1
|
Muñoz JP. The impact of endocrine-disrupting chemicals on stem cells: Mechanisms and implications for human health. J Environ Sci (China) 2025; 147:294-309. [PMID: 39003048 DOI: 10.1016/j.jes.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 07/15/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.
Collapse
Affiliation(s)
- Juan P Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile.
| |
Collapse
|
2
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
3
|
Miloradovic D, Pavlovic D, Jankovic MG, Nikolic S, Papic M, Milivojevic N, Stojkovic M, Ljujic B. Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Front Cell Dev Biol 2021; 9:709183. [PMID: 34540831 PMCID: PMC8446652 DOI: 10.3389/fcell.2021.709183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
For a long time, animal models were used to mimic human biology and diseases. However, animal models are not an ideal solution due to numerous interspecies differences between humans and animals. New technologies, such as human-induced pluripotent stem cells and three-dimensional (3D) cultures such as organoids, represent promising solutions for replacing, refining, and reducing animal models. The capacity of organoids to differentiate, self-organize, and form specific, complex, biologically suitable structures makes them excellent in vitro models of development and disease pathogenesis, as well as drug-screening platforms. Despite significant potential health advantages, further studies and considerable nuances are necessary before their clinical use. This article summarizes the definition of embryoids, gastruloids, and organoids and clarifies their appliance as models for early development, diseases, environmental pollution, drug screening, and bioinformatics.
Collapse
Affiliation(s)
- Dragana Miloradovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sandra Nikolic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojevic
- Laboratory for Bioengineering, Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag Stojkovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- SPEBO Medical Fertility Hospital, Leskovac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
4
|
Králíčková M, Vetvicka V, Fiala L, Laganà AS, Garzon S. The Search for Biomarkers in Endometriosis: a Long and Windy Road. Reprod Sci 2021; 29:1667-1673. [PMID: 34159571 DOI: 10.1007/s43032-021-00668-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/11/2021] [Indexed: 01/29/2023]
Abstract
Endometriosis is a complex and chronic estrogen-dependent disease, affecting a significant proportion of women of reproductive age. Despite the long interest and extensive research, the pathogenesis of the disease is still debated. Although available non-invasive diagnostic methods have adequate accuracy, an invasive approach by laparoscopy is often necessary to obtain histological confirmation. In this scenario, the search for an accurate, reliable, cost-effective, clinically applicable non-invasive biomarker plays a crucial role in a potentially early diagnosis and, in this way, shape the future management of the disease. Considering these elements, the current review aims to summarize the most significant and novel results about biomarkers for the diagnosis and follow-up of women affected by endometriosis.
Collapse
Affiliation(s)
- Milena Králíčková
- Department of Histology and Embryology, Faculty of Medicine, Charles University, Pilsen, Czech Republic.,Department of Obstetrics and Gynecology, University Hospital, Faculty of Medicine, Charles University, Pilsen, Czech Republic.,Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Pilsen, Czech Republic
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Luděk Fiala
- Institute of Sexology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Piazza Biroldi 1, 21100, Varese, Italy.
| | - Simone Garzon
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Piazza Biroldi 1, 21100, Varese, Italy.,Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Winz C, Suh N. Understanding the Mechanistic Link between Bisphenol A and Cancer Stem Cells: A Cancer Prevention Perspective. J Cancer Prev 2021; 26:18-24. [PMID: 33842402 PMCID: PMC8020171 DOI: 10.15430/jcp.2021.26.1.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Endocrine disruptors, such as bisphenol A (BPA), have become more frequently present in the environment as contaminants, especially in industrialized countries. Long-term effects of these environmental contaminants in humans are elusive. With their structural similarity to estrogen, many environmental contaminants including BPA, have been shown to mimic the biological functions of estrogen, potentially contributing to the development of breast cancer. It has been well established that BPA exerts estrogenic activity in animal models and in vitro systems. There is a concern for adverse effects from the exposure to BPA in regard to developmental and reproductive toxicities. However, the mechanisms by which BPA promotes breast cancer development remain unknown. Understanding the role of endocrine disruptors and their key mechanisms of action is important for public health, especially by providing a foundation for a better intervention approach in cancer prevention.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
- Toxicology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Yang P, Lin BG, Zhou B, Cao WC, Chen PP, Deng YL, Hou J, Sun SZ, Zheng TZ, Lu WQ, Cheng LM, Zeng WJ, Zeng Q. Sex-specific associations of prenatal exposure to bisphenol A and its alternatives with fetal growth parameters and gestational age. ENVIRONMENT INTERNATIONAL 2021; 146:106305. [PMID: 33395947 DOI: 10.1016/j.envint.2020.106305] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA) can cause detrimental effects on fetal growth. However, the effects of BPA alternatives, such as bisphenol F (BPF) and bisphenol S (BPS), on fetal growth are less known. OBJECTIVE To investigate the relationships of prenatal BPA, BPF, and BPS exposures with fetal growth parameters and gestational age. METHODS Urinary BPA, BPF, and BPS were measured in 1,197 pregnant women before delivery in a Chinese cohort. The associations of prenatal exposure to BPA, BPF, and BPS with fetal growth parameters and gestational age were examined, and associations stratified by fetal sex were also conducted. We used a restricted cubic splines (RCS) model to examine the dose-response associations between exposures and outcomes. RESULTS Maternal urinary BPA and BPF were negatively related to birth length (-0.30 cm, 95% CI: -0.44, -0.15 and -0.21 cm, 95% CI: -0.36, -0.07 comparing the extreme exposure groups, respectively, both p for trends < 0.01). These associations were more pronounced in girls with inverted U-shaped dose-response relationships. Maternal urinary BPA and BPF were positively related to ponderal index (0.05 g/cm3 × 100, 95% CI: 0.01, 0.09 and 0.04 g/cm3 × 100, 95% CI: 0.01, 0.08 comparing the extreme exposure groups, respectively, both p for trends = 0.02), and maternal urinary BPS was associated with shorter gestational age (-0.20 weeks, 95% CI: -0.37, -0.03 comparing the extreme exposure groups, p for trend = 0.02). These associations were only observed in girls and exhibited a linear dose-response relationship. CONCLUSIONS Prenatal BPA, BPF, and BPS exposures were associated with detrimental effects on fetal growth parameters, and stronger effects were noted in female infants.
Collapse
Affiliation(s)
- Pan Yang
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Basic Medicine and Public Health, Jinan University, Guangzhou, PR China
| | - Bi-Gui Lin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Cheng Cao
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Sheng-Zhi Sun
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Tong-Zhang Zheng
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Ming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wan-Jiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| |
Collapse
|
7
|
Pagotto R, Santamaría CG, Harreguy MB, Abud J, Zenclussen ML, Kass L, Crispo M, Muñoz-de-Toro MM, Rodriguez HA, Bollati-Fogolín M. Perinatal exposure to Bisphenol A disturbs the early differentiation of male germ cells. Reprod Toxicol 2020; 98:117-124. [PMID: 32956838 DOI: 10.1016/j.reprotox.2020.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/27/2022]
Abstract
Understanding the effects of Bisphenol A (BPA) on early germ cell differentiation and their consequences in adult life is an area of growing interest in the field of endocrine disruption. Herein, we investigate whether perinatal exposure to BPA affects the differentiation of male germ cells in early life using a transgenic mouse expressing the GFP reporter protein under the Oct4 promoter. In this model, the expression of GFP reflects the expression of the Oct4 gene. This pluripotency gene is required to maintain the spermatogonial stem cells in an undifferentiated stage. Thus, GFP expression was used as a parameter to evaluate the effect of BPA on early germ cell development. Female pregnant transgenic mice were exposed to BPA by oral gavage, from embryonic day 5.5 to postnatal day 7 (PND7). The effects of BPA on male germ cell differentiation were evaluated at PND7, while sperm quality, testicular morphology, and protein expression of androgen receptor and proliferating cell nuclear antigen were studied at PND130. We found that perinatal/lactational exposure to BPA up-regulates the expression of Oct4-driven GFP in testicular cells at PND7. This finding suggests a higher proportion of undifferentiated spermatogonia in BPA-treated animals compared with non-exposed mice. Moreover, in adulthood, the number of spermatozoa per epididymis was reduced in those animals perinatally exposed to BPA. This work shows that developmental exposure to BPA disturbed the normal differentiation of male germ cells early in life, mainly by altering the expression of Oct4 and exerted long-lasting sequelae at the adult stage, affecting sperm count and testis.
Collapse
Affiliation(s)
- Romina Pagotto
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Clarisa G Santamaría
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria UNL, Ruta Nacional N°168, km 472, CPA S3000ZAA, Santa Fe, Argentina
| | - María Belén Harreguy
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Julián Abud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria UNL, Ruta Nacional N°168, km 472, CPA S3000ZAA, Santa Fe, Argentina
| | - María Laura Zenclussen
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria UNL, Ruta Nacional N°168, km 472, CPA S3000ZAA, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria UNL, Ruta Nacional N°168, km 472, CPA S3000ZAA, Santa Fe, Argentina
| | - Martina Crispo
- Transgenic and Experimental Animal Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Mónica M Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria UNL, Ruta Nacional N°168, km 472, CPA S3000ZAA, Santa Fe, Argentina
| | - Horacio A Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria UNL, Ruta Nacional N°168, km 472, CPA S3000ZAA, Santa Fe, Argentina
| | - Mariela Bollati-Fogolín
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay.
| |
Collapse
|
8
|
Gouesse RJ, Lavoie M, Dianati E, Wade MG, Hales BF, Robaire B, Plante I. Gestational and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Downregulates Junctional Proteins, Thyroid Hormone Receptor α1 Expression, and the Proliferation-Apoptosis Balance in Mammary Glands Post Puberty. Toxicol Sci 2019; 171:13-31. [PMID: 31241157 PMCID: PMC6735962 DOI: 10.1093/toxsci/kfz147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Mammary gland development requires hormonal regulation during puberty, pregnancy, and lactation. Brominated flame retardants (BFRs) are endocrine disruptors; they are added to consumer products to satisfy flammability standards. Previously, we showed that gestational and lactational exposure to an environmentally relevant mixture of BFRs disrupts proteins of the adherens junctions in rat dam mammary glands at weaning. Here, we hypothesize that perinatal exposure to the same BFR mixture also disrupts junctional proteins and signaling pathways controlling mammary gland development in pups. Dams were exposed through diet to a BFR mixture based on the substances in house dust; doses of the mixture used were 0, 0.06, 20, or 60 mg/kg/day. Dams were exposed continuously beginning prior to mating until pups' weaning; female offspring were euthanized on postnatal day (PND) 21, 46, and 208. The lowest dose of BFRs significantly downregulated adherens junction proteins, E-cadherin, and β-catenin, and the gap junction protein p-Cx43, as well as thyroid hormone receptor alpha 1 protein at PND 46. No effects were observed on estrogen or progesterone receptors. The low dose also resulted in a decrease in cleaved caspase-3, a downward trend in PARP levels, proteins involved in apoptosis, and an upward trend in proliferating cell nuclear antigen, a marker of proliferation. No effects were observed on ductal elongation or on the numbers of terminal end buds. Together, our results indicate that gestational and lactational exposure to an environmentally relevant mixture of BFRs disrupts cell-cell interactions, thyroid hormone homeostasis and the proliferation-apoptosis balance at PND 46, a critical stage for mammary gland development.
Collapse
Affiliation(s)
| | - Mélanie Lavoie
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| | - Elham Dianati
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| | - Mike G Wade
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario, Canada
| | | | - Bernard Robaire
- Department of Pharmacology & Therapeutics
- Department of Obstetrics & Gynecology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabelle Plante
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| |
Collapse
|
9
|
Nomiri S, Hoshyar R, Ambrosino C, Tyler CR, Mansouri B. A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8459-8467. [PMID: 30712204 DOI: 10.1007/s11356-019-04228-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 04/15/2023]
Abstract
Bisphenol A (BPA) is a plasticizer used widely in many industrial products and is now well established as an endocrine-disrupting chemical (EDC). BPA readily leaches out from these products into the environment and into foodstuffs (from packaging materials) and human exposure can be considerable. Many studies have shown that BPA exposure is associated with a range of chronic human health conditions, including diabetes, cardiovascular disorders, polycystic ovarian disease, hepatotoxicity, and various types of cancer. BPA exerts its effects through deregulating cell signaling pathways associated with cell growth, proliferation, migration, invasion, and apoptosis. Previous studies on the molecular mechanisms of BPA have illustrated a variety of pathways impaired at very low exposure concentrations and that stimulate cellular responses relating to tumorigenesis both in cancer onset and progression. In this mini review, the recent advancements made through in vitro analyses are reported on for the effect of BPA on various cellular signaling pathways focusing on the signaling pathways that play a major role in carcinogenesis.
Collapse
Affiliation(s)
- Samira Nomiri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhane Hoshyar
- Cellular and Molecular Research Center, Clinical Biochemistry Department, Birjand University of Medical Sciences, Birjand, Iran.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131, Naples, Italy
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| | - Borhan Mansouri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
10
|
Ventura C, Zappia CD, Lasagna M, Pavicic W, Richard S, Bolzan AD, Monczor F, Núñez M, Cocca C. Effects of the pesticide chlorpyrifos on breast cancer disease. Implication of epigenetic mechanisms. J Steroid Biochem Mol Biol 2019; 186:96-104. [PMID: 30290214 DOI: 10.1016/j.jsbmb.2018.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 11/21/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphorus pesticide used for agricultural pest control all over the world. We have previously demonstrated that environmental concentrations of this pesticide alter mammary gland histological structure and hormonal balance in rats chronically exposed. In this work, we analyzed the effects of CPF on mammary tumors development. Our results demonstrated that CPF increases tumor incidence and reduces latency of NMU-induced mammary tumors. Although no changes were observed in tumor growth rate, we found a reduced steroid hormone receptor expression in the tumors of animals exposed to the pesticide. Moreover, we analyzed the role of epigenetic mechanisms in CPF effects. Our results indicated that CPF alters HDAC1 mRNA expression in mammary gland, although no changes were observed in DNA methylation. In summary, we demonstrate that the exposure to CPF promotes mammary tumors development with a reduced steroid receptors expression. It has also been found that CPF affects HDAC1 mRNA levels in mammary tissue pointing that CPF may act as a breast cancer risk factor.
Collapse
Affiliation(s)
- C Ventura
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Citogenética y Mutagénesis, IMBICE (CONICET La Plata-UNLP-CICPBA), Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo. La Plata, Buenos Aires, Argentina
| | - C D Zappia
- Laboratorio de Farmacología de Receptores, ININFA, UBA-CONICET, Argentina
| | - M Lasagna
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - W Pavicic
- Laboratorio de Citogenética y Mutagénesis, IMBICE (CONICET La Plata-UNLP-CICPBA), Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo. La Plata, Buenos Aires, Argentina
| | - S Richard
- Laboratorio de Citogenética y Mutagénesis, IMBICE (CONICET La Plata-UNLP-CICPBA), Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo. La Plata, Buenos Aires, Argentina
| | - A D Bolzan
- Laboratorio de Citogenética y Mutagénesis, IMBICE (CONICET La Plata-UNLP-CICPBA), Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo. La Plata, Buenos Aires, Argentina
| | - F Monczor
- Laboratorio de Farmacología de Receptores, ININFA, UBA-CONICET, Argentina
| | - M Núñez
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - C Cocca
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", IQUIFIB UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
11
|
Perrot-Applanat M, Kolf-Clauw M, Michel C, Beausoleil C. Alteration of mammary gland development by bisphenol a and evidence of a mode of action mediated through endocrine disruption. Mol Cell Endocrinol 2018; 475:29-53. [PMID: 30048677 DOI: 10.1016/j.mce.2018.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023]
Abstract
The development and function of the mammary gland are endocrine-dependent processes, depending on the stage of development. Foetal and/or postnatal exposure to low doses of BPA alters tissue organisation through epithelial proliferation and stroma-epithelial interactions. BPA also alters the expression of E2-dependent epithelial and stroma transcriptomes. Several signalling pathways are consistent with the observed phenotype: proliferation and apoptosis, a focal adhesion pathway indicating changes in biomechanical properties of the extracellular matrix, and immune function. Some of BPA's effects are reversed by oestrogen and/or GPER inhibitors. BPA also alters the expression of epigenetic marks (EZH2, HOTAIR), which would explain the delayed effect of foetal BPA exposure. In conclusion, experimental evidence shows that pre- or postnatal BPA exposure consistently causes endocrine modifications in the mammary tissue of different animal species, disrupting stromal-epithelial interactions and ultimately increasing its susceptibility to carcinogens. An interspecies comparison highlights why and how these effects apply to humans.
Collapse
Affiliation(s)
| | - Martine Kolf-Clauw
- CREFRE, Toulouse University, INSERM, Toulouse Veterinary School, 23 chemin des Capelles, BP 87614, F 310176, Toulouse Cedex 3, France
| | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France.
| | | |
Collapse
|
12
|
Prins GS, Hu WY, Xie L, Shi GB, Hu DP, Birch L, Bosland MC. Evaluation of Bisphenol A (BPA) Exposures on Prostate Stem Cell Homeostasis and Prostate Cancer Risk in the NCTR-Sprague-Dawley Rat: An NIEHS/FDA CLARITY-BPA Consortium Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:117001. [PMID: 30387366 PMCID: PMC6371765 DOI: 10.1289/ehp3953] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Previous work determined that early life exposure to low-dose Bisphenol A (BPA) increased rat prostate cancer risk with aging. Herein, we report on prostate-specific results from CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity), which aims to resolve uncertainties regarding BPA toxicity. OBJECTIVES We sought to a) reassess whether a range of BPA exposures drives prostate pathology and/or alters prostatic susceptibility to hormonal carcinogenesis, and b) test whether chronic low-dose BPA targets prostate epithelial stem and progenitor cells. METHODS Sprague-Dawley rats were gavaged daily with vehicle, ethinyl estradiol (EE) or [Formula: see text] BPA/kg-BW during development or chronically, and prostate pathology was assessed at one year. One developmentally exposed cohort was given testosterone plus estradiol ([Formula: see text]) implants at day 90 to promote carcinogenesis with aging. Epithelial stem and progenitor cells were isolated by prostasphere (PS) culture from dorsolateral prostates (DLP) of rats continuously exposed for six months to [Formula: see text] BPA/kg-BW. Gene expression was analyzed by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR). RESULTS Exposure to BPA alone at any dose did not drive prostate pathology. However, rats treated with EE, 2.5, 250, or [Formula: see text] BPA/kg-BW plus [Formula: see text] showed greater severity of lateral prostate intraepithelial neoplasia (PIN), and DLP ductal adenocarcinoma multiplicity was markedly elevated in tumor-bearing rats exposed to [Formula: see text]-BW. DLP stem cells, assessed by PS number, doubled with chronic EE and [Formula: see text] exposures. PS size, reflecting progenitor cell proliferation, was greater at 25 and [Formula: see text] BPA doses, which also shifted lineage commitment toward basal progenitors while reducing luminal progenitor cells. CONCLUSIONS Together, these results confirm and extend previous evidence using a rat model and human prostate epithelial cells that low-dose BPA augments prostate cancer susceptibility and alters adult prostate stem cell homeostasis. Therefore, we propose that BPA exposures may contribute to the increased carcinogenic risk in humans that occurs with aging. https://doi.org/10.1289/EHP3953.
Collapse
Affiliation(s)
- Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lishi Xie
- Department of Urology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guang-Bin Shi
- Department of Urology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
| | - Dan-Ping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
| | - Lynn Birch
- Department of Urology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
| | - Maarten C Bosland
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
Vervliet P, de Nys S, Boonen I, Duca RC, Elskens M, van Landuyt KL, Covaci A. Qualitative analysis of dental material ingredients, composite resins and sealants using liquid chromatography coupled to quadrupole time of flight mass spectrometry. J Chromatogr A 2018; 1576:90-100. [DOI: 10.1016/j.chroma.2018.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023]
|
14
|
Eckardt M, Greb A, Simat TJ. Polyphenylsulfone (PPSU) for baby bottles: a comprehensive assessment on polymer-related non-intentionally added substances (NIAS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018. [DOI: 10.1080/19440049.2018.1449255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Martin Eckardt
- Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Annemarie Greb
- Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Thomas J. Simat
- Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
16
|
Palacios-Arreola MI, Nava-Castro KE, Río-Araiza VHD, Pérez-Sánchez NY, Morales-Montor J. A single neonatal administration of Bisphenol A induces higher tumour weight associated to changes in tumour microenvironment in the adulthood. Sci Rep 2017; 7:10573. [PMID: 28874690 PMCID: PMC5585249 DOI: 10.1038/s41598-017-10135-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/27/2017] [Indexed: 01/29/2023] Open
Abstract
BPA is an oestrogenic endocrine disrupting chemical compound. Exposure to BPA in as early as pregnancy leads to lifelong effects. Since endocrine and immune systems interact in a bidirectional manner, endocrine disruption may cause permanent alterations of the immune system, affecting a future anti-tumoral response. Neonate (PND 3) female syngeneic BALB/c mice were exposed to a single dose of 250 µg/kg BPA. Once sexual maturity was reached, a mammary tumour was induced injecting 4T1 cells in situ, these cells are derived from a spontaneous adenocarcinoma in a BALB/c mouse and therefore allows for an immunocompetent recipient. After 25 days of injection, showing no major endocrine alterations, BPA-exposed mice developed larger tumours. Tumour leukocytic infiltrate analysis revealed a higher proportion of regulatory T lymphocytes in the BPA-exposed group. RT-PCR analysis of tumour samples showed a decreased expression of TNF-α and IFN-γ, as well as the M2 macrophage marker Fizz-1 in the BPA-exposed group. Flow cytometry analysis revealed differences in ERα expression by T lymphocytes, macrophages and NK cells, both associated to BPA exposure and tumour development. These findings show a new aspect whereby early life BPA exposure can contribute to breast cancer development and progression by modulating the anti-tumoral immune response.
Collapse
Affiliation(s)
- Margarita Isabel Palacios-Arreola
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Ciudad de Mexico, CP, 04510, Mexico
| | - Karen Elizabeth Nava-Castro
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de Mexico, CP 04510, Ciudad de Mexico, Mexico
| | - Víctor Hugo Del Río-Araiza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Ciudad de Mexico, CP, 04510, Mexico
| | - Nashla Yazmín Pérez-Sánchez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Ciudad de Mexico, CP, 04510, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Ciudad de Mexico, CP, 04510, Mexico.
| |
Collapse
|
17
|
Wang Z, Liu H, Liu S. Low-Dose Bisphenol A Exposure: A Seemingly Instigating Carcinogenic Effect on Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600248. [PMID: 28251049 PMCID: PMC5323866 DOI: 10.1002/advs.201600248] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Indexed: 05/21/2023]
Abstract
Breast cancer is the fifth most common cause of cancer death in the world and the second most common fatal cancer in women. Epidemiological studies and clinical data have indicated that hormones, including estrogen, progesterone, and prolactin, play important roles in the initiation and progression of breast cancer. Bisphenol A (BPA) is one of the most commonly used and thoroughly studied endocrine disruptors. It can be released from consumer products and deposited in the environment, thus creating potential for human exposure through oral, inhaled, and dermal routes. Some recent reviews have summarized the known mechanisms of endocrine disruptions by BPA in human diseases, including obesity, reproductive disorders, and birth defects. However, large knowledge gaps still exist on the roles BPA may play in cancer initiation and development. Evidence from animal and in vitro studies has suggested an association between increased incidence of breast cancer and BPA exposure at doses below the safe reference doses that are the most environmentally relevant. Most current studies have paid little attention to the cancer-promoting properties of BPA at low doses. In this review, recent findings on the carcinogenic effects of low-dose BPA on breast cancer and discussed possible biologic mechanisms are summarized.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- School of Public HealthXinxiang Medical UniversityXinxiangHenan Province453003China
| | - Huiyu Liu
- Beijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| |
Collapse
|
18
|
Yao X, Yin N, Faiola F. Stem cell toxicology: a powerful tool to assess pollution effects on human health. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractEnvironmental pollution is a global problem; the lack of comprehensive toxicological assessments may lead to increased health risks. To fully understand the health effects of pollution, it is paramount to implement fast, efficient and specific toxicity screening that relies on human models rather than on time-consuming, expensive and often inaccurate tests involving live animals. Human stem cell toxicology represents a valid alternative to traditional toxicity assays because it takes advantage of the ability of stem cells to differentiate into multiple cell types and tissues of the human body. Thus, this branch of toxicology provides a possibility to assess cellular, embryonic, developmental, reproductive and functional toxicity in vitro within a single system highly relevant to human physiology. In this review, we describe the development, performance and future perspectives of stem cell toxicology, with an emphasis on how it can meet the increasing challenges posed by environmental pollution in the modern world.
Collapse
Affiliation(s)
- Xinglei Yao
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Effects of long-term endocrine disrupting compound exposure on Macaca mulatta embryonic stem cells. Reprod Toxicol 2016; 65:382-393. [PMID: 27614199 DOI: 10.1016/j.reprotox.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
Endocrine disrupting chemicals (EDCs) exert significant effects on health and physiology, many traceable to effects on stem cell programming underlying development. Understanding risk of low-level, chronic EDC exposure will be enhanced by knowledge of effects on stem cells. We exposed rhesus monkey embryonic stem cells to low levels of five EDCs [bisphenol A (BPA), atrazine (ATR), tributyltin (TBT), perfluorooctanoic acid (PFOA), and di-(2-ethylhexyl) phthalate (DEHP)] for 28days, and evaluated effects on gene expression by RNAseq transcriptome profiling. We observed little effect of BPA, and small numbers of affected genes (≤119) with other EDCs. There was substantial overlap in effects across two, three, or four treatments. Ingenuity Pathway analysis indicated suppression of cell survival genes and genes downstream of several stress response mediators, activation of cell death genes, and modulations in several genes regulating pluripotency, differentiation, and germ layer development. Potential adverse effects of these changes on development are discussed.
Collapse
|
20
|
Rezvanfar MA, Hodjat M, Abdollahi M. Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sci 2016; 158:137-60. [DOI: 10.1016/j.lfs.2016.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
21
|
Onghena M, Van Hoeck E, Negreira N, Quirynen L, Van Loco J, Covaci A. Evaluation of the migration of chemicals from baby bottles under standardised and duration testing conditions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:893-904. [DOI: 10.1080/19440049.2016.1171914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthias Onghena
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | - Els Van Hoeck
- Department of Food, Medicines and Consumer Safety, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Noelia Negreira
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | - Laurent Quirynen
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | - Joris Van Loco
- Department of Food, Medicines and Consumer Safety, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| |
Collapse
|
22
|
Quantitative Determination of Migrating compounds from Plastic Baby Bottles by Validated GC-QqQ-MS and LC-QqQ-MS Methods. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0451-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Zhu J, Jiang L, Liu Y, Qian W, Liu J, Zhou J, Gao R, Xiao H, Wang J. MAPK and NF-κB pathways are involved in bisphenol A-induced TNF-α and IL-6 production in BV2 microglial cells. Inflammation 2015; 38:637-48. [PMID: 25047101 DOI: 10.1007/s10753-014-9971-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microglial activation has been reported to play an important role in neurodegenerative diseases by producing pro-inflammatory cytokines. Bisphenol A (BPA, 2,2-bis (4-hydroxyphenyl) propane), known as a ubiquitous endocrine-disrupting chemical, is reported to perform both mimic- and anti-estrogen properties; however, whether it affects cytokine production or immune response in central nervous system remains unclear. The present study was aimed to explore whether BPA was involved in inflammatory action and to investigate the potential mechanisms in microglial cells. BV2, the murine microglial cell line, was used in the present work as the cell model. BPA-associated morphologic changes, cytokine responses, and signaling events were examined using immunofluorescence analysis, real-time PCR, enzyme-linked immunosorbent assay, and western blot. Our results indicated that BPA increased BV2 cells activation and simultaneously elevated tumor necrosis factor-α and interleukin 6 expression, which could be partially reversed by estrogen receptor antagonist, ICI182780. In addition, the c-Jun N-terminal protein kinase (JNK) inhibitor (SP600125), rather than ERK1/2 blocker (PD98059), displayed anti-inflammatory properties on BPA-elicited cytokine responses. Moreover, the inflammatory transcription factor NF-κB was specifically activated by BPA as well. These results, taken together, suggested that BPA may have functional effects on the response of microglial cell activation via, in part, the estrogen receptor, JNK, ERK mitogen-activated protein kinase, and NF-κB signaling pathways with its subsequent influence on pro-inflammatory action.
Collapse
Affiliation(s)
- Jingying Zhu
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Porro V, Pagotto R, Harreguy MB, Ramírez S, Crispo M, Santamaría C, Luque EH, Rodríguez HA, Bollati-Fogolín M. Characterization of Oct4-GFP transgenic mice as a model to study the effect of environmental estrogens on the maturation of male germ cells by using flow cytometry. J Steroid Biochem Mol Biol 2015; 154:53-61. [PMID: 26151743 DOI: 10.1016/j.jsbmb.2015.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/01/2015] [Accepted: 06/17/2015] [Indexed: 12/24/2022]
Abstract
Oct4 is involved in regulation of pluripotency during normal development and is down-regulated during formation of postnatal reservoir of germ cells. We propose thatOct4/GFP transgenic mouse, which mimics the endogenous expression pattern of Oct4, could be used as a mammalian model to study the effects of environmental estrogens on the development of male germ cells. Oct4/GFP maturation profile was assessed during postnatal days -PND- 3, 5, 7, 10, 14 and 80, using flow cytometry. Then, we exposed pregnant mothers to 17α-ethinylestradiol (EE2) from day post coitum (dpc) 5 to PND7. Percentage of Oct4/GFP-expressing cells and levels of expression of Oct4/GPF were increased in PND7 after EE2 exposure. These observations were confirmed by analysis of GFP and endogenous Oct4 protein in the seminiferous tubules and by a reduction in epididymal sperm count in adult mice. We introduced Oct4/GFP mouse together with flow cytometry as a tool to evaluate changes in male germ cells development.
Collapse
Affiliation(s)
- Valentina Porro
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - María Belén Harreguy
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Sofía Ramírez
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Martina Crispo
- Transgenic and Experimental Animal Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Clarisa Santamaría
- Instituto de Salud y Ambiente del Litoral (ISAL), Ciudad Universitaria, Paraje El Pozo, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Ciudad Universitaria, Paraje El Pozo, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Horacio A Rodríguez
- Instituto de Salud y Ambiente del Litoral (ISAL), Ciudad Universitaria, Paraje El Pozo, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina.
| | - Mariela Bollati-Fogolín
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| |
Collapse
|
25
|
Persano L, Zagoura D, Louisse J, Pistollato F. Role of Environmental Chemicals, Processed Food Derivatives, and Nutrients in the Induction of Carcinogenesis. Stem Cells Dev 2015; 24:2337-52. [DOI: 10.1089/scd.2015.0081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Luca Persano
- Istituto di Riceca Pediatrica Città della Speranza—IRP, Padova, Italy
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Dimitra Zagoura
- Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| | - Jochem Louisse
- Division of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Francesca Pistollato
- Center for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander, Spain
| |
Collapse
|
26
|
Prins GS, Calderon-Gierszal EL, Hu WY. Stem Cells as Hormone Targets That Lead to Increased Cancer Susceptibility. Endocrinology 2015; 156:3451-7. [PMID: 26241068 PMCID: PMC4588827 DOI: 10.1210/en.2015-1357] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Major advances during the past decade have permitted a clearer understanding of processes that regulate stem cell self-renewal and lineage commitment toward differentiated progeny that populate all tissues. Considerable evidence has also accumulated to indicate that aberrations in the stem and progenitor cell populations can lead to increased cancer risk in specific organs systems. It is long recognized that environmental factors play a major role in cancer etiology, and emerging data suggest that endocrine-disrupting chemicals (EDCs) may contribute to an increased cancer risk. Using the prostate gland as a model system, the present review highlights recent data that find that estrogens and EDCs can reprogram prostate stem and progenitor cell populations, leading to increased cancer susceptibility. We propose that stem cell programming during early development in hormone-regulated tissues may lead to heightened sensitivity to early-life EDC exposures and that aberrant stem cell reprogramming by EDCs may contribute to the developmental basis of adult cancer risk.
Collapse
Affiliation(s)
- Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60614
| | | | - Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60614
| |
Collapse
|
27
|
Calderon-Gierszal EL, Prins GS. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure. PLoS One 2015. [PMID: 26222054 PMCID: PMC4519179 DOI: 10.1371/journal.pone.0133238] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA) can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC) into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20–30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures.
Collapse
Affiliation(s)
- Esther L. Calderon-Gierszal
- Departments of Urology and Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gail S. Prins
- Departments of Urology and Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
28
|
Heo HR, Chen L, An B, Kim KS, Ji J, Hong SH. Hormonal regulation of hematopoietic stem cells and their niche: a focus on estrogen. Int J Stem Cells 2015; 8:18-23. [PMID: 26019751 PMCID: PMC4445706 DOI: 10.15283/ijsc.2015.8.1.18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
Self-renewal and differentiation are hallmarks of stem cells and controlled by various intrinsic and extrinsic factors. Increasing evidence indicates that estrogen (E2), the primary female sex hormone, is involved in regulating the proliferation and lineage commitment of adult and pluripotent stem cells as well as modulating the stem cell niche. Thus, a detailed understanding of the role of E2 in behavior of stem cells may help to improve their therapeutic potential. Recently, it has been reported that E2 promotes cell cycle activity of hematopoietic stem and progenitor cells and induces them to megakaryocyte-erythroid progenitors during pregnancy. This study paves the way towards a previously unexplored endocrine mechanism that controls stem cell behavior. In this review, we will focus on the scientific findings regarding the regulatory effects of E2 on the hematopoietic system including its microenvironment.
Collapse
Affiliation(s)
- Hye-Ryeon Heo
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Li Chen
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Borim An
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul, Korea
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea ; Stem Cell Institute, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
29
|
Gao H, Yang BJ, Li N, Feng LM, Shi XY, Zhao WH, Liu SJ. Bisphenol A and hormone-associated cancers: current progress and perspectives. Medicine (Baltimore) 2015; 94:e211. [PMID: 25569640 PMCID: PMC4602822 DOI: 10.1097/md.0000000000000211] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA), a carbon-based synthetic compound, exhibits hormone-like properties and is present ubiquitously in the environment and in human tissues due to its widespread use and biological accumulation. BPA can mimic estrogen to interact with estrogen receptors α and β, leading to changes in cell proliferation, apoptosis, or migration and thereby, contributing to cancer development and progression. At the genetic level, BPA has been shown to be involved in multiple oncogenic signaling pathways, such as the STAT3, MAPK, and PI3K/AKT pathways. Moreover, BPA may also interact with other steroid receptors (such as androgen receptor) and plays a role in prostate cancer development. This review summarizes the current literature regarding human exposure to BPA, the endocrine-disrupting effects of BPA, and the role of BPA in hormone-associated cancers of the breast, ovary, and prostate.
Collapse
Affiliation(s)
- Hui Gao
- From the Department of Obstetrics & Gynecology (HG, B-JY, LMF, X-YS, W-HZ), Beijing TianTan Hospital, Capital Medical University, Beijing 100050, China; Department of Gynecology (NL), Cancer Institute and Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology (S-JL), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Onghena M, van Hoeck E, Vervliet P, Scippo ML, Simon C, van Loco J, Covaci A. Development and application of a non-targeted extraction method for the analysis of migrating compounds from plastic baby bottles by GC-MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:2090-102. [PMID: 25407881 DOI: 10.1080/19440049.2014.979372] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In 2011, the European Union prohibited the production of polycarbonate (PC) baby bottles due to the toxic effects of the PC monomer bisphenol-A. Therefore, baby bottles made of alternative materials, e.g. polypropylene (PP) or polyethersulphone (PES), are currently marketed. The principal aim of the study was the identification of major compounds migrating from baby bottles using a liquid-liquid extraction followed by GC/MS analysis. A 50% EtOH in water solution was selected as a simulant for milk. After sterilisation of the bottle, three migration experiments were performed during 2 h at 70°C. A non-targeted liquid-liquid extraction with ethyl acetate-n-hexane (1:1) was performed on the simulant samples. Identification of migrants from 24 baby bottles was done using commercially available WILEY and NIST mass spectra libraries. Differences in the migrating compounds and their intensities were observed between the different types of plastics, but also between the same polymer from a different producer. Differences in the migration patterns were perceived as well between the sterilisation and the migrations and within the different migrations. Silicone, Tritan™ and PP exhibited a wide variety of migrating compounds, whereas PES and polyamide (PA) showed a lower amount of migrants, though sometimes in relatively large concentrations (azacyclotridecan-2-one up to 250 µg kg⁻¹). Alkanes (especially in PP bottles), phthalates (dibutylphthalate in one PP bottle (±40 µg kg⁻¹) and one silicone bottle (±25 µg kg⁻¹); diisobutylphthalate in one PP (±10 µg kg⁻¹), silicone (up to ±80 µg kg⁻¹); and Tritan™ bottle (±30 µg kg⁻¹)), antioxidants (Irgafos 168, degradation products of Irganox 1010 and Irganox 1076), etc. were detected for PP, silicone and Tritan™ bottles. Although the concentrations were relatively low, some compounds not authorised by European Union Regulation No. 10/2011, such as 2,4-di-tert-butylphenol (10-100 µg kg⁻¹) or 2-butoxyethyl acetate (about 300 µg kg⁻¹) were detected. Migrating chemicals were identified as confirmed (using a standard) or as tentative (further confirmation required).
Collapse
Affiliation(s)
- Matthias Onghena
- a Toxicological Centre, Faculty of Pharmaceutical Sciences , University of Antwerp , Wilrijk-Antwerp , Belgium
| | | | | | | | | | | | | |
Collapse
|
31
|
Ptak A, Hoffmann M, Gruca I, Barć J. Bisphenol A induce ovarian cancer cell migration via the MAPK and PI3K/Akt signalling pathways. Toxicol Lett 2014; 229:357-65. [DOI: 10.1016/j.toxlet.2014.07.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/25/2022]
|
32
|
Visualized gene network reveals the novel target transcripts Sox2 and Pax6 of neuronal development in trans-placental exposure to bisphenol A. PLoS One 2014; 9:e100576. [PMID: 25051057 PMCID: PMC4106758 DOI: 10.1371/journal.pone.0100576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022] Open
Abstract
Background Bisphenol A (BPA) is a ubiquitous endocrine disrupting chemical in our daily life, and its health effect in response to prenatal exposure is still controversial. Early-life BPA exposure may impact brain development and contribute to childhood neurological disorders. The aim of the present study was to investigate molecular target genes of neuronal development in trans-placental exposure to BPA. Methodology A meta-analysis of three public microarray datasets was performed to screen for differentially expressed genes (DEGs) in exposure to BPA. The candidate genes of neuronal development were identified from gene ontology analysis in a reconstructed neuronal sub-network, and their gene expressions were determined using real-time PCR in 20 umbilical cord blood samples dichotomized into high and low BPA level groups upon the median 16.8 nM. Principal Findings Among 36 neuronal transcripts sorted from DAVID ontology clusters of 457 DEGs using the analysis of Bioconductor limma package, we found two neuronal genes, sex determining region Y-box 2 (Sox2) and paired box 6 (Pax6), had preferentially down-regulated expression (Bonferroni correction p-value <10−4 and log2-transformed fold change ≤−1.2) in response to BPA exposure. Fetal cord blood samples had the obviously attenuated gene expression of Sox2 and Pax6 in high BPA group referred to low BPA group. Visualized gene network of Cytoscape analysis showed that Sox2 and Pax6 which were contributed to neural precursor cell proliferation and neuronal differentiation might be down-regulated through sonic hedgehog (Shh), vascular endothelial growth factor A (VEGFA) and Notch signaling. Conclusions These results indicated that trans-placental BPA exposure down-regulated gene expression of Sox2 and Pax6 potentially underlying the adverse effect on childhood neuronal development.
Collapse
|
33
|
Song Y, Xiao L, Fu J, Huang W, Wang Q, Zhang X, Yang S. Increased expression of the pluripotency markers sex-determining region Y-box 2 and Nanog homeobox in ovarian endometriosis. Reprod Biol Endocrinol 2014; 12:42. [PMID: 24884521 PMCID: PMC4031377 DOI: 10.1186/1477-7827-12-42] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/03/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The precise etiology of endometriosis is not fully understood; the involvement of stem cells theory is a new hypothesis. Related studies mainly focus on stemness-related genes, and pluripotency markers may play a role in the etiology of endometriosis. We aimed to analyze the transcription pluripotency factors sex-determining region Y-box 2 (SOX2), Nanog homeobox (NANOG), and octamer-binding protein 4 (OCT4) in the endometrium of reproductive-age women with and without ovarian endometriosis. METHODS We recruited 26 women with laparoscopy-diagnosed ovarian endometriosis (endometriosis group) and 16 disease-free women (control group) to the study. Endometrial and endometriotic samples were collected. SOX2, NANOG, and OCT4 expression were analyzed with quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS Compared to the control group, SOX2 mRNA and protein expression was significantly higher in the eutopic endometrium of participants in the endometriosis group. In the endometriosis group, SOX2 and NANOG mRNA and protein expression were significantly increased in ectopic endometrium compared with eutopic endometrium; there was a trend towards lower OCT4 mRNA expression and higher OCT4 protein expression in ectopic endometrium. CONCLUSIONS The transcription pluripotency factors SOX2 and NANOG were overexpression in ovarian endometriosis, their role in pathogenesis of endometriosis should be further studied.
Collapse
Affiliation(s)
- Yong Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Qiushi Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Xianghui Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Shiyuan Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| |
Collapse
|
34
|
Kopras E, Potluri V, Bermudez ML, Williams K, Belcher S, Kasper S. Actions of endocrine-disrupting chemicals on stem/progenitor cells during development and disease. Endocr Relat Cancer 2014; 21:T1-12. [PMID: 24280134 PMCID: PMC11037424 DOI: 10.1530/erc-13-0360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development and fate of the stem cell are regulated by extrinsic signals from the environment. Endocrine-disrupting chemicals which perturb hormonal signaling in utero and during early childhood may cause deregulation of multiple developmental processes, ranging from breakdown of stem cell niche architecture, developmental reprograming and altered stem cell fate to impaired organ and gonad development and sexual differentiation. Therefore, study of the environmental effects on stem cell integrity and normal development is a new and emerging focus for developmental biologists and cell toxicologists. When combined with new human and mouse stem cell-based models, stem cell differentiation dynamics can be studied in more biologically relevant ways. In this study, we review the current status of our understanding of the molecular mechanisms by which endocrine disruptors alter embryonic stem cell and adult stem/progenitor cell fate, organ development, cancer stem cell activity, and tumorigenesis.
Collapse
Affiliation(s)
- Elizabeth Kopras
- Department of Environmental Heath, University of Cincinnati, 3223 Eden Avenue, Cincinnati, Ohio 45267-0056, USA Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA
| | | | | | | | | | | |
Collapse
|
35
|
Prins GS, Hu WY, Shi GB, Hu DP, Majumdar S, Li G, Huang K, Nelles JL, Ho SM, Walker CL, Kajdacsy-Balla A, van Breemen RB. Bisphenol A promotes human prostate stem-progenitor cell self-renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology 2014; 155:805-17. [PMID: 24424067 PMCID: PMC3929731 DOI: 10.1210/en.2013-1955] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies in rodent models have shown that early-life exposure to bisphenol A (BPA) reprograms the prostate and enhances its susceptibility to hormonal carcinogenesis with aging. To determine whether the human prostate is similarly sensitive to BPA, the current study used human prostate epithelial stem-like cells cultured from prostates of young, disease-free donors. Similar to estradiol-17β (E2), BPA increased stem-progenitor cell self-renewal and expression of stem-related genes in a dose-dependent manner. Further, 10 nM BPA and E2 possessed equimolar membrane-initiated signaling with robust induction of p-Akt and p-Erk at 15 minutes. To assess in vivo carcinogenicity, human prostate stem-progenitor cells combined with rat mesenchyme were grown as renal grafts in nude mice, forming normal human prostate epithelium at 1 month. Developmental BPA exposure was achieved through oral administration of 100 or 250 μg BPA/kg body weight to hosts for 2 weeks after grafting, producing free BPA levels of 0.39 and 1.35 ng/mL serum, respectively. Carcinogenesis was driven by testosterone plus E2 treatment for 2 to 4 months to model rising E2 levels in aging men. The incidence of high-grade prostate intraepithelial neoplasia and adenocarcinoma markedly increased from 13% in oil-fed controls to 33% to 36% in grafts exposed in vivo to BPA (P < .05). Continuous developmental BPA exposure through in vitro (200 nM) plus in vivo (250 μg/kg body weight) treatments increased high-grade prostate intraepithelial neoplasia/cancer incidence to 45% (P < .01). Together, the present findings demonstrate that human prostate stem-progenitor cells are direct BPA targets and that developmental exposure to BPA at low doses increases hormone-dependent cancer risk in the human prostate epithelium.
Collapse
Affiliation(s)
- Gail S Prins
- Department of Urology (G.S.P., W.-Y.H., G.-B.S., D.-P.H., S.M., J.L.N.) and Department of Pathology (A.K.-B.), College of Medicine, and Department of Medicinal Chemistry and Pharmacognosy (G.L., K.H., R.B.v.B.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612; University of Illinois Cancer Center (G.S.P., A.K.B., R.B.v.B.), Chicago, Illinois 60612; Department of Environmental Health (S.-M.H.), University of Cincinnati, Cincinnati, Ohio 45220; and Center for Translational Cancer Research (C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, College Station, Texas 77843
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kovanecz I, Gelfand R, Masouminia M, Gharib S, Segura D, Vernet D, Rajfer J, Li DK, Kannan K, Gonzalez-Cadavid NF. Oral Bisphenol A (BPA) given to rats at moderate doses is associated with erectile dysfunction, cavernosal lipofibrosis and alterations of global gene transcription. Int J Impot Res 2014; 26:67-75. [PMID: 24305612 PMCID: PMC4098849 DOI: 10.1038/ijir.2013.37] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA), a suspected reproductive biohazard and endocrine disruptor, released from plastics is associated with ED in occupationally exposed workers. However, in rats, despite the induction of hypogonadism, apoptosis of the penile corporal smooth muscle (SM), fat infiltration into the cavernosal tissue and changes in global gene expression with the intraperitoneal administration of high dose BPA, ED was not observed. We investigated whether BPA administered orally rather than intraperitoneally to rats for longer periods and lower doses will lead to ED. Main outcome measures are ED, histological, and biochemical markers in rat penile tissues. In all, 2.5-month-old rats were given drinking water daily without and with BPA at 1 and 0.1 mg kg(-1) per day. Two months later, erectile function was determined by cavernosometry and electrical field stimulation (EFS) and serum levels of testosterone (T), estradiol (E2) and BPA were measured. Penile tissue sections were assayed by Masson (SM/collagen), Oil Red O (fat), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) (apoptosis), immunohistochemistry for Oct4 (stem cells), and α-SM actin/calponin (SM and myofibroblasts), applying quantitative image analysis. Other markers were assayed by western blotting. DNA microarrays/microRNA (miR) assays defined transcription profiles. Orally administered BPA did not affect body weight, but (1) decreased serum T and E2; (2) reduced the EFS response and increased the drop rate; (3) increased within the corporal tissue the presence of fat, myofibroblasts and apoptosis; (4) lowered the contents of SM and stem cells, but not nerve terminals; and (5) caused alterations in the transcriptional profiles for both mRNA and miRs within the penile shaft. Long-term exposure of rats to oral BPA caused a moderate corporal veno-occlusive dysfunction (CVOD), possibly due to alterations within the corporal tissue that pose gene transcriptional changes related to inflammation, fibrosis and epithelial/mesenchymal transition (EMT).
Collapse
Affiliation(s)
- I Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - R Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
- Division of Endocrinology, Charles Drew University of Medicine and Science, Los Angeles, CA
| | - M Masouminia
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
| | - S Gharib
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
| | - D Segura
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
| | - D Vernet
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
- Division of Endocrinology, Charles Drew University of Medicine and Science, Los Angeles, CA
| | - J Rajfer
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - DK Li
- Department of Health Research and Policy, Stanford University, Stanford, CA
- Division of Research, Kaiser Permanente
| | - K Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - NF Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Division of Endocrinology, Charles Drew University of Medicine and Science, Los Angeles, CA
| |
Collapse
|
37
|
Wang D, Gao H, Bandyopadhyay A, Wu A, Yeh IT, Chen Y, Zou Y, Huang C, Walter CA, Dong Q, Sun LZ. Pubertal bisphenol A exposure alters murine mammary stem cell function leading to early neoplasia in regenerated glands. Cancer Prev Res (Phila) 2014; 7:445-55. [PMID: 24520039 DOI: 10.1158/1940-6207.capr-13-0260] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perinatal exposure to bisphenol A (BPA) has been shown to cause aberrant mammary gland morphogenesis and mammary neoplastic transformation. Yet, the underlying mechanism is poorly understood. We tested the hypothesis that mammary glands exposed to BPA during a susceptible window may lead to its susceptibility to tumorigenesis through a stem cell-mediated mechanism. We exposed 21-day-old Balb/c mice to BPA by gavage (25 μg/kg/d) during puberty for 3 weeks, and a subset of animals were further challenged with one oral dose (30 mg/kg) of 7,12-dimethylbenz(a)anthracene (DMBA) at 2 months of age. Primary mammary cells were isolated at 6 weeks, and 2 and 4 months of age for murine mammary stem cell (MaSC) quantification and function analysis. Pubertal exposure to the low-dose BPA increased lateral branches and hyperplasia in adult mammary glands and caused an acute increase of MaSC in 6-week-old glands and a delayed increase of luminal progenitors in 4-month-old adult gland. Most importantly, pubertal BPA exposure altered the function of MaSC from different age groups, causing early neoplastic lesions in their regenerated glands similar to those induced by DMBA exposure, which indicates that MaSCs are susceptible to BPA-induced transformation. Deep sequencing analysis on MaSC-enriched mammospheres identified a set of aberrantly expressed genes associated with early neoplastic lesions in patients with human breast cancer. Thus, our study for the first time shows that pubertal BPA exposure altered MaSC gene expression and function such that they induced early neoplastic transformation.
Collapse
Affiliation(s)
- Danhan Wang
- University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229. ; and L-Z. Sun,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Paz AC, Soleas J, Poon JC, Trieu D, Waddell TK, McGuigan AP. Challenges and Opportunities for Tissue-Engineering Polarized Epithelium. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:56-72. [DOI: 10.1089/ten.teb.2013.0144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana C. Paz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - John Soleas
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - James C.H. Poon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Dennis Trieu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Kovanecz I, Gelfand R, Masouminia M, Gharib S, Segura D, Vernet D, Rajfer J, Li DK, Liao CY, Kannan K, Gonzalez-Cadavid NF. Chronic high dose intraperitoneal bisphenol A (BPA) induces substantial histological and gene expression alterations in rat penile tissue without impairing erectile function. J Sex Med 2013; 10:2952-66. [PMID: 24134786 PMCID: PMC4038545 DOI: 10.1111/jsm.12336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Bisphenol A (BPA), released from plastics and dental sealants, is a suspected endocrine disruptor and reproductive toxicant. In occupationally exposed workers, BPA has been associated with erectile dysfunction (ED). AIMS To determine whether long-term exposure to high doses of BPA in the rat affects serum levels of testosterone (T) and estradiol (E2), and induces corporal histopathology and resultant ED. METHODS Young rats were injected intraperitoneal (IP) injection daily with BPA at 25 mg/kg/day or vehicle (n = 8/group). Erectile function was measured at 3 months by cavernosometry and electrical field stimulation (EFS). BPA was assayed in serum, urine, and penile tissue, and serum T and E2 were determined. Quantitative Masson trichrome, terminal deoxynucleotidyl transferase dUTP nick end labeling, Oil Red O, immunohistochemistry for calponin, α-smooth muscle actin, and Oct 4 were applied to penile tissue sections. Protein markers were assessed by Western blots and 2-D minigels, and RNA by DNA microarrays. MAIN OUTCOME MEASURES Erectile function, histological, and biochemical markers in corporal tissue. RESULTS In the BPA-treated rats, total and free BPA levels were increased in the serum, urine, and penile tissue while serum T and E2 levels were reduced. In addition, the corpora cavernosa demonstrated a reduction in smooth muscle (SM) content, SM/collagen ratio, together with an increase in myofibroblasts, fat deposits, and apoptosis, but no significant change in collagen content or stem cells (nuclear/perinuclear Oct 4). In the penile shaft, BPA induced a downregulation of Nanog (stem cells), neuronal nitric oxide synthase (nitrergic terminals), and vascular endothelial growth factor (angiogenesis), with genes related to SM tone and cytoskeleton upregulated 5- to 50-fold, accompanied by changes in the multiple protein profile. However, both cavernosometry and EFS were unaltered by BPA. CONCLUSIONS While rats treated chronically with a high IP dose of BPA developed hypogonadism and a corporal histo- and molecular-pathology usually associated with ED, no changes were detected in erectile function as measured by EFS and cavernosometry. Further studies using alternate routes of BPA administration with various doses and length of exposure are needed to expand these findings.
Collapse
Affiliation(s)
- Istvan Kovanecz
- Department of Surgery, Division of Urology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Robert Gelfand
- Department of Surgery, Division of Urology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Endocrinology, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Maryam Masouminia
- Department of Surgery, Division of Urology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sahir Gharib
- Department of Surgery, Division of Urology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Denesse Segura
- Department of Surgery, Division of Urology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dolores Vernet
- Department of Surgery, Division of Urology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jacob Rajfer
- Department of Surgery, Division of Urology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - De-Kun Li
- Division of Research, Kaiser Permanente, Oakland, CA, USA
- Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Chun Yang Liao
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | | | - Nestor F. Gonzalez-Cadavid
- Department of Surgery, Division of Urology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Endocrinology, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| |
Collapse
|
40
|
A systematic review of Bisphenol A "low dose" studies in the context of human exposure: a case for establishing standards for reporting "low-dose" effects of chemicals. Food Chem Toxicol 2013; 62:935-48. [PMID: 23867546 DOI: 10.1016/j.fct.2013.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 12/30/2022]
Abstract
Human exposure to the chemical Bisphenol A is almost ubiquitous in surveyed industrialized societies. Structural features similar to estrogen confer the ability of Bisphenol A (BPA) to bind estrogen receptors, giving BPA membership in the group of environmental pollutants called endocrine disruptors. References by scientists, the media, political entities, and non-governmental organizations to many toxicity studies as "low dose" has led to the belief that exposure levels in these studies are similar to humans, implying that BPA is toxic to humans at current exposures. Through systematic, objective comparison of our current, and a previous compilation of the "low-dose" literature to multiple estimates of human external and internal exposure levels, we found that the "low-dose" moniker describes exposures covering 8-12 orders of magnitude, the majority (91-99% of exposures) being greater than the upper bound of human exposure in the general infant, child and adult U.S. Population. "low dose" is therefore a descriptor without specific meaning regarding human exposure. Where human exposure data are available, for BPA and other environmental chemicals, reference to toxicity study exposures by direct comparison to human exposure would be more informative, more objective, and less susceptible to misunderstanding.
Collapse
|
41
|
Luo L, Uehara H, Zhang X, Das SK, Olsen T, Holt D, Simonis JM, Jackman K, Singh N, Miya TR, Huang W, Ahmed F, Bastos-Carvalho A, Le YZ, Mamalis C, Chiodo VA, Hauswirth WW, Baffi J, Lacal PM, Orecchia A, Ferrara N, Gao G, Young-Hee K, Fu Y, Owen L, Albuquerque R, Baehr W, Thomas K, Li DY, Chalam KV, Shibuya M, Grisanti S, Wilson DJ, Ambati J, Ambati BK. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. eLife 2013; 2:e00324. [PMID: 23795287 PMCID: PMC3687373 DOI: 10.7554/elife.00324] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/08/2013] [Indexed: 12/30/2022] Open
Abstract
Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life. DOI:http://dx.doi.org/10.7554/eLife.00324.001.
Collapse
Affiliation(s)
- Ling Luo
- Moran Eye Center , University of Utah , Salt Lake City , United States ; Department of Ophthalmology , The 306th Hospital of PLA , Beijing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|