1
|
Braun G, Schaier M, Werner P, Theiner S, Zanghellini J, Wisgrill L, Fyhrquist N, Koellensperger G. MeXpose-A Modular Imaging Pipeline for the Quantitative Assessment of Cellular Metal Bioaccumulation. JACS AU 2024; 4:2197-2210. [PMID: 38938797 PMCID: PMC11200229 DOI: 10.1021/jacsau.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
MeXpose is an end-to-end image analysis pipeline designed for mechanistic studies of metal exposure, providing spatial single-cell metallomics using laser ablation-inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS). It leverages the high-resolution capabilities of low-dispersion laser ablation setups, a standardized approach to quantitative bioimaging, and the toolbox of immunohistochemistry using metal-labeled antibodies for cellular phenotyping. MeXpose uniquely unravels quantitative metal bioaccumulation (sub-fg range per cell) in phenotypically characterized tissue. Furthermore, the full scope of single-cell metallomics is offered through an extended mass range accessible by ICP-TOFMS instrumentation (covering isotopes from m/z 14-256). As a showcase, an ex vivo human skin model exposed to cobalt chloride (CoCl2) was investigated. For the first time, metal permeation was studied at single-cell resolution, showing high cobalt (Co) accumulation in the epidermis, particularly in mitotic basal cells, which correlated with DNA damage. Significant Co deposits were also observed in vascular cells, with notably lower levels in dermal fibers. MeXpose provides unprecedented insights into metal bioaccumulation with the ability to explore relationships between metal exposure and cellular responses on a single-cell level, paving the way for advanced toxicological and therapeutic studies.
Collapse
Affiliation(s)
- Gabriel Braun
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Martin Schaier
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Paulina Werner
- Institute
of Environmental Medicine, Karolinska Institutet, 17165 Solna, Sweden
| | - Sarah Theiner
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jürgen Zanghellini
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Lukas Wisgrill
- Division
of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department
of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National
EIRENE Hub, 1090 Vienna, Austria
| | - Nanna Fyhrquist
- Institute
of Environmental Medicine, Karolinska Institutet, 17165 Solna, Sweden
| | - Gunda Koellensperger
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National
EIRENE Hub, 1090 Vienna, Austria
| |
Collapse
|
2
|
Zhong Q, Pan X, Chen Y, Lian Q, Gao J, Xu Y, Wang J, Shi Z, Cheng H. Prosthetic Metals: Release, Metabolism and Toxicity. Int J Nanomedicine 2024; 19:5245-5267. [PMID: 38855732 PMCID: PMC11162637 DOI: 10.2147/ijn.s459255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The development of metallic joint prostheses has been ongoing for more than a century alongside advancements in hip and knee arthroplasty. Among the materials utilized, the Cobalt-Chromium-Molybdenum (Co-Cr-Mo) and Titanium-Aluminum-Vanadium (Ti-Al-V) alloys are predominant in joint prosthesis construction, predominantly due to their commendable biocompatibility, mechanical strength, and corrosion resistance. Nonetheless, over time, the physical wear, electrochemical corrosion, and inflammation induced by these alloys that occur post-implantation can cause the release of various metallic components. The released metals can then flow and metabolize in vivo, subsequently causing potential local or systemic harm. This review first details joint prosthesis development and acknowledges the release of prosthetic metals. Second, we outline the metallic concentration, biodistribution, and elimination pathways of the released prosthetic metals. Lastly, we discuss the possible organ, cellular, critical biomolecules, and significant signaling pathway toxicities and adverse effects that arise from exposure to these metals.
Collapse
Affiliation(s)
- Qiang Zhong
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xin Pan
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yuhang Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qiang Lian
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jian Gao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yixin Xu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jian Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zhanjun Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Hao Cheng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
3
|
Oyagbemi AA, Ajibade TO, Esan OO, Adetona MO, Obisesan AD, Adeogun AV, Awoyomi OV, Badejo JA, Adedapo ADA, Omobowale TO, Olaleye OI, Ola-Davies OE, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Kayoka-Kabongo PN, Yakubu MA, Nwulia E, Oguntibeju OO. Naringin abrogates angiotensin-converting enzyme (ACE) activity and podocin signalling pathway in cobalt chloride-induced nephrotoxicity and hypertension. Biomarkers 2023; 28:206-216. [PMID: 36480283 DOI: 10.1080/1354750x.2022.2157489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PurposeThe persistent and alarming rates of increase in cardiovascular and renal diseases caused by chemicals such as cobalt chloride (CoCl2) in mammalian tissues have led to the use of various drugs for the treatment of these diseases. This study aims at evaluating the nephron-protective action of Naringin (NAR), a metal-chelating antioxidant against CoCl2-induced hypertension and nephrotoxicity.MethodsForty-two male Wistar rats were randomly distributed to seven rats of six groups and classified into Group A (Control), Group B (300 part per million; ppm CoCl2), Group C (300 ppm CoCl2 + 80 mg/kg NAR), Group D (300 ppm CoCl2 + 160 mg/kg NAR), Group E (80 mg/kg NAR), and Group F (160 mg/kg NAR). NAR and CoCl2 were administered via oral gavage for seven days. Biomarkers of renal damage, oxidative stress, antioxidant status, blood pressure parameters, immunohistochemistry of renal angiotensin-converting enzyme and podocin were determined.ResultsCobalt chloride intoxication precipitated hypertension, renal damage, and oxidative stress. Immunohistochemistry revealed higher expression of angiotensin-converting enzyme (ACE) and podocin in rats administered only CoCl2.ConclusionTaken together, the antioxidant and metal-chelating action of Naringin administration against cobalt chloride-induced renal damage and hypertension could be through abrogation of angiotensin-converting enzyme and podocin signalling pathway.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ayobami Deborah Obisesan
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adewumi Victoria Adeogun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Joseph Ayotunde Badejo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Aduragbenro Deborah A Adedapo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olayinka Israel Olaleye
- Department of Pathology, Histopathology Laboratory, University College Hospital, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa Florida Campus, Florida, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, TX, USA
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Howard University Hospital, Howard University, Washington, DC, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
4
|
Bazin D, Foy E, Reguer S, Rouzière S, Fayard B, Colboc H, Haymann JP, Daudon M, Mocuta C. The crucial contribution of X-ray fluorescence spectroscopy in medicine. CR CHIM 2022. [DOI: 10.5802/crchim.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Kan M, Fujiwara T, Kamiya T. Golgi-Localized OsFPN1 is Involved in Co and Ni Transport and Their Detoxification in Rice. RICE (NEW YORK, N.Y.) 2022; 15:36. [PMID: 35817888 PMCID: PMC9273799 DOI: 10.1186/s12284-022-00583-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/04/2022] [Indexed: 05/13/2023]
Abstract
Cobalt (Co) and nickel (Ni) are beneficial and essential elements for plants, respectively, with the latter required for urease activity, which hydrolyzes urea into ammonium in plants. However, excess Co and Ni are toxic to plants and their transport mechanisms in rice are unclear. Here, we analyzed an ethyl methanesulfonate (EMS)-mutagenized rice mutant, 1187_n, with increased Co and Ni contents in its brown rice and shoots. 1187_n has a mutation in OsFPN1, which was correlated with a high Co and Ni phenotype in F2 crosses between the parental line and mutant. In addition, CRISPR/Cas9 mutants exhibited a phenotype similar to that of 1187_n, demonstrating that OsFPN1 is the causal gene of the mutant. In addition to the high Co and Ni in brown rice and shoots, the mutant also exhibited high Co and Ni concentrations in the xylem sap, but low concentrations in the roots, suggesting that OsFPN1 is involved in the root-to-shoot translocation of Co and Ni. The growth of 1187_n and CRISPR/Cas9 lines were suppressed under high Co and Ni condition, indicating OsFPN1 is required for the normal growth under high Co and Ni. An OsFPN1-green fluorescent protein (GFP) fusion protein was localized to the Golgi apparatus. Yeast carrying GFP-OsFPN1 increased sensitivity to high Co contents and decreased Co and Ni accumulation. These results suggest that OsFPN1 can transport Co and Ni and is vital detoxification in rice.
Collapse
Affiliation(s)
- Manman Kan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
6
|
Effect of Milling Parameters on Mechanical Properties and In Vitro Biocompatibility of Mg-Zn-Co Ternary Alloy. METALS 2022. [DOI: 10.3390/met12030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Magnesium (Mg) is a potential candidate for biomedical implants, but its susceptibility to suffer corrosion attack in human body fluid limits its practical use. Thus, alloying Mg with other metal elements is the most effective strategy to improve its mechanical properties and biocompatibility. Herein, we report a Mg-Zn-Co ternary alloy (85-10-5 wt %) synthesized by the mechanical alloying technique. Ball-milling parameters such as ball size and milling time were varied to obtain better alloy properties. After compaction and sintering, the obtained alloy samples were subjected to various characterizations, including grain, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), microhardness and nanoindentation analyses. In vitro biocompatibility analysis of different alloys was also performed with MC3T3-E1 osteoblasts. Grain analysis confirmed the even dispersion of particles, while SEM analysis showed the formation of laminates, spherical and fine particles with an increase in time and varied ball size. XRD results further confirmed the formation of intermetallic compounds. The microhardness of samples was increased with the increase in milling time. The Young’s modulus of ternary alloys obtained from nanoindentation analysis was comparable to the modulus of human bone. Moreover, in vitro analysis with osteoblasts showed that the developed alloys were noncytotoxic and biocompatible.
Collapse
|
7
|
Subirana MA, Riemschneider S, Hause G, Dobritzsch D, Schaumlöffel D, Herzberg M. High spatial resolution imaging of subcellular macro and trace element distribution during phagocytosis. Metallomics 2022; 14:6530650. [PMID: 35179212 DOI: 10.1093/mtomcs/mfac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
The bioavailability of trace elements in the course of evolution had an essential influence on the emergence of life itself. This is reflected in the co-evolution between eukaryotes and prokaryotes. In this study, the influence and cellular distribution of bioelements during phagocytosis at the host-pathogen interface was investigated using high-resolution nanoscale secondary ion mass spectrometry (NanoSIMS) and quantitative inductively coupled plasma mass spectrometry (ICP-MS). In the eukaryotic murine macrophages (RAW 264.7 cell line), the cellular Fe / Zn ratio was found to be balanced, whereas the dominance of iron in the prokaryotic cells of the pathogen Salmonella enterica Serovar Enteritidis was about 90% compared to zinc. This confirms the evolutionary increased zinc requirement of the eukaryotic animal cell. Using NanoSIMS, the Cs+ primary ion source allowed high spatial resolution mapping of cell morphology down to subcellular level. At a comparable resolution, several low abundant trace elements could be mapped during phagocytosis with a RF plasma O- primary ion source. An enrichment of copper and nickel could be detected in the prokaryotic cells. Surprisingly, an accumulation of cobalt in the area of nuclear envelope was observed indicating an interesting but still unknown distribution of this trace element in murine macrophages.
Collapse
Affiliation(s)
- Maria Angels Subirana
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France
| | - Sina Riemschneider
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Gerd Hause
- Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Dirk Dobritzsch
- Martin-Luther-University Halle-Wittenberg, Core Facility - Proteomic Mass Spectrometry, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Dirk Schaumlöffel
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France.,Peoples' Friendship University of Russia (RUDN University), Mklukho-Maklaya str. 6, 117198 Moscow, Russia
| | - Martin Herzberg
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany
| |
Collapse
|
8
|
Genotoxicity of chromium (III) and cobalt (II) and interactions between them. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction. Chromium and cobalt are essential trace elements that are required only in a small amount, otherwise their excess can cause toxic effects.
Aim. The aim of this study was to determine the effects of chromium (III) and cobalt (II) and their combinations on genotoxicity in human fibroblasts cells (BJ).
Material and methods. In this work, comet and micronucleus assays were used. The BJ cells were exposed to chromium chloride and cobalt chloride at concentration ranges from 100 to 1400 µM. Mixtures of these elements were prepared so as to examine interactions between them.
Results. The present study shows the genotoxic effects of chromium (III) and cobalt (II) and their mixtures on BJ cells. In the comet assay, no comets were observed at the lowest concentrations; in the higher, a significant increase in their percentage was observed. In the other assay (formation of micronuclei), a statistically significant increase in the number of cells with micronuclei was observed in the BJ cells spiked with cobalt chloride and chromium chloride. In the case of simultaneous incubation of chromium chloride at 200 µM and cobalt chloride at 1000 µM in the BJ line, antagonism was observed. However, the interaction of chromium chloride at the 1000 µM and cobalt chloride at 200 µM leads to synergism between the studied elements.
Conclusions. Cobalt (II) and chromium (III) show genotoxic properties, they induce breaks in double and single-stranded DNA and they cause formation of AP-sites that do not have purine or pyrimidine bases.
Collapse
|
9
|
Flieger J, Dolar-Szczasny J, Rejdak R, Majerek D, Tatarczak-Michalewska M, Proch J, Blicharska E, Flieger W, Baj J, Niedzielski P. The Multi-Elemental Composition of the Aqueous Humor of Patients Undergoing Cataract Surgery, Suffering from Coexisting Diabetes, Hypertension, or Diabetic Retinopathy. Int J Mol Sci 2021; 22:ijms22179413. [PMID: 34502323 PMCID: PMC8430749 DOI: 10.3390/ijms22179413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of the study was the multi-elemental analysis of aqueous humor (AH) collected from patients undergoing cataract surgery. The study included: 16 patients with age-related macular degeneration AMD (99 controls), 10 patients with retinopathy (105 controls), 61 patients with hypertension (54 controls), and 33 patients with coexisting diabetes (82 controls). The control groups were recruited from patients with a lack of co-existing disease characterizing the specified studied group. The measurements were performed by the use of inductively coupled plasma optical emission spectrometry (ICP-OES). The statistical analysis was carried out using non-parametric testing (Mann–Whitney U). The level of significance was set at p = 0.05. The data obtained revealed substantial variations in elemental composition between the test groups in comparison to the controls. However, the significant variations concerned only a few elements. The phosphorous (P) level and the ratio of P/Ca were significant in retinopathy and diabetes, whereas cobalt (0.091 ± 0.107 mg/L vs. 0.031 ± 0.075 mg/L; p = 0.004) was significant in AMD. In co-existing hypertension, the levels of tin (0.293 ± 0.409 mg/L vs. 0.152 ± 0.3 mg/L; p = 0.031), titanium (0.096 ± 0.059 mg/L vs. 0.152 ± 0.192 mg/L; p = 0.045), and ruthenium (0.035 ± 0.109 mg/L vs. 0.002 ± 0.007 mg/L; p = 0.006) varied in comparison to the controls. The study revealed inter-elemental interactions. The correlation matrices demonstrated the domination of the positive correlations, whereas negative correlations mainly concerned sodium.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (M.T.-M.); (E.B.)
- Correspondence: ; Tel.: +48-81448-7182
| | - Joanna Dolar-Szczasny
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland; (J.D.-S.); (R.R.)
| | - Robert Rejdak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland; (J.D.-S.); (R.R.)
| | - Dariusz Majerek
- Department of Applied Mathematics, University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland;
| | | | - Jędrzej Proch
- Faculty of Chemistry, Department of Analytical Chemistry, Adam Mickiewicz University in Poznań, 89B Umultowska Street, 61-614 Poznań, Poland; (J.P.); (P.N.)
| | - Eliza Blicharska
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (M.T.-M.); (E.B.)
| | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (J.B.)
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (J.B.)
| | - Przemysław Niedzielski
- Faculty of Chemistry, Department of Analytical Chemistry, Adam Mickiewicz University in Poznań, 89B Umultowska Street, 61-614 Poznań, Poland; (J.P.); (P.N.)
| |
Collapse
|
10
|
Dose- and time-dependent changes in viability and IL-6, CXCL8 and CCL2 production by HaCaT-cells exposed to cobalt. Effects of high and low calcium growth conditions. PLoS One 2021; 16:e0252159. [PMID: 34086734 PMCID: PMC8177526 DOI: 10.1371/journal.pone.0252159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Sensitization requires exposure to an allergen with subsequent production of a “danger “signal. In the skin, keratinocytes are the main producers of these signals. Objective To compare dose- and time-effects of cobalt on the viability of and cytokine release from HaCaT cells cultured at low or high calcium. Method To model two separate states of differentiation of keratinocytes, HaCaT cells were cultured under low or high calcium conditions. HaCaT were exposed to different concentrations of cobalt chloride (10 μm to 5 mM) over time (30 minutes– 48 hours). Cell viability was measured with the Cell-Titer Blue Viability assay. Cytokine production was measured using a bead-based immunoassay and flow cytometry. Gene expression was quantified using qPCR. Data was analyzed by ANOVA and linear mixed model. Results Viability of the cells was dose- and time-dependent. A linear mixed statistical model showed that cobalt exposure induces increase in IL-6, CXCL8 and CCL2 production over time and whereas increase of IL-6 and a decrease of CCL2 was associated with increasing cobalt chloride concentrations. When comparing the cells incubated under high and low calcium conditions, the more differentiated cells in the high concentration were found to exert a stronger response in terms of IL-6 release. Conclusions Our data suggest that cobalt chloride triggered an alarm system in HaCaT cells, and proinflammatory cytokines/chemokines were secreted in a dose- and time-dependent manner. When high and low calcium incubations were compared, the difference was seen only for IL-6. These findings indicate that the effect of cobalt chloride on cell toxicity occurs throughout the living epidermis.
