1
|
Hillman C, Kearn J, Parker MO. A unified approach to investigating 4 dpf zebrafish larval behaviour through a standardised light/dark assay. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111084. [PMID: 39002928 DOI: 10.1016/j.pnpbp.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Zebrafish are a dynamic research model in the domains of neuropsychopharmacology, biological psychiatry and behaviour. Working with larvae ≤4 days post-fertilisation (dpf) offers an avenue for high-throughput investigation whilst aligning with the 3Rs principles of animal research. The light/dark assay, which is the most widely used behavioural assay for larval neuropharmacology research, lacks experimental reliability and standardisation. This study aimed to formulate a robust, reproducible and standardised light/dark behavioural assay using 4 dpf zebrafish larvae. Considerable between-batch and inter-individual variability was found, which we rectified with a normalisation approach to ensure a reliable foundation for analysis. We then identified that 5-min light/dark transition periods are optimal for locomotor activity. We also found that a 30-min acclimation in the light was found to produce significantly increased dark phase larval locomotion. Next, we confirmed the pharmacological predictivity of the standardised assay using ethanol which, as predicted, caused hyperlocomotion at low concentrations and hypolocomotion at high concentrations. Finally, the assay was validated by assessing the behavioural phenotype of hyperactive transgenic (adgrl3.1-/-) larvae, which was rescued with psychostimulant medications. Our standardised assay not only provides a clear experimental and analytical framework to work with 4 dpf larvae, but also facilitates between-laboratory collaboration using our normalisation approach.
Collapse
Affiliation(s)
- Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| | - James Kearn
- Defence Science and Technology Laboratory (DSTL), UK.
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK; School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
2
|
Gölz L, Blanc-Legendre M, Rinderknecht M, Behnstedt L, Coordes S, Reger L, Sire S, Cousin X, Braunbeck T, Baumann L. Development of a Zebrafish Embryo-Based Test System for Thyroid Hormone System Disruption: 3Rs in Ecotoxicological Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38804632 DOI: 10.1002/etc.5878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
There is increasing concern regarding pollutants disrupting the vertebrate thyroid hormone (TH) system, which is crucial for development. Thus, identification of TH system-disrupting chemicals (THSDCs) is an important requirement in the Organisation for Economic Co-operation and Development (OECD) testing framework. The current OECD approach uses different model organisms for different endocrine modalities, leading to a high number of animal tests. Alternative models compatible with the 3Rs (replacement, reduction, refinement) principle are required. Zebrafish embryos, not protected by current European Union animal welfare legislation, represent a promising model. Studies show that zebrafish swim bladder inflation and eye development are affected by THSDCs, and the respective adverse outcome pathways (AOPs) have been established. The present study compared effects of four THSDCs with distinct molecular modes of action: Propylthiouracil (PTU), potassium perchlorate, iopanoic acid, and the TH triiodothyronine (T3) were tested with a protocol based on the OECD fish embryo toxicity test (FET). Effects were analyzed according to the AOP concept from molecular over morphological to behavioral levels: Analysis of thyroid- and eye-related gene expression revealed significant effects after PTU and T3 exposure. All substances caused changes in thyroid follicle morphology of a transgenic zebrafish line expressing fluorescence in thyrocytes. Impaired eye development and swimming activity were observed in all treatments, supporting the hypothesis that THSDCs cause adverse population-relevant changes. Findings thus confirm that the FET can be amended by TH system-related endpoints into an integrated protocol comprising molecular, morphological, and behavioral endpoints for environmental risk assessment of potential endocrine disruptors, which is compatible with the 3Rs principle. Environ Toxicol Chem 2024;00:1-18. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Lisa Gölz
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Current affiliation: Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | | | - Maximilian Rinderknecht
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sacha Sire
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Xavier Cousin
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Current affiliation: Amsterdam Institute for Life and Environment, Section Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Tagkalidou N, Multisanti CR, Bleda MJ, Bedrossiantz J, Prats E, Faggio C, Barata C, Raldúa D. Analyzing the Effects of Age, Time of Day, and Experiment on the Basal Locomotor Activity and Light-Off Visual Motor Response Assays in Zebrafish Larvae. TOXICS 2024; 12:349. [PMID: 38787128 PMCID: PMC11125988 DOI: 10.3390/toxics12050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The recent availability of commercial platforms for behavioral analyses in zebrafish larvae based on video-tracking technologies has exponentially increased the number of studies analyzing different behaviors in this model organism to assess neurotoxicity. Among the most commonly used assays in zebrafish larvae are basal locomotor activity (BLA) and visual motor responses (VMRs). However, the effect of different intrinsic and extrinsic factors that can significantly alter the outcome of these assays is still not well understood. In this work, we have analyzed the influence of age (5-8 days post-fertilization), time of day (8:00, 10:00, 12:00, 14:00; 16:00, 18:00, and 20:00 h), and experiment (three experiments performed at different days) on BLA and VMR results (4004 analyses for each behavior) in 143 larvae. The results from both behaviors were adjusted to a random-effects linear regression model using generalized least squares (GLSs), including in the model the effect of the three variables, the second-way interactions between them, and the three-way interaction. The results presented in this manuscript show a specific effect of all three intrinsic factors and their interactions on both behaviors, supporting the view that the most stable time period for performing these behavioral assays is from 10:00 am to 04:00 pm, with some differences depending on the age of the larva and the behavioral test.
Collapse
Affiliation(s)
- Niki Tagkalidou
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (N.T.); (J.B.); (C.B.)
| | - Cristiana Roberta Multisanti
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy;
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98166 Messina, Italy;
| | - Maria Jose Bleda
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (N.T.); (J.B.); (C.B.)
| | - Eva Prats
- Research and Development Center (CID-CSIC), 08034 Barcelona, Spain;
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98166 Messina, Italy;
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (N.T.); (J.B.); (C.B.)
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (N.T.); (J.B.); (C.B.)
| |
Collapse
|
4
|
English CD, Kazi KJ, Konig I, Ivantsova E, Souders Ii CL, Martyniuk CJ. Exposure to the antineoplastic ifosfamide alters molecular pathways related to cardiovascular function, increases heart rate, and induces hyperactivity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104427. [PMID: 38527598 DOI: 10.1016/j.etap.2024.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Ifosfamide is an alkylating antineoplastic drug used in chemotherapy, but it is also detected in wastewater. Here, the objectives were to (1) determine teratogenic, cardiotoxic, and mitochondrial toxicity potential of ifosfamide exposure; (2) elucidate mechanisms of toxicity; (3) characterize exposure effects on larval behavior. Survival rate, hatch rate, and morphological deformity incidence were not different amongst treatments following exposure levels up to 1000 µg/L ifosfamide over 7 days. RNA-seq reveled 231 and 93 differentially expressed transcripts in larvae exposed to 1 µg/L and 100 µg/L ifosfamide, respectively. Several gene networks related to vascular resistance, cardiovascular response, and heart rate were affected, consistent with tachycardia observed in exposed embryonic fish. Hyperactivity in larval zebrafish was observed with ifosfamide exposure, potentially associated with dopamine-related gene networks. This study improves ecological risk assessment of antineoplastics by elucidating molecular mechanisms related to ifosfamide toxicity, and to alkylating agents in general.
