1
|
Kavrik O, Gumral N, Ozmen O, Aslankoc R, Saygin M, Yalcin A. The combined use of thymoquinone and metformin provides more effective neuroprotection in a mouse model of MPTP-induced Parkinson's disease. J Recept Signal Transduct Res 2024; 44:161-173. [PMID: 39585743 DOI: 10.1080/10799893.2024.2434112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Thymoquinone (TQ) is known for its antioxidant properties, and although metformin (MM) is known as an antidiabetic drug, it is suggested that it reduces neurodegeneration. The study aimed to investigate the neuroprotective effects of TQ and MM, particularly when used together, in relation to Parkinson's disease (PD). In the study, sixty-eight male C57BL/6 mice weighing 25-30 g were divided into five groups as follows: control, MPTP, MPTP+TQ, MPTP+MM, and MPTP+TQ+MM. MM (500 mg/kg, orally) and TQ (5 mg/kg, i.p.) were administered for 21 days. Motor coordination and locomotor activities were evaluated by the pole test. TOS and TAS analyses were conducted to determine oxidative stress levels in the substantia nigra. Dopaminergic degeneration in the substantia nigra was evaluated by analyzing Tyrosine hydroxylase (TH). To evaluate the apoptotic pathway, the expression levels of iNOS, BDNF, Complex 1, Bax, Bcl-2, Cytochrome C, AIF, and Caspase-3 were examined immunohistochemically. Compared to the MPTP-treated group, TQ, MM and MM+TQ treatment provided significant improvement in locomotor activity in mice, significantly increased antioxidant activity, significantly reduced the expression levels of iNOS, Bax, Cytochrome C, Caspase-3, and AIF, significantly increased BDNF, Bcl-2, and Complex 1 expressions, and significantly increased the number of TH positive cells. The separate use of TQ and MM exhibits neuroprotective activity, however, we showed that using TQ and MM in combination may be more effective. This may provide preclinical evidence supporting the therapeutic potential of their combined use for treating PD.
Collapse
Affiliation(s)
- Oguzhan Kavrik
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Nurhan Gumral
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Burdur Mehmet Akif Ersoy University Faculty of Veterinary, Burdur, Turkey
| | - Rahime Aslankoc
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Saygin
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Arzu Yalcin
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Avallone R, Rustichelli C, Filaferro M, Vitale G. Chemical Characterization and Beneficial Effects of Walnut Oil on a Drosophila melanogaster Model of Parkinson's Disease. Molecules 2024; 29:4190. [PMID: 39275038 PMCID: PMC11397333 DOI: 10.3390/molecules29174190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
A nutritional approach could be a promising strategy to prevent or decrease the progression of neurodegenerative disorders such as Parkinson's disease (PD). The neuroprotective role of walnut oil (WO) was investigated in Drosophila melanogaster treated with rotenone (Rot), as a PD model, WO, or their combination, and compared to controls. WO reduced mortality and improved locomotor activity impairment after 3 and 7 days, induced by Rot. LC-MS analyses of fatty acid levels in Drosophila heads showed a significant increase in linolenic (ALA) and linoleic acid (LA) both in flies fed with the WO-enriched diet and in those treated with the association of WO with Rot. Flies supplemented with the WO diet showed an increase in brain dopamine (DA) level, while Rot treatment significantly depleted dopamine content; conversely, the association of Rot with WO did not modify DA content compared to controls. The greater intake of ALA and LA in the enriched diet enhanced their levels in Drosophila brain, suggesting a neuroprotective role of polyunsaturated fatty acids against Rot-induced neurotoxicity. The involvement of the dopaminergic system in the improvement of behavioral and biochemical parameters in Drosophila fed with WO is also suggested.
Collapse
Affiliation(s)
- Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Filaferro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Vitale
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
3
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
4
|
Saadat M, Dahmardeh N, Sheikhbahaei F, Mokhtari T. Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: a comprehensive review on molecular mechanisms in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3541-3564. [PMID: 38010395 DOI: 10.1007/s00210-023-02832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Thymoquinone (THQ) and its nanoformulation (NFs) have emerged as promising candidates for the treatment of neurological diseases due to their diverse pharmacological properties, which include anti-inflammatory, antioxidant, and neuroprotective effects. In this study, we conducted an extensive search across reputable scientific websites such as PubMed, ScienceDirect, Scopus, and Google Scholar to gather relevant information. The antioxidant and anti-inflammatory properties of THQ have been observed to enhance the survival of neurons in affected areas of the brain, leading to significant improvements in behavioral and motor dysfunctions. Moreover, THQ and its NFs have demonstrated the capacity to restore antioxidant enzymes and mitigate oxidative stress. The primary mechanism underlying THQ's antioxidant effects involves the regulation of the Nrf2/HO-1 signaling pathway. Furthermore, THQ has been found to modulate key components of inflammatory signaling pathways, including toll-like receptors (TLRs), nuclear factor-κB (NF-κB), interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα), thereby exerting anti-inflammatory effects. This comprehensive review explores the various beneficial effects of THQ and its NFs on neurological disorders and provides insights into the underlying mechanisms involved.
Collapse
Affiliation(s)
- Maryam Saadat
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narjes Dahmardeh
- Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| |
Collapse
|
5
|
Singh K, Gupta JK, Sethi P, Mathew S, Bhatt A, Sharma MC, Saha S, Shamim, Kumar S. Recent Advances in the Synthesis of Antioxidant Derivatives: Pharmacological Insights for Neurological Disorders. Curr Top Med Chem 2024; 24:1940-1959. [PMID: 39108007 DOI: 10.2174/0115680266305736240725052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024]
Abstract
Neurological disorders, characterized by oxidative stress (OS) and inflammation, have become a major global health concern. Redox reactions play a vital role in regulating the balance of the neuronal microenvironment. Specifically, the imbalance leads to a significant weakening of the organism's natural defensive mechanisms. This, in turn, causes the development of harmful oxidative stress, which plays a crucial role in the onset and progression of neurodegenerative diseases. The quest for effective therapeutic agents has led to significant advancements in the synthesis of antioxidant derivatives. This review provides a comprehensive overview of the recent developments in the use of novel antioxidant compounds with potential pharmacological applications in the management of neurological disorders. The discussed compounds encompass a diverse range of chemical structures, including polyphenols, vitamins, flavonoids, and hybrid molecules, highlighting their varied mechanisms of action. This review also focuses on the mechanism of oxidative stress in developing neurodegenerative disease. The neuroprotective effects of these antioxidant derivatives are explored in the context of specific neurological disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. The ultimate goal is to provide effective treatments for these debilitating conditions and improve the quality of life for patients.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Sojomon Mathew
- Department of Zoology, Government College, Kottayam, Kerala, India
| | - Alok Bhatt
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | | | - Sunam Saha
- Department of Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Shamim
- IIMT College of Medical Sciences, IIMT University, Meerut, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
6
|
Mittal P, Dhankhar S, Chauhan S, Garg N, Bhattacharya T, Ali M, Chaudhary AA, Rudayni HA, Al-Zharani M, Ahmad W, Khan SUD, Singh TG, Mujwar S. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:908. [PMID: 37513820 PMCID: PMC10385773 DOI: 10.3390/ph16070908] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.
Collapse
Affiliation(s)
- Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Nitika Garg
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Tanima Bhattacharya
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 260 Kyunghee-daero, Seoul 02447, Republic of Korea
- Nondestructive Bio-Sensing Laboratory, Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, BLDG# E10-2, RM# 2213, Daejeon 34134, Republic of Korea
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 42, Knowledge Park-III, Greater Noida 201308, India
- Department of Pharmacognosy, HIMT College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 8, Institutional Area, Knowledge Park-I, Greater Noida 201301, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | | | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| |
Collapse
|
7
|
Sadeghi E, Imenshahidi M, Hosseinzadeh H. Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review. Mol Biol Rep 2023; 50:5439-5454. [PMID: 37155017 DOI: 10.1007/s11033-023-08363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/01/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Nigella sativa and its main bioactive ingredient, thymoquinone, exhibit various pharmacological activities, including neuroprotective, nephroprotective, cardioprotective, gastroprotective, hepatoprotective, and anti-cancer effects. Many studies have been conducted trying to elucidate the molecular signaling pathways that mediate these diverse pharmacological properties of N. sativa and thymoquinone. Accordingly, the goal of this review is to show the effects of N. sativa and thymoquinone on different cell signaling pathways. METHODS The online databases Scopus, PubMed and Web of Science were searched to identify relevant articles using a list of related keywords such as Nigella sativa, black cumin, thymoquinone, black seed, signal transduction, cell signaling, antioxidant, Nrf2, NF-κB, PI3K/AKT, apoptosis, JAK/STAT, AMPK, MAPK, etc. Only articles published in the English language until May 2022 were included in the present review article. RESULTS Studies indicate that N. sativa and thymoquinone improve antioxidant enzyme activities, effectively scavenges free radicals, and thus protect cells from oxidative stress. They can also regulate responses to oxidative stress and inflammation via Nrf2 and NF-κB pathways. N. sativa and thymoquinone can inhibit cancer cell proliferation through disruption of the PI3K/AKT pathway by upregulating phosphatase and tensin homolog. Thymoquinone can modulate reactive oxygen species levels in tumor cells, arrest the cell cycle in the G2/M phase as well as affect molecular targets including p53, STAT3 and trigger the mitochondrial apoptosis pathway. Thymoquinone, by adjusting AMPK, can regulate cellular metabolism and energy hemostasis. Finally, N. sativa and thymoquinone can elevate brain GABA content, and thus it may ameliorate epilepsy. CONCLUSIONS Taken together, the improvement of antioxidant status and prevention of inflammatory process by modulating the Nrf2 and NF-κB signaling and inhibition of cancer cell proliferation through disruption of the PI3K/AKT pathway appear to be the main mechanisms involved in different pharmacological properties of N. sativa and thymoquinone.