Collapse
|
11
|
Daniyal WMEMM, Fen YW, Saleviter S, Chanlek N, Nakajima H, Abdullah J, Yusof NA. X-ray Photoelectron Spectroscopy Analysis of Chitosan-Graphene Oxide-Based Composite Thin Films for Potential Optical Sensing Applications. Polymers (Basel) 2021; 13:478. [PMID: 33540931 PMCID: PMC7867321 DOI: 10.3390/polym13030478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan-graphene oxide (chitosan-GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR-chitosan-GO thin film, while for CdS QD-chitosan-GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian-Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan-GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR-chitosan-GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.
Collapse
Affiliation(s)
| | - Yap Wing Fen
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (W.M.E.M.M.D.); (S.S.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Silvan Saleviter
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (W.M.E.M.M.D.); (S.S.)
| | - Narong Chanlek
- Synchrotron Light Research Institute, Maung, Nakhon Ratchasima 30000, Thailand; (N.C.); (H.N.)
| | - Hideki Nakajima
- Synchrotron Light Research Institute, Maung, Nakhon Ratchasima 30000, Thailand; (N.C.); (H.N.)
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (J.A.); (N.A.Y.)
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (J.A.); (N.A.Y.)
| |
Collapse
|
12
|
Skalny AV, Gluhcheva Y, Ajsuvakova OP, Pavlova E, Petrova E, Rashev P, Vladov I, Shakieva RA, Aschner M, Tinkov AA. Perinatal and early-life cobalt exposure impairs essential metal metabolism in immature ICR mice. Food Chem Toxicol 2021; 149:111973. [PMID: 33421458 DOI: 10.1016/j.fct.2021.111973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 12/30/2022]
Abstract
The objective of the present study was to assess the impact of cobalt (Co) exposure on tissue distribution of iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn), as well as serum hepcidin levels in immature mice (18, 25, 30 days). Pregnant mice were exposed to 75 mg/kg b.w. cobalt chloride (CoCl2 × 6H2O) with drinking water starting from 3 days before delivery and during lactation. At weaning (day 25) the offspring were separated and housed in individual cages with subsequent exposure to 75 mg/kg b.w. CoCl2 until 30 days postnatally. Evaluation of tissue metal levels was performed by an inductively coupled plasma-mass spectrometry (ICP-MS). Serum hepcidin level was assayed by enzyme linked immunosorbent assay (ELISA). Cobalt exposure resulted in a time- and tissue-dependent increase in Co levels in kidney, spleen, liver, muscle, erythrocytes, and serum on days 18, 25, and 30. In parallel with increasing Co levels, CoCl2 exposure resulted in a significant accumulation of Cu, Fe, Mn, and Zn in the studied tissues, with the effect being most pronounced in 25-day-old mice. Cobalt exposure significantly increased serum hepcidin levels only in day18 mice. The obtained data demonstrate that Co exposure may alter essential metal metabolism in vivo.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, 119146, Russia; KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Olga P Ajsuvakova
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Pavel Rashev
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov" - Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | | | - Michael Aschner
- IM Sechenov First Moscow State Medical University, Moscow, 119146, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, 119146, Russia.
| |
Collapse
|
13
|
Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater Sci Eng 2020; 6:5399-5430. [PMID: 33320556 DOI: 10.1021/acsbiomaterials.0c00528] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The morbidity, mortality, and burden of burn victims and patients with severe diabetic wounds are still high, which leads to an extensively growing demand for novel treatments with high clinical efficacy. Biomaterial-based wound treatment approaches have progressed over time from simple cotton wool dressings to advanced skin substitutes containing cells and growth factors; however, no wound care approach is yet completely satisfying. Bioactive glasses are materials with potential in many areas that exhibit unique features in biomedical applications. Today, bioactive glasses are not only amorphous solid structures that can be used as a substitute in hard tissue but also are promising materials for soft tissue regeneration and wound healing applications. Biologically active elements such as Ag, B, Ca, Ce, Co, Cu, Ga, Mg, Se, Sr, and Zn can be incorporated in glass networks; hence, the superiority of these multifunctional materials over current materials results from their ability to release multiple therapeutic ions in the wound environment, which target different stages of the wound healing process. Bioactive glasses and their dissolution products have high potency for inducing angiogenesis and exerting several biological impacts on cell functions, which are involved in wound healing and some other features that are valuable in wound healing applications, namely hemostatic and antibacterial properties. In this review, we focus on skin structure, the dynamic process of wound healing in injured skin, and existing wound care approaches. The basic concepts of bioactive glasses are reviewed to better understand the relationship between glass structure and its properties. We illustrate the active role of bioactive glasses in wound repair and regeneration. Finally, research studies that have used bioactive glasses in wound healing applications are summarized and the future trends in this field are elaborated.
Collapse
Affiliation(s)
- Tina Mehrabi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Abdorreza S Mesgar
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Zahra Mohammadi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
14
|
Stewart TJ. Across the spectrum: integrating multidimensional metal analytics for in situ metallomic imaging. Metallomics 2020; 11:29-49. [PMID: 30499574 PMCID: PMC6350628 DOI: 10.1039/c8mt00235e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To know how much of a metal species is in a particular location within a biological context at any given time is essential for understanding the intricate roles of metals in biology and is the fundamental question upon which the field of metallomics was born. Simply put, seeing is powerful. With the combination of spectroscopy and microscopy, we can now see metals within complex biological matrices complemented by information about associated molecules and their structures. With the addition of mass spectrometry and particle beam based techniques, the field of view grows to cover greater sensitivities and spatial resolutions, addressing structural, functional and quantitative metallomic questions from the atomic level to whole body processes. In this perspective, I present a paradigm shift in the way we relate to and integrate current and developing metallomic analytics, highlighting both familiar and perhaps less well-known state of the art techniques for in situ metallomic imaging, specific biological applications, and their use in correlative studies. There is a genuine need to abandon scientific silos and, through the establishment of a metallomic scientific platform for further development of multidimensional analytics for in situ metallomic imaging, we have an incredible opportunity to enhance the field of metallomics and demonstrate how discovery research can be done more effectively.
Collapse
Affiliation(s)
- Theodora J Stewart
- King's College London, Mass Spectrometry, London Metallomics Facility, 4th Floor Franklin-Wilkins Building, 150 Stamford St., London SE1 9NH, UK.
| |
Collapse
|
15
|
Yang Y, Fus F, Pacureanu A, da Silva JC, De Nolf W, Biot C, Bohic S, Cloetens P. Three-Dimensional Correlative Imaging of a Malaria-Infected Cell with a Hard X-ray Nanoprobe. Anal Chem 2019; 91:6549-6554. [DOI: 10.1021/acs.analchem.8b05957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Y. Yang
- ESRF - the European Sychrotron, 38043 Grenoble, France
| | - F. Fus
- ESRF - the European Sychrotron, 38043 Grenoble, France
- Université Grenoble Alpes, EA-7442 Rayonnement Synchrotron et Recherche Médicale, 38058 Grenoble, France
| | - A. Pacureanu
- ESRF - the European Sychrotron, 38043 Grenoble, France
| | | | - W. De Nolf
- ESRF - the European Sychrotron, 38043 Grenoble, France
| | - C. Biot
- Université de Lille, Faculté des sciences et technologies, 59655 Villeneuve d’ Ascq, France
| | - S. Bohic
- ESRF - the European Sychrotron, 38043 Grenoble, France
- Université Grenoble Alpes, EA-7442 Rayonnement Synchrotron et Recherche Médicale, 38058 Grenoble, France
| | - P. Cloetens
- ESRF - the European Sychrotron, 38043 Grenoble, France
| |
Collapse
|
16
|
McCarthy EM, Floyd H, Addison O, Zhang ZJ, Oppenheimer PG, Grover LM. Influence of Cobalt Ions on Collagen Gel Formation and Their Interaction with Osteoblasts. ACS OMEGA 2018; 3:10129-10138. [PMID: 30221240 PMCID: PMC6130901 DOI: 10.1021/acsomega.8b01048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/18/2018] [Indexed: 05/03/2023]
Abstract
Metals on metal implants have long been used in arthroplasties because of their robustness and low dislocation rate. Several relatively low-corrosion metals have been used in arthroplasty, including 316L stainless steel, titanium, and cobalt-chromium-molybdenum alloy. Debris from these implants, however, has been found to cause inflammatory responses leading to unexpected failure rates approaching 10% 7 years surgery. Safety assessment of these materials traditionally relies on the use of simple two-dimensional assays, where cells are grown on the surface of the material over a relatively short time frame. It is now well-known that the composition and stiffness of the extracellular matrix (ECM) have a critical effect on cell function. In this work, we have evaluated how cobalt ions influence the assembly of type I collagen, the principle component of the ECM in bone. We found that cobalt had a significant effect on collagen matrix formation, and its presence results in local variations in collagen density. This increase in heterogeneity causes an increase in localized mechanical properties but a decrease in the bulk stiffness of the material. Moreover, when collagen matrices contained cobalt ions, there was a significant change in how the cells interacted with the collagen matrix. Fluorescence images and biological assays showed a decrease in cell proliferation and viability with an increase in cobalt concentration. We present evidence that the cobalt ion complex interacts with the hydroxyl group present in the carboxylic terminal of the collagen fibril, preventing crucial stabilizing bonds within collagen formation. This demonstrates that the currently accepted toxicity assays are poor predictors of the longer-term biological performance of a material.
Collapse
Affiliation(s)
- Emma M. McCarthy
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
- E-mail: (E.M.M.)
| | - Hayley Floyd
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Owen Addison
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Zhenyu J. Zhang
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Pola Goldberg Oppenheimer
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Liam M. Grover
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
- E-mail: (L.M.G.)
| |
Collapse
|
17
|
Suhard D, Tessier C, Manens L, Rebière F, Tack K, Agarande M, Guéguen Y. Intracellular uranium distribution: Comparison of cryogenic fixation versus chemical fixation methods for SIMS analysis. Microsc Res Tech 2018; 81:855-864. [PMID: 29737608 PMCID: PMC6221105 DOI: 10.1002/jemt.23047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/30/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Localization of uranium within cells is mandatory for the comprehension of its cellular mechanism of toxicity. Secondary Ion Mass Spectrometry (SIMS) has recently shown its interest to detect and localize uranium at very low levels within the cells. This technique requires a specific sample preparation similar to the one used for Transmission Electronic Microscopy, achieved by implementing different chemical treatments to preserve as much as possible the living configuration uranium distribution into the observed sample. This study aims to compare the bioaccumulation sites of uranium within liver or kidney cells after chemical fixation and cryomethods preparations of the samples: SIMS analysis of theses samples show the localization of uranium soluble forms in the cell cytoplasm and nucleus with a more homogenous distribution when using cryopreparation probably due to the diffusible portion of uranium inside the cytoplasm.
Collapse
Affiliation(s)
- D Suhard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - C Tessier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - L Manens
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - F Rebière
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - K Tack
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - M Agarande
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SAME, Le Vésinet, France
| | - Y Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| |
Collapse
|
18
|
Klein S, Kızaloğlu M, Portilla L, Park H, Rejek T, Hümmer J, Meyer K, Hock R, Distel LVR, Halik M, Kryschi C. Enhanced In Vitro Biocompatibility and Water Dispersibility of Magnetite and Cobalt Ferrite Nanoparticles Employed as ROS Formation Enhancer in Radiation Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704111. [PMID: 29667293 DOI: 10.1002/smll.201704111] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/07/2018] [Indexed: 05/14/2023]
Abstract
Efficient magnetic reactive oxygen species (ROS) formation enhancing agents after X-ray treatment are realized by functionalizing superparamagnetic magnetite (Fe3 O4 ) and Co-ferrite (CoFe2 O4 ) nanoparticles with self-assembled monolayers (SAMs). The Fe3 O4 and CoFe2 O4 nanoparticles are synthesized using Massart's coprecipitation technique. Successful surface modification with the SAM forming compounds 1-methyl-3-(dodecylphosphonic acid) imidazolium bromide, or (2-{2-[2-hydroxy-ethoxy]-ethoxy}-ethyl phosphonic acid provides biocompatibility and long-term stability of the Fe3 O4 and CoFe2 O4 nanoparticles in cell media. The SAM-stabilized ferrite nanoparticles are characterized with dynamic light scattering, X-ray powder diffraction, a superconducting quantum interference device, Fourier transform infrared attenuated total reflectance spectroscopy, zeta potential measurements, and thermogravimetric analysis. The impact of the SAM-stabilized nanoparticles on the viability of the MCF-7 cells and healthy human umbilical vein endothelial cells (HUVECs) is assessed using the neutral red assay. Under X-ray exposure with a single dosage of 1 Gy the intracellular SAM stabilized Fe3 O4 and CoFe2 O4 nanoparticles are observed to increase the level of ROS in MCF-7 breast cancer cells but not in healthy HUVECs. The drastic ROS enhancement is associated with very low dose modifying factors for a survival fraction of 50%. This significant ROS enhancement effect by SAM-stabilized Fe3 O4 and CoFe2 O4 nanoparticles constitutes their excellent applicability in radiation therapy.
Collapse
Affiliation(s)
- Stefanie Klein
- Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen, Egerlandstr. 3, D-91058, Erlangen, Germany
| | - Melek Kızaloğlu
- Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen, Egerlandstr. 3, D-91058, Erlangen, Germany
| | - Luis Portilla
- Department of Material Science, Institute of Polymer Materials, Friedrich-Alexander University of Erlangen, Martensstr. 7, D-91058, Erlangen, Germany
| | - Hyoungwon Park
- Department of Material Science, Institute of Polymer Materials, Friedrich-Alexander University of Erlangen, Martensstr. 7, D-91058, Erlangen, Germany
| | - Tobias Rejek
- Department of Material Science, Institute of Polymer Materials, Friedrich-Alexander University of Erlangen, Martensstr. 7, D-91058, Erlangen, Germany
| | - Julian Hümmer
- Department of Chemistry and Pharmacy, Inorganic and General Chemistry, Friedrich-Alexander University of Erlangen, Egerlandstr. 1, D-91058, Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic and General Chemistry, Friedrich-Alexander University of Erlangen, Egerlandstr. 1, D-91058, Erlangen, Germany
| | - Rainer Hock
- Department of Condensed Matter Physics, Friedrich-Alexander University of Erlangen, Staudtstr. 3, D-91058, Erlangen, Germany
| | - Luitpold V R Distel
- Department of Radiation Oncology, Friedrich-Alexander University of Erlangen, Universitätsstr. 27, D-91054, Erlangen, Germany
| | - Marcus Halik
- Department of Material Science, Institute of Polymer Materials, Friedrich-Alexander University of Erlangen, Martensstr. 7, D-91058, Erlangen, Germany
| | - Carola Kryschi
- Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen, Egerlandstr. 3, D-91058, Erlangen, Germany
| |
Collapse
|
19
|
Speer RM, The T, Xie H, Liou L, Adam RM, Wise JP. The Cytotoxicity and Genotoxicity of Particulate and Soluble Cobalt in Human Urothelial Cells. Biol Trace Elem Res 2017; 180:48-55. [PMID: 28324276 DOI: 10.1007/s12011-017-0989-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/02/2017] [Indexed: 11/25/2022]
Abstract
Cobalt use is increasing particularly due to its use as one of the primary metals in cobalt-chromium-molybdenum (CoCrMo) metal-on-metal prosthetics. CoCrMo is a high-strength, wear-resistant alloy with reduced risk for prosthetic loosening and device fracture. More than 500,000 people receive hip implants each year in the USA which puts them at potential risk for exposure to metal ions and particles released by the prosthetic implants. Data show cobalt ions released from prosthetics reach the bloodstream and accumulate in the bladder. As patients with failed hip implants show increased urinary and blood cobalt levels, no studies have considered the effects of cobalt on human urothelial cells. Accordingly, we investigated the cytotoxic and genotoxic effects of particulate and soluble cobalt in urothelial cells. Exposure to both particulate and soluble cobalt resulted in a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ions. Based on intracellular cobalt ion levels, we found, when compared to particulate cobalt, soluble cobalt was more cytotoxic, but induced similar levels of genotoxicity. Interestingly, at similar intracellular cobalt ion concentrations, soluble cobalt induced cell cycle arrest indicated by a lack of metaphases not observed after particulate cobalt treatment. These data indicate that cobalt compounds are cytotoxic and genotoxic to human urothelial cells and solubility may play a key role in cobalt-induced toxicity.
Collapse
Affiliation(s)
- Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 505 S. Hancock St, CTRB rm 522, Louisville, KY, 40292, USA
| | - Therry The
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 505 S. Hancock St, CTRB rm 522, Louisville, KY, 40292, USA
- Maine General Health, Alfonso Center of Health, Histology and Cytology Laboratory, 35 Medical Center Parkway, Augusta, ME, 04330, USA
| | - Hong Xie
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 505 S. Hancock St, CTRB rm 522, Louisville, KY, 40292, USA
- Toxikon Corp, 15 Wiggins Avenue, Bedford, MA, 01730, USA
| | - Louis Liou
- Cambridge Health Alliance Somerville Hospital, 230 Highland Avenue, 4th Floor South Building, Somerville, MA, 02143, USA
| | - Rosalyn M Adam
- Department of Urology, Enders Research Building, Rm 1061.1, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 505 S. Hancock St, CTRB rm 522, Louisville, KY, 40292, USA.
| |
Collapse
|
20
|
Vasconcelos DM, Santos SG, Lamghari M, Barbosa MA. The two faces of metal ions: From implants rejection to tissue repair/regeneration. Biomaterials 2016; 84:262-275. [DOI: 10.1016/j.biomaterials.2016.01.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
|
21
|
Niemiec MJ, De Samber B, Garrevoet J, Vergucht E, Vekemans B, De Rycke R, Björn E, Sandblad L, Wellenreuther G, Falkenberg G, Cloetens P, Vincze L, Urban CF. Trace element landscape of resting and activated human neutrophils on the sub-micrometer level. Metallomics 2016; 7:996-1010. [PMID: 25832493 DOI: 10.1039/c4mt00346b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Every infection is a battle for trace elements. Neutrophils migrate first to the infection site and accumulate quickly to high numbers. They fight pathogens by phagocytosis and intracellular toxication. Additionally, neutrophils form neutrophil extracellular traps (NETs) to inhibit extracellular microbes. Yet, neutrophil trace element characteristics are largely unexplored. We investigated unstimulated and phorbol myristate acetate-stimulated neutrophils using synchrotron radiation X-ray fluorescence (SR-XRF) on the sub-micron spatial resolution level. PMA activates pinocytosis, cytoskeletal rearrangements and the release of NETs, all mechanisms deployed by neutrophils to combat infection. By analyzing Zn, Fe, Cu, Mn, P, S, and Ca, not only the nucleus but also vesicular granules were identifiable in the elemental maps. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) revealed a neutrophil-specific composition of Zn, Fe, Cu, and Mn in comparison with J774 and HeLa cells, indicating a neutrophil-specific metallome complying with their designated functions. When investigating PMA-activated neutrophils, the SR-XRF analysis depicted typical subcellular morphological changes: the transformation of nucleus and granules and the emergence of void vacuoles. Mature NETs were evenly composed of Fe, P, S, and Ca with occasional hot spots containing Zn, Fe, and Ca. An ICP-MS-based quantification of NET supernatants revealed a NETosis-induced decrease of soluble Zn, whereas Fe, Cu, and Mn concentrations were only slightly affected. In summary, we present a combination of SR-XRF and ICP-MS as a powerful tool to analyze trace elements in human neutrophils. The approach will be applicable and valuable to numerous aspects of nutritional immunity.
Collapse
Affiliation(s)
- M J Niemiec
- Department of Clinical Microbiology/MIMS, Umeå University, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Selected aspects of the action of cobalt ions in the human body. Cent Eur J Immunol 2015; 40:236-42. [PMID: 26557039 PMCID: PMC4637398 DOI: 10.5114/ceji.2015.52837] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/15/2015] [Indexed: 12/16/2022] Open
Abstract
Cobalt is widespread in the natural environment and can be formed as an effect of anthropogenic activity. This element is used in numerous industrial applications and nuclear power plants. Cobalt is an essential trace element for the human body and can occur in organic and inorganic forms. The organic form is a necessary component of vitamin B12 and plays a very important role in forming amino acids and some proteins in nerve cells, and in creating neurotransmitters that are indispensable for correct functioning of the organism. Its excess or deficiency will influence it unfavourably. Salts of cobalt have been applied in medicine in the treatment of anaemia, as well as in sport as an attractive alternative to traditional blood doping. Inorganic forms of cobalt present in ion form, are toxic to the human body, and the longer they are stored in the body, the more changes they cause in cells. Cobalt gets into the body in several ways: firstly, with food; secondly by the respiratory system; thirdly, by the skin; and finally, as a component of biomaterials. Cobalt and its alloys are fundamental components in orthopaedic implants and have been used for about 40 years. The corrosion of metal is the main problem in the construction of implants. These released metal ions may cause type IV inflammatory and hypersensitivity reactions, and alternations in bone modelling that lead to aseptic loosening and implant failure. The ions of cobalt released from the surface of the implant are absorbed by present macrophages, which are involved in many of the processes associated with phagocytose orthopaedic biomaterials particles and release pro-inflammatory mediators such as interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), and prostaglandin.
Collapse
|
23
|
Shah KM, Quinn PD, Gartland A, Wilkinson JM. Understanding the tissue effects of tribo-corrosion: uptake, distribution, and speciation of cobalt and chromium in human bone cells. J Orthop Res 2015; 33:114-21. [PMID: 25251692 DOI: 10.1002/jor.22729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/08/2014] [Indexed: 02/04/2023]
Abstract
Cobalt and chromium species are released in the local tissues as a result of tribo-corrosion, and affect bone cell survival and function. However we have little understanding of the mechanisms of cellular entry, intracellular distribution, and speciation of the metals that result in impaired bone health. Here we used synchrotron based X-ray fluorescence (XRF), X-ray absorption spectroscopy (XAS), and fluorescent-probing approaches of candidate receptors P2X7R and divalent metal transporter-1 (DMT-1), to better understand the entry, intra-cellular distribution and speciation of cobalt (Co) and chromium (Cr) in human osteoblasts and primary human osteoclasts. We found that both Co and Cr were most highly localized at nuclear and perinuclear sites in osteoblasts, suggesting uptake through cell membrane transporters, and supported by a finding that P2X7 receptor blockade reduced cellular entry of Co. In contrast, metal species were present at discrete sites corresponding to the basolateral membrane in osteoclasts, suggesting cell entry by endocytosis and trafficking through a functional secretory domain. An intracellular reduction of Cr6+ to Cr3+ was the only redox change observed in cells treated with Co2+, Cr3+, and Cr6+. Our data suggest that the cellular uptake and processing of Co and Cr differs between osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Karan M Shah
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | | | | | | |
Collapse
|
24
|
Leonardo T, Farhi E, Boisson AM, Vial J, Cloetens P, Bohic S, Rivasseau C. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis. Metallomics 2014; 6:316-29. [PMID: 24394991 DOI: 10.1039/c3mt00281k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the nucleus at high concentration. Exposure to low concentrations of cobalt or silver did not alter the localization nor the concentration of endogenous elements within the cells. To our knowledge, this is the first report on element co-localization and segregation at the sub-cellular level in micro-algae by means of synchrotron nano X-ray fluorescence spectroscopy.
Collapse
Affiliation(s)
- T Leonardo
- CEA, IRTSV, Laboratoire de Physiologie Cellulaire Végétale, F-38054 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Chronic exposure to cobalt compounds — an in vivo study. Open Life Sci 2014. [DOI: 10.2478/s11535-014-0334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractAn in vivo experimental model for testing the effects of long-term chronic treatment with cobalt(II) compounds — cobalt chloride (CoCl2) and cobalt-EDTA (Co-EDTA) on mice at different stages of development was optimized. Pregnant mice and their progeny were treated with daily doses of 75 or 125 mg kg−1 body weight until postnatal day 90. The compounds were dissolved in regular tap water. Mice were sacrificed on days 18, 25, 30, 45, 60 and 90 after birth, which correspond to different stages of their development. Altered organ weight indices (calculated as a ratio of organ weight to body weight) of spleen, liver and kidneys, were found depending on the type of compound used, dose, duration of treatment, and the age of the animals. The results also showed significant accumulation of cobalt ions in blood plasma, spleen, liver and kidneys of the exposed mice. More Co(II) was measured in the organs of the immature mice (day 18, 25 and 30 pnd) indicating that they were more sensitive to treatment.
Collapse
|
26
|
Ortega R, Bresson C, Darolles C, Gautier C, Roudeau S, Perrin L, Janin M, Floriani M, Aloin V, Carmona A, Malard V. Low-solubility particles and a Trojan-horse type mechanism of toxicity: the case of cobalt oxide on human lung cells. Part Fibre Toxicol 2014; 11:14. [PMID: 24669904 PMCID: PMC3994290 DOI: 10.1186/1743-8977-11-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
Background The mechanisms of toxicity of metal oxide particles towards lung cells are far from being understood. In particular, the relative contribution of intracellular particulate versus solubilized fractions is rarely considered as it is very challenging to assess, especially for low-solubility particles such as cobalt oxide (Co3O4). Methods This study was possible owing to two highly sensitive, independent, analytical techniques, based on single-cell analysis, using ion beam microanalysis, and on bulk analysis of cell lysates, using mass spectrometry. Results Our study shows that cobalt oxide particles, of very low solubility in the culture medium, are readily incorporated by BEAS-2B human lung cells through endocytosis via the clathrin-dependent pathway. They are partially solubilized at low pH within lysosomes, leading to cobalt ions release. Solubilized cobalt was detected within the cytoplasm and the nucleus. As expected from these low-solubility particles, the intracellular solubilized cobalt content is small compared with the intracellular particulate cobalt content, in the parts-per-thousand range or below. However, we were able to demonstrate that this minute fraction of intracellular solubilized cobalt is responsible for the overall toxicity. Conclusions Cobalt oxide particles are readily internalized by pulmonary cells via the endo-lysosomal pathway and can lead, through a Trojan-horse mechanism, to intracellular release of toxic metal ions over long periods of time, involving specific toxicity.
Collapse
Affiliation(s)
- Richard Ortega
- Univ, Bordeaux, CENBG, UMR 5797, Gradignan F-33170, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hummer AA, Rompel A. The use of X-ray absorption and synchrotron based micro-X-ray fluorescence spectroscopy to investigate anti-cancer metal compounds in vivo and in vitro. Metallomics 2013; 5:597-614. [PMID: 23558305 DOI: 10.1039/c3mt20261e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray absorption spectroscopy (XAS) and micro-synchrotron based X-ray fluorescence (micro-SXRF) are element specific spectroscopic techniques and have been proven to be valuable tools for the investigation of changes in the chemical environment of metal centres. XAS allows the determination of the oxidation state, the coordination motif of the probed element, the identity and the number of adjacent atoms and the absorber-ligand distances. It is further applicable to nearly all types of samples independent of their actual physical state (solid, liquid, gaseous) down to μM concentrations. Micro-SXRF can provide information on the distribution and concentration of multiple elements within a sample simultaneously, allowing for the chemical state of several elements within subcellular compartments to be probed. Modern third generation synchrotrons offer the possibility to investigate the majority of the biologically relevant elements. The biological mode of action of metal-based compounds often involves interactions with target and/or transport molecules. The presence of reducing agents may also give rise to changes in the coordination sphere and/or the oxidation state. XAS and micro-SXRF are ideal techniques for investigating these issues. This tutorial review introduces the use of XAS and micro-SXRF techniques into the field of inorganic medicinal chemistry. The results obtained for platinum, ruthenium, gallium, gold and cobalt compounds within the last few years are presented.
Collapse
Affiliation(s)
- Alfred A Hummer
- Institut für Biophysikalische Chemie, Universität Wien, Althanstr. 14, 1090 Wien, Austria
| | | |
Collapse
|
28
|
Malucelli E, Iotti S, Fratini M, Marraccini C, Notargiacomo A, Gianoncelli A, Bukreeva I, Cedola A, Maier J, Farruggia G, Cappadone C, Merolle L, Wolf F, Trapani V, Lagomarsino S. X-ray fluorescence microscopy of light elements in cells: self-absorption correction by integration of compositional and morphological measurements. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/463/1/012022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Bresson C, Darolles C, Carmona A, Gautier C, Sage N, Roudeau S, Ortega R, Ansoborlo E, Malard V. Cobalt chloride speciation, mechanisms of cytotoxicity on human pulmonary cells, and synergistic toxicity with zinc. Metallomics 2013; 5:133-43. [PMID: 23505636 DOI: 10.1039/c3mt20196a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cobalt is used in numerous industrial sectors, leading to occupational diseases, particularly by inhalation. Cobalt-associated mechanisms of toxicity are far from being understood and information that could improve knowledge in this area is required. We investigated the impact of a soluble cobalt compound, CoCl(2)·6H(2)O, on the BEAS-2B lung epithelial cell line, as well as its impact on metal homeostasis. Cobalt speciation in different culture media, in particular soluble and precipitated cobalt species, was investigated via theoretical and analytical approaches. The cytotoxic effects of cobalt on the cells were assessed. Upon exposure of BEAS-2B cells to cobalt, intracellular accumulation of cobalt and zinc was demonstrated using direct in situ microchemical analysis based on ion micro-beam techniques and analysis after cell lysis by inductively coupled plasma mass spectrometry (ICP-MS). Microchemical imaging revealed that cobalt was rather homogeneously distributed in the nucleus and in the cytoplasm whereas zinc was more abundant in the nucleus. The modulation of zinc homeostasis led to the evaluation of the effect of combined cobalt and zinc exposure. In this case, a clear synergistic increase in toxicity was observed as well as a substantial increase in zinc content within cells. Western blots performed under the same coexposure conditions revealed a decrease in ZnT1 expression, suggesting that cobalt could inhibit zinc release through the modulation of ZnT1. Overall, this study highlights the potential hazard to lung function, of combined exposure to cobalt and zinc.
Collapse
Affiliation(s)
- Carole Bresson
- Laboratoire de développement Analytique Nucléaire, Isotopique et Elémentaire, Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bresson C, Chartier F, Ansoborlo E, Ortega R. Analytical tools for speciation in the field of toxicology. RADIOCHIM ACTA 2013. [DOI: 10.1524/ract.2013.2046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
The knowledge of the speciation of elements at trace and ultra-trace level, in biological and environmental media is essential to acquire a better understanding of the mechanisms of toxicity, transport and accumulation in which they are involved. Determining the speciation of an element in a given medium is challenging and requires the knowledge of different methodological approaches: the calculation approach and the experimental approach through the use of dedicated analytical and spectroscopic tools. In this framework, this mini-review reports the approaches to investigate the speciation of elements in biological and environmental media as well as the experimental techniques of speciation analysis, illustrated by recent examples. The main analytical and spectroscopic techniques to obtain structural, molecular, elemental and isotopic information are described. A brief overview of separation techniques coupled with spectrometric techniques is given. Imaging and micro-localisation techniques, which aim at determining the in situ spatial distribution of elements and molecules in various solid samples, are also presented. The last part deals with the development of micro-analytical systems, since they open crucial perspectives to speciation analysis for low sample amounts and analysis on field.
Collapse
|
31
|
Jünemann AGM, Stopa P, Michalke B, Chaudhri A, Reulbach U, Huchzermeyer C, Schlötzer-Schrehardt U, Kruse FE, Zrenner E, Rejdak R. Levels of aqueous humor trace elements in patients with non-exsudative age-related macular degeneration: a case-control study. PLoS One 2013; 8:e56734. [PMID: 23457607 PMCID: PMC3574106 DOI: 10.1371/journal.pone.0056734] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Trace elements might play a role in the complex multifactorial pathogenesis of age-related macular degeneration (AMD). The aim of this study was to measure alterations of trace elements levels in aqueous humor of patients with non-exsudative (dry) AMD. For this pilot study, aqueous humor samples were collected from patients undergoing cataract surgery. 12 patients with dry AMD (age 77.9±6.62, female 8, male 4) and 11 patients without AMD (age 66.6±16.7, female 7, male 4) were included. Aqueous levels of cadmium, cobalt, copper, iron, manganese, selenium, and zinc were measured by use of Flow-Injection-Inductively-Coupled-Plasma-Mass-Spectrometry (FI-ICP-MS), quality controlled with certified standards. Patients with AMD had significantly higher aqueous humor levels of cadmium (median: 0.70 µmol/L, IQR: 0.40–0.84 vs. 0.06 µmol/L; IQR: 0.01–.018; p = 0.002), cobalt (median: 3.1 µmol/L, IQR: 2.62–3.15 vs. 1.17 µmol/L; IQR: 0.95–1.27; p<0.001), iron (median: 311 µmol/L, IQR: 289–329 vs. 129 µmol/L; IQR: 111–145; p<0.001) and zinc (median: 23.1 µmol/L, IQR: 12.9–32.6 vs. 5.1 µmol/L; IQR: 4.4–9.4; p = 0.020) when compared with patients without AMD. Copper levels were significantly reduced in patients with AMD (median: 16.2 µmol/L, IQR: 11.4–31.3 vs. 49.9 µmol/L; IQR: 32.0–.142.0; p = 0.022) when compared to those without. No significant differences were observed in aqueous humor levels of manganese and selenium between patients with and without AMD. After an adjustment for multiple testing, cadmium, cobalt, copper and iron remained a significant factor in GLM models (adjusted for age and gender of the patients) for AMD. Alterations of trace element levels support the hypothesis that cadmium, cobalt, iron, and copper are involved in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Anselm G M Jünemann
- Department of Ophthalmology, University Hospital of Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zaksas N, Gluhcheva Y, Sedykh S, Madzharova M, Atanassova N, Nevinsky G. Effect of CoCl(2) treatment on major and trace elements metabolism and protein concentration in mice. J Trace Elem Med Biol 2013; 27:27-30. [PMID: 22944586 DOI: 10.1016/j.jtemb.2012.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 06/01/2012] [Accepted: 07/02/2012] [Indexed: 10/27/2022]
Abstract
Cobalt (Co) is a transition metal and an essential trace element, required for vitamin B(12) biosynthesis, enzyme activation and other biological processes, but toxic in high concentrations. There is lack of data for the effect of long-term Co(II) treatment on the concentrations of other trace elements. We estimate the influence of cobalt chloride (CoCl(2)) on the relative content of different metals in mouse plasma using two-jet arc plasmatron atomic emission and on the total protein content. On average, the content of different elements in the plasma of 2-month-old balb/c mice (control group) decreased in the order: Ca>Mg>Si>Fe>Zn>Cu≥Al≥B. The treatment of mice for 60 days with CoCl(2) (daily dose 125 mg/kg) did not appreciably change the relative content of Ca, Cu, and Zn, while a 2.4-fold statistically significant decrease in the content of B and significant increase in the content of Mg (1.4-fold), Al and Fe (2.0-fold) and Si (3.2-fold) was found. A detectable amount of Mo was observed only for two control mice, while the plasma of 9 out of 16 mice of the treated group contained this metal. The administration of Co made its concentration detectable in the plasma of all mice of the treated group, but the relative content varied significantly. The treatment led to a 2.2-fold decrease in the concentration of the total plasma protein. Chronic exposure to CoCl(2) affects homeostasis as well as the concentrations and metabolism of other essential elements, probably due to competition of Co ions for similar binding sites within cells, altered signal transduction and protein biosynthesis. Long-term treatment also leads to significant weight changes and reduces the total protein concentration. The data may be useful for an understanding of Co toxicity, its effect on the concentration of other metal ions and different physiological processes.