Collapse
Affiliation(s)
- Cole D English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Kira J Kazi
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders Ii
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, FL, USA.
| |
Collapse
|
5
|
Hodorovich DR, Fryer Harris T, Burton DF, Neese KM, Bieler RA, Chudasama V, Marsden KC. Effects of 4 Testing Arena Sizes and 11 Types of Embryo Media on Sensorimotor Behaviors in Wild-Type and chd7 Mutant Zebrafish Larvae. Zebrafish 2024; 21:1-14. [PMID: 38301171 PMCID: PMC10902501 DOI: 10.1089/zeb.2023.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
The larval zebrafish is a highly versatile model across research disciplines, and the expanding use of behavioral analysis has contributed to many advances in neuropsychiatric, developmental, and toxicological studies, often through large-scale chemical and genetic screens. In the absence of standardized approaches to larval zebrafish behavior analysis, however, it is critical to understand the impact on behavior of experimental variables such as the size of testing arenas and the choice of embryo medium. Using a custom-built, modular high-throughput testing system, we examined the effects of 4 testing arena sizes and 11 types of embryo media on conserved sensorimotor behaviors in zebrafish larvae. Our data show that testing arena size impacts acoustic startle sensitivity and kinematics, as well as spontaneous locomotion and thigmotaxis, with fish tested in larger arenas displaying reduced startle sensitivity and increased locomotion. We also find that embryo media can dramatically affect startle sensitivity, kinematics, habituation, and prepulse inhibition, as well as spontaneous swimming, turning, and overall activity. Common medium components such as methylene blue and high calcium concentration consistently reduced startle sensitivity and locomotion. To further address how the choice of embryo medium can impact phenotype expression in zebrafish models of disease, we reared chd7 mutant larvae, a model of CHARGE syndrome with previously characterized morphological and behavioral phenotypes, in five different types of media and observed impacts on all phenotypes. By defining the effects of these key extrinsic factors on larval zebrafish behavior, these data can help researchers select the most appropriate conditions for their specific research questions, particularly for genetic and chemical screens.
Collapse
Affiliation(s)
- Dana R Hodorovich
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Tiara Fryer Harris
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Derek F Burton
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Katie M Neese
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rachael A Bieler
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Vimal Chudasama
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kurt C Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
7
|
Blanc-Legendre M, Sire S, Christophe A, Brion F, Bégout ML, Cousin X. Embryonic exposures to chemicals acting on brain aromatase lead to different locomotor effects in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104221. [PMID: 37451529 DOI: 10.1016/j.etap.2023.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Pathways underlying neurodevelopmental effects of endocrine disruptors (EDs) remain poorly known. Expression of brain aromatase (aroB), responsible for estrogen production in the brain of teleosts, is regulated by estrogenic EDs and could play a role in their behavioral effects. We exposed zebrafish eleutheroembryos (0-120 h post-fertilization) to various concentrations of 16 estrogenic chemicals (incl. bisphenols and contraceptives), and of 2 aroB inhibitors. Behavior was monitored using a photomotor response test procedure. Both aroB inhibitors (clotrimazole and prochloraz) and a total of 6 estrogenic EDs induced significant behavioral alterations, including DM-BPA, BPC and BPS-MPE, three bisphenol substitutes which behavioral effects were, to our knowledge, previously unknown. However, no consensus was reported on the effects among tested substances. It appears that behavioral changes could not be linked to groups of substances defined by their specificity or potency to modulate aroB expression, or by their structure. Altogether, behavioral effects of estrogenic EDs in 120 h post-fertilization larvae appear unrelated to aroB but are nonetheless not to be neglected in the context of environmental safety.
Collapse
Affiliation(s)
| | - Sacha Sire
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Armelle Christophe
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - François Brion
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | | | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| |
Collapse
|
8
|
Mathiron AGE, Rejo L, Chapeau F, Malgouyres JM, Silvestre F, Vignet C. Tools for photomotor response assay standardization in ecotoxicological studies: Example of exposure to gentamicin in the freshwater planaria Schmidtea mediterranea. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104242. [PMID: 37573897 DOI: 10.1016/j.etap.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Photomotor response assay (PMR) is very useful in an ecotoxicological context because it allows evaluation of behavioral response to potential toxic compounds. However, a lack of procedure standardization makes results comparison difficult between labs and organisms. Here, we aimed to propose five different tools to standardize the PMR procedure so that it may be applied to all model species, regarding: (1) the minimum total sample size, (2) the acclimation period, (3) the number and duration of light and dark phases alternation, (4) the measured behavior, and (5) the statistical analysis. As an example of procedure application, we analyzed the effect of an exposure to the antibiotic gentamicin on the locomotion behavior during PMR in an invertebrate species: the asexual freshwater planaria Schmidtea mediterranea. We encourage future studies using PMR to follow these five tools to improve data analysis and results comparability.
Collapse
Affiliation(s)
- Anthony G E Mathiron
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; Institute of Life, Earth, and Environment (ILEE), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Lucia Rejo
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000 Albi, France
| | - Florian Chapeau
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000 Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000 Albi, France
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; Institute of Life, Earth, and Environment (ILEE), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000 Albi, France
| |
Collapse
|
9
|
Hodorovich DR, Fryer Harris T, Burton D, Neese K, Bieler R, Chudasama V, Marsden KC. Effects of 4 testing arena sizes and 11 types of embryo media on sensorimotor behaviors in wild-type and chd7 mutant zebrafish larvae: Media and arena size impact zebrafish behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551330. [PMID: 37577457 PMCID: PMC10418063 DOI: 10.1101/2023.07.31.551330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The larval zebrafish is a highly versatile model across research disciplines, and the expanding use of behavioral analysis has contributed to many advances in neuro-psychiatric, developmental, and toxicological studies, often through large-scale chemical and genetic screens. In the absence of standardized approaches to larval zebrafish behavior analysis, however, it is critical to understand the impact on behavior of experimental variables such as the size of testing arenas and the choice of embryo medium. Using a custom-built, modular high-throughput testing system, we examined the effects of 4 testing arena sizes and 11 types of embryo media on conserved sensorimotor behaviors in zebrafish larvae. Our data show that testing arena size impacts acoustic startle sensitivity and kinematics as well as spontaneous locomotion and thigmotaxis, with fish tested in larger arenas displaying reduced startle sensitivity and increased locomotion. We also find that embryo media can dramatically affect startle sensitivity, kinematics, habituation, and pre-pulse inhibition, as well as spontaneous swimming, turning, and overall activity. Common media components such as methylene blue and high calcium concentration consistently reduced startle sensitivity and locomotion. To further address how the choice of embryo medium can impact phenotype expression in zebrafish models of disease, we reared chd7 mutant larvae, a model of CHARGE syndrome with previously characterized morphological and behavioral phenotypes, in 5 different types of media and observed impacts on all phenotypes. By defining the effects of these key extrinsic factors on larval zebrafish behavior, these data can help researchers select the most appropriate conditions for their specific research questions, particularly for genetic and chemical screens.
Collapse
Affiliation(s)
- Dana R. Hodorovich
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
- Current Address: National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Tiara Fryer Harris
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Derek Burton
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
- Current Address: Biogen, Durham, North Carolina, United States of America
| | - Katie Neese
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Rachael Bieler
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Vimal Chudasama
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Kurt. C Marsden
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| |
Collapse
|
10
|
Hedge JM, Hunter DL, Sanders E, Jarema KA, Olin JK, Britton KN, Lowery M, Knapp BR, Padilla S, Hill BN. Influence of Methylene Blue or Dimethyl Sulfoxide on Larval Zebrafish Development and Behavior. Zebrafish 2023; 20:132-145. [PMID: 37406269 PMCID: PMC10627343 DOI: 10.1089/zeb.2023.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
The use of larval zebrafish developmental testing and assessment, specifically larval zebrafish locomotor activity, has been recognized as a higher throughput testing strategy to identify developmentally toxic and neurotoxic chemicals. There are, however, no standardized protocols for this type of assay, which could result in confounding variables being overlooked. Two chemicals commonly employed during early-life stage zebrafish assays, methylene blue (antifungal agent) and dimethyl sulfoxide (DMSO, a commonly used vehicle) have been reported to affect the morphology and behavior of freshwater fish. In this study, we conducted developmental toxicity (morphology) and neurotoxicity (behavior) assessments of commonly employed concentrations for both chemicals (0.6-10.0 μM methylene blue; 0.3%-1.0% v/v DMSO). A light-dark transition behavioral testing paradigm was applied to morphologically normal, 6 days postfertilization (dpf) zebrafish larvae kept at 26°C. Additionally, an acute DMSO challenge was administered based on early-life stage zebrafish assays typically used in this research area. Results from developmental toxicity screens were similar between both chemicals with no morphological abnormalities detected at any of the concentrations tested. However, neurodevelopmental results were mixed between the two chemicals of interest. Methylene blue resulted in no behavioral changes up to the highest concentration tested, 10.0 μM. By contrast, DMSO altered larval behavior following developmental exposure at concentrations as low as 0.5% (v/v) and exhibited differential concentration-response patterns in the light and dark photoperiods. These results indicate that developmental DMSO exposure can affect larval zebrafish locomotor activity at routinely used concentrations in developmental neurotoxicity assessments, whereas methylene blue does not appear to be developmentally or neurodevelopmentally toxic to larval zebrafish at routinely used concentrations. These results also highlight the importance of understanding the influence of experimental conditions on larval zebrafish locomotor activity that may ultimately confound the interpretation of results.
Collapse
Affiliation(s)
- Joan M. Hedge
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Advanced Experimental Toxicology Models Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Deborah L. Hunter
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Erik Sanders
- Aquatics Lab Services LLC 1112 Nashville Street St. Peters, MO 63376, USA
| | - Kimberly A. Jarema
- Office of Research and Development, Center for Public Health and Environmental Assessment, Immediate Office, Program Operations Staff, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jeanene K. Olin
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Katy N. Britton
- ORAU Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Morgan Lowery
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bridget R. Knapp
- ORISE Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Stephanie Padilla
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bridgett N. Hill
- ORISE Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
11
|
Lin L, Huang Y, Wang P, Chen CC, Qian W, Zhu X, Xu X. Environmental occurrence and ecotoxicity of aquaculture-derived plastic leachates. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132015. [PMID: 37437480 DOI: 10.1016/j.jhazmat.2023.132015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Plastic products such as fishing nets and foam buoys have been widely used in aquaculture. To enhance the desirable characteristics of the final equipment, plastic gear for aquaculture is mixed with a wide range of additives. Recent studies have shown that additives could be leached out to the environment with a long-term use of aquaculture plastics, forming aquaculture-derived plastic leachates. It should be emphasized that some leachates such as phthalic acid esters (PAEs) and organophosphate esters (OPEs) are endocrine disruptors, which could increase the exposure risk of aquatic products and subsequently display potential threats to human health via food chain. However, systematic studies on the release, occurrence, bioaccumulation, and toxic effects of aquaculture-derived plastic leachates are missing, overlooking their potential sources and ecotoxicological risks in aquatic environments. We have reviewed and compared the concentrations of major plastic leachates in the water environment and organisms of global aquaculture and non-farmed areas, confirming that aquaculture leachate is an important source of contaminants in the environment. Moreover, the toxic effects of aquaculture-derived plastic additives and the related mechanisms are summarized with fish as a representative, revealing their potential health risk. In addition, we proposed current challenges and future research needs, which provides scientific guidance for the use and management of plastic products in aquaculture industries.
Collapse
Affiliation(s)
- Lin Lin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuxiong Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Pu Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Wei Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Laboratory of Southern Ocean Science and Engineering (Zhuhai), Zhuhai 519000, China; College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
12
|
Lovin LM, Scarlett KR, Henke AN, Sims JL, Brooks BW. Experimental arena size alters larval zebrafish photolocomotor behaviors and influences bioactivity responses to a model neurostimulant. ENVIRONMENT INTERNATIONAL 2023; 177:107995. [PMID: 37329757 DOI: 10.1016/j.envint.2023.107995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Zebrafish behavior is increasingly common in biomedical and environmental studies of chemical bioactivity. Multiple experimental arena sizes have been used to measure photolocomotion in zebrafish depending on age, endpoints observed, and instrumentation, among other factors. However, the extent to which methodological parameters may influence naïve behavioral performance and detection of behavioral changes is poorly understood. Here we measured photolocomotion and behavioral profiles of naïve larval zebrafish across arena sizes. We then performed concentration response studies with the model neurostimulant caffeine, again across various arena dimensions. We found total swimming distance of unexposed fish to increase logarithmically with arena size, which as related to circumference, area, and volume. Photomotor response during light/dark transitions also increased with arena size. Following caffeine exposure, total distance travelled was significantly (p < 0.001) affected by well size, caffeine treatment (p < 0.001), and the interaction of these two experimental factors (p < 0.001). In addition, behavioral response profiles showed differences between 96 well plates and larger well sizes. Biphasic response, with stimulation at lower concentrations and refraction at the highest concentration, was observed in dark conditions for the 96 well size only, though almost no effects were identified in the light. However, swimming behavior was significantly (p < 0.1) altered in the highest studied caffeine treatment level in larger well sizes during both light and dark periods. Our results indicate zebrafish swim more in larger arenas and arena size influences behavioral response profiles to caffeine, though differences were mostly observed between very small and large arenas. Further, careful consideration should be given when choosing arena size, because small wells may lead to restriction, while larger wells may differentially reflect biologically relevant effects. These findings can improve comparability among experimental designs and demonstrates the importance of understanding confounding methodological variables.
Collapse
Affiliation(s)
- Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Kendall R Scarlett
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Abigail N Henke
- Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA; Department of Biology, Baylor University, Waco, TX, USA
| | - Jaylen L Sims
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA.
| |
Collapse
|
13
|
Schuijt LM, Olusoiji O, Dubey A, Rodríguez-Sánchez P, Osman R, Van den Brink PJ, van den Berg SJP. Effects of the antidepressant fluoxetine on the swimming behaviour of the amphipod Gammarus pulex: Comparison of short-term and long-term toxicity in the laboratory and the semi-field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162173. [PMID: 36775155 DOI: 10.1016/j.scitotenv.2023.162173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Fluoxetine is one of the worlds most prescribed antidepressant, and frequently detected in surface waters. Once present in the aquatic environment, fluoxetine has been shown to disrupt the swimming behaviour of fish and invertebrates. However, swimming behaviour is also known to be highly variable according to experimental conditions, potentially concealing relevant effects. Therefore, the aims of this study were two-fold: i) investigate the swimming and feeding behaviour of Gammarus pulex after exposure to the antidepressant fluoxetine (0.2, 2, 20, and 200 μg/L), and ii) assess to what degree the experimental test duration (short-term and long-term) and test location (laboratory and semi-field conditions) affect gammarid's swimming behaviour. We used automated video tracking and analysis to asses a range of swimming behaviours of G. pulex, including swimming speed, startle responses after light transition, acceleration, curvature and thigmotaxis. We found larger effects on the swimming behaviour of G. pulex due to experimental conditions than due to tested antidepressant concentrations. Gammarids swam faster, more straight and showed a stronger startle response during light transition when kept under semi-field conditions compared to the laboratory. Effects found for different test durations were opposite in the laboratory and semi-field. In the laboratory gammarids swam slower and spent more time at the inner zone of the arena after 2 days compared to 21 days while for the semi-field the reverse was observed. Fluoxetine had only minor impacts on the swimming behaviour of G. pulex, but experimental conditions influenced behavioural outcomes in response to fluoxetine exposure. Overall, our results highlight the importance of standardizing and optimizing experimental protocols that assess behaviour to achieve reproducible results in ecotoxicology.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands.
| | | | - Asmita Dubey
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | | | - Rima Osman
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
14
|
Hawkey AB, Mead M, Natarajan S, Gondal A, Jarrett O, Levin ED. Embryonic exposure to PFAS causes long-term, compound-specific behavioral alterations in zebrafish. Neurotoxicol Teratol 2023; 97:107165. [PMID: 36801483 PMCID: PMC10198882 DOI: 10.1016/j.ntt.2023.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are commonly used as surfactants and coatings for industrial processes and consumer products. These compounds have been increasingly detected in drinking water and human tissue, and concern over their potential effects on health and development is growing. However, relatively little data are available for their potential impacts on neurodevelopment and the degree to which different compounds within this class may differ from one another in their neurotoxicity. The present study examined the neurobehavioral toxicology of two representative compounds in a zebrafish model. Zebrafish embryos were exposed to 0.1-100uM perfluorooctanoic acid (PFOA) or 0.01-1.0uM perfluorooctanesulfonic acid (PFOS) from 5 to 122 h post-fertilization. These concentrations were below threshold for producing increased lethality or overt dysmorphologies, and PFOA was tolerated at a concentration 100× higher than PFOS. Fish were maintained to adulthood, with behavioral assessments at 6 days, 3 months (adolescence) and 8 months of age (adulthood). Both PFOA and PFOS caused behavioral changes in zebrafish, but PFOS and PFOS produced strikingly different phenotypes. PFOA was associated with increased larval motility in the dark (100uM), and enhanced diving responses in adolescence (100uM) but not adulthood. PFOS was associated with a reversed light-dark response in the larval motility test (0.1-1uM), whereby the fish were more active in the light than the dark. PFOS also caused time-dependent changes in locomotor activity in the novel tank test during adolescence (0.1-1.0uM) and an overall pattern of hypoactivity in adulthood at the lowest concentration (0.01uM). Additionally, the lowest concentration of PFOS (0.01uM) reduced acoustic startle magnitude in adolescence, but not adulthood. These data suggest that PFOS and PFOA both produce neurobehavioral toxicity, but these effects are quite distinct from one another.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Mikayla Mead
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Sarabesh Natarajan
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Anas Gondal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Olivia Jarrett
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
| |
Collapse
|
15
|
Kütter MT, Barcellos LJG, Boyle RT, Marins LF, Silveira T. Good practices in the rearing and maintenance of zebrafish (Danio rerio) in Brazilian laboratories. CIÊNCIA ANIMAL BRASILEIRA 2023. [DOI: 10.1590/1809-6891v24e-74134e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Abstract Good Laboratory Practice (GLP) is a management quality control system that encompasses the organizational process and conditions under which non-clinical health and environmental studies are carried out. According to the World Health Organization, GLP must contain five topics: resources, characterization, rules, results, and quality control. This work aims to address a review according to WHO standards of implementing Good Laboratory Practices in zebrafish (Danio rerio) vivariums. Considering that the promotion of one health (animal, human, and environmental) associated with an education plan, protocols, and records are fundamental to guarantee the safety and integrity of employees, animals, and the environment as well as reliability in the results generated. In a way, Brazil still needs improvements related to the well-being of aquatic organisms (national laws, international agreements, corporate programs, and others), especially concerning its use in research and technological development. In this way, the implementation of GLPs provides valuable guidance for improving animal welfare and worker safety, facilitating the standardization of research.
Collapse
|
16
|
Kütter MT, Barcellos LJG, Boyle RT, Marins LF, Silveira T. Boas práticas na criação e manutenção de zebrafish (Danio rerio) em laboratório no Brasil. CIÊNCIA ANIMAL BRASILEIRA 2023. [DOI: 10.1590/1809-6891v24e-74134p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Resumo As Boas Práticas de Laboratório (BPL) são um sistema de controle de qualidade gerencial que abrange o processo organizacional e as condições sob as quais os estudos não clínicos de saúde e meio ambiente são desenvolvidos. Conforme a Organização Mundial da Saúde (OMS) as BPL devem conter cinco tópicos: recursos, caracterização, regras, resultados e controle de qualidade. O objetivo deste trabalho foi apresentar uma revisão conforme o padrão da OMS para a implementação das BPL em biotério de zebrafish. Considerando que a promoção da saúde única (animal, humana e ambiental) associada a um plano de educação, protocolos e registros são fundamentais para garantir a segurança e a integridade dos trabalhadores/pesquisadores, animais e meio ambiente assim como confiabilidade nos resultados gerados. De certa forma o Brasil ainda necessita de melhorias relacionadas ao bem-estar de organismos aquáticos (leis nacionais, acordos internacionais, programas corporativos e outros); especialmente em relação à utilização deste na pesquisa e desenvolvimento tecnológico. Desta forma, a implementação de BPL fornece uma orientação valiosa para a melhoria do bem-estar animal, e segurança do trabalhador vindo a facilitar a padronização da pesquisa.
Collapse
|
17
|
Wasel O, Thompson KM, Freeman JL. Assessment of unique behavioral, morphological, and molecular alterations in the comparative developmental toxicity profiles of PFOA, PFHxA, and PFBA using the zebrafish model system. ENVIRONMENT INTERNATIONAL 2022; 170:107642. [PMID: 36410238 PMCID: PMC9744091 DOI: 10.1016/j.envint.2022.107642] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Perfluoroalkyl substances (PFAS) are a class of synthetic chemicals that are persistent in the environment. Due to adverse health outcomes associated with longer chain PFAS, shorter chain chemicals were used as replacements, but developmental toxicity assessments of the shorter chain chemicals are limited. Toxicity of three perfluoroalkyl acids (PFAAs) [perfluorooctanoic acid (PFOA), composed of 8 carbon (C8), perfluorohexanoic acid (PFHxA, C6), and perfluorobutanoic acid (PFBA, C4)] was compared in developing zebrafish (Danio rerio). LC50s at 120 h post fertilization (hpf) assessed potency of each PFAA by exposing developing zebrafish (1-120 hpf) to range of concentrations. Zebrafish were then exposed to sublethal concentrations (0.4-4000 ppb, µg/L) throughout embryogenesis (1-72 hpf). Effects of the embryonic exposure on locomotor activities was completed with the visual motor response test at 120 hpf. At 72 hpf, morphological changes (total body length, head length, head width) and transcriptome profiles to compare altered molecular and disease pathways were determined. The LC50 ranking followed trend as expected based on chain length. PFOA caused hyperactivity and PFBA hypoactivity, while PFHxA did not change behavior. PFOA, PFHxA, and PFBA caused morphological and transcriptomic alterations that were unique for each chemical and were concentration-dependent indicating different toxicity mechanisms. Cancer was a top disease for PFOA and FXR/RXR activation was a top canonical pathway for PFBA. Furthermore, comparison of altered biological and molecular pathways in zebrafish exposed to PFOA matched findings reported in prior epidemiological studies and other animal models, supporting the predictive value of the transcriptome approach and for predicting adverse health outcomes associated with PFHxA or PFBA exposure.
Collapse
Affiliation(s)
- Ola Wasel
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kathryn M Thompson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
18
|
Jarema KA, Hunter DL, Hill BN, Olin JK, Britton KN, Waalkes MR, Padilla S. Developmental Neurotoxicity and Behavioral Screening in Larval Zebrafish with a Comparison to Other Published Results. TOXICS 2022; 10:256. [PMID: 35622669 PMCID: PMC9145655 DOI: 10.3390/toxics10050256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023]
Abstract
With the abundance of chemicals in the environment that could potentially cause neurodevelopmental deficits, there is a need for rapid testing and chemical screening assays. This study evaluated the developmental toxicity and behavioral effects of 61 chemicals in zebrafish (Danio rerio) larvae using a behavioral Light/Dark assay. Larvae (n = 16-24 per concentration) were exposed to each chemical (0.0001-120 μM) during development and locomotor activity was assessed. Approximately half of the chemicals (n = 30) did not show any gross developmental toxicity (i.e., mortality, dysmorphology or non-hatching) at the highest concentration tested. Twelve of the 31 chemicals that did elicit developmental toxicity were toxic at the highest concentration only, and thirteen chemicals were developmentally toxic at concentrations of 10 µM or lower. Eleven chemicals caused behavioral effects; four chemicals (6-aminonicotinamide, cyclophosphamide, paraquat, phenobarbital) altered behavior in the absence of developmental toxicity. In addition to screening a library of chemicals for developmental neurotoxicity, we also compared our findings with previously published results for those chemicals. Our comparison revealed a general lack of standardized reporting of experimental details, and it also helped identify some chemicals that appear to be consistent positives and negatives across multiple laboratories.
Collapse
Affiliation(s)
- Kimberly A. Jarema
- Center for Public Health and Environmental Assessment, Immediate Office, Program Operations Staff, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Deborah L. Hunter
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| | - Bridgett N. Hill
- ORISE Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jeanene K. Olin
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| | - Katy N. Britton
- ORAU Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Matthew R. Waalkes
- ORISE Research Participation Program Hosted by EPA, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Genetic and Cellular Toxicology Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| |
Collapse
|
19
|
Scaramella C, Alzagatiti JB, Creighton C, Mankatala S, Licea F, Winter GM, Emtage J, Wisnieski JR, Salazar L, Hussain A, Lee FM, Mammootty A, Mammootty N, Aldujaili A, Runnberg KA, Hernandez D, Zimmerman-Thompson T, Makwana R, Rouvere J, Tahmasebi Z, Zavradyan G, Campbell CS, Komaranchath M, Carmona J, Trevitt J, Glanzman D, Roberts AC. Bisphenol A Exposure Induces Sensory Processing Deficits in Larval Zebrafish during Neurodevelopment. eNeuro 2022; 9:ENEURO.0020-22.2022. [PMID: 35508370 PMCID: PMC9116930 DOI: 10.1523/eneuro.0020-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Because of their ex utero development, relatively simple nervous system, translucency, and availability of tools to investigate neural function, larval zebrafish are an exceptional model for understanding neurodevelopmental disorders and the consequences of environmental toxins. Furthermore, early in development, zebrafish larvae easily absorb chemicals from water, a significant advantage over methods required to expose developing organisms to chemical agents in utero Bisphenol A (BPA) and BPA analogs are ubiquitous environmental toxins with known molecular consequences. All humans have measurable quantities of BPA in their bodies. Most concerning, the level of BPA exposure is correlated with neurodevelopmental difficulties in people. Given the importance of understanding the health-related effects of this common toxin, we have exploited the experimental advantages of the larval zebrafish model system to investigate the behavioral and anatomic effects of BPA exposure. We discovered that BPA exposure early in development leads to deficits in the processing of sensory information, as indicated by BPA's effects on prepulse inhibition (PPI) and short-term habituation (STH) of the C-start reflex. We observed no changes in locomotion, thigmotaxis, and repetitive behaviors (circling). Despite changes in sensory processing, we detected no regional or whole-brain volume changes. Our results show that early BPA exposure can induce sensory processing deficits, as revealed by alterations in simple behaviors that are mediated by a well-defined neural circuit.
Collapse
Affiliation(s)
- Courtney Scaramella
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Joseph B Alzagatiti
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Christopher Creighton
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Samandeep Mankatala
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Fernando Licea
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gabriel M Winter
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Jasmine Emtage
- Department of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Joseph R Wisnieski
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Luis Salazar
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Anjum Hussain
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | - Faith M Lee
- Department of Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Asma Mammootty
- Saint Louis University School of Medicine, St. Louis, MO 63104
| | | | - Andrew Aldujaili
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristine A Runnberg
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Daniela Hernandez
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | | | - Rikhil Makwana
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Julien Rouvere
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Zahra Tahmasebi
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gohar Zavradyan
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | | | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Javier Carmona
- Department of Physics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jennifer Trevitt
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - David Glanzman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
- Integrative Center for Learning and Memory, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Adam C Roberts
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| |
Collapse
|
20
|
Characterization of locomotor phenotypes in zebrafish larvae requires testing under both light and dark conditions. PLoS One 2022; 17:e0266491. [PMID: 35363826 PMCID: PMC8974968 DOI: 10.1371/journal.pone.0266491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Despite growing knowledge, much remains unknown regarding how signaling within neural networks translate into specific behaviors. To pursue this quest, we need better understanding of the behavioral output under different experimental conditions. Zebrafish is a key model to study the relationship between network and behavior and illumination is a factor known to influence behavioral output. By only assessing behavior under dark or light conditions, one might miss behavioral phenotypes exclusive to the neglected illumination setting. Here, we identified locomotor behavior, using different rearing regimes and experimental illumination settings, to showcase the need to assess behavior under both light and dark conditions. Characterization of free-swimming zebrafish larvae, housed under continuous darkness or a day/night cycle, did not reveal behavioral differences; larvae were most active during light conditions. However, larvae housed under a day/night cycle moved a shorter distance, had lower maximum velocity and maximum acceleration during the startle response under light conditions. Next, we explored if we could assess behavior under both dark and light conditions by presenting these conditions in sequence, using the same batch of larvae. Our experiments yielded similar results as observed for naïve larvae: higher activity during light conditions, regardless of order of illumination (i.e. dark-light or light-dark). Finally, we conducted these sequenced illumination conditions in an experimental setting by characterizing behavioral phenotypes in larvae following neuromast ablation. Depending on the illumination during testing, the behavioral phenotype following ablation was characterized differently. In addition, the results indicate that the order in which the light and dark conditions are presented has to be considered, as habituation may occur. Our study adds to existing literature on illumination-related differences in zebrafish behavior and emphasize the need to explore behavioral phenotypes under both light and dark condition to maximize our understanding of how experimental permutations affect behavior.
Collapse
|
21
|
Di Mauro G, Rauti R, Casani R, Chimowa G, Galibert AM, Flahaut E, Cellot G, Ballerini L. Tuning the Reduction of Graphene Oxide Nanoflakes Differently Affects Neuronal Networks in the Zebrafish. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2161. [PMID: 34578477 PMCID: PMC8468975 DOI: 10.3390/nano11092161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 01/05/2023]
Abstract
The increasing engineering of biomedical devices and the design of drug-delivery platforms enriched by graphene-based components demand careful investigations of the impact of graphene-related materials (GRMs) on the nervous system. In addition, the enhanced diffusion of GRM-based products and technologies that might favor the dispersion in the environment of GRMs nanoparticles urgently requires the potential neurotoxicity of these compounds to be addressed. One of the challenges in providing definite evidence supporting the harmful or safe use of GRMs is addressing the variety of this family of materials, with GRMs differing for size and chemistry. Such a diversity impairs reaching a unique and predictive picture of the effects of GRMs on the nervous system. Here, by exploiting the thermal reduction of graphene oxide nanoflakes (GO) to generate materials with different oxygen/carbon ratios, we used a high-throughput analysis of early-stage zebrafish locomotor behavior to investigate if modifications of a specific GRM chemical property influenced how these nanomaterials affect vertebrate sensory-motor neurophysiology-exposing zebrafish to GO downregulated their swimming performance. Conversely, reduced GO (rGO) treatments boosted locomotor activity. We concluded that the tuning of single GRM chemical properties is sufficient to produce differential effects on nervous system physiology, likely interfering with different signaling pathways.
Collapse
Affiliation(s)
- Giuseppe Di Mauro
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Rossana Rauti
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Raffaele Casani
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - George Chimowa
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Anne Marie Galibert
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Emmanuel Flahaut
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Giada Cellot
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Laura Ballerini
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| |
Collapse
|
22
|
Segarra A, Mauduit F, Amer NR, Biefel F, Hladik ML, Connon RE, Brander SM. Salinity Changes the Dynamics of Pyrethroid Toxicity in Terms of Behavioral Effects on Newly Hatched Delta Smelt Larvae. TOXICS 2021; 9:40. [PMID: 33672739 PMCID: PMC7924609 DOI: 10.3390/toxics9020040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Salinity can interact with organic compounds and modulate their toxicity. Studies have shown that the fraction of pyrethroid insecticides in the aqueous phase increases with increasing salinity, potentially increasing the risk of exposure for aquatic organisms at higher salinities. In the San Francisco Bay Delta (SFBD) estuary, pyrethroid concentrations increase during the rainy season, coinciding with the spawning season of Delta Smelt (Hypomesus transpacificus), an endangered, endemic fish. Furthermore, salinity intrusion in the SFBD is exacerbated by global climate change, which may change the dynamics of pyrethroid toxicity on aquatic animals. Therefore, examining the effect of salinity on the sublethal toxicity of pyrethroids is essential for risk assessments, especially during the early life stages of estuarine fishes. To address this, we investigated behavioral effects of permethrin and bifenthrin at three environmentally relevant concentrations across a salinity gradient (0.5, 2 and 6 PSU) on Delta Smelt yolk-sac larvae. Our results suggest that environmentally relevant concentrations of pyrethroids can perturb Delta Smelt larvae behavior even at the lowest concentrations (<1 ng/L) and that salinity can change the dynamic of pyrethroid toxicity in terms of behavioral effects, especially for bifenthrin, where salinity was positively correlated with anti-thigmotaxis at each concentration.
Collapse
Affiliation(s)
- Amelie Segarra
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
| | - Florian Mauduit
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
| | - Nermeen R. Amer
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
- Department of Entomology, Faculty of Science, Cairo University, Giza 11311, Egypt
| | - Felix Biefel
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
- Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, D-85350 Freising, Germany
| | - Michelle L. Hladik
- US Geological Survey, California Water Science Center Sacramento, Sacramento, CA 95819, USA;
| | - Richard E. Connon
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
| | - Susanne M. Brander
- Department Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
23
|
Christou M, Fraser TWK, Berg V, Ropstad E, Kamstra JH. Calcium signaling as a possible mechanism behind increased locomotor response in zebrafish larvae exposed to a human relevant persistent organic pollutant mixture or PFOS. ENVIRONMENTAL RESEARCH 2020; 187:109702. [PMID: 32474314 DOI: 10.1016/j.envres.2020.109702] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) are widespread in the environment and their bioaccumulation can lead to adverse health effects in many organisms. Previously, using zebrafish as a model vertebrate, we found larvae exposed to a mixture of 29 POPs based on average blood levels from the Scandinavian population showed hyperactivity, and identified perfluorooctanesulfonic acid (PFOS) as the driving agent for the behavioral changes. In order to identify possible mechanisms, we exposed zebrafish larvae from 6 to 96 h post fertilization to the same mixture of POPs in two concentrations or a single PFOS exposure (0.55 and 3.83 μM) and performed behavioral tests and transcriptomics analysis. Behavioral alterations of exposed zebrafish larvae included hyperactivity and confirmed previously reported results. Transcriptomics analysis showed upregulation of transcripts related to muscle contraction that is highly regulated by the availability of calcium in the sarcoplasmic reticulum. Ingenuity pathway analysis showed that one of the affected pathways in larvae exposed to the POP mixture and PFOS was calcium signaling via the activation of the ryanodine receptors (RyR). Functional analyses with RyR inhibitors and behavioral outcomes substantiate these findings. Additional pathways affected were related to lipid metabolism in larvae exposed to the lower concentration of PFOS. By using omics technology, we observed that the altered behavioral pattern in exposed zebrafish larvae may be controlled directly by mechanisms affecting muscle function rather than via mechanisms connected to neurotoxicity.
Collapse
Affiliation(s)
- Maria Christou
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway.
| | - Thomas W K Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Vidar Berg
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, 3584, CM Utrecht, the Netherlands
| |
Collapse
|
24
|
Maharaj S, El Ahmadie N, Rheingold S, El Chehouri J, Yang L, Souders CL, Martyniuk CJ. Sub-lethal toxicity assessment of the phenylurea herbicide linuron in developing zebrafish (Danio rerio) embryo/larvae. Neurotoxicol Teratol 2020; 81:106917. [PMID: 32712134 DOI: 10.1016/j.ntt.2020.106917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023]
Abstract
Due to run-off and rain events, agrochemicals can enter water catchments, exerting endocrine disruption effects and toxicity to aquatic organisms. Linuron is a phenylurea herbicide used to control a wide variety of vegetative weeds in agriculture in addition to residential applications. However, there are few studies that quantify its toxicity to early developmental stages of fish. The objectives of this study were to assess the acute toxicity of linuron to zebrafish embryos/larvae by measuring mortality, morphological deformities, oxidative respiration, gene expression, and locomotor activity via the Visual Motor Response test. Zebrafish embryos at ~6-h post-fertilization (hpf) were exposed to either embryo rearing medium (ERM), or one dose of 0.625, 1.25, 2.5, 5, and 10 μM linuron for up to 7 days post-fertilization (dpf) depending on the assay. Zebrafish larvae exposed to linuron displayed pericardial edema, yolk sac edema, and spinal curvature. Oxidative respiration assessments in embryos using the Agilent XFe24 Flux Analyzer revealed that linuron decreased mean basal respiration and oligomycin-induced ATP-linked respiration in 30 hpf embryos at 20 μM after a 24-hour exposure. In 7 dpf larvae, transcript abundance was determined for 6 transcripts that have a role in oxidative respiration (atp06, cox1, cox4-1, cox5a1, cytb, and nd1); the relative abundance of these transcripts was not altered with linuron treatment. A Visual Motor Response test was conducted on 7 dpf larvae to determine whether linuron (0.625 to 5 μM) impaired locomotor activity. Larval activity in the dark period decreased in a dose dependent manner and there were indications of hypoactivity as low as 1.25 μM. Transcript abundance was thus determined for tyrosine hydroxylase (th1) and glutamic acid decarboxylase 67 (gad1b), two rate limiting enzymes that control the production of dopamine and gamma-aminobutyric acid respectively. The mRNA levels of gad1b (p = 0.019) were reduced with increasing concentrations of linuron while th1 (p = 0.056) showed a similar decreasing trend, suggesting that neurotransmitter biosynthesis may be altered with exposure to linuron. This study improves knowledge related to the toxicity mechanisms for linuron and is the first to demonstrate that this anti-androgenic chemical impairs oxidative respiration and exerts neurotoxic effects associated with neurotransmitter biosynthesis during early development. These data are significant for environmental risk assessment of agrochemicals.
Collapse
Affiliation(s)
- Sapna Maharaj
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nader El Ahmadie
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Spencer Rheingold
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jana El Chehouri
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Lihua Yang
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Christopher L Souders
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
25
|
Christou M, Kavaliauskis A, Ropstad E, Fraser TWK. DMSO effects larval zebrafish (Danio rerio) behavior, with additive and interaction effects when combined with positive controls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:134490. [PMID: 31905542 DOI: 10.1016/j.scitotenv.2019.134490] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Embryonic and larval zebrafish (Danio rerio) behavior is commonly used to identify neurotoxic compounds. Here, we investigated whether sub-lethal exposures to the common solvents dimethyl sulfoxide (DMSO, 0.01-1%) and methanol (MeOH, 0.01-1%), or the anti-fungal agent methylene blue (MB, 0.0001-0.0005%), can influence larval behavior in a simple light/dark paradigm conducted in 96-well plates. In addition, we tested whether the media volume within the behavioral arena or the zebrafish strain, AB wild type, AB Tübingen (AB/TU), or Tüpfel long-fin (TL), could also influence larval behavior. Following the single exposures, we co-exposed larvae to DMSO and either MB or two other compounds with known behavioral effects in larval zebrafish, flutamide and perfluorooctanesulfonic acid (PFOS). We found ≥0.55% DMSO and 0.0005% MB significantly affected larval behavior, but there was no effect of MeOH. Similarly, TL showed less movement compared to AB and AB/TU strains, whereas lower media volumes also significantly reduced larval movement. However, all strains responded similarly to DMSO and MB. In the co-exposure studies, we found either additive or interaction effects between DMSO and either MB, flutamide, or PFOS, depending on the behavioral endpoint measured. In addition, media volume had no effect on the DMSO concentration response curve, but again we observed additive effects on behavior. In conclusion, methodology can lead to alterations in baseline locomotor activity and compounds can have additive or interaction effects on behavioral endpoints. However, we found no evidence that strain effects should be a concern when deciding on solvents for a simple light/dark behavioral test in larval zebrafish.
Collapse
Affiliation(s)
- Maria Christou
- Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, Oslo, Norway
| | - Arturas Kavaliauskis
- Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, Oslo, Norway
| | - Erik Ropstad
- Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, Oslo, Norway
| | | |
Collapse
|
26
|
Absence of neurotoxicity and lack of neurobehavioral consequences due to exposure to tetrabromobisphenol A (TBBPA) exposure in humans, animals and zebrafish. Arch Toxicol 2019; 94:59-66. [PMID: 31758204 DOI: 10.1007/s00204-019-02627-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/13/2019] [Indexed: 01/08/2023]
Abstract
Tetrabromobisphenol A (2,2',6,6'-tetrabromo-4,4'-isopropylidenediphenol, CAS no. 79-94-7) (TBBPA) is an effective brominated flame retardant present in many consumer products whose effectiveness is attributable to its ability to retard flames and consequently save human lives. Toxicokinetic studies revealed that TBBPA when absorbed via the gastrointestinal tract is rapidly metabolized to glucuronide or sulfate metabolites which are rapidly eliminated by the kidney. TBBPA does not accumulate in the body and there is no evidence that the parent compound is present in the brain. Although this brominated flame retardant was detected in human breast milk and serum, there was no evidence that TBBPA reached the brain in in vivo animal studies as reflected by the absence of neuropathological, neurotoxic, or behavioral alterations indicating that the central nervous system is not a target tissue. These animal investigations were further supported by use of the larval/embryo observations that TBBPA did not produce behavioral changes in a larval/embryo zebrafish a model of chemical-induced neurotoxicity. Although some protein expressions were increased, deceased or not affected in the blood-brain barrier indicating no evidence that TBBPA entered the brain, the changes were contradictory, or gender related, and behavior was not affected supporting that this compound was not neurotoxic. Taken together, TBBPA does not appear to target the brain and is not considered as a neurotoxicant.
Collapse
|
27
|
Aleström P, D'Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, Warner S. Zebrafish: Housing and husbandry recommendations. Lab Anim 2019; 54:213-224. [PMID: 31510859 PMCID: PMC7301644 DOI: 10.1177/0023677219869037] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This article provides recommendations for the care of laboratory zebrafish (Danio rerio) as part of the further implementation of Annex A to the European Convention on the protection of vertebrate animals used for experimental and other scientific purposes, EU Commission Recommendation 2007/526/EC and the fulfilment of Article 33 of EU Directive 2010/63, both concerning the housing and care of experimental animals. The recommendations provide guidance on best practices and ranges of husbandry parameters within which zebrafish welfare, as well as reproducibility of experimental procedures, are assured. Husbandry procedures found today in zebrafish facilities are numerous. While the vast majority of these practices are perfectly acceptable in terms of zebrafish physiology and welfare, the reproducibility of experimental results could be improved by further standardisation of husbandry procedures and exchange of husbandry information between laboratories. Standardisation protocols providing ranges of husbandry parameters are likely to be more successful and appropriate than the implementation of a set of fixed guidance values neglecting the empirically successful daily routines of many facilities and will better reflect the wide range of environmental parameters that characterise the natural habitats occupied by zebrafish. A joint working group on zebrafish housing and husbandry recommendations, with members of the European Society for Fish Models in Biology and Medicine (EUFishBioMed) and of the Federation of European Laboratory Animal Science Associations (FELASA) has been given a mandate to provide guidelines based on a FELASA list of parameters, ‘Terms of Reference’.
Collapse
Affiliation(s)
- Peter Aleström
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy; Italian Association of Laboratory Animal Sciences (AISAL); Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paul J Midtlyng
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Daniel F Schorderet
- Institute for Research in Ophthalmology, University of Lausanne and Ecole Polytechnique Fédérale of Lausanne, Sion, Switzerland
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, WWU Münster, Faculty of Medicine, Münster, Germany.,CiM Cluster of Excellence, Faculty of Medicine, Münster, WWU Münster, Münster, Germany
| | - Frederic Sohm
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, Gif sur Yvette, France
| | - Susan Warner
- Karolinska Institutet, Comparative Medicine, Stockholm, Sweden
| |
Collapse
|
28
|
Baumann L, Segner H, Ros A, Knapen D, Vergauwen L. Thyroid Hormone Disruptors Interfere with Molecular Pathways of Eye Development and Function in Zebrafish. Int J Mol Sci 2019; 20:E1543. [PMID: 30934780 PMCID: PMC6479403 DOI: 10.3390/ijms20071543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 02/04/2023] Open
Abstract
The effects of thyroid hormone disrupting chemicals (THDCs) on eye development of zebrafish were investigated. We expected THDC exposure to cause transcriptional changes of vision-related genes, which find their phenotypic anchoring in eye malformations and dysfunction, as observed in our previous studies. Zebrafish were exposed from 0 to 5 days post fertilization (dpf) to either propylthiouracil (PTU), a thyroid hormone synthesis inhibitor, or tetrabromobisphenol-A (TBBPA), which interacts with thyroid hormone receptors. Full genome microarray analyses of RNA isolated from eye tissue revealed that the number of affected transcripts was substantially higher in PTU- than in TBBPA-treated larvae. However, multiple components of phototransduction (e.g., phosphodiesterase, opsins) were responsive to both THDC exposures. Yet, the response pattern for the gene ontology (GO)-class "sensory perception" differed between treatments, with over 90% down-regulation in PTU-exposed fish, compared to over 80% up-regulation in TBBPA-exposed fish. Additionally, the reversibility of effects after recovery in clean water for three days was investigated. Transcriptional patterns in the eyes were still altered and partly overlapped between 5 and 8 dpf, showing that no full recovery occurred within the time period investigated. However, pathways involved in repair mechanisms were significantly upregulated, which indicates activation of regeneration processes.
Collapse
Affiliation(s)
- Lisa Baumann
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany.
| | - Helmut Segner
- Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Albert Ros
- Fischereiforschungsstelle LAZBW, Argenweg 50/1, 88085 Langenargen, Germany.
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Universiteitsplein 1, 2160 Wilrijk, Belgium.
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Universiteitsplein 1, 2160 Wilrijk, Belgium.
- Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
29
|
Basnet RM, Zizioli D, Taweedet S, Finazzi D, Memo M. Zebrafish Larvae as a Behavioral Model in Neuropharmacology. Biomedicines 2019; 7:biomedicines7010023. [PMID: 30917585 PMCID: PMC6465999 DOI: 10.3390/biomedicines7010023] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Zebrafish larvae show a clear and distinct pattern of swimming in response to light and dark conditions, following the development of a swim bladder at 4 days post fertilization. This swimming behavior is increasingly employed in the screening of neuroactive drugs. The recent emergence of high-throughput techniques for the automatic tracking of zebrafish larvae has further allowed an objective and efficient way of finding subtle behavioral changes that could go unnoticed during manual observations. This review highlights the use of zebrafish larvae as a high-throughput behavioral model for the screening of neuroactive compounds. We describe, in brief, the behavior repertoire of zebrafish larvae. Then, we focus on the utilization of light-dark locomotion test in identifying and screening of neuroactive compounds.
Collapse
Affiliation(s)
- Ram Manohar Basnet
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Somrat Taweedet
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- Clinical Chemistry Laboratory, ASST-Spedali Civili di Brescia, 25123 Brescia, Italy.
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
30
|
Leuthold D, Klüver N, Altenburger R, Busch W. Can Environmentally Relevant Neuroactive Chemicals Specifically Be Detected with the Locomotor Response Test in Zebrafish Embryos? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:482-493. [PMID: 30516976 DOI: 10.1021/acs.est.8b04327] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemicals considered as neuroactive (such as certain pesticides, pharmaceuticals, and industrial chemicals) are among the largest groups of bioactive substances recently detected in European rivers. However, the determination of nervous-system-specific effects has been limited using in vitro tests or conventional end points including lethality. Thus, neurobehavioral tests using in vivo models (e.g., zebrafish embryo) have been proposed as complementary approaches. To investigate the specificity and sensitivity of a light-dark transition locomotor response (LMR) test in 4 to 5 days post fertilization zebrafish with respect to different modes of action (MoAs), we analyzed a set of 18 environmentally relevant compounds with various anticipated MoAs. We found that exposure-induced behavioral alterations were reproducible and dependent on concentration and time. Comparative and quantitative analyses of the obtained locomotor patterns revealed that behavioral effects were not restricted to compounds primarily known to target the nervous system. A clear distinction of MoAs based on locomotor patterns was not possible for most compounds. Furthermore, chemicals with an anticipated same MoA did not necessarily provoke similar behavioral phenotypes. Finally, we determined an increased sensitivity (≥10-fold) compared to observed mortality in the LMR assay for five of eight neuroactive chemicals as opposed to non-neuroactive compounds.
Collapse
|
31
|
Kacew S, Hayes AW. Comment on "TBBPA and Its Alternatives Disturb the Early Stages of Neural Development by Interfering with the NOTCH and WNT Pathways". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13657-13659. [PMID: 30376301 DOI: 10.1021/acs.est.8b05091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Sam Kacew
- Mclaughlin Centre for Population Health Risk Assessment , University of Ottawa , Ottawa , Ontario Canada
- University of South Florida College of Public Health and Institute for Integrative Toxicology, Michigan State University , Tampa , Florida United States
| | - A Wallace Hayes
- University of South Florida College of Public Health and Institute for Integrative Toxicology, Michigan State University , Tampa , Florida United States
| |
Collapse
|
32
|
Yin N, Liang S, Liang S, Yang R, Hu B, Qin Z, Liu A, Faiola F. Response to Comment on "TBBPA and its alternatives disturb the early stages of neural development by interfering with the NOTCH and WNT pathways". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13660-13661. [PMID: 30365314 DOI: 10.1021/acs.est.8b05786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Aifeng Liu
- CAS Key Laboratory of Bio-based Materials , Qingdao Institute of Biomass Energy and Bioprocess Technology, Chinese Academy of Science , Qingdao 266101 , China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
33
|
Khezri A, Herranz-Jusdado JG, Ropstad E, Fraser TW. Mycotoxins induce developmental toxicity and behavioural aberrations in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:500-506. [PMID: 30005262 DOI: 10.1016/j.envpol.2018.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 05/19/2023]
Abstract
Mycotoxins are secondary metabolites produced by varieties of fungi that contaminate food and feed resources and are capable of inducing a wide range of toxicity. In the current study, we investigated developmental and behavioural toxicity in zebrafish larvae after exposure to six different mycotoxins; ochratoxin A (OTA), type A trichothecenes mycotoxin (T-2 toxin), type B trichothecenes mycotoxin (deoxynivalenol - DON), and zearalenone (ZEN) and its metabolites alpha-zearalenol (α-ZOL) and beta-zearalenol (β-ZOL). Developmental defects, hatching time, and survival were monitored until 96 h post fertilisation (hpf). The EC50, LC50, and IC50 values were calculated. Subsequently, to assess behavioural toxicity, new sets of embryos were exposed to a series of non-lethal doses within the range of environmental and/or developmental concern. Results indicated that all the tested mycotoxins were toxic, they all induced developmental defects, and with the exception of OTA, all affected hatching time. Behavioural effects were only observed following exposure to OTA and ZEN and its metabolites, α ZOL and β ZOL. These results demonstrate that mycotoxins are teratogenic and can influence behaviour in a vertebrate model.
Collapse
Affiliation(s)
- Abdolrahman Khezri
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway.
| | | | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway
| | - Thomas Wk Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
34
|
Kohler SA, Parker MO, Ford AT. Shape and size of the arenas affect amphipod behaviours: implications for ecotoxicology. PeerJ 2018; 6:e5271. [PMID: 30065877 PMCID: PMC6064634 DOI: 10.7717/peerj.5271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/29/2018] [Indexed: 01/18/2023] Open
Abstract
The use of behaviour in ecotoxicology is expanding, however the lack of standardisation and validation of these assays currently presents a major drawback in moving forward in the development of behavioural assays. Furthermore, there is a current paucity of control data on test species, particularly invertebrate models. In this study we assessed a range of behaviours associated with spatial distribution and locomotion in relation to arena size and shape in two species of amphipod crustacean (Echinogammarus marinus and Gammarus pulex). Arena shape had significant effects on almost all behavioural parameters analysed. Increasing arena size resulted in an increased mean velocity and activity plus increased proportional use of the central zones. These results indicate that 'ceiling effects' may occur in some ecotoxicological studies resulting in potentially 'false' negative effects if careful consideration is not paid to experimental design. Differences in behaviours were observed between the two species of amphipod. For example, G. pulex spend approximately five times (∼20%) more of the available time crossing the central zones of the arenas compared to E. marinus (∼4%) which could have implications on assessing anxiolytic behaviours. The results of this study highlight several behaviours with potential for use in behavioural ecotoxicology with crustaceans but also underscore the need for careful consideration when designing these behavioural assays.
Collapse
Affiliation(s)
- Shanelle A. Kohler
- Institute of Marine Sciences, Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Matthew O. Parker
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Alex T. Ford
- Institute of Marine Sciences, Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
35
|
Yin N, Liang S, Liang S, Yang R, Hu B, Qin Z, Liu A, Faiola F. TBBPA and Its Alternatives Disturb the Early Stages of Neural Development by Interfering with the NOTCH and WNT Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5459-5468. [PMID: 29608295 DOI: 10.1021/acs.est.8b00414] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tetrabromobisphenol A (TBBPA), as well as its alternatives Tetrabromobisphenol S (TBBPS) and Tetrachlorobisphenol A (TCBPA), are widely used halogenated flame retardants. Their high detection rates in human breast milk and umbilical cord serum have raised wide concerns about their adverse effects on human fetal development. In this study, we evaluated the cytotoxicity and neural developmental toxicity of TBBPA, TBBPS, and TCBPA with a mouse embryonic stem cell (mESC) system, at human body fluid and environmental relevant doses. All the three compounds showed similar trends in their cytotoxic effects. However, while TBBPA and TBBPS stimulated ESC neural differentiation, TCBPA significantly inhibited neurogenesis. Mechanistically, we demonstrated that, as far as the NOTCH (positive regulator) and WNT (negative regulator) pathways were concerned, TBBPA only partially and slightly disturbed them, whereas TBBPS significantly inhibited the WNT pathway, and TCBPA down-regulated the expression of NOTCH effectors but increased the WNT signaling, actions which both inhibited neural specification. In conclusion, our findings suggest that TBBPS and TCBPA may not be safe alternatives to TBBPA, and their toxicity need to be comprehensively evaluated.
Collapse
Affiliation(s)
- Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Aifeng Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Biomass Energy and Bioprocess Technology , Chinese Academy of Science , Qingdao 266101 , China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
36
|
Fraser TWK, Khezri A, Lewandowska-Sabat AM, Henry T, Ropstad E. Endocrine disruptors affect larval zebrafish behavior: Testing potential mechanisms and comparisons of behavioral sensitivity to alternative biomarkers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:128-135. [PMID: 29078070 DOI: 10.1016/j.aquatox.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Larval zebrafish (Danio rerio) are a tool for assessing endocrine disruption during early development. Here, we investigated the extent to which a simple light/dark behavioral test at five days post fertilization could compliment current methods within the field. We exposed fertilized embryos to hormones (17β-estradiol, testosterone, dihydrotestosterone, 11-ketotestosterone, thyroxine, triiodothyronine, progesterone, and hydrocortisone) and other relevant compounds (17α ethinylestradiol, bisphenol A, bisphenol S, nonylphenol, flutamide, nilutamide, linuron, drospirenone, potassium perchlorate, mifepristone, and fadrozole) to screen for behavioral effects between 96 and 118h post fertilization (hpf). With the exception of progesterone, all the hormones tested resulted in altered behaviors. However, some inconsistencies were observed regarding the age of the larvae at testing. For example, the xenoestrogens 17α- ethinylestradiol and nonylphenol had behavioral effects at 96hpf, but not at 118hpf. Furthermore, although thyroxine exposure had pronounced effects on behavior, the thyroid disruptor potassium perchlorate did not. Finally, we were unable to demonstrate a role of nuclear receptors following testosterone and 17α- ethinylestradiol exposure, as neither the androgen receptor antagonist flutamide nor the general estrogen receptor inhibitor fulvestrant (ICI) could rescue the observed behavioral effects, respectively. Similarly, molecular markers for androgen and estrogen disruption were upregulated at concentrations below which behavioral effects were observed. These results demonstrate hormones and endocrine disruptors can alter the behavior of larval zebrafish, but the mechanistic pathways remain unclear.
Collapse
Affiliation(s)
- Thomas W K Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | - Abdