220 g/mol corresponding to an iTTC of 22 ng/L-blood (22 pg/mL-blood). The iTTCs are considered broadly applicable for many organic chemicals except those that are genotoxic or acetylcholinesterase inhibitors. The new iTTCs can be compared with measured or estimated whole-body or blood exposure concentrations for chemical safety screening and priority-setting. SIGNIFICANCE Existing Threshold of Toxicological Concern (TTC) approaches are limited in their applications for route-specific exposure scenarios only and are not suitable for chemical risk and safety assessments under conditions of aggregate exposure. New internal Threshold of Toxicological Concern (iTTC) values are developed to address data gaps in chemical safety estimation for multi-route and aggregate exposures.
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada.
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Liisa Toose
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
| | | | - Alessandro Sangion
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Trevor N Brown
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
| | - Li Li
- School of Public Health, University of Nevada Reno, Reno, NV, USA
| | | |
Collapse
|
12
|
Nicolas CI, Linakis MW, Minto MS, Mansouri K, Clewell RA, Yoon M, Wambaugh JF, Patlewicz G, McMullen PD, Andersen ME, Clewell III HJ. Estimating provisional margins of exposure for data-poor chemicals using high-throughput computational methods. Front Pharmacol 2022; 13:980747. [PMID: 36278238 PMCID: PMC9586287 DOI: 10.3389/fphar.2022.980747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Current computational technologies hold promise for prioritizing the testing of the thousands of chemicals in commerce. Here, a case study is presented demonstrating comparative risk-prioritization approaches based on the ratio of surrogate hazard and exposure data, called margins of exposure (MoEs). Exposures were estimated using a U.S. EPA’s ExpoCast predictive model (SEEM3) results and estimates of bioactivity were predicted using: 1) Oral equivalent doses (OEDs) derived from U.S. EPA’s ToxCast high-throughput screening program, together with in vitro to in vivo extrapolation and 2) thresholds of toxicological concern (TTCs) determined using a structure-based decision-tree using the Toxtree open source software. To ground-truth these computational approaches, we compared the MoEs based on predicted noncancer TTC and OED values to those derived using the traditional method of deriving points of departure from no-observed adverse effect levels (NOAELs) from in vivo oral exposures in rodents. TTC-based MoEs were lower than NOAEL-based MoEs for 520 out of 522 (99.6%) compounds in this smaller overlapping dataset, but were relatively well correlated with the same (r2 = 0.59). TTC-based MoEs were also lower than OED-based MoEs for 590 (83.2%) of the 709 evaluated chemicals, indicating that TTCs may serve as a conservative surrogate in the absence of chemical-specific experimental data. The TTC-based MoE prioritization process was then applied to over 45,000 curated environmental chemical structures as a proof-of-concept for high-throughput prioritization using TTC-based MoEs. This study demonstrates the utility of exploiting existing computational methods at the pre-assessment phase of a tiered risk-based approach to quickly, and conservatively, prioritize thousands of untested chemicals for further study.
Collapse
Affiliation(s)
- Chantel I. Nicolas
- Office of Chemical Safety and Pollution Prevention, US EPA, Washington, DC, United States
| | | | | | - Kamel Mansouri
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, United States
| | | | | | - John F. Wambaugh
- Center for Computational Toxicology and Exposure Office of Research and Development, US EPA, Research Triangle Park, NC, United States
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure Office of Research and Development, US EPA, Research Triangle Park, NC, United States
| | | | | | | |
Collapse
|
13
|
Lea I, Pham LL, Antonijevic T, Thompson C, Borghoff SJ. Assessment of the applicability of the threshold of toxicological concern for per- and polyfluoroalkyl substances. Regul Toxicol Pharmacol 2022; 133:105190. [PMID: 35662637 DOI: 10.1016/j.yrtph.2022.105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022]
Abstract
While toxicity information is available for selected PFAS, little or no information is available for most, thereby necessitating a resource-effective approach to screen and prioritize those needing further safety assessment. The threshold of toxicological concern (TTC) approach proposes a de minimis exposure value based on chemical structure and toxicology of similar substances. The applicability of the TTC approach to PFAS was tested by incorporating a data set of no-observed-adverse-effect level (NOAEL) values for 27 PFAS into the Munro TTC data set. All substances were assigned into Cramer Class III and the cumulative distribution of the NOAELs evaluated. The TTC value for the PFAS-enriched data set was not statistically different compared to the Munro data set. Derived human exposure level for the PFAS-enriched data set was 1.3 μg/kg/day. Structural chemical profiles showed the PFAS-enriched data set had distinct chemotypes with lack of similarity to substances in the Munro data set using Maximum Common Structures. The incorporation of these 27 PFAS did not significantly change TTC Cramer Class III distribution and expanded the chemical space, supporting the potential use of the TTC approach for PFAS chemicals.
Collapse
Affiliation(s)
- Isabel Lea
- ToxStrategies, 1249 Kildaire Farm Road, #134, Cary, NC, 27511, USA
| | - Ly Ly Pham
- ToxStrategies Inc., 23123 Cinco Ranch Blvd, Katy, TX, 77494, USA
| | | | - Chad Thompson
- ToxStrategies Inc., 23123 Cinco Ranch Blvd, Katy, TX, 77494, USA
| | - Susan J Borghoff
- ToxStrategies, 1249 Kildaire Farm Road, #134, Cary, NC, 27511, USA.
| |
Collapse
|
14
|
Coppi A, Davies R, Wegesser T, Ishida K, Karmel J, Han J, Aiello F, Xie Y, Corbett MT, Parsons AT, Monticello TM, Minocherhomji S. Characterization of false positive, contaminant-driven mutagenicity in impurities associated with the sotorasib drug substance. Regul Toxicol Pharmacol 2022; 131:105162. [DOI: 10.1016/j.yrtph.2022.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
15
|
Iwasaki N, Sakamoto K, Tajima T, Kitajima S, Kuroda M. Effects of the potent GPR120 agonist, TUG-891, on sensory characteristics of whipped cream. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Gabrič A, Hodnik Ž, Pajk S. Oxidation of Drugs during Drug Product Development: Problems and Solutions. Pharmaceutics 2022; 14:pharmaceutics14020325. [PMID: 35214057 PMCID: PMC8876153 DOI: 10.3390/pharmaceutics14020325] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidation is the second most common degradation pathway for pharmaceuticals, after hydrolysis. However, in contrast to hydrolysis, oxidation is mechanistically more complex and produces a wider range of degradation products; oxidation is thus harder to control. The propensity of a drug towards oxidation is established during forced degradation studies. However, a more realistic insight into degradation in the solid state can be achieved with accelerated studies of mixtures of drugs and excipients, as the excipients are the most common sources of impurities that have the potential to initiate oxidation of a solid drug product. Based on the results of these studies, critical parameters can be identified and appropriate measures can be taken to avoid the problems that oxidation poses to the quality of a drug product. This article reviews the most common types of oxidation mechanisms, possible sources of reactive oxygen species, and how to minimize the oxidation of a solid drug product based on a well-planned accelerated study.
Collapse
Affiliation(s)
- Alen Gabrič
- Krka d.d., R&D, Šmarješka Cesta 6, 8001 Novo Mesto, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Žiga Hodnik
- Krka d.d., R&D, Šmarješka Cesta 6, 8001 Novo Mesto, Slovenia;
- Correspondence: (Ž.H.); (S.P.)
| | - Stane Pajk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
- Correspondence: (Ž.H.); (S.P.)
| |
Collapse
|
17
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. The RIFM approach to evaluating Natural Complex Substances (NCS). Food Chem Toxicol 2022; 159 Suppl 1:112715. [PMID: 34848254 DOI: 10.1016/j.fct.2021.112715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
The Research Institute for Fragrance Materials, Inc. (RIFM) has evaluated safety data for fragrance materials for 55 years. The safety assessment of Natural Complex Substances (NCS) is similar to that of discrete fragrance materials; all of the same endpoints are evaluated. A series of decision trees, reflecting advances in risk assessment approaches of mixtures and toxicological methodologies, follows a tiered approach for each endpoint using a 4-step process with testing only as a last resort: 1) evaluate available data on NCS; 2) verify whether the Threshold of Toxicological Concern (TTC) can be applied; 3) verify whether the NCS risk assessment can be achieved on a component basis; and 4) determine whether data must be generated. Using in silico tools, RIFM examined NCS similarities based on the plant part, processing, and composition of materials across 81 plant families to address data gaps. Data generated from the Creme RIFM Aggregate Exposure Model for over 900 fragrance NCS demonstrate that dermal exposure is the primary route of human exposure for NCS fragrance uses. Over a third of materials are below the most conservative TTC limits. This process aims to provide a comprehensive Safety Assessment of NCS used as a fragrance ingredient.
Collapse
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
18
|
Wang YYL, Li P, Ohore OE, Wang Y, Zhang D, Bai Y, Su T, You J, Jin X, Liu W, Wang Z. Life stage and endpoint sensitivity differences of fathead minnow (Pimephales promelas) to chemicals with various modes of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117995. [PMID: 34419860 DOI: 10.1016/j.envpol.2021.117995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Fish Embryo Acute Toxicity (FET) test was proposed as an alternative to the traditional test methods using larval or adult fish. However, whether fathead minnow (Pimephales promelas) embryo is appropriate for FET remains uncertain. In the present study, ecological threshold of toxicological concern (ecoTTC) values and uncertainty factors (UFs) for each Verhaar et al. category in P. promelas were identified by employing probabilistic ecological risk assessment (PERA) approach with chemical toxicity distributions (CTDs). The sensitivity among different life stages and toxicity among different mode of actions (MOAs) classes were comprehensively compared by CTD comparisons. The results showed that embryo exhibited the less or similar sensitivity compared to larva or adult for Verhaar et al. MOA classes (1-4) while adults were more sensitive, followed by embryo than larval for non-classified chemicals. Considering growth effect as endpoint to class 1, class 3, and non-classified chemicals on P. promelas embryo and larva was more sensitive than mortality. Non-classified chemicals especially inorganic compounds were most toxic to P. promelas embryo for the four concerned Verharr et al. MOA-specific chemical classes. This study also derived uncertainty factors (UFs) as 26.5 (9.8, 109) for embryo-to-larva, 6.26 (3.94, 11.0) for embryo-to-adult, 15.6 (10.1, 36.1) for mortality-to-growth, and 3.03 (1.86, 7.08) for mortality-to-reproduction, which can be applied for extrapolations of life stage-to-life stage and effect-to-effect to reduce the underestimating and overestimating risk by the use of default UF such as 10, 100 or 1000. Our findings are vital for feasibility of FET test of P. promelas for ecotoxicity testing and ecological risk assessment for chemicals with different MOAs.
Collapse
Affiliation(s)
- Yolina Yu Lin Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Ping Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yuwen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Dainan Zhang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Yunfei Bai
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Tenghui Su
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Xiaowei Jin
- Department of Analytical Technique, China National Environmental Monitoring Center, Beijing, 100012, China
| | - Wenhua Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Zhen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
19
|
Thakkar Y, Moustakas H, Api AM, Smith B, Williams G, Greim H, Eisenbrand G, Dekant W. Assessment of the genotoxic potential of mintlactone. Food Chem Toxicol 2021; 159:112659. [PMID: 34801651 DOI: 10.1016/j.fct.2021.112659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Mintlactone (chemical name 3,6-dimethyl-5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one, CAS Number 13341-72-5) is a fragrance and flavor ingredient with reported uses in many different cosmetics, personal care, and household products. In order to evaluate the genotoxic potential of mintlactone, in vitro and in vivo genotoxicity tests were conducted. Results from bacterial mutagenicity tests varied across different batches of differing purity with positive results observed in TA98 only. An in vivo comet assay was also considered to be positive in livers of female mice but negative in male mice. In contrast, in vitro and in vivo micronucleus tests, as well as 3D skin comet/micronucleus tests, were negative, indicating no chromosomal or DNA damage. The underlying causes for these contradictory results are not clear. It appears that the purity and/or stability of the test material may be an issue. In the absence of dependable scientific information on the purity and/or storage stability of mintlactone, its safety for use as a fragrance ingredient cannot be substantiated.
Collapse
Affiliation(s)
- Yax Thakkar
- Research Institute for Fragrance Materials, Inc. Woodcliff Lake, NJ, USA.
| | - Holger Moustakas
- Research Institute for Fragrance Materials, Inc. Woodcliff Lake, NJ, USA
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc. Woodcliff Lake, NJ, USA
| | - Benjamin Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore; Innovations in Food & Chemical Safety Programme, Agency for Science, Technology & Research, Singapore
| | - Gary Williams
- Prof. Emeritus New York Medical College, Valhalla, NY, USA
| | - Helmut Greim
- Prof. Emeritus of Toxicology Technical University of Munich, USA
| | - Gerhard Eisenbrand
- Senior Research Professor of Food Chemistry and Toxicology, University of Kaiserslautern, Germany
| | - Wolfgang Dekant
- Professor of Toxicology at the Department of Pharmacology and Toxicology of the University of Würzburg, Germany
| |
Collapse
|
20
|
Threshold of Toxicological Concern: Extending the chemical space by inclusion of a highly curated dataset for organosilicon compounds. Regul Toxicol Pharmacol 2021; 127:105074. [PMID: 34757112 DOI: 10.1016/j.yrtph.2021.105074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
The Threshold of Toxicological Concern (TTC) for non-genotoxic substances, a risk assessment tool to establish safe exposure levels for chemicals with insufficient toxicological data, is based on the 5th percentile of cumulated distributions of Point of Departures in a high amount of repeat-dose, developmental and reproductive toxicity studies, grouped by Cramer Classes. The lack of organosilicon compounds in this dataset has resulted in regulatory concerns over the applicability of the TTC concept for this chemistry. We collected publicly available, scientifically robust oral repeat-dose and DART studies for 71 organosilicon substances for inclusion in the existing TTC dataset, using criteria for evaluation of studies and derivation of points of departure analogous to the Munro and COSMOS TTC publications. The resulting 5th percentile of this dataset was 13-fold higher than the 5th percentile for Cramer Class III compounds reported by Munro (which is the default for silicon-containing substances). Both the existing TTC for Cramer Class III compounds from Munro (1.5 μg/kg bw/day) and the COSMOS TTC (2.3 μg/kg bw/day), recommended by the SCCS for cosmetics-related substances, provide a conservative and sufficiently protective approach for this class of chemistry.
Collapse
|
21
|
Claassen L, Hartmann J, Wuijts S. How to Address Consumers' Concerns and Information Needs about Emerging Chemical and Microbial Contaminants in Drinking Water; The Case of GenX in The Netherlands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10615. [PMID: 34682361 PMCID: PMC8535398 DOI: 10.3390/ijerph182010615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022]
Abstract
The perceived safety of tap water is an important condition for consumers to drink it. Therefore, addressing consumers' concerns should be included in the roadmap towards the UN SDG 6 on safe drinking water for all. This paper studies consumers' information needs regarding emerging contaminants in drinking water using a mental model approach for the development of targeted risk communication. As most consumers expect safe drinking water, free of contamination, communication on emerging contaminants may increase concerns. Here, we showed that communication strategies better tailored to consumers' information needs result in smaller increases in risk perception compared with existing strategies.
Collapse
Affiliation(s)
- Liesbeth Claassen
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (L.C.); (S.W.)
| | - Julia Hartmann
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (L.C.); (S.W.)
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands
| | - Susanne Wuijts
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (L.C.); (S.W.)
- Utrecht Centre for Water, Oceans and Sustainability Law, Utrecht University, Newtonlaan 231, 3584 BH Utrecht, The Netherlands
| |
Collapse
|
22
|
Duan Y, Ramilan T, Luo J, French N, Guan N. Risk assessment approaches for evaluating cumulative exposures to multiple pesticide residues in agro-products using seasonal vegetable monitoring data from Hainan, China: a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:578. [PMID: 34398280 DOI: 10.1007/s10661-021-09328-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Risks from combined exposure to multiple chemicals in food have prompted a growing concern for their effect on human health. Risk management of chemical mixtures should be based on developing and harmonizing methodologies to scientifically evaluate their cumulative adverse effects. In this study, a simplified tiered approach of cumulative exposure assessment is described along with a case study of vegetables in China's Hainan province during 2012-2014. This case study could be a reference for the Chinese National Risk Assessment Programs for vegetable and fruit products. In the proposed assessment approach, Tier 1 acts as a screening tier to categorize and evaluate chemicals under a conservative scenario, and it prioritizes the pesticides of most concern. Tier 2 refines the grouping of substances from Tier 1 and normalizes the toxic potency of the chemicals to sum the exposure of chemical mixtures in a given assessment group. Tier 3 applies the refined exposure model and the input parameter distribution to create probabilistic models using Monte Carlo simulation. This approach will be helpful in the cumulative exposure assessment where data on pesticide residues are sufficient, but the individual dietary consumption is inadequate.
Collapse
Affiliation(s)
- Yun Duan
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Laboratory of Quality and Safety Risk Assessment for Tropical Products of Ministry of Agriculture and Rural Affairs, Haikou, China
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, China
- Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science & Research Center, Palmerston North, New Zealand
| | - Thiagarajah Ramilan
- New Zealand Food Safety Science & Research Center, Palmerston North, New Zealand.
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand.
| | - Jinhui Luo
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Laboratory of Quality and Safety Risk Assessment for Tropical Products of Ministry of Agriculture and Rural Affairs, Haikou, China
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, China
| | - Nigel French
- Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.
- New Zealand Food Safety Science & Research Center, Palmerston North, New Zealand.
| | - Ni Guan
- National Engineering Research Center for Non-Food Bio-Refinery, Guangxi Academy of Science, Nanning, China
| |
Collapse
|
23
|
Arnesdotter E, Rogiers V, Vanhaecke T, Vinken M. An overview of current practices for regulatory risk assessment with lessons learnt from cosmetics in the European Union. Crit Rev Toxicol 2021; 51:395-417. [PMID: 34352182 DOI: 10.1080/10408444.2021.1931027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Risk assessments of various types of chemical compounds are carried out in the European Union (EU) foremost to comply with legislation and to support regulatory decision-making with respect to their safety. Historically, risk assessment has relied heavily on animal experiments. However, the EU is committed to reduce animal experimentation and has implemented several legislative changes, which have triggered a paradigm shift towards human-relevant animal-free testing in the field of toxicology, in particular for risk assessment. For some specific endpoints, such as skin corrosion and irritation, validated alternatives are available whilst for other endpoints, including repeated dose systemic toxicity, the use of animal data is still central to meet the information requirements stipulated in the different legislations. The present review aims to provide an overview of established and more recently introduced methods for hazard assessment and risk characterisation for human health, in particular in the context of the EU Cosmetics Regulation (EC No 1223/2009) as well as the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation (EC 1907/2006).
Collapse
Affiliation(s)
- Emma Arnesdotter
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
24
|
Bury D, Head J, Keller D, Klaric M, Rose J. The Threshold of Toxicological Concern (TTC) is a pragmatic tool for the safety assessment: Case studies of cosmetic ingredients with low consumer exposure. Regul Toxicol Pharmacol 2021; 123:104964. [PMID: 34023455 DOI: 10.1016/j.yrtph.2021.104964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/23/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
The Threshold of Toxicological Concern (TTC) is an internationally accepted pragmatic and conservative tool for the safety assessment of substances, which is used in a wide range of regulatory contexts. The TTC approach produces human exposure threshold values (TTC values) originally derived by Munro from oral toxicity data on cancer and non-cancer toxicity endpoints. This database has been recently substantially enlarged by the COSMOS database, an enhanced oral non-cancer TTC dataset on a larger chemical domain, thereby resulting in a new, transparent and public TTC database also including 552 cosmetics-related chemicals. The 5th percentile point of departure value for each Cramer Class was determined, from which human exposure TTC values have been derived. The combined COSMOS/Munro dataset provided TTC values of 46, 6.2 and 2.3 μg/kg bw/day for Cramer Classes I, II or III, respectively. In order to demonstrate the diverse scope and successful application of the TTC concept to cosmetic ingredients including hair dyes, fragrances and plant-derived ingredients, Cosmetics Europe has prepared several case studies. Overall, the TTC concept is not only useful to replace animal testing but can also successfully be applied to the safety evaluation of cosmetic ingredients in the marketed formulas with low human exposure.
Collapse
Affiliation(s)
- Dagmar Bury
- L'Oréal Research & Innovation, 9 Rue Pierre Dreyfus, 92110, Clichy, France.
| | - Julia Head
- Unilever, Safety & Environmental Assurance Centre, Colworth House, Sharnbrook, Bedfordshire, MK44 1ET, UK
| | | | - Martina Klaric
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | | | | |
Collapse
|
25
|
Baderna D, Faoro R, Selvestrel G, Troise A, Luciani D, Andres S, Benfenati E. Defining the Human-Biota Thresholds of Toxicological Concern for Organic Chemicals in Freshwater: The Proposed Strategy of the LIFE VERMEER Project Using VEGA Tools. Molecules 2021; 26:1928. [PMID: 33808128 PMCID: PMC8037015 DOI: 10.3390/molecules26071928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Abstract
Several tons of chemicals are released every year into the environment and it is essential to assess the risk of adverse effects on human health and ecosystems. Risk assessment is expensive and time-consuming and only partial information is available for many compounds. A consolidated approach to overcome this limitation is the Threshold of Toxicological Concern (TTC) for assessment of the potential health impact and, more recently, eco-TTCs for the ecological aspect. The aim is to allow a safe assessment of substances with poor toxicological characterization. Only limited attempts have been made to integrate the human and ecological risk assessment procedures in a "One Health" perspective. We are proposing a strategy to define the Human-Biota TTCs (HB-TTCs) as concentrations of organic chemicals in freshwater preserving both humans and ecological receptors at the same time. Two sets of thresholds were derived: general HB-TTCs as preliminary screening levels for compounds with no eco- and toxicological information, and compound-specific HB-TTCs for chemicals with known hazard assessment, in terms of Predicted No effect Concentration (PNEC) values for freshwater ecosystems and acceptable doses for human health. The proposed strategy is based on freely available public data and tools to characterize and group chemicals according to their toxicological profiles. Five generic HB-TTCs were defined, based on the ecotoxicological profiles reflected by the Verhaar classes, and compound-specific thresholds for more than 400 organic chemicals with complete eco- and toxicological profiles. To complete the strategy, the use of in silico models is proposed to predict the required toxicological properties and suitable models already available on the VEGAHUB platform are listed.
Collapse
Affiliation(s)
- Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Roberta Faoro
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Gianluca Selvestrel
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Adrien Troise
- INERIS Institut National de l’Environnement Industriel et des Risques, Rue Jacques Taffanel, 60550 Verneuil-en-Halatt, France; (A.T.); (S.A.)
| | - Davide Luciani
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| | - Sandrine Andres
- INERIS Institut National de l’Environnement Industriel et des Risques, Rue Jacques Taffanel, 60550 Verneuil-en-Halatt, France; (A.T.); (S.A.)
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (R.F.); (G.S.); (D.L.)
| |
Collapse
|
26
|
Zhang H, Chen Q, Niu B. Risk Assessment of Veterinary Drug Residues in Meat Products. Curr Drug Metab 2020; 21:779-789. [PMID: 32838714 DOI: 10.2174/1389200221999200820164650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/04/2023]
Abstract
With the improvement of the global food safety regulatory system, there is an increasing importance for food safety risk assessment. Veterinary drugs are widely used in poultry and livestock products. The abuse of veterinary drugs seriously threatens human health. This article explains the necessity of risk assessment for veterinary drug residues in meat products, describes the principles and functions of risk assessment, then summarizes the risk assessment process of veterinary drug residues, and then outlines the qualitative and quantitative risk assessment methods used in this field. We propose the establishment of a new meat product safety supervision model with a view to improve the current meat product safety supervision system.
Collapse
Affiliation(s)
- Hui Zhang
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| |
Collapse
|
27
|
de Boer A, Krul L, Fehr M, Geurts L, Kramer N, Tabernero Urbieta M, van der Harst J, van de Water B, Venema K, Schütte K, Hepburn PA. Animal-free strategies in food safety & nutrition: What are we waiting for? Part I: Food safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Liu W, Huang G, Su X, Li S, Wang Q, Zhao Y, Liu Y, Luo J, Li Y, Li C, Yuan D, Hong H, Chen X, Chen T. Zebrafish: A Promising Model for Evaluating the Toxicity of Carbon Dot-Based Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49012-49020. [PMID: 33074666 DOI: 10.1021/acsami.0c17492] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Carbon dots (CDs) exhibit a wide range of desirable properties including excellent photoluminescence, photostability, and water solubility, making them ideally suitable for use in the context of drug delivery, bioimaging, and related biomedical applications. Before these CDs can be translated for use in humans, however, further research regarding their in vivo toxicity is required. Owing to their low cost, rapid growth, and significant homology to humans, zebrafish (Danio rerio) are commonly employed as in vivo model systems in the toxicity studies of nanomaterials. In the present report, our group employed a hydrothermal approach to synthesize CDs and then assessed their toxicity in zebrafish. The resultant CDs were roughly 2.4 nm spheroid particles that emitted strong blue fluorescence in response to the excitation at 365 nm. These CDs did not induce any evident embryonic toxicity or did cause any apparent teratogenic effects during hatching or development when dosed at 150 μg/mL. However, significant effects were observed in zebrafish embryos at CD concentrations >200 μg/mL, including pericardial and yolk sac edema, delayed growth, spinal cord flexure, and death. These high CD concentrations were further associated with the reduction in zebrafish larval locomotor activity and decreased dopamine levels, reduced frequencies of tyrosine hydroxylase-positive dopaminergic neurons, and multiple organ damage. Further studies will be required to fully understand the mechanistic basis for CD-mediated neurotoxicity, with such studies being essential to fully understand the translational potential of these unique nanomaterials.
Collapse
Affiliation(s)
- Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gang Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xiaoying Su
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 511400, China
| | - Siyi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuying Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ye Li
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Chuwen Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Dongsheng Yuan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
29
|
Patel A, Joshi K, Rose J, Laufersweiler M, Felter SP, Api AM. Bolstering the existing database supporting the non-cancer Threshold of Toxicological Concern values with toxicity data on fragrance-related materials. Regul Toxicol Pharmacol 2020; 116:104718. [DOI: 10.1016/j.yrtph.2020.104718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
|
30
|
The TTC Data Mart: An interactive browser for threshold of toxicological concern calculations. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.comtox.2020.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Antolčić M, Runje M, Galić N. A simple and sensitive LC-MS/MS method for determination and quantification of potential genotoxic impurities in the ceritinib active pharmaceutical ingredient. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3290-3295. [PMID: 32930193 DOI: 10.1039/d0ay00511h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used for quantification of four potential genotoxic impurities (PGIs) in the ceritinib active pharmaceutical ingredient. Chromatographic separation was achieved using a YMC-Triart C18 column, with 0.1% formic acid in water as mobile phase A and acetonitrile as mobile phase B in gradient elution mode at a 0.5 mL min-1 flow rate. Quantification of impurities was carried out using triple quadrupole mass detection with electrospray ionization in multiple reaction monitoring mode. The method was fully validated with good linearity over the concentration range of 0.5-5.0 ppm of the ceritinib test concentration for all four PGIs. The correlation coefficient obtained in each case was >0.998. The recoveries were found satisfactory over the range between 83.7 and 107.3% for all selected impurities. The developed method was able to quantitate all four PGIs at a concentration level of 1 ng mL-1 (0.5 ppm with respect to 2 mg mL-1 ceritinib).
Collapse
Affiliation(s)
- Mia Antolčić
- Pliva Croatia, TAPI R&D, Prilaz baruna Filipovića 25, Zagreb 10 000, Croatia
| | - Mislav Runje
- Pliva Croatia, TAPI R&D, Prilaz baruna Filipovića 25, Zagreb 10 000, Croatia
| | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10 000, Croatia.
| |
Collapse
|
32
|
Pinter E, Rainer B, Czerny T, Riegel E, Schilter B, Marin-Kuan M, Tacker M. Evaluation of the Suitability of Mammalian In Vitro Assays to Assess the Genotoxic Potential of Food Contact Materials. Foods 2020; 9:foods9020237. [PMID: 32098342 PMCID: PMC7074469 DOI: 10.3390/foods9020237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023] Open
Abstract
Background: Non-targeted screening of food contact materials (FCM) for non-intentionally added substances (NIAS) reveals a great number of unknown and unidentified substances present at low concentrations. In the absence of toxicological data, the application of the threshold of toxicological concern (TTC) or of EU Regulation 10/2011 requires methods able to fulfill safety threshold criteria. In this review, mammalian in vitro genotoxicity assays are analyzed for their ability to detect DNA-damaging substances at limits of biological detection (LOBD) corresponding to the appropriate safety thresholds. Results: The ability of the assays to detect genotoxic effects varies greatly between substance classes. Especially for direct-acting mutagens, the assays lacked the ability to detect most DNA reactive substances below the threshold of 10 ppb, making them unsuitable to pick up potential genotoxicants present in FCM migrates. However, suitability for the detection of chromosomal damage or investigation of other modes of action makes them a complementary tool as part of a standard test battery aimed at giving additional information to ensure safety. Conclusion: improvements are necessary to comply with regulatory thresholds to consider mammalian genotoxicity in vitro assays to assess FCM safety.
Collapse
Affiliation(s)
- Elisabeth Pinter
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
- Correspondence: ; Tel.: +43-1-606-6877-3584
| | - Bernhard Rainer
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Benoît Schilter
- Nestlé Research Center, Route du Jorat 57, 1000 Lausanne, Switzerland
| | | | - Manfred Tacker
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| |
Collapse
|
33
|
Nelms MD, Pradeep P, Patlewicz G. Evaluating potential refinements to existing Threshold of Toxicological Concern (TTC) values for environmentally-relevant compounds. Regul Toxicol Pharmacol 2019; 109:104505. [PMID: 31639428 DOI: 10.1016/j.yrtph.2019.104505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022]
Abstract
The Toxic Substances Control Act (TSCA) mandates the US EPA perform risk-based prioritisation of chemicals in commerce and then, for high-priority substances, develop risk evaluations that integrate toxicity data with exposure information. One approach being considered for data poor chemicals is the Threshold of Toxicological Concern (TTC). Here, TTC values derived using oral (sub)chronic No Observable (Adverse) Effect Level (NO(A)EL) data from the EPA's Toxicity Values database (ToxValDB) were compared with published TTC values from Munro et al. (1996). A total of 4554 chemicals with structures present in ToxValDB were assigned into their respective TTC categories using the Toxtree software tool, of which toxicity data was available for 1304 substances. The TTC values derived from ToxValDB were similar, but not identical to the Munro TTC values: Cramer I ((ToxValDB) 37.3 c. f. (Munro) 30 μg/kg-day), Cramer II (34.6 c. f. 9.1 μg/kg-day) and Cramer III (3.9 c. f. 1.5 μg/kg-day). Cramer III 5th percentile values were found to be statistically different. Chemical features of the two Cramer III datasets were evaluated to account for the differences. TTC values derived from this expanded dataset substantiated the original TTC values, reaffirming the utility of TTC as a promising tool in a risk-based prioritisation approach.
Collapse
Affiliation(s)
- Mark D Nelms
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA; Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27709, USA
| | - Prachi Pradeep
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA; Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27709, USA
| | - Grace Patlewicz
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
34
|
Eckardt M, Schneider J, Simat TJ. In vitro intestinal digestibility of cyclic aromatic polyester oligomers from polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1882-1894. [DOI: 10.1080/19440049.2019.1658903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Martin Eckardt
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Jasmin Schneider
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Thomas J. Simat
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
35
|
Patlewicz G, Lizarraga LE, Rua D, Allen DG, Daniel AB, Fitzpatrick SC, Garcia-Reyero N, Gordon J, Hakkinen P, Howard AS, Karmaus A, Matheson J, Mumtaz M, Richarz AN, Ruiz P, Scarano L, Yamada T, Kleinstreuer N. Exploring current read-across applications and needs among selected U.S. Federal Agencies. Regul Toxicol Pharmacol 2019; 106:197-209. [PMID: 31078681 PMCID: PMC6814248 DOI: 10.1016/j.yrtph.2019.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Read-across is a well-established data gap-filling technique applied for regulatory purposes. In US Environmental Protection Agency's New Chemicals Program under TSCA, read-across has been used extensively for decades, however the extent of application and acceptance of read-across among U.S. federal agencies is less clear. In an effort to build read-across capacity, raise awareness of the state of the science, and work towards a harmonization of read-across approaches across U.S. agencies, a new read-across workgroup was established under the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). This is one of several ad hoc groups ICCVAM has convened to implement the ICCVAM Strategic Roadmap. In this article, we outline the charge and scope of the workgroup and summarize the current applications, tools used, and needs of the agencies represented on the workgroup for read-across. Of the agencies surveyed, the Environmental Protection Agency had the greatest experience in using read-across whereas other agencies indicated that they would benefit from gaining a perspective of the landscape of the tools and available guidance. Two practical case studies are also described to illustrate how the read-across approaches applied by two agencies vary on account of decision context.
Collapse
Affiliation(s)
- Grace Patlewicz
- (a)National Center for Computational Toxicology, U.S. Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| | - Lucina E Lizarraga
- (b)National Center for Environmental Assessment, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA
| | - Diego Rua
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - David G Allen
- ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA
| | - Amber B Daniel
- ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA
| | - Suzanne C Fitzpatrick
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD, 20740, USA
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, U.S. Army Engineer Research and Developmental Center, 3909 Halls Ferry Rd., Vicksburg, MS, 39180, USA
| | - John Gordon
- U.S. Consumer Product Safety Commission, 5 Research Place, Rockville, MD, 20850, USA
| | - Pertti Hakkinen
- National Library of Medicine, 6707 Democracy Blvd., Bethesda, MD, 20892, USA
| | | | - Agnes Karmaus
- ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, 5 Research Place, Rockville, MD, 20850, USA
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, 1600 Clifton Rd., Chamblee, GA, 30341, USA
| | | | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, 1600 Clifton Rd., Chamblee, GA, 30341, USA
| | - Louis Scarano
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave. NW, Washington, DC, 20460, USA
| | - Takashi Yamada
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
36
|
Martins C, Vidal A, De Boevre M, De Saeger S, Nunes C, Torres D, Goios A, Lopes C, Assunção R, Alvito P. Exposure assessment of Portuguese population to multiple mycotoxins: The human biomonitoring approach. Int J Hyg Environ Health 2019; 222:913-925. [DOI: 10.1016/j.ijheh.2019.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
|
37
|
Song XC, Wrona M, Nerin C, Lin QB, Zhong HN. Volatile non-intentionally added substances (NIAS) identified in recycled expanded polystyrene containers and their migration into food simulants. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
More SJ, Bampidis V, Benford D, Bragard C, Halldorsson TI, Hernández-Jerez AF, Hougaard Bennekou S, Koutsoumanis KP, Machera K, Naegeli H, Nielsen SS, Schlatter JR, Schrenk D, Silano V, Turck D, Younes M, Gundert-Remy U, Kass GEN, Kleiner J, Rossi AM, Serafimova R, Reilly L, Wallace HM. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFSA J 2019; 17:e05708. [PMID: 32626331 PMCID: PMC7009090 DOI: 10.2903/j.efsa.2019.5708] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Scientific Committee confirms that the Threshold of Toxicological Concern (TTC) is a pragmatic screening and prioritisation tool for use in food safety assessment. This Guidance provides clear step-by-step instructions for use of the TTC approach. The inclusion and exclusion criteria are defined and the use of the TTC decision tree is explained. The approach can be used when the chemical structure of the substance is known, there are limited chemical-specific toxicity data and the exposure can be estimated. The TTC approach should not be used for substances for which EU food/feed legislation requires the submission of toxicity data or when sufficient data are available for a risk assessment or if the substance under consideration falls into one of the exclusion categories. For substances that have the potential to be DNA-reactive mutagens and/or carcinogens based on the weight of evidence, the relevant TTC value is 0.0025 μg/kg body weight (bw) per day. For organophosphates or carbamates, the relevant TTC value is 0.3 μg/kg bw per day. All other substances are grouped according to the Cramer classification. The TTC values for Cramer Classes I, II and III are 30 μg/kg bw per day, 9 μg/kg bw per day and 1.5 μg/kg bw per day, respectively. For substances with exposures below the TTC values, the probability that they would cause adverse health effects is low. If the estimated exposure to a substance is higher than the relevant TTC value, a non-TTC approach is required to reach a conclusion on potential adverse health effects.
Collapse
|
39
|
Eckardt M, Hetzel L, Brenz F, Simat TJ. Release and migration of cyclic polyester oligomers from bisphenol A non-intent polyester-phenol-coatings into food simulants and infant food - a comprehensive study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:681-703. [PMID: 31140944 DOI: 10.1080/19440049.2019.1616831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Coatings for cans or closures are essential to protect the metal from corrosion and the food from migration of hazardous metal ions. Since coatings are no inert materials, they can release substances of potential health concern into food. In the present study, a comprehensive analysis is presented for a complex two-layered polyester-phenol-coating commercially used for metal closures of complementary infant food in sterilised glass jars. Focussed on the identity and migration of cyclic polyester oligomers as a kind of predictable non-intentionally added substances, polyester resin raw materials (n = 3) as well as individual coating layers (n = 3) were characterised by several analytical strategies (size exclusion chromatography, high-performance liquid chromatography mass spectrometry, diode array detection, charged aerosol detection, monomer determination after alkaline hydrolysis, overall migrate). The main polyester monomers were terephthalic acid, isophthalic acid, trimellitic acid, ethylene glycol, diethylene glycol, neopentylglycol, 2-methyl-1,3-propanediol, 1,4-butanediol and tricyclodecanedimethanol. The coatings were extracted with solvents acetonitrile and ethanol (24 h, 60°C), food simulants 50% ethanol, 20% ethanol and water (1 h, 121°C) as well as homemade and commercial baby food (1 h, 121°C). The released total polyester content determined by alkaline hydrolysis ranged from 288 µg/dm2 (water, 1 h, 121°C) to 6154 µg/dm2 (acetonitrile, 24 h, 60°C). However, individual cyclic oligomers, mainly dimers, were released from the coating to up to about 140 µg/dm2. Migration into infant food was best represented by the food simulants water (up to 1% fat) and 20% ethanol (up to 5% fat). Cyclic polyester oligomers are classified as Cramer III substances by the threshold of toxicological concern concept associated to an exposure threshold of 1.5 µg/kg body weight per day. Exposure to cyclic polyester oligomers might be a potential concern for highly exposed infants.
Collapse
Affiliation(s)
- Martin Eckardt
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Lisa Hetzel
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Fabrian Brenz
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Thomas J Simat
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
40
|
Wang Z, Brooks BW, Zeng EY, You J. Comparative mammalian hazards of neonicotinoid insecticides among exposure durations. ENVIRONMENT INTERNATIONAL 2019; 125:9-24. [PMID: 30690429 DOI: 10.1016/j.envint.2019.01.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Neonicotinoid insecticides have become one of the most widely used insecticides over the past two decades. Recent studies have shown considerable risk of neonicotinoids to beneficial insects, however, their health risks to mammals are still under debate. Limited empirical mammalian toxicity information for neonicotinoids inherently presents challenges to environmental health practitioners performing health hazard and risk assessment. Therefore, we first compiled and examined publicly available hazard data for neonicotinoids, and knowledge gaps on mammals were identified. Probabilistic hazard assessment using chemical toxicity distributions (CTDs) was subsequently conducted, and initial thresholds of toxicological concern were derived for rat, dog, mouse, and rabbit under comparative experimental scenarios. Using the rat model, for example, oral 5% threshold concentrations (TC5s) of 0.11 (0.02, 0.36) and 0.23 (0.001, 3.2) mg/kg bw/day were estimated using chronic developmental and reproductive no observed adverse effect levels (NOAELs), respectively, while acute TC5 of 0.71 (0.25, 1.6) mg/kg bw/day was identified using neurological NOAELs. Comparatively, dermal and inhalational TC5s were estimated as 1583 (1172, 1777) and 451 (294, 615) mg/kg bw/day (equivalent to 486 (322, 622) mg/m3), respectively, using acute median lethal doses. Uncertainty factors (UFs) were also estimated using both CTD comparisons and individual UF probability distribution approaches to test whether rodent oral toxicity information or default 10-fold UF approach can provide sufficient protection for mammals. These initially identified UFs were generally smaller than default values (e.g., 10) employed by regulatory stakeholders, yet larger UFs were occasionally noted. Our findings appear particularly useful for environmental health practitioners when conducting screening-level risk assessment for neonicotinoids, and provide an example for health hazard assessment of pesticides with limited toxicity information.
Collapse
Affiliation(s)
- Zhen Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Bryan W Brooks
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China; Department of Environmental Science, Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Eddy Y Zeng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Jing You
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China.
| |
Collapse
|
41
|
Houben G, Blom M, Alvito P, Assunção R, Crevel R, Fæste CK, Le TM, Madsen CB, Remington B, Stroheker T, Vassilopoulou E, Verhoeckx K, Žiarovská J, Constable A. Defining the targets for the assessment of IgE-mediated allergenicity of new or modified food proteins. Food Chem Toxicol 2019; 127:61-69. [PMID: 30826409 DOI: 10.1016/j.fct.2019.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Many food innovations rely on the introduction and use of new or modified proteins. New or modified food proteins may lead to major health risks due to their inherent potential to cause food allergy. Currently, the pre-market allergenicity assessment for new or modified food proteins and protein sources relies on methods for identifying allergenic hazards based on characteristics of known allergens. However, there is no general consensus on the allergenicity parameters to use and the criteria that should apply for the evaluation and decisions to be made. In this paper, we propose that the strategy for allergenicity risk assessment of new or modified food proteins and the methodologies applied should be governed by the risk management questions to be answered, reflected in the information needed by risk managers to enable their informed decision making. We generated an inventory of health outcome-related assessment parameters and criteria potentially important for risk management decision-making and we discuss the implications of selecting different optional criteria (e.g. cut-off values) for what could be accepted as safe with regards to the health outcomes in the (at risk) population. The impact of these various options on both method development and risk management practices was investigated.
Collapse
Affiliation(s)
| | | | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | | | | | - Thuy-My Le
- University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | - Jana Žiarovská
- Slovak University of Agriculture, Nitra, Slovak Republic
| | | |
Collapse
|
42
|
Skin Sensitization Induction Risk Assessment of Common Ingredients in Commercially Available Cleansing Conditioners. Dermatitis 2019; 30:116-128. [DOI: 10.1097/der.0000000000000445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Risk assessment for migration of styrene oligomers into food from polystyrene food containers. Food Chem Toxicol 2019; 124:151-167. [DOI: 10.1016/j.fct.2018.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/20/2023]
|
44
|
Gómez Ramos MJ, Lozano A, Fernández-Alba AR. High-resolution mass spectrometry with data independent acquisition for the comprehensive non-targeted analysis of migrating chemicals coming from multilayer plastic packaging materials used for fruit purée and juice. Talanta 2019; 191:180-192. [DOI: 10.1016/j.talanta.2018.08.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/23/2022]
|
45
|
Scherer N, Marcseková K, Posset T, Winter G. New studies on leachables in commercial scale protein drug filling lines using stir bar sorptive extraction coupled with TD-GC–MS and UPLC/QTOF-MS/MS analytics. Int J Pharm 2019; 555:404-419. [DOI: 10.1016/j.ijpharm.2018.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 11/28/2022]
|
46
|
Patlewicz G, Wambaugh JF, Felter SP, Simon TW, Becker RA. Utilizing Threshold of Toxicological Concern (TTC) with High Throughput Exposure Predictions (HTE) as a Risk-Based Prioritization Approach for thousands of chemicals. ACTA ACUST UNITED AC 2018; 7:58-67. [PMID: 31338483 DOI: 10.1016/j.comtox.2018.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regulatory agencies across the world are facing the challenge of performing risk-based prioritization of thousands of chemicals in commerce. Here, we present an approach using the Threshold of Toxicological Concern (TTC) combined with heuristic high-throughput exposure (HTE) modelling to rank order chemicals for further evaluation. Accordingly, for risk-based prioritization, chemicals with exposures > TTC would be ranked as higher priority for further evaluation whereas substances with exposures < TTC would be ranked as lower priority. An initial proof of concept, using a dataset of 7986 substances with previously modeled median and upper 95% credible interval (UCI) total daily median exposure rates showed fewer than 5% of substances had UCI exposures > the Cramer Class III TTC (1.5 μg/kg-day). We extended the analysis by profiling the same dataset through the TTC workflow published by Kroes et al (2004) which accounts for known exclusions to the TTC as well as structural alerts. UCI exposures were then compared to the appropriate class-specific TTC. None of the substances categorized as Cramer Class I or Cramer Class II exceeded their respective TTC values and no more than 2% of substances categorized as Cramer Class III or acetylcholinesterase inhibitors exceeded their respective TTC values. The modeled UCI exposures for the majority of the 1853 chemicals with genotoxicity structural alerts did exceed the TTC of 0.0025 μg/kg-day, but only 79 substances exceeded this TTC if median exposure values were used. For substances for which UCI exposures exceeded relevant TTC values, we highlight possible approaches for consideration to refine the HTE : TTC approach. Overall, coupling TTC with HTE offers promise as a pragmatic first step in ranking substances as part of a risk-based prioritization approach.
Collapse
Affiliation(s)
- Grace Patlewicz
- National Center for Computational Toxicology (NCCT), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27711, USA
| | - John F Wambaugh
- National Center for Computational Toxicology (NCCT), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27711, USA
| | - Susan P Felter
- Procter & Gamble, Central Product Safety, Mason, OH 45040, USA
| | | | | |
Collapse
|
47
|
Chebekoue SF, Krishnan K. Derivation of Occupational Thresholds of Toxicological Concern for Systemically Acting Noncarcinogenic Organic Chemicals. Toxicol Sci 2018; 160:47-56. [PMID: 29036659 DOI: 10.1093/toxsci/kfx155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many substances in workplace do not have occupational exposure limits. The threshold of toxicological concern (TTC) principle is part of the hierarchy of approaches useful in occupational health risk assessment. The aim of this study was to derive occupational TTCs (OTTCs) reflecting the airborne concentrations below which no significant risk to workers would be anticipated. A reference dataset consisting of the 8-h threshold limit values-Time-Weighted Average for 280 organic substances was compiled. Each substance was classified into low (class I), intermediate (class II), or high (class III) hazard categories as per Cramer rules. For each chemical, n-octanol:water partition coefficient and vapor pressure along with the molecular weight were used to predict the blood:air partition coefficient. The blood:air partition coefficient along with data on water solubility and ventilation rate allowed the prediction of pulmonary retention factor and absorbed dose in workers. For each Cramer class, the distribution of the predicted doses was analyzed to identify the various percentile values corresponding to the OTTC. Accordingly, for Cramer classes I-III, the OTTCs derived in this study correspond to 0.15, 0.0085, and 0.006 mmol/d, respectively, at the 10th percentile level, while these values were 1.5, 0.09 and 0.03 mmol/d at the 25th percentile level. The proposed OTTCs are not meant to replace the traditional occupational exposure limits, but can be used in data-poor situations along with exposure estimates to support screening level risk assessment and prioritization.
Collapse
Affiliation(s)
- Sandrine F Chebekoue
- Département de Santé Environnementale et Santé au Travail, École de Santé Publique de l'Université de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Kannan Krishnan
- Département de Santé Environnementale et Santé au Travail, École de Santé Publique de l'Université de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
48
|
Eckardt M, Greb A, Simat TJ. Polyphenylsulfone (PPSU) for baby bottles: a comprehensive assessment on polymer-related non-intentionally added substances (NIAS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018. [DOI: 10.1080/19440049.2018.1449255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Martin Eckardt
- Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Annemarie Greb
- Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Thomas J. Simat
- Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
49
|
Wang Z, Scott WC, Williams ES, Ciarlo M, DeLeo PC, Brooks BW. Identification of novel uncertainty factors and thresholds of toxicological concern for health hazard and risk assessment: Application to cleaning product ingredients. ENVIRONMENT INTERNATIONAL 2018; 113:357-376. [PMID: 29452931 DOI: 10.1016/j.envint.2018.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Uncertainty factors (UFs) are commonly used during hazard and risk assessments to address uncertainties, including extrapolations among mammals and experimental durations. In risk assessment, default values are routinely used for interspecies extrapolation and interindividual variability. Whether default UFs are sufficient for various chemical uses or specific chemical classes remains understudied, particularly for ingredients in cleaning products. Therefore, we examined publicly available acute median lethal dose (LD50), and reproductive and developmental no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) values for the rat model (oral). We employed probabilistic chemical toxicity distributions to identify likelihoods of encountering acute, subacute, subchronic and chronic toxicity thresholds for specific chemical categories and ingredients in cleaning products. We subsequently identified thresholds of toxicological concern (TTC) and then various UFs for: 1) acute (LD50s)-to-chronic (reproductive/developmental NOAELs) ratios (ACRs), 2) exposure duration extrapolations (e.g., subchronic-to-chronic; reproductive/developmental), and 3) LOAEL-to-NOAEL ratios considering subacute/acute developmental responses. These ratios (95% CIs) were calculated from pairwise threshold levels using Monte Carlo simulations to identify UFs for all ingredients in cleaning products. Based on data availability, chemical category-specific UFs were also identified for aliphatic acids and salts, aliphatic alcohols, inorganic acids and salts, and alkyl sulfates. In a number of cases, derived UFs were smaller than default values (e.g., 10) employed by regulatory agencies; however, larger UFs were occasionally identified. Such UFs could be used by assessors instead of relying on default values. These approaches for identifying mammalian TTCs and diverse UFs represent robust alternatives to application of default values for ingredients in cleaning products and other chemical classes. Findings can also support chemical substitutions during alternatives assessment, and data dossier development (e.g., read across), identification of TTCs, and screening-level hazard and risk assessment when toxicity data is unavailable for specific chemicals.
Collapse
Affiliation(s)
- Zhen Wang
- Environmental Health Science Program, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - W Casan Scott
- Environmental Health Science Program, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - E Spencer Williams
- Environmental Health Science Program, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Michael Ciarlo
- EA Engineering, Science & Technology, Inc., Baltimore, MD, USA
| | - Paul C DeLeo
- American Cleaning Institute, Washington, DC, USA
| | - Bryan W Brooks
- Environmental Health Science Program, Department of Environmental Science, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| |
Collapse
|
50
|
Ludwig KB, Chandrasekar V, Saylor DM, Van Citters DW, Reinitz SD, Forrey C, McDermott MK, Wickramasekara S, Janes DW. Characterizing the free volume of ultrahigh molecular weight polyethylene to predict diffusion coefficients in orthopedic liners. J Biomed Mater Res B Appl Biomater 2017; 106:2393-2402. [DOI: 10.1002/jbm.b.34045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/21/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Kyle B. Ludwig
- Center for Devices and Radiological Health, U.S. Food and Drug Administration; Silver Spring Maryland 20993
| | - Vaishnavi Chandrasekar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration; Silver Spring Maryland 20993
| | - David M. Saylor
- Center for Devices and Radiological Health, U.S. Food and Drug Administration; Silver Spring Maryland 20993
| | | | - Steven D. Reinitz
- Thayer School of Engineering; Dartmouth College; Hanover New Hampshire 03755
| | - Christopher Forrey
- Center for Devices and Radiological Health, U.S. Food and Drug Administration; Silver Spring Maryland 20993
| | - Martin K. McDermott
- Center for Devices and Radiological Health, U.S. Food and Drug Administration; Silver Spring Maryland 20993
| | - Samanthi Wickramasekara
- Center for Devices and Radiological Health, U.S. Food and Drug Administration; Silver Spring Maryland 20993
| | | |
Collapse
|