Collapse
Affiliation(s)
- Nataliya Zaksas
- Institute of Inorganic Chemistry, Siberian Division of Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk 630090, Russia
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
In order to fully understand the metallomics of an organism, it is essential to know how much metal is present in each cell and, ideally, to know both the spatial and chemical distributions of each metal (i.e., where within the cell is a metal found, and in what chemical form). No single technique provides all of this information. This chapter reviews the various methods that can be used and the strengths and weaknesses of each.
Collapse
Affiliation(s)
- James E Penner-Hahn
- Departments of Chemistry and Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109-1055, USA,
| |
Collapse
|
34
|
Legostaeva GA, Zaksas NP, Gluhcheva YG, Sedykh SE, Madzharova ME, Atanassova NN, Buneva VN, Nevinsky GA. Effect of CoCl2on the content of different metals and a relative activity of DNA-hydrolyzing abzymes in the blood plasma of mice. J Mol Recognit 2012; 26:10-22. [DOI: 10.1002/jmr.2217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/09/2012] [Accepted: 07/12/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Galina A. Legostaeva
- Institute of Chemical Biology and Fundamental Medicine; Siberian Division of Russian Academy of Sciences; 8 Lavrentiev Ave.; Novosibirsk; 630090; Russia
| | - Nataliya P. Zaksas
- Institute of Inorganic Chemistry; Siberian Division of Russian Academy of Sciences; 10 Lavrentiev Ave.; Novosibirsk; 630090; Russia
| | - Yordanka G. Gluhcheva
- Institute of Experimental Morphology; Pathology and Anthropology with Museum-BAS; Acad. G. Bonchev, Str., Bl. 25; 1113; Sofia; Bulgaria
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine; Siberian Division of Russian Academy of Sciences; 8 Lavrentiev Ave.; Novosibirsk; 630090; Russia
| | - Maria E. Madzharova
- Institute of Experimental Morphology; Pathology and Anthropology with Museum-BAS; Acad. G. Bonchev, Str., Bl. 25; 1113; Sofia; Bulgaria
| | - Nina N. Atanassova
- Institute of Experimental Morphology; Pathology and Anthropology with Museum-BAS; Acad. G. Bonchev, Str., Bl. 25; 1113; Sofia; Bulgaria
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine; Siberian Division of Russian Academy of Sciences; 8 Lavrentiev Ave.; Novosibirsk; 630090; Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine; Siberian Division of Russian Academy of Sciences; 8 Lavrentiev Ave.; Novosibirsk; 630090; Russia
| |
Collapse
|
35
|
Abstract
The knowledge of the intracellular distribution of biological relevant metals is important to understand their mechanisms of action in cells, either for physiological, toxicological or pathological processes. However, the direct detection of trace metals in single cells is a challenging task that requires sophisticated analytical developments. The combination of micro-PIXE with RBS and STIM (Scanning Transmission Ion Microscopy) allows the quantitative determination of trace metal content within sub-cellular compartments. The application of STIM analysis provides high spatial resolution imaging (< 200 nm) and excellent mass sensitivity (< 0.1 ng). Application of the STIM-PIXE-RBS methodology is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. This combination of STIM-PIXE-RBS provides fully quantitative determination of trace element content, expressed in μg/g, which is a quite unique capability for micro-PIXE compared to other micro-analytical methods such as the electron and synchrotron x-ray fluorescence. Examples of micro-PIXE studies for sub-cellular imaging of trace elements in various fields of interest will be presented: in patho-physiology of trace elements involved in neurodegenerative diseases such as Parkinson's disease, and in toxicology of metals such as cobalt.
Collapse
Affiliation(s)
- RICHARD ORTEGA
- Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| |
Collapse
|
36
|
Gürbay A. Protective effect of zinc chloride against cobalt chloride-induced cytotoxicity on vero cells: preliminary results. Biol Trace Elem Res 2012; 148:110-6. [PMID: 22281816 DOI: 10.1007/s12011-012-9331-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
The aim of this study was to investigate the possible time- and dose-dependent cytotoxic effects of cobalt chloride on Vero cells. The cultured cells were incubated with different concentrations of cobalt chloride ranging from 0.5 to 1,000 μM, and cytotoxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and resazurin assays. Possible protective effects of vitamin E, coenzyme Q(10), and zinc chloride were also tested in this system. A gradual decrease in cell proliferation was observed at concentrations ~≥ 200 μM in incubation periods of 24, 48, 72, and 96 h with MTT assay. Exposure of cells to 500 and 1,000 μM cobalt chloride caused significant decrease in cell survival. A biphasic survival profile of cells was observed at 1-25 μM concentration range following 96 h of incubation. With resazurin assay, cytotoxicity profile of CoCl(2) was found comparable to the results of MTT assay, particularly at high concentrations and long incubation periods. Dose-dependent cytotoxicity was noted following exposure of cells to ≥ 250 μM of CoCl(2) for 24 h and ≥ 100 μM concentrations of CoCl(2) for 48-96 h. Pretreatment of cells with ZnCl(2) for 4 or 24 h provided significant protection against cobalt chloride-induced cytotoxicity when measured with MTT assay. However, vitamin E or coenzyme Q(10) was not protective. CoCl(2) had dose- and time-dependent cytotoxic effects in Vero cells. Preventive effect of ZnCl(2) against CoCl(2)-induced cytotoxicity should be considered in detail to define exact mechanism of toxicity in Vero cells.
Collapse
Affiliation(s)
- Aylin Gürbay
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
37
|
Kosior E, Bohic S, Suhonen H, Ortega R, Devès G, Carmona A, Marchi F, Guillet JF, Cloetens P. Combined use of hard X-ray phase contrast imaging and X-ray fluorescence microscopy for sub-cellular metal quantification. J Struct Biol 2012; 177:239-47. [DOI: 10.1016/j.jsb.2011.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
|
38
|
Bohic S, Cotte M, Salomé M, Fayard B, Kuehbacher M, Cloetens P, Martinez-Criado G, Tucoulou R, Susini J. Biomedical applications of the ESRF synchrotron-based microspectroscopy platform. J Struct Biol 2012; 177:248-58. [DOI: 10.1016/j.jsb.2011.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/30/2023]
|
39
|
Gluhcheva Y, Atanasov V, Ivanova J, Mitewa M. Cobalt-induced changes in the spleen of mice from different stages of development. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1418-1422. [PMID: 23095160 DOI: 10.1080/15287394.2012.721176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cobalt(II) accumulates in organs such as spleen, kidneys, heart, and liver. The aim of the present study was to investigate the effects of cobalt ethylenediamine tetraacetic acid (Co-EDTA) on spleen of developing mice. Pregnant BALB/c mice in late gestation were subjected to Co-EDTA treatment at daily doses of 75 or 125 mg/kg in drinking water, which continued until d 90 of the newborn pups. The newborn pups were sacrificed on d 18, 25, 30, 45, 60, and 90, which correspond to different stages of development. Spleens were excised, weighed, and processed for histological analysis. Spleen index (SI) was calculated as a ratio of spleen weight to body weight. Cobalt(II) bioaccumulation in spleen was determined using flame atomic absorption spectrometry (FAAS). Preliminary results showed that chronic treatment of mice with low- or high-dose Co-EDTA disturbed extramedullary hematopoiesis in the spleen. The number of megakaryocytes was reduced compared to controls. SI was also reduced in d 18 mice treated with low- or high-dose Co-EDTA. However, exposure to 75 mg/kg led to an increase of SI in all other experimental groups. FAAS analysis revealed significant cobalt(II) accumulation in spleen of treated mice. The Co(II) levels in spleens of d 18 mice were highest compared to other experimental groups, indicating that at this period mice are more sensitive to treatment. Exposure to cobalt-EDTA resulted in accumulation of Co(II) in spleen, altered SI, and hematopoiesis. Immature mice appear to be more sensitive to chronic treatment than adults.
Collapse
Affiliation(s)
- Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology, and Anthropology With Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
40
|
Martínez-Criado G, Tucoulou R, Cloetens P, Bleuet P, Bohic S, Cauzid J, Kieffer I, Kosior E, Labouré S, Petitgirard S, Rack A, Sans JA, Segura-Ruiz J, Suhonen H, Susini J, Villanova J. Status of the hard X-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:10-18. [PMID: 22186639 DOI: 10.1107/s090904951104249x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/13/2011] [Indexed: 05/31/2023]
Abstract
The ESRF synchrotron beamline ID22, dedicated to hard X-ray microanalysis and consisting of the combination of X-ray fluorescence, X-ray absorption spectroscopy, diffraction and 2D/3D X-ray imaging techniques, is one of the most versatile instruments in hard X-ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.
Collapse
Affiliation(s)
- Gema Martínez-Criado
- European Synchrotron Radiation Facility, Experiments Division, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Marmorato P, Ceccone G, Gianoncelli A, Pascolo L, Ponti J, Rossi F, Salomé M, Kaulich B, Kiskinova M. Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts. Toxicol Lett 2011; 207:128-36. [DOI: 10.1016/j.toxlet.2011.08.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 01/15/2023]
|
42
|
Mariani V, Ponti J, Giudetti G, Broggi F, Marmorato P, Gioria S, Franchini F, Rauscher H, Rossi F. Online monitoring of cell metabolism to assess the toxicity of nanoparticles: The case of cobalt ferrite. Nanotoxicology 2011; 6:272-87. [DOI: 10.3109/17435390.2011.572302] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Kaulich B, Thibault P, Gianoncelli A, Kiskinova M. Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:083002. [PMID: 21411893 DOI: 10.1088/0953-8984/23/8/083002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advances in microscopy techniques based on x-rays have opened unprecedented opportunities in terms of spatial resolution, combined with chemical and morphology sensitivity, to analyze solid, soft and liquid matter. The advent of ultrabright third and fourth generation photon sources and the continuous development of x-ray optics and detectors has pushed the limits of imaging and spectroscopic analysis to structures as small as a few tens of nanometers. Specific interactions of x-rays with matter provide elemental and chemical sensitivity that have made x-ray spectromicroscopy techniques a very attractive tool, complementary to other microscopies, for characterization in all actual research fields. The x-ray penetration power meets the demand to examine samples too thick for electron microscopes implementing 3D imaging and recently also 4D imaging which adds time resolution as well. Implementation of a variety of phase contrast techniques enhances the structural sensitivity, especially for the hard x-ray regime. Implementation of lensless or diffraction imaging helps to enhance the lateral resolution of x-ray imaging to the wavelength dependent diffraction limit.
Collapse
Affiliation(s)
- Burkhard Kaulich
- ELETTRA-Sincrotrone Trieste, Strada Statale 14, km 163.5 in Area Science Park, I-34149 Trieste-Basovizza, Italy.
| | | | | | | |
Collapse
|
44
|
McCormick N, Velasquez V, Finney L, Vogt S, Kelleher SL. X-ray fluorescence microscopy reveals accumulation and secretion of discrete intracellular zinc pools in the lactating mouse mammary gland. PLoS One 2010; 5:e11078. [PMID: 20552032 PMCID: PMC2884036 DOI: 10.1371/journal.pone.0011078] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/20/2010] [Indexed: 11/18/2022] Open
Abstract
Background The mammary gland is responsible for the transfer of a tremendous amount of zinc (∼1–3 mg zinc/day) from maternal circulation into milk during lactation to support the growth and development of the offspring. When this process is compromised, severe zinc deficiency compromises neuronal development and immune function and increases infant morbidity and/or mortality. It remains unclear as to how the lactating mammary gland dynamically integrates zinc import from maternal circulation with the enormous amount of zinc that is secreted into milk. Methodology/Principal Findings Herein we utilized X-ray fluorescence microscopy (XFM) which allowed for the visualization and quantification of the process of zinc transfer through the mammary gland of the lactating mouse. Our data illustrate that a large amount of zinc first accumulates in the mammary gland during lactation. Interestingly, this zinc is not cytosolic, but accumulated in large, discrete sub-cellular compartments. These zinc pools were then redistributed to small intracellular vesicles destined for secretion in a prolactin-responsive manner. Confocal microscopy identified mitochondria and the Golgi apparatus as the sub-cellular compartments which accumulate zinc; however, zinc pools in the Golgi apparatus, but not mitochondria are redistributed to vesicles destined for secretion during lactation. Conclusions/Significance Our data directly implicate the Golgi apparatus in providing a large, mobilizable zinc storage pool to assist in providing for the tremendous amount of zinc that is secreted into milk. Interestingly, our study also provides compelling evidence that mitochondrial zinc pools expand in the mammary gland during lactation which we speculate may play a role in regulating mammary gland function.
Collapse
Affiliation(s)
- Nicholas McCormick
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Vanessa Velasquez
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lydia Finney
- Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Stefan Vogt
- Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Shannon L. Kelleher
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Bleuet P, Gergaud P, Lemelle L, Bleuet P, Tucoulou R, Cloetens P, Susini J, Delette G, Simionovici A. 3D chemical imaging based on a third-generation synchrotron source. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2010.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Busch W, Kühnel D, Schirmer K, Scholz S. Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genomics 2010; 11:65. [PMID: 20105288 PMCID: PMC2824725 DOI: 10.1186/1471-2164-11-65] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 01/27/2010] [Indexed: 01/07/2023] Open
Abstract
Background Tungsten carbide (WC) and tungsten carbide cobalt (WC-Co) nanoparticles are of occupational health relevance because of the increasing usage in hard metal industries. Earlier studies showed an enhanced toxic potential for WC-Co compared to WC or cobalt ions alone. Therefore, we investigated the impact of these particles, compared to cobalt ions applied as CoCl2, on the global gene expression level in human keratinocytes (HaCaT) in vitro. Results WC nanoparticles exerted very little effects on the transcriptomic level after 3 hours and 3 days of exposure. In contrast, WC-Co nanoparticles caused significant transcriptional changes that were similar to those provoked by CoCl2. However, CoCl2 exerted even more pronounced changes in the transcription patterns. Gene set enrichment analyses revealed that the differentially expressed genes were related to hypoxia response, carbohydrate metabolism, endocrine pathways, and targets of several transcription factors. The role of the transcription factor HIF1 (hypoxia inducible factor 1) is particularly highlighted and aspects of downstream events as well as the role of other transcription factors related to cobalt toxicity are considered. Conclusions This study provides extensive data useful for the understanding of nanoparticle and cobalt toxicity. It shows that WC nanoparticles caused low transcriptional responses while WC-Co nanoparticles are able to exert responses similar to that of free cobalt ions, particularly the induction of hypoxia-like effects via interactions with HIF1α in human keratinocytes. However, the enhanced toxicity of WC-Co particles compared to CoCl2 could not be explained by differences in gene transcription.
Collapse
Affiliation(s)
- Wibke Busch
- UFZ - Helmholtz-Centre for Environmental Research Leipzig, Department of Bioanalytical Ecotoxicology, 04318 Leipzig, Germany.
| | | | | | | |
Collapse
|
47
|
Gluhcheva Y, Atanasov V, Zhorova R, Madzharova M, Ivanova J, Mitewa M. Cobalt Bioaccumulation in Mouse Blood Plasma and Liver. BIOTECHNOL BIOTEC EQ 2010. [DOI: 10.1080/13102818.2010.10817853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
48
|
Affiliation(s)
- Reagan McRae
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Pritha Bagchi
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - S. Sumalekshmy
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| |
Collapse
|
49
|
Ortega R, Devès G, Carmona A. Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy. J R Soc Interface 2009; 6 Suppl 5:S649-58. [PMID: 19605403 DOI: 10.1098/rsif.2009.0166.focus] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The direct detection of biologically relevant metals in single cells and of their speciation is a challenging task that requires sophisticated analytical developments. The aim of this article is to present the recent achievements in the field of cellular chemical element imaging, and direct speciation analysis, using proton and synchrotron radiation X-ray micro- and nano-analysis. The recent improvements in focusing optics for MeV-accelerated particles and keV X-rays allow application to chemical element analysis in subcellular compartments. The imaging and quantification of trace elements in single cells can be obtained using particle-induced X-ray emission (PIXE). The combination of PIXE with backscattering spectrometry and scanning transmission ion microscopy provides a high accuracy in elemental quantification of cellular organelles. On the other hand, synchrotron radiation X-ray fluorescence provides chemical element imaging with less than 100 nm spatial resolution. Moreover, synchrotron radiation offers the unique capability of spatially resolved chemical speciation using micro-X-ray absorption spectroscopy. The potential of these methods in biomedical investigations will be illustrated with examples of application in the fields of cellular toxicology, and pharmacology, bio-metals and metal-based nano-particles.
Collapse
Affiliation(s)
- Richard Ortega
- Cellular Chemical Imaging and Speciation Group, CNAB, CNRS UMR 5084, University of Bordeaux, 33175 Gradignan, France.
| | | | | |
Collapse
|