Collapse
Affiliation(s)
- Ehsan Sadeghi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Krewenka C, Rizzi S, Nguyen CH, Delijewski M, Gille L, Staniek K, Duvigneau JC, Radad K, Müllebner A, Kranner B, Moldzio R. Radical Scavenging Is Not Involved in Thymoquinone-Induced Cell Protection in Neural Oxidative Stress Models. Antioxidants (Basel) 2023; 12:antiox12040858. [PMID: 37107234 PMCID: PMC10135386 DOI: 10.3390/antiox12040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Thymoquinone (TQ), an active compound from Nigella sativa seeds, is often described as a pharmacologically relevant compound with antioxidative properties, while the synthesis of TQ in the plant via oxidations makes it inapplicable for scavenging radicals. Therefore, the present study was designed to reassess the radical scavenging properties of TQ and explore a potential mode of action. The effects of TQ were studied in models with mitochondrial impairment and oxidative stress induced by rotenone in N18TG2 neuroblastoma cells and rotenone/MPP+ in primary mesencephalic cells. Tyrosine hydroxylase staining revealed that TQ significantly protected dopaminergic neurons and preserved their morphology under oxidative stress conditions. Quantification of the formation of superoxide radicals via electron paramagnetic resonance showed an initial increase in the level of superoxide radicals in the cell by TQ. Measurements in both cell culture systems revealed that the mitochondrial membrane potential was tendentially lowered, while ATP production was mostly unaffected. Additionally, the total ROS levels were unaltered. In mesencephalic cell culture under oxidative stress conditions, caspase-3 activity was decreased when TQ was administered. On the contrary, TQ itself tremendously increased the caspase-3 activity in the neuroblastoma cell line. Evaluation of the glutathione level revealed an increased level of total glutathione in both cell culture systems. Therefore, the enhanced resistance against oxidative stress in primary cell culture might be a consequence of a lowered caspase-3 activity combined with an increased pool of reduced glutathione. The described anti-cancer ability of TQ might be a result of the pro-apoptotic condition in neuroblastoma cells. Our study provides evidence that TQ has no direct scavenging effect on superoxide radicals.
Collapse
Affiliation(s)
- Christopher Krewenka
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sandra Rizzi
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Johanna Catharina Duvigneau
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Khaled Radad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Andrea Müllebner
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Barbara Kranner
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
9
|
Gawas CG, Mathur S, Wani M, Tabassum H. Nigella sativa and its nano-mediated approach toward management of neurodegenerative disorders: A review. IBRAIN 2023; 9:111-123. [PMID: 37786518 PMCID: PMC10529340 DOI: 10.1002/ibra.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 10/04/2023]
Abstract
Nigella sativa L., also known as black seed or black cumin, is a plant that has been used for centuries. In the past, this flowering plant was used as a food preservative and medicinal herb. A vital component of Nigella sativa, thymoquinone (TQ), plays a significant therapeutic role in the management of most diseases, including cancer, diabetes mellitus, hypertension, inflammation, gastrointestinal disorders, and neurodegenerative disorders. Neurodegenerative disorders are primarily caused by neurotransmitter hypoactivity, particularly insufficient serotonin activity. It has been discovered that many medicinal herbs and their active compounds have therapeutic value. Black cumin seeds have been used to heal ailments and its history traces back to ancient times such as ancient Babylonia. They can be used applied to alleviate edema, hair loss, and bruising, and consumd to treat stomach issues. It is one of the most feasible and effective medicinal plants. The use of nanoformulations based on Nigella sativa and TQ to treat neurodegenerative diseases (NDs) has yielded promising outcomes. Customized administration of nanoparticle (NP) systems and nanomedicine are two of the many options for drug delivery to the central nervous system (CNS) that are attracting increasing interest. Delivering a therapeutic and diagnostic substance to a particular location is the core target of NPs. Because of their distinct cell uptake and trafficking mechanisms, NPs can reduce the amount that accumulates in undesirable organs. The focus of the current review is on recent studies on the various neuroprotective properties of Nigella sativa as well as nanoformulations for NDs and the brain's uptake of NPs. The review summarizes the In vivo, In vitro, and In silico studies on the protective effects of black cumin against neurodegenerative disorders.
Collapse
Affiliation(s)
- Chaitali G. Gawas
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Sakshi Mathur
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
10
|
Rahmani S, Roohbakhsh A, Karimi G. Inhibition of Drp1-dependent mitochondrial fission by natural compounds as a therapeutic strategy for organ injuries. Pharmacol Res 2023; 188:106672. [PMID: 36690165 DOI: 10.1016/j.phrs.2023.106672] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria are morphologically dynamic organelles frequently undergoing fission and fusion processes that regulate mitochondrial integrity and bioenergetics. These processes are considered critical for cell survival. The mitochondrial fission process regulates mitochondrial biogenesis and mitophagy. It is associated with apoptosis, while mitochondrial fusion controls the accurate distribution of mitochondrial DNA and metabolic substances across the mitochondria. Excessive mitochondrial fission results in mitochondrial structural changes, dysfunction, and cell damage. Accumulating evidence demonstrates that mitochondrial dynamics affect neurodegenerative and cardiovascular diseases along with several other diseases. Biological molecules regulating the process of mitochondrial fission are potential targets for developing therapeutic agents. Many natural products target the dynamin-related protein 1 (Drp1)-dependent mitochondrial fission pathway, and their inhibitory effects ameliorate mitochondrial fragmentation. In this article, we reviewed the research literature that describes Drp1-dependent inhibition as a mechanism for the protective effects of natural compounds.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Alkharfy KM, Ahmad A, Siddiquei MM, Ghulam M, El-Asrar AA. Thymoquinone Attenuates Retinal Expression of Mediators and Markers of Neurodegeneration in a Diabetic Animal Model. Curr Mol Pharmacol 2023; 16:188-196. [PMID: 35049444 DOI: 10.2174/1874467215666220113105300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a slow eye disease that affects the retina due to a long-standing uncontrolled diabetes mellitus. Hyperglycemia-induced oxidative stress can lead to neuronal damage leading to DR. OBJECTIVE The aim of the current investigation is to assess the protective effects of thymoquinone (TQ) as a potential compound for the treatment and/or prevention of neurovascular complications of diabetes, including DR. METHODS Diabetes was induced in rats by the administration of streptozotocin (55 mg/kg intraperitoneally, i.p.). Subsequently, diabetic rats were treated with either TQ (2 mg/kg i.p.) or vehicle on alternate days for three weeks. A healthy control group was also run in parallel. At the end of the treatment period, animals were euthanized, and the retinas were collected and analyzed for the expression levels of brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), nerve growth factor receptor (NGFR), and caspase-3 using Western blotting techniques in the retina of diabetic rats and compared with the normal control rats. In addition, dichlorofluorescein (DCF) levels in the retina were assessed as a marker of reactive oxygen species (ROS), and blood-retinal barrier breakdown (BRB) was examined for vascular permeability. The systemic effects of TQ treatments on glycemic control, kidney and liver functions were also assessed in all groups. RESULTS Diabetic animals treated with TQ showed improvements in the liver and kidney functions compared with control diabetic rats. Normalization in the levels of neuroprotective factors, including BDNF, TH, and NGFR, was observed in the retina of diabetic rats treated with TQ. In addition, TQ ameliorated the levels of apoptosis regulatory protein caspase-3 in the retina of diabetic rats and reduced disruption of the blood-retinal barrier, possibly through a reduction in reactive oxygen species (ROS) generation. CONCLUSION These findings suggest that TQ harbors a significant potential to limit the neurodegeneration and retinal damage that can be provoked by hyperglycemia in vivo.
Collapse
Affiliation(s)
- Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Mairaj Siddiquei
- Department of Ophthalmology, College of Medicine, King Abdul Aziz Hospital, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Ghulam
- Department of Ophthalmology, College of Medicine, King Abdul Aziz Hospital, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Abdul Aziz Hospital, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
The Ameliorative Effect of Thymoquinone on Vincristine-Induced Peripheral Neuropathy in Mice by Modulating Cellular Oxidative Stress and Cytokine. Life (Basel) 2022; 13:life13010101. [PMID: 36676049 PMCID: PMC9860544 DOI: 10.3390/life13010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Thymoquinone (TQ), an active constituent of Nigella sativa, has been reported to exert a broad spectrum of pharmacological effects, including neuroprotective, anticancer, anti-inflammatory, antidiabetic, antiepileptic, antioxidant, and other modulatory roles in inflammation in experimental studies. The present study aims to evaluate the potential effects of TQ on vincristine-induced neuropathy in mice, as well as the possible role of oxidative stress, and pro- and anti-inflammatory cytokine in neuropathy development. A Swiss strain of male albino mice were randomly divided into seven groups, comprising of five animals each. Vincristine sulfate (0.1 mg/kg, i.p.) was administered for 10 consecutive days for the induction of peripheral neuropathy. The animals received their respective treatment of TQ (2.5, 5, and 10 mg/kg, p.o.) and pregabalin (10 mg/kg, p.o.) concurrently with vincristine for 10 days followed by 4 days post treatment. The animals were assessed for pain and related behavior on day 7 and 14 using hot and cold plates, and a rotarod test. TQ preventive treatment attenuated vincristine induced neuropathy in a dose dependent manner evidenced as a significant (p < 0.001) increase in reaction time on the hot plate and the cold plate, and a fall off time on the rotarod test. Further, TQ preventive treatment resulted in a significant (p < 0.001) reduction in the number of flinches and duration of paw elevation in a formalin test. Preventative treatment with TQ abolished the vincristine-induced rise in malondialdehyde and glutathione depletion in sciatic nerve tissue, as well as the blood IL-6 levels. In conclusion, TQ at 2.5, 5, and 10 mg/kg dose produced significant attenuation of neuropathic pain induced by vincristine which may be due to its antinociceptive, antioxidant, and anti-proinflammatory activity.
Collapse
|
13
|
Li DN, Lian TH, Zhang WJ, Zhang YN, Guo P, Guan HY, Li JH, He MY, Zhang WJ, Zhang WJ, Luo DM, Wang XM, Zhang W. Potential roles of oxidative distress on neurodegeneration in Parkinson's disease with neuropsychiatric symptoms. Front Aging Neurosci 2022; 14:875059. [PMID: 36589540 PMCID: PMC9797725 DOI: 10.3389/fnagi.2022.875059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neuropsychiatric symptoms (NPSs) belong to a category of non-motor symptoms of Parkinson's disease (PD), which seriously compromise the quality of life and prognosis of PD. This study focused on the correlations between NPSs, free radicals, neuroinflammatory factors, and neuropathological proteins in cerebrospinal fluid (CSF) in patients with PD, aiming to provide insights into the potential mechanisms and therapeutic target for PD with NPSs (PD-NPSs). Methods In total, 129 patients with PD were enrolled and assessed by the Neuropsychiatric Symptoms Inventory (NPI); they were divided into the PD-NPSs group (75 patients) and PD with no NPSs (PD-nNPSs) group (54 patients). The levels of hydrogen peroxide (H2O2) and nitric oxide (NO), and hydroxyl radical (·OH), anti-oxidative enzyme, neuroinflammatory factors, and neuropathological proteins in CSF from patients with PD were measured. The levels of the above variables were compared between PD-NPSs and PD-nNPSs groups, and correlation analyses among the above variables were conducted. Results (1) The levels of H2O2 and NO in CSF from the PD-NPSs group were significantly elevated compared with the PD-nNPSs group (p = 0.001), and NPI score positively correlated with the levels of H2O2 and NO (r = 0.283, P = 0.001; r = 0.231, P = 0.008). Reversely, total superoxide dismutase (tSOD) activity in CSF from the PD-NPSs group was significantly reduced compared with the PD-nNPSs group (p = 0.011), and negatively correlated with NPI score (r = -0.185, p = 0.036). (2) The tumor necrosis factor (TNF)-α level in CSF from the PD-NPSs group was significantly decreased compared with the PD-nNPSs group (p = 0.002) and negatively correlated with NPI score (r = -0.211, p = 0.016). (3) The total tau (T-tau) level in CSF from the PD-NPSs group was significantly higher than in the PD-nNPSs group (p = 0.014) and positively correlated with the NPI score (r = 0.167, p = 0.060). (4) The levels of H2O2 and NO positively correlated with the T-tau level in CSF from the PD-NPSs group (r = 0.183, p = 0.039; r = 0.251, P = 0.004), and the levels of TNF-α and T-tau showed a negative correlation (r = -0.163, p = 0.067). Conclusion Oxidative distress characterized by the elevations of H2O2 and NO levels may closely correlate with the neurodegeneration in brain regions related to PD-NPSs. Thus, therapeutic antioxidants may become an important target for PD-NPSs therapy.
Collapse
Affiliation(s)
- Dan-ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Teng-hong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-nan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-hui Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-yue He
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-jing Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong-mei Luo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory on Parkinson's Disease, Beijing, China,*Correspondence: Wei Zhang
| |
Collapse
|
14
|
Bilgiç S, Özgöçmen M, Ozer MK. Thymoquinone ameliorates amikacin induced oxidative damage in rat brain tissue. Biotech Histochem 2022; 98:38-45. [PMID: 35811486 DOI: 10.1080/10520295.2022.2087905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
We investigated the potential neuroprotective effects of thymoquinone (TQ) on amikacin (AK) induced oxidative damage in rat brain. We used 21 male rats divided randomly into three equal groups. The control group was injected intraperitoneally (i.p.) with 0.5 ml 0.9% aqueous NaCl and given 1 ml 0.9% aqueous NaCl orally. The AK group was administered 1.2 g/kg aqueous AK i.p. as a single dose on the day 3 of the study. The AK + TQ group was given a single 1.2 g/kg dose of AK i.p. on the day 3 of the study plus 40 mg/kg/day TQ by oral gavage daily. Treatment with TQ increased serum ferritin and decreased serum calcium levels significantly. TQ also decreased NADPH oxidase-2, NADPH oxidase-4, and caspase-3 levels. Decreased malondialdehyde (MDA) levels and increased superoxide dismutase (SOD) and catalase (CAT) activities were detected in the AK + TQ group compared to the AK group. TQ administration inhibited lipid peroxide formation and blocked oxidative reactions, which reduced the MDA level and increased SOD and CAT activities induced by AK. Oxidative damage caused by AK was ameliorated by TQ treatment owing to its antioxidative and anti-apoptotic effects. TQ may be a potential therapeutic agent for reducing the severity of AK induced oxidative damage to the brain.
Collapse
Affiliation(s)
- Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, University of Adıyaman, Adıyaman, Turkey
| | - Meltem Özgöçmen
- Department of Histology, and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Kaya Ozer
- Department of Pharmacology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
15
|
Verma R, Sartaj A, Qizilbash FF, Ghoneim MM, Alshehri S, Imam SS, Kala C, Alam MS, Gilani SJ, Taleuzzaman M. An Overview of the Neuropharmacological Potential of Thymoquinone and its Targeted Delivery Prospects for CNS Disorder. Curr Drug Metab 2022; 23:447-459. [PMID: 35676849 DOI: 10.2174/1389200223666220608142506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
At present, people and patients worldwide are relying on the medicinal plant as a therapeutic agent over pharmaceuticals because the medicinal plant is considered safer, especially for chronic disorders. Several medicinal plants and their components are being researched and explored for their possible therapeutic contribution to CNS disorders. Thymoquinone (TQ) is one such molecule. Thymoquinone, one of the constituents of Plant Nigella Sativa, is effective against several neurodegenerative diseases like; Alzheimer's, Depression, Encephalomyelitis, Epilepsy, Ischemia, Parkinson's, and Traumatic. This review article presents the neuropharmacological potential of TQ's, their challenges, and delivery prospects, explicitly focusing on neurological disorders along with their chemistry, pharmacokinetics, and toxicity. Since TQ has some pharmacokinetic challenges, scientists have focused on novel formulations and delivery systems to enhance bioavailability and ultimately increase its therapeutic value. In the present work, the role of nanotechnology in neurodegenerative disease and how it improves bioavailability and delivery of a drug to the site of action has been discussed. There are a few limitations for developing novel drug formulation, including solubility, pH, and compatibility of nanomaterials. Since here we are targeting CNS disorders, the blood-brain barrier (BBB) becomes an additional challenge Hence, the review summarized the novel aspects of delivery and biocompatible nanoparticles-based approaches for targeted drug delivery into CNS, enhancing TQ bioavailability and its neurotherapeutic effects.
Collapse
Affiliation(s)
- Rishabh Verma
- Department of Pharmacology, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Farheen Fatima Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, 342802. Rajasthan, India
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Kingdom of Saudi Arabia
| | - Sadaf Jamal Gilani
- College of Basic Health Science, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan,342008, India
| |
Collapse
|
16
|
Pottoo FH, Ibrahim AM, Alammar A, Alsinan R, Aleid M, Alshehhi A, Alshehri M, Mishra S, Alhajri N. Thymoquinone: Review of Its Potential in the Treatment of Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15040408. [PMID: 35455405 PMCID: PMC9026861 DOI: 10.3390/ph15040408] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Thymoquinone (TQ) possesses anticonvulsant, antianxiety, antidepressant, and antipsychotic properties. It could be utilized to treat drug misuse or dependence, and those with memory and cognitive impairment. TQ protects brain cells from oxidative stress, which is especially pronounced in memory-related regions. TQ exhibits antineurotoxin characteristics, implying its role in preventing neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. TQ’s antioxidant and anti-inflammatory properties protect brain cells from damage and inflammation. Glutamate can trigger cell death by causing mitochondrial malfunction and the formation of reactive oxygen species (ROS). Reduction in ROS production can explain TQ effects in neuroinflammation. TQ can help prevent glutamate-induced apoptosis by suppressing mitochondrial malfunction. Several studies have demonstrated TQ’s role in inhibiting Toll-like receptors (TLRs) and some inflammatory mediators, leading to reduced inflammation and neurotoxicity. Several studies did not show any signs of dopaminergic neuron loss after TQ treatment in various animals. TQ has been shown in clinical studies to block acetylcholinesterase (AChE) activity, which increases acetylcholine (ACh). As a result, fresh memories are programmed to preserve the effects. Treatment with TQ has been linked to better outcomes and decreased side effects than other drugs.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
- Correspondence: (F.H.P.); (A.M.I.)
| | - Abdallah Mohammad Ibrahim
- Department of Fundamentals of Nursing, College of Nursing, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (F.H.P.); (A.M.I.)
| | - Ali Alammar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Rida Alsinan
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Mahdi Aleid
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Ali Alshehhi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Muruj Alshehri
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Supriya Mishra
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad 201204, UP, India;
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|
17
|
Iranshahy M, Javadi B, Sahebkar A. Protective effects of functional foods against Parkinson's disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother Res 2022; 36:1952-1989. [PMID: 35244296 DOI: 10.1002/ptr.7425] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
In Persian Medicine (PM), PD (brain-based tremor) is a known CNS disorder with several therapeutic and preventive options. In their medical textbooks and pharmacopeias, Persian great scientists such as Rhazes (854-925 AD), Avicenna (980-1037 AD), and Jorjani (1042-1136 AD), have discussed pharmacological and nutritional strategies for the prevention, slowing progression, and treatment of PD. In the present study, we surveyed plant- and animal-based foods recommended by PM for the prevention and treatment of CNS-related tremors. In vivo and in-vitro pharmacological evidence supporting the beneficial effects of PM-recommended foods in prevention and alleviating PD, major active phytochemicals along with the relevant mechanisms of action were studied. Several PM plants possess potent antioxidant, antiinflammatory, and PD preventing properties. Garlic and allicin, cabbage and isothiocyanates, chickpea seed and its O-methylated isoflavones biochanin A and formononetin, cinnamon, and cinnamaldehyde, saffron and its crocin, crocetin, and safranal, black cumin and its thymoquinone, black pepper and piperine, pistachio and genistein and daidzein, and resveratrol are among the most effective dietary itemsagainst PD. They act through attenuating neurotoxin-induced memory loss and behavioral impairment, oxidative stress, and dopaminergic cell death. PM-recommended foods can help alleviate PD progression and also discovering and developing new neuroprotective anti-PD pharmaceuticals.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Mahmud NM, Paraoan L, Khaliddin N, Kamalden TA. Thymoquinone in Ocular Neurodegeneration: Modulation of Pathological Mechanisms via Multiple Pathways. Front Cell Neurosci 2022; 16:786926. [PMID: 35308121 PMCID: PMC8924063 DOI: 10.3389/fncel.2022.786926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Thymoquinone is a naturally occurring compound and is the major component of Nigella sativa, also known as black seed or black cumin. For centuries thymoquinone has been used especially in the Middle East traditionally to treat wounds, asthma, allergies, fever, headache, cough, hypertension, and diabetes. Studies have suggested beneficial effects of thymoquinone to be attributed to its antioxidant, antibacterial, anti-oxidative stress, anti-inflammatory, and neuroprotective properties. Recently, there has been a surge of interest in thymoquinone as a treatment for neurodegeneration in the brain, such as that seen in Alzheimer’s (AD) and Parkinson’s diseases (PD). In vitro and in vivo studies on animal models of AD and PD suggest the main neuroprotective mechanisms are based on the anti-inflammatory and anti-oxidative properties of thymoquinone. Neurodegenerative conditions of the eye, such as Age-related Macular Degeneration (AMD) and glaucoma share at least in part similar mechanisms of neuronal cell death with those occurring in AD and PD. This review aims to summarize and critically analyze the evidence to date of the effects and potential neuroprotective actions of thymoquinone in the eye and ocular neurodegenerations.
Collapse
Affiliation(s)
- Nur Musfirah Mahmud
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nurliza Khaliddin
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| | - Tengku Ain Kamalden
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Tengku Ain Kamalden,
| |
Collapse
|
19
|
Al Mamun A, Matsuzaki K, Islam R, Hossain S, Hossain ME, Katakura M, Arai H, Shido O, Hashimoto M. Chronic Administration of Thymoquinone Enhances Adult Hippocampal Neurogenesis and Improves Memory in Rats Via Regulating the BDNF Signaling Pathway. Neurochem Res 2021; 47:933-951. [PMID: 34855048 DOI: 10.1007/s11064-021-03495-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 02/01/2023]
Abstract
Thymoquinone is a pharmacologically active component of Nigella sativa Linn. seeds. Despite the diverse neuropharmacological attributes of TQ, limited reports related to adult neurogenesis and memory research are available. In this study, we investigated the effects of TQ on the proliferation and neural differentiation of cultured neural stem/progenitor cells (NSCs/NPCs). We also investigated the effect of TQ chronic administration on neurogenesis and memory in adult rats. Under proliferation conditions, TQ (0.05-0.3 μM) significantly increased NSCs/NPCs viability, neurosphere diameter, and cell count. TQ treatment under differentiation conditions increased the proportion of cells positive for Tuj1 (a neuronal marker). Furthermore, chronic oral administration of TQ (25 mg/kg/day for 12 weeks) to adult rats increased the number of bromodeoxyuridine (BrdU)-immunopositive cells double-stained with a mature neuronal marker, neuronal nuclei (NeuN), and a proliferation marker, doublecortin (Dcx), in the dentate gyrus of the hippocampus. TQ-administered rats showed a profound beneficial effect on avoidance-related learning ability, associated with an increase in the hippocampal mRNA and protein levels of brain-derived neurotrophic factor (BDNF), as measured by both real-time PCR and ELISA. Western blot analysis revealed that TQ stimulates the phosphorylation of cAMP-response element-binding protein (CREB), the upstream signaling molecule in the BDNF pathway. Furthermore, chronic administration of TQ decreased lipid peroxide and reactive oxygen species levels in the hippocampus. Taken together, our results suggest that TQ plays a role in memory improvement in adult rats and that the CREB/BDNF signaling pathways are involved in mediating the actions of TQ in hippocampal neurogenesis.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.,Department of Neurology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan
| | - Rafiad Islam
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shahdat Hossain
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.,Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Emon Hossain
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Masanori Katakura
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.,Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, 350-0295, Japan
| | - Hiroyuki Arai
- Department of Geriatrics & Gerontology Division of Brain Science Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.
| |
Collapse
|
20
|
Samad N, Manzoor N, Muneer Z, Bhatti SA, Imran I. Reserpine-induced altered neuro-behavioral, biochemical and histopathological assessments prevent by enhanced antioxidant defence system of thymoquinone in mice. Metab Brain Dis 2021; 36:2535-2552. [PMID: 34309746 DOI: 10.1007/s11011-021-00789-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
Thymoquinone (Tq), an active compound of Nigella sativa, has been known for its anti-inflammatory, antioxidant, and neuroprotective characteristics. The present study is aimed to evaluate the effect of Tq on reserpine (Rsp)-induced behavioral (anxiety and/or depression) and, memory deficit; hippocampal inflammatory markers, oxidative markers, antioxidant enzymes, acetylcholinesterase (AChE) activity and histopathology in male mice. Animals were injected with Rsp at a dose of 2 mg/ml/kg and doses of Tq (10 and 20 mg/ml/kg) for 28 days. After the treatment period, behavioral tests [Elevated plus maze (Epm); Light dark box test (Lda); Morris water maze (Mwm); Forced swim test (Fst); Tail suspension test (Tst)] were conducted. After analysis of behaviors, mice were decapitated and brain samples were collected, the hippocampus was removed from the whole-brain sample for biochemical analysis and histology. Administration of Tq at both doses prevent adverse effects of Rsp and increased time spent in open arm and lightbox in Lda and Epm respectively, decreased immobility period in Fst and Tst, decreased latency escape in Mwm, reduced lipid peroxidation (lpo) and inflammatory cytokines, increased defensive enzymes, reduced acetylcholinesterase (AChE) activity and corrected histological lines. It is concluded that Rsp-instigated behavioral and memory deficits were prevented by Tq possibly via its strong antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahra Muneer
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sheraz A Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
21
|
Sarkar C, Jamaddar S, Islam T, Mondal M, Islam MT, Mubarak MS. Therapeutic perspectives of the black cumin component thymoquinone: A review. Food Funct 2021; 12:6167-6213. [PMID: 34085672 DOI: 10.1039/d1fo00401h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dietary phytochemical thymoquinone (TQ), belonging to the family of quinones, mainly obtained from the black and angular seeds of Nigella sativa, is one of the promising monoterpenoid hydrocarbons, which has been receiving massive attention for its therapeutic potential and pharmacological properties. It plays an important role as a chemopreventive and therapeutic agent in the treatment of various diseases and illnesses. The aim of this review is to present a summary of the most recent literature pertaining to the use of TQ for the prevention and treatment of various diseases along with possible mechanisms of action, and the potential use of this natural product as a complementary or alternative medicine. Research findings indicated that TQ exhibits numerous pharmacological activities including antioxidant, anti-inflammatory, cardioprotective, hepatoprotective, antidiabetic, neuroprotective, and anticancer, among others. Conclusions of this review on the therapeutic aspects of TQ highlight the medicinal and folk values of this compound against various diseases and ailments. In short, TQ could be a novel drug in clinical trials, as we hope.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh.
| | | | | | | | | | | |
Collapse
|
22
|
Hajipour S, Sarkaki A, Dianat M, Rashno M, Khorsandi LS, Farbood Y. The effects of thymoquinone on memory impairment and inflammation in rats with hepatic encephalopathy induced by thioacetamide. Metab Brain Dis 2021; 36:991-1002. [PMID: 33620578 DOI: 10.1007/s11011-021-00688-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
Hepatic encephalopathy (HE) is a prevalent complication of the central nervous system (CNS) that is caused by acute or chronic liver failure. This study was designed to evaluate the effects of thymoquinone (TQ) on thioacetamide (TAA)-induced HE in rats, and determine the consequential behavioral, biochemical, and histological changes. HE was induced in male Wistar rats by intraperitoneal (i.p.) injection of 200 mg/kg TAA once every 48 h for 14 consecutive days. Control groups received the normal saline containing 5 % DMSO. Thymoquinone (5, 10, and 20 mg/kg) was administered for ten consecutive days intraperitoneally (i.p.) after HE induction and it was continued until the end of the tests. Then, the passive avoidance memory, extracellular single unit, BBB permeability, and brain water content were evaluated. Moreover, hippocampal tissues were used for evaluation of oxidative stress index, inflammatory biomarkers, and histological parameters following HE. As result of the treatment, TQ improved passive avoidance memory, increased the average number of simultaneous firing of spikes/bins, improved the integrity of BBB, and decreased brain water content in the animal model of HE. Furthermore, the results indicated that treatment with TQ decreased the levels of inflammatory cytokines (TNF-α and IL-1β) but increased the levels of glutathione (GSH) and anti-inflammatory cytokine (IL-10) of the surviving cells in the hippocampal tissues. This study demonstrates that TQ may have beneficial therapeutic effects on cognitive, oxidative stress, neuroinflammatory, and histological complications of HE in rat.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Laaya Sadat Khorsandi
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
24
|
Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, Rahman MS, Timalsina B, Munni YA, Sarker PP, Alam M, Mohibbullah M, Haque MN, Jahan I, Hossain MT, Afrin T, Rahman MM, Tahjib-Ul-Arif M, Mitra S, Oktaviani DF, Khan MK, Choi HJ, Moon IS, Kim B. Black Cumin ( Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021; 13:1784. [PMID: 34073784 PMCID: PMC8225153 DOI: 10.3390/nu13061784] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb-drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.J.U.); (P.P.S.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Gyeonggi-do, Anseong 17546, Korea;
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Partha Protim Sarker
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.J.U.); (P.P.S.)
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea
| | - Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh;
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh;
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Tania Afrin
- Interdisciplinary Institute for Food Security, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Mahbubur Rahman
- Research and Development Center, KNOTUS Co., Ltd., Yeounsu-gu, Incheon 22014, Korea;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Md Kawsar Khan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh;
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
25
|
Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, Ibrahim WN. Thymoquinone, as a Novel Therapeutic Candidate of Cancers. Pharmaceuticals (Basel) 2021; 14:369. [PMID: 33923474 PMCID: PMC8074212 DOI: 10.3390/ph14040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.
Collapse
Affiliation(s)
- Belal Almajali
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25594, Malaysia;
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health sciences, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
26
|
Butt MS, Imran M, Imran A, Arshad MS, Saeed F, Gondal TA, Shariati MA, Gilani SA, Tufail T, Ahmad I, Rind NA, Mahomoodally MF, Islam S, Mehmood Z. Therapeutic perspective of thymoquinone: A mechanistic treatise. Food Sci Nutr 2021; 9:1792-1809. [PMID: 33747489 PMCID: PMC7958532 DOI: 10.1002/fsn3.2070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
The higher utilization of fruits and vegetables is well known to cure human maladies due to the presence of bioactive components. Among these compounds, thymoquinone, a monoterpene and significant constituent in the essential oil of Nigella sativa L., has attained attention by the researchers due to their pharmacologies perspectives such as prevention from cancer, antidiabetic and antiobesity, prevention from oxidative stress and cardioprotective disorder. Thymoquinone has been found to work as anticancer agent against different human and animal cancer stages including propagation, migration, and invasion. Thymoquinone as phytochemical also downregulated the Rac1 expression, mediated the miR-34a upregulation, and increased the levels of miR-34a through p53, as well as also regulated the pro- and antiapoptotic genes and decreased the phosphorylation of NF-κB and IKKα/β. In addition, thymoquinone also lowered the metastasis and ERK1/2 and PI3K activities. The present review article has been piled by adapting narrative review method and highlights the diverse aspects of thymoquinone such as hepatoprotective, anti-inflammatory, and antiaging through various pathways, and further utilization of this compound in diet has been proven effective against different types of cancers.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- Faculty of Food, Nutrition & Home SciencesNational Institute of Food Science and TechnologyUAFFaisalabadPakistan
| | - Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ali Imran
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Tanweer Aslam Gondal
- School of Exercise and NutritionFaculty of HealthDeakin UniversityBurwoodVic.Australia
| | | | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ishtiaque Ahmad
- Department of Dairy TechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Nadir Ali Rind
- Department of molecular Biology and GeneticsShaheed Benazir Bhutto UniversityShaheed BenazirabadPakistan
| | - Mohamad Fawzi Mahomoodally
- Department of Health SciencesFaculty of Medicine and Health SciencesUniversity of MauritiusRéduitMauritius
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| | - Zaffar Mehmood
- School of life SciencesForman Christian College (A Chartered University)LahorePakistan
| |
Collapse
|
27
|
Dong J, Zhang X, Wang S, Xu C, Gao M, Liu S, Li X, Cheng N, Han Y, Wang X, Han Y. Thymoquinone Prevents Dopaminergic Neurodegeneration by Attenuating Oxidative Stress Via the Nrf2/ARE Pathway. Front Pharmacol 2021; 11:615598. [PMID: 33519481 PMCID: PMC7840486 DOI: 10.3389/fphar.2020.615598] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Studies have indicated that oxidative stress plays a crucial role in the development of Parkinson's disease (PD) and other neurodegenerative conditions. Research has also revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) triggers the expression of antioxidant genes via a series of antioxidant response elements (AREs), thus preventing oxidative stress. Thymoquinone (TQ) is the bioactive component of Nigella sativa, a medicinal plant that exhibits antioxidant and neuroprotective effects. In the present study we examined whether TQ alleviates in vivo and in vitro neurodegeneration induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by acting as an activator of the Nrf2/ARE cascade. We showed that TQ significantly reduced MPP+-mediated cell death and apoptosis. Moreover, TQ significantly elevated the nuclear translocation of Nrf2 and significantly increased the subsequent expression of antioxidative genes such as Heme oxygenase 1 (HO-1), quinone oxidoreductase (NQO1) and Glutathione-S-Transferase (GST). The application of siRNA to silence Nrf2 led to an abolishment in the protective effects of TQ. We also found that the intraperitoneal injection of TQ into a rodent model of PD ameliorated oxidative stress and effectively mitigated nigrostriatal dopaminergic degeneration by activating the Nrf2-ARE pathway. However, these effects were inhibited by the injection of a lentivirus wrapped Nrf2 siRNA (siNrf2). Collectively, these findings suggest that TQ alleviates progressive dopaminergic neuropathology by activating the Nrf2/ARE signaling cascade and by attenuating oxidative stress, thus demonstrating that TQ is a potential novel drug candidate for the treatment of PD.
Collapse
Affiliation(s)
- Jianjian Dong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoming Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Shijing Wang
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China
| | - Chenchen Xu
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China
| | - Manli Gao
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Songyang Liu
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoxiao Li
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Nan Cheng
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Yongsheng Han
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Xun Wang
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Yongzhu Han
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
28
|
Alhosin M, Razvi SSI, Sheikh RA, Khan JA, Zamzami MA, Choudhry H. Thymoquinone and Difluoromethylornithine (DFMO) Synergistically Induce Apoptosis of Human Acute T Lymphoblastic Leukemia Jurkat Cells Through the Modulation of Epigenetic Pathways. Technol Cancer Res Treat 2020; 19:1533033820947489. [PMID: 32912061 PMCID: PMC7488875 DOI: 10.1177/1533033820947489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thymoquinone (TQ), a natural anticancer agent exerts cytotoxic effects on several tumors by targeting multiple pathways, including apoptosis. Difluoromethylornithine (DFMO), an irreversible inhibitor of the ornithine decarboxylase (ODC) enzyme, has shown promising inhibitory activities in many cancers including leukemia by decreasing the biosynthesis of the intracellular polyamines. The present study aimed to investigate the combinatorial cytotoxic effects of TQ and DFMO on human acute T lymphoblastic leukemia Jurkat cells and to determine the underlying mechanisms. Here, we show that the combination of DFMO and TQ significantly reduced cell viability and resulted in significant synergistic effects on apoptosis when compared to either DFMO or TQ alone. RNA-sequencing showed that many key epigenetic players including Ubiquitin-like containing PHD and Ring finger 1 (UHRF1) and its 2 partners DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1) were down-regulated in DFMO-treated Jurkat cells. The combination of DFMO and TQ dramatically decreased the expression of UHRF1, DNMT1 and HDAC1 genes compared to either DFMO or TQ alone. UHRF1 knockdown led to a decrease in Jurkat cell viability. In conclusion, these results suggest that the combination of DFMO and TQ could be a promising new strategy for the treatment of human acute T lymphoblastic leukemia by targeting the epigenetic code.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Shoeb I Razvi
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Math and Science Department, 441417Community College of Qatar, Doha, Qatar
| | - Ryan A Sheikh
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jalaluddin A Khan
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Bilge SS, Günaydin C, Önger ME, Bozkurt A, Avci B. Neuroprotective action of agmatine in rotenone-induced model of Parkinson's disease: Role of BDNF/cREB and ERK pathway. Behav Brain Res 2020; 392:112692. [PMID: 32479847 DOI: 10.1016/j.bbr.2020.112692] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/14/2020] [Accepted: 05/03/2020] [Indexed: 01/10/2023]
Abstract
Numerous studies have investigated the role of agmatine in the central nervous system and indicated neuroprotective properties. In addition to its potent antioxidant effects, agmatine is an endogenous neuromodulator and has wide spectrum molecular actions on different receptor subtypes (NMDA, Imidazoline 1-2, alpha-2 adrenoreceptor, 5-HT2a, 5-HT3) and cellular signaling pathways (MAPK, PKA, NO, BDNF). Although the neuroprotective effects of agmatine demonstrated in experimental Parkinson's disease model, the effects of agmatine with the aspect of neuroplasticity and possible signaling mechanisms behind agmatine actions have not been investigated. Herein, in this study, we investigated the role of the of agmatine on rotenone-induced Parkinson's disease model. Agmatine at the dose of 100 mg/kg i.p., was mitigated oxidative damage and alleviated motor impairments which were the results of the rotenone insult. Additionally, agmatine decreased neuronal loss, tyrosine hydroxylase immunoreactivity and increased cREB, BDNF and ERK1/2 expression in the striatum, which are crucial neuroplasticity elements of striatal integrity. Taken together, the present study expands the knowledge of molecular mechanisms behind neuroprotective actions of agmatine in Parkinson's disease, and as far as we have known, this is the first study to delineate agmatine treated activation of cellular pathways which are important elements in neuronal cell survival.
Collapse
Affiliation(s)
- S Sırrı Bilge
- Ondokuz Mayıs University, School of Medicine, Department of Pharmacology, Samsun, Turkey.
| | - Caner Günaydin
- Ondokuz Mayıs University, School of Medicine, Department of Pharmacology, Samsun, Turkey.
| | - M Emin Önger
- Ondokuz Mayıs University, School of Medicine, Department of Histology and Embryology, Samsun, Turkey.
| | - Ayhan Bozkurt
- Ondokuz Mayıs University, School of Medicine, Department of Physiology, Samsun, Turkey.
| | - Bahattin Avci
- Ondokuz Mayıs University, School of Medicine, Department of Biochemistry, Samsun, Turkey.
| |
Collapse
|
30
|
|
31
|
Fahmy HM, Khadrawy YA, Abd-El Daim TM, Elfeky AS, Abd Rabo AA, Mustafa AB, Mostafa IT. Thymoquinone-encapsulated chitosan nanoparticles coated with polysorbate 80 as a novel treatment agent in a reserpine-induced depression animal model. Physiol Behav 2020; 222:112934. [PMID: 32353367 DOI: 10.1016/j.physbeh.2020.112934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Depression is a mental illness with a high prevalence in humans reaching 21% of the worldwide population.The present study aims to evaluate the antidepressant effect of different formulations of Thymoquinone; free Thymoquinone (TQ), Thymoquinone-loaded Chitosan nanoparticles (TQ-TPP-Cs NPs) and Thymoquinone-loaded Chitosan nanoparticles coated with polysorbate 80 (TQ-TPP-Cs NPs-PSb80) that have been prepared to avoid the low bioavailability of TQ. Rats were randomly separated into control rats, depression control induced by reserpine, rat model treated with TQ, rat model treated with TQ-TPP-Cs NPs and rat model treated with TQ-TPP-Cs NPs-PSb80. The results indicate that TQ-TPP-Cs NPs loaded with polysorbate 80 was more efficient in ameliorating the behavioral and neurochemical changes induced by reserpine than TQ and TQ-TPP-Cs NPs. Formulationswere characterized for size, morphology, encapsulation efficiency and in vitro drug release before their use in treatment. Reserpine induced a reduction in motor activity and swimming time and increased immobility time as indicated from the open field test (OFT) and forced swimming test (FST). In addition, a significant decrease in the monoamine neurotransmitters serotonin (5-HT), norepinephrine (NE) and dopamine (DA) was recorded in the cortex, hippocampus and striatum of reserpine-treated rats. The present data suggest that the antidepressant efficacy of TQ could be enhanced by engaging TQ with chitosan nanoparticles as a drug carrier and the formulations were modified by coating with polysorbate 80.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Egypt.
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Centre, Egypt
| | | | - Amena S Elfeky
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| | - Amera A Abd Rabo
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| | - Amira B Mustafa
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| | - Islam T Mostafa
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
32
|
Stelmashook EV, Chetverikov NS, Golyshev SA, Genrikhs EE, Isaev NK. Thymoquinone Induces Mitochondrial Damage and Death of Cerebellar Granule Neurons. BIOCHEMISTRY (MOSCOW) 2020; 85:205-212. [PMID: 32093596 DOI: 10.1134/s0006297920020078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thymoquinone (TQ) exhibits a wide spectrum of biological activities. Most studies on the neurotoxic action of TQ have been carried out in cancer cell lines. Here, we studied the toxic effect of TQ in primary neuronal cultures in vitro. Incubation with 0.04-0.05 mM TQ for 24 h induced the death of cultured cerebellar granule neurons (CGNs) in a dose-dependent manner. Neuronal death was preceded by an increase in the reactive oxygen species (ROS) generation, as demonstrated using CellROX Green and MitoSOX Red. Confocal and electron microscopy showed that incubation with 0.05 mM TQ for 5 h induced changes in the intracellular localization of mitochondria and mitochondria hypertrophy and cell swelling. The antioxidant N-acetyl-L-cysteine (2 mM) protected CGNs from the toxic action of TQ. Taken together, these facts suggest that TQ is toxic for normal neurons, while ROS-induced changes in the mitochondria can be one of the major causes of the TQ-induced neuronal damage and death.
Collapse
Affiliation(s)
| | - N S Chetverikov
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia
| | - S A Golyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - E E Genrikhs
- Research Center of Neurology, Moscow, 125367, Russia
| | - N K Isaev
- Research Center of Neurology, Moscow, 125367, Russia. .,Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia
| |
Collapse
|
33
|
Isaev NK, Chetverikov NS, Stelmashook EV, Genrikhs EE, Khaspekov LG, Illarioshkin SN. Thymoquinone as a Potential Neuroprotector in Acute and Chronic Forms of Cerebral Pathology. BIOCHEMISTRY (MOSCOW) 2020; 85:167-176. [PMID: 32093593 DOI: 10.1134/s0006297920020042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thymoquinone is one of the main active components of the essential oil from black cumin (Nigella sativa) seeds. Thymoquinone exhibits a wide range of pharmacological activities, including neuroprotective action demonstrated in the models of brain ischemia/reperfusion, Alzheimer's and Parkinson's diseases, and traumatic brain injury. The neuroprotective effect of thymoquinone is mediated via inhibition of lipid peroxidation, downregulation of proinflammatory cytokines, maintenance of mitochondrial membrane potential, and prevention of apoptosis through inhibition of caspases-3, -8, and -9. Thymoquinone-based mitochondria-targeted antioxidants are accumulated in the mitochondria and exhibit neuroprotective properties in nanomolar concentrations. Thymoquinone reduces the negative effects of acute and chronic forms of brain pathologies. The mechanisms of the pharmacological action of thymoquinone and its chemical derivatives require more comprehensive studying. In this paper, we formulated the prospects of application of thymoquinone and thymoquinone-based drugs in the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- N K Isaev
- Research Center of Neurology, Moscow, 125367, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - N S Chetverikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | | | - E E Genrikhs
- Research Center of Neurology, Moscow, 125367, Russia
| | - L G Khaspekov
- Research Center of Neurology, Moscow, 125367, Russia.
| | | |
Collapse
|
34
|
Musachio EAS, Araujo SM, Bortolotto VC, de Freitas Couto S, Dahleh MMM, Poetini MR, Jardim EF, Meichtry LB, Ramborger BP, Roehrs R, Petri Guerra G, Prigol M. Bisphenol A exposure is involved in the development of Parkinson like disease in Drosophila melanogaster. Food Chem Toxicol 2020; 137:111128. [DOI: 10.1016/j.fct.2020.111128] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
|
35
|
Feng ST, Wang ZZ, Yuan YH, Wang XL, Sun HM, Chen NH, Zhang Y. Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson’s disease. Pharmacol Res 2020; 151:104553. [DOI: 10.1016/j.phrs.2019.104553] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 01/14/2023]
|
36
|
Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson's disease. Neurosci Lett 2019; 716:134652. [PMID: 31778768 DOI: 10.1016/j.neulet.2019.134652] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a progressive, late-onset, and degenerative disorder that affects the central nervous system with an unknown etiology. Due to its incredible complexity in disease nature, many of the existing treatment approaches show a vain recovery in Parkinson's patients. Therefore, an in search of disease-modifying therapeutics for an effective recovery is essential. Alpha mangostin is an important polyphenolic xanthone reported for its neuroprotective effect against rotenone-induced α-synuclein aggregation and loss of tyrosine hydroxylase positive (TH+)-neurons in SH-SY5Y cells. Hence, the current study aims to test its protective effect in managing the in-vivo rat model of PD. To justify this aim, adult male Sprague Dawley rats (250 ± 20 g) were subjected to chronic treatment of rotenone (2 mg/kg/day, s.c.) for 21 days. In parallel alpha mangostin treatment (10 mg/kg, i.p) was administered along with rotenone for 21 days. Chronic rotenone treatment for 21 days increased lipid peroxidation, nitrite concentration, and decreased glutathione levels. Further, depletion of TH+-dopaminergic neuron expression in substantia nigra pars compacta (SNc), and the development of motor and behavioral deficits in rotenone treated animals like cognitive impairment, muscle incoordination, and neuromuscular weakness were observed. Moreover, western blot studies ascertained the reduced normal alpha-synuclein levels and increased phosphorylated α-synuclein levels in comparison to the vehicle-treated group. Treatment with alpha mangostin significantly restored the locomotor activity, memory deficits, and improved the levels of antioxidant enzymes. It also significantly reduced the levels of phosphorylated α-synuclein which in turn gave protection against TH+-dopaminergic neuronal loss in SNc, suggesting it's anti-oxidant and anti-aggregatory potential against α-synuclein. In conclusion through our current results, we could suggest that alpha mangostin has a potential neuroprotective effect against rotenone-induced PD and might be used as a neuroprotective agent. Further mechanistic studies on preclinical and clinical levels are required to be conducted with alpha mangostin to avail and foresee it as a potential agent in the treatment and management of PD.
Collapse
|
37
|
Goleva T, Rogov A, Korshunova G, Trendeleva T, Mamaev D, Aliverdieva D, Zvyagilskaya R. SkQThy, a novel and promising mitochondria-targeted antioxidant. Mitochondrion 2019; 49:206-216. [DOI: 10.1016/j.mito.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/17/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
38
|
Cho B, Kim T, Huh YJ, Lee J, Lee YI. Amelioration of Mitochondrial Quality Control and Proteostasis by Natural Compounds in Parkinson's Disease Models. Int J Mol Sci 2019; 20:ijms20205208. [PMID: 31640129 PMCID: PMC6829248 DOI: 10.3390/ijms20205208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is a well-known age-related neurodegenerative disorder associated with longer lifespans and rapidly aging populations. The pathophysiological mechanism is a complex progress involving cellular damage such as mitochondrial dysfunction and protein homeostasis. Age-mediated degenerative neurological disorders can reduce the quality of life and also impose economic burdens. Currently, the common treatment is replacement with levodopa to address low dopamine levels; however, this does not halt the progression of PD and is associated with adverse effects, including dyskinesis. In addition, elderly patients can react negatively to treatment with synthetic neuroprotection agents. Recently, natural compounds such as phytochemicals with fewer side effects have been reported as candidate treatments of age-related neurodegenerative diseases. This review focuses on mitochondrial dysfunction, oxidative stress, hormesis, proteostasis, the ubiquitin‒proteasome system, and autophagy (mitophagy) to explain the neuroprotective effects of using natural products as a therapeutic strategy. We also summarize the efforts to use natural extracts to develop novel pharmacological candidates for treatment of age-related PD.
Collapse
Affiliation(s)
- Bongki Cho
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Taeyun Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Yu-Jin Huh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Yun-Il Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| |
Collapse
|
39
|
Saleh HA, Abd El-Aziz GS, Mustafa HN, El-Fark M, Mal A, Aburas M, Deifalla AH. Thymoquinone ameliorates oxidative damage and histopathological changes of developing brain neurotoxicity. J Histotechnol 2019; 42:116-127. [PMID: 31492091 DOI: 10.1080/01478885.2019.1619654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lead (Pb) toxicity is known to be a chief environmental health issue, especially for pregnant women and young children. Today, the use of medicinal herbs in the treatment of many diseases and different toxic agents has become highly accepted due to their effectiveness and lower costs. Thymoquinone (TQ), which is extracted from Nigella sativa seeds, is a potent antioxidant and anti-inflammatory agent. This study was designed to explore the optional protectivity of TQ against maternal and fetal oxidative stress and brain damage induced by Pb administration. Pregnant rats were distributed into seven groups: control group, TQ group, DMSO group, two groups Pb-treated (160 and 320 ppm), and two groups Pb-treated (160 and 320 ppm) co-treated with TQ. Administration started from gestation day 1 (GD1) to day 20 (GD20) through oral gavage once daily. Lead administration caused a dose-dependent toxicity for both mothers and fetuses. Also, the histopathological assessment of the brains from Pb-treated groups showed marked alterations. Co-treatment of with TQ and Pb caused a significant decrease in Pb levels as compared with those treated with Pb alone and amelioration of histopathological changes in the brains. It was concluded that co-treatment of TQ along with gestational Pb exposure could mitigate the effects against Pb-induced maternal and fetal neurotoxicity.
Collapse
Affiliation(s)
- Hamid A Saleh
- Anatomy Department, Faculty of Medicine, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Gamal S Abd El-Aziz
- Anatomy Department, Faculty of Medicine, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Hesham N Mustafa
- Anatomy Department, Faculty of Medicine, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Magdy El-Fark
- Anatomy Department, Faculty of Medicine, Suez Canal University , Ismailia , Egypt
| | - Ahmed Mal
- Marine Biology Department, Faculty of Marine Sciences, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Majdah Aburas
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Abdel Halim Deifalla
- Anatomy Department, Faculty of Medicine, Arabian Gulf University , Manama , Bahrain
| |
Collapse
|
40
|
Mahmoud YK, Abdelrazek HMA. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed Pharmacother 2019; 115:108783. [PMID: 31060003 DOI: 10.1016/j.biopha.2019.108783] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Recently, there is growing interest in the natural bioactive components having anticancer activity. Thymoquinone (TQ), the principle active constituent of black seed (Nigella sativa), has promising properties including anticancer and chemosensitizing peculiarities. The anticancer power of TQ is accomplished by several aspects; including promotion of apoptosis, arrest of cell cycle and ROS generation. In addition, it boosts the immune system and lessens the side effects associated with traditional anticancer therapy. TQ also controls angiogenesis and cancer metastasis. This review focuses on the potential aspects and mechanisms by which TQ acquires its actions.
Collapse
Affiliation(s)
- Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
41
|
Thymoquinone prevents neurodegeneration against MPTP in vivo and modulates α-synuclein aggregation in vitro. Neurochem Int 2019; 128:115-126. [PMID: 31028778 DOI: 10.1016/j.neuint.2019.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 01/30/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive dopaminergic neurodegeneration with a concomitant increase in oxidative stress and neuroinflammation in the substantia nigra pars compacta (SNc). Recent studies have focused on targeting neuroinflammation and oxidative stress to effectively treat PD. The present study evaluated the neuroprotective effect of thymoquinone (TQ) against 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP)-induced oxidative stress and neuroinflammation in a PD mouse model. TQ (10 mg/kg body weight [b. wt.]) was administered for 1 week prior to MPTP (25 mg/kg b. wt.). MPTP administration caused oxidative stress as evidenced by decreased activities of superoxide dismutase and catalase, a depletion of reduced glutathione, and a concomitant rise in malondialdehyde. It also significantly increased pro-inflammatory cytokines and elevated inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Immunohistochemical analysis revealed dopamine neuron loss in the SNc and decreased dopamine transporters in the striatum following MPTP administration; however, these were rescued by TQ treatment. TQ treatment further restored antioxidant enzymes, prevented glutathione depletion, inhibited lipid peroxidation, and attenuated pro-inflammatory cytokines. TQ also decreased the raised levels of inflammatory mediators, such as COX-2 and iNOS. Therefore, TQ is thought to protect against MPTP-induced PD and the observed neuroprotective effects are attributed to its potent antioxidant and anti-inflammatory properties. Moreover, the in vitro analysis found that TQ significantly inhibited α-synuclein aggregation and prevented cell death induced by pre-formed fibrils. Thus, TQ not only scavenges the MPTP-induced toxicity but also prevents α-synuclein-fibril formation and its associated toxicity.
Collapse
|
42
|
Yao L, Zhu Z, Wu J, Zhang Y, Zhang H, Sun X, Qian C, Wang B, Xie L, Zhang S, Lu G. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease. FASEB J 2019; 33:8648-8665. [PMID: 30995872 DOI: 10.1096/fj.201900363r] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and nonmotor symptoms due to the selective loss of midbrain dopaminergic neurons. The evidence for a chronic inflammatory reaction mediated by microglial cells in the brain is particularly strong in PD. In our previous study, we have shown that brain-specific microRNA-124 (miR-124) is significantly down-regulated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD and that it can also inhibit neuroinflammation during the development of PD. However, further investigation is required to understand whether the abnormal expression of miR-124 regulates microglial activation. In this study, we found that the expression of sequestosome 1 (p62) and phospho-p38 mitogen-activated protein kinases (p-p38) showed a significant increase in LPS-treated immortalized murine microglial cell line BV2 cells in an MPTP-induced mouse model of PD. Knockdown of p62 could suppress the secretion of proinflammatory cytokines and p-p38 of microglia. Besides, inhibition of p38 suppressed the secretion of proinflammatory cytokines and promoted autophagy in BV2 cells. Moreover, our study is the first to identify a unique role of miR-124 in mediating the microglial inflammatory response by targeting p62 and p38 in PD. In the microglial culture supernatant transfer model, the knockdown of p62 in BV2 cells prevented apoptosis and death of human neuroblastoma cell lines SH-SY5Y (SH-SY5Y) cells following microglia activation. In addition, the exogenous delivery of miR-124 could suppress p62 and p-p38 expression and could also attenuate the activation of microglia in the substantia nigra par compacta of MPTP-treated mice. Taken together, our data suggest that miR-124 could inhibit neuroinflammation during the development of PD by targeting p62, p38, and autophagy, indicating that miR-124 could be a potential therapeutic target for regulating the inflammatory response in PD.-Yao, L., Zhu, Z., Wu, J., Zhang, Y., Zhang, H., Sun, X., Qian, C., Wang, B., Xie, L., Zhang, S., Lu, G. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Longping Yao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Zhiyuan Zhu
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Jiayu Wu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhou Zhang
- Tarbut V'Torah Community Day School, Irvine, California, USA
| | - Hongbo Zhang
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Xiang Sun
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Chen Qian
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Baoyan Wang
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Linghai Xie
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Shizhong Zhang
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
43
|
Kassab RB, El-Hennamy RE. The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Rami B. Kassab
- Zoology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | |
Collapse
|
44
|
Tabeshpour J, Mehri S, Abnous K, Hosseinzadeh H. Neuroprotective Effects of Thymoquinone in Acrylamide-Induced Peripheral Nervous System Toxicity Through MAPKinase and Apoptosis Pathways in Rat. Neurochem Res 2019; 44:1101-1112. [PMID: 30725239 DOI: 10.1007/s11064-019-02741-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022]
Abstract
Acrylamide (ACR) is extensively used in industrial areas and has been demonstrated to induce neurotoxicity via oxidative stress and apoptosis. In this study, we assessed the probable protective effects of thymoquinone (TQ), an active constituent of Nigella sativa, against ACR-induced neurotoxicity. ACR (50 mg/kg, i.p., for 11 days) and TQ (2.5, 5 and 10 mg/kg, i.p., for 11 days) were administered to rats. On 12th day, gait score was examined and rats were sacrificed. Malondialdehyde (MDA) and reduced glutathione (GSH) contents were determined in sciatic nerve. Furthermore, western blotting was conducted. The exposure of rats to ACR caused severe gait disabilities. The MDA and GSH contents were increased and decreased, respectively. ACR decreased P-ERK/ERK ratio and myelin basic protein (MBP) content, but significantly increased P-JNK/JNK, P-P38/P38, Bax/Bcl-2 ratios and caspase 3 and 9 levels. Concurrently administration of TQ (5 and 10 mg/kg) with ACR, prevented gait abnormalities and meaningfully reduced MDA and elevated the GSH contents. Furthermore, TQ (5 mg/kg) elevated the P-ERK/ERK ratio and MBP content while reduced the P-JNK/JNK, P-P38/P38 ratios and apoptotic markers. MAP kinase and apoptosis signaling pathways were involved in ACR-induced neurotoxicity in rat sciatic nerve and TQ significantly reduced ACR neurotoxicity. TQ afforded neuroprotection, in part, due to its anti-oxidative stress and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Baghcheghi Y, Hosseini M, Beheshti F, Salmani H, Anaeigoudari A. Thymoquinone reverses learning and memory impairments and brain tissue oxidative damage in hypothyroid juvenile rats. ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 76:32-40. [PMID: 29364392 DOI: 10.1590/0004-282x20170182] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022]
Abstract
In this study, the effect of thymoquinone (TQ) on propylthiouracil (PTU)-induced memory impairment was investigated in juvenile rats. The rats were grouped into control, Hypo, Hypo-TQ5 and Hypo-TQ10. Propylthiouracil increased latency time in the Morris water maze test and decreased delay in entering the dark compartment in the passive avoidance test. Both 5 mg/kg and 10 mg/kg doses of TQ decreased latency time in the Morris water maze test and increased delay in entering the dark compartment in a passive avoidance test. The PTU also increased malondialdehyde and nitric oxide metabolites in the brain while reduced the thiol content and superoxide dismutase and catalase activities and serum T4 level. Both doses of TQ decreased malondialdehyde and nitric oxide metabolites in the brain while enhanced the thiol content and superoxide dismutase and catalase activities and serum T4 level. The results of the present study showed that TQ protected against PTU-induced memory impairments in rats.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Mashhad University of Medical Sciences, Faculty of Medicine, Department of Physiology, Student Research Committee, Mashhad, Iran
| | - Mahmoud Hosseini
- Mashhad University of Medical Sciences, Psychiatry and Behavioral Sciences Research Center, Division of Neurocognitive Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Torbat Heydariyeh University of Medical Sciences, Department of Basic Science and Neuroscience Research Center, Torbat Heydariyeh, Iran
| | - Hossein Salmani
- Mashhad University of Medical Sciences, Faculty of Medicine, Department of Physiology, Mashhad, Iran
| | - Akbar Anaeigoudari
- Jiroft University of Medical Sciences, School of Medicine, Department of Physiology, Jiroft, Iran
| |
Collapse
|
46
|
El-Far AH, Al Jaouni SK, Li W, Mousa SA. Protective Roles of Thymoquinone Nanoformulations: Potential Nanonutraceuticals in Human Diseases. Nutrients 2018; 10:E1369. [PMID: 30257423 PMCID: PMC6213571 DOI: 10.3390/nu10101369] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
Abstract
The focus on nanotechnology for improved bioavailability and drug delivery is of increasing importance for control of different human diseases. Therefore, numerous nanoformulations have been developed for the oral bioavailability of different drugs. This review introduces applications of nanomedicine to enhance the biological activities of thymoquinone (TQ) to control different diseases in several in vivo studies as a preliminary investigation for human disease treatment with nano-TQ. Nano-TQ effectively augments the anticancer roles of doxorubicin by upregulation of P53 and downregulation of Bcl2 and potentiates paclitaxel's apoptosis in MCF-7 breast cancer cells. Moreover, nano-TQ protects against diabetes, inflammation, CNS, and hepatotoxicity, mainly by enhancement of organs' antioxidant status. We summarize the pros and cons of several FDA approved nanoparticle-based therapeutics and discuss the roadblocks in clinical translation, along with potential nano-TQ strategies to overcome these roadblocks. From this review, we can conclude that nano-TQ may be considered as a promising nutraceutical for human health.
Collapse
Affiliation(s)
- Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Faculty of Medicine, King Abdulaziz University, Yousef Abdulatif Jameel scientific chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Weikun Li
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| |
Collapse
|
47
|
Zaitone SA, Ahmed E, Elsherbiny NM, Mehanna ET, El-Kherbetawy MK, ElSayed MH, Alshareef DM, Moustafa YM. Caffeic acid improves locomotor activity and lessens inflammatory burden in a mouse model of rotenone-induced nigral neurodegeneration: Relevance to Parkinson's disease therapy. Pharmacol Rep 2018; 71:32-41. [PMID: 30368226 DOI: 10.1016/j.pharep.2018.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Caffeic acid phenethyl ester is found in honey bee propolis. It has immunomodulatory, anti-inflammatory and anti-cancer properties. Rotenone is a pesticide commonly used for inducing experimental Parkinson's disease (PD) due to complex I inhibition and microglia activating properties. The current study examined neuroprotective effect of caffeic acid against rotenone-induced neurodegeneration in groups of seven mice. METHODS Mice received protective doses of caffeic acid (2.5, 5 or 10 mg/kg) daily and nine injections of rotenone (1 mg kg, subcutaneously) - every 48 h. Behavioral evaluation of motor function was done by a battery of tests including open-field test, cylinder test, pole test and rotarod test; all these tests showed motor impairment. RESULTS Assay of striatal dopamine highlighted a significant decrease and increases in inflammatory markers. In addition, histopathological assessment of substantia nigra neurons demonstrated low immunostaining for tyrosine hydroxylase (TH) in rotenone treated mice. PCR analysis highlighted upregulation for genes encoding CD11b (a microglia surface antigen), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and nuclear factor-κB (NFκB). Treatment with caffeic acid (5 or 10 mg/kg) amended most of rotenone-induced motor deficits, lessened microglia expression and inflammatory mediators and improved the nigral TH immunostaining. CONCLUSION These results confirmed the anti-inflammatory activity of caffeic acid and highlighted its neuroprotective activity against rotenone-induced neurodegeneration in mice.
Collapse
Affiliation(s)
- Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Eman Ahmed
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | - Mohamed H ElSayed
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Duha M Alshareef
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
48
|
Üstün R, Oğuz EK, Şeker A, Korkaya H. Thymoquinone protects DRG neurons from axotomy-induced cell death. Neurol Res 2018; 40:930-937. [PMID: 30088803 DOI: 10.1080/01616412.2018.1504157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Peripheral nerve injury (PNI) is a significant health problem that is linked to sensory, motor, and autonomic deficits. This pathological condition leads to a reduced quality of life in most affected individuals. Schwann cells (SCs) play a crucial role in the repair of PNI. Effective agents that promote SC activation may facilitate and accelerate peripheral nerve repair. Thymoquinone (TQ), a bioactive component of Nigella sativa seeds, has an antioxidant, anti-inflammatory, immunomodulatory, and neuroprotective properties. In the present study, the neuroprotective efficacy of TQ was investigated by using a laser microdissection technique in a mouse PNI model. METHODS Single cells were isolated from dorsal root ganglions (DRGs) of 6-8-week-old mice, maintained in defined culture conditions and treated with or without TQ at different concentrations. Axons were cut (axotomy) using a controllable laser microbeam to model axonal injury in vitro. Under fluorescence microscopy, cell viability was evaluated using the fluorescent dyes. The behavior of the cells was continuously monitored with time-lapse video microscopy. RESULTS TQ significantly increased neuronal survival by promoting the survival and proliferation of SCs and fibroblasts, as well as the migration of SCs. Furthermore, TQ improved the ability to extend neurites of axotomized neurons. The regenerative effect of TQ was dose-dependent suggesting a target specificity. Our studies warrant further preclinical and clinical investigations of TQ as a potential regenerative agent to treat peripheral nerve injuries. CONCLUSION TQ exhibits a regenerative potential for the treatment of damaged peripheral nerves.
Collapse
Affiliation(s)
- Ramazan Üstün
- a Department of Physiology, Faculty of Medicine , Van Yüzüncü Yıl University , Van , Turkey.,b Neuroscience Research Unit, Faculty of Medicine , Van Yüzüncü Yıl University , Van , Turkey
| | - Elif Kaval Oğuz
- b Neuroscience Research Unit, Faculty of Medicine , Van Yüzüncü Yıl University , Van , Turkey
| | - Ayşe Şeker
- a Department of Physiology, Faculty of Medicine , Van Yüzüncü Yıl University , Van , Turkey
| | - Hasan Korkaya
- c Department of Biochemistry and Molecular Biology, Georgia Cancer Center , Augusta University , Augusta , GA , USA
| |
Collapse
|
49
|
Hassanzadeh K, Rahimmi A. Oxidative stress and neuroinflammation in the story of Parkinson's disease: Could targeting these pathways write a good ending? J Cell Physiol 2018; 234:23-32. [PMID: 30078201 DOI: 10.1002/jcp.26865] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Although, current medications for Parkinson's disease can control and relief symptoms of the disease efficiently, they are unable to either prevent progression of the disease or maintain their controlling ability as a long-term medication. To find suitable adjuvant and/or alternative treatments, researchers have investigated antioxidative and anti-inflammatory approaches, since emerging evidence consider oxidative stress and neuroinflammation as leading causes of the development of Parkinson's disease. Here, how oxidative stress and neuroinflammation take part in Parkinson's disease pathogenesis was discussed based on featured studies in this context. Then, preclinical and clinical trial studies, which evaluated antioxidative and anti-inflammatory compounds' ability to treat Parkinson's disease, were reviewed.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Cellular & Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Physiology & Pharmacology Department, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Arman Rahimmi
- Physiology & Pharmacology Department, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
50
|
Farkhondeh T, Samarghandian S, Shahri AMP, Samini F. The Neuroprotective Effects of Thymoquinone: A Review. Dose Response 2018; 16:1559325818761455. [PMID: 29662431 PMCID: PMC5898665 DOI: 10.1177/1559325818761455] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Thymoquinone (TQ), one of the main components active of Nigella sativa, exhibited very useful biomedical effects such as anti-inflammatory, antioxidant, antimicrobial, antiparasitic, anticancer, hypoglycemic, antihypertensive, and antiasthmatic effects. There are several studies about pharmacological activities of TQ but its neuroprotection effects are not fully described. The literature search has indicated many studies pertaining to the effects of TQ in neurological problems such as epilepsy, parkinsonism, anxiety, and improvement of learning and memory, and so on. In addition, TQ protected brain cells from various injuries due to its antioxidant, anti-inflammatory, and apoptotic effects in cell line and experimental animal models. The present study has been designed to review the scientific literature about the pharmacological activities of TQ to the neurological diseases. This study purposed that although experimental studies indicated the beneficial effects of TQ against nervous system problems, better designed clinical trials in humans are needed to confirm these effects.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Fariborz Samini
- Department of Neurosurgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mahhad, Iran
| |
Collapse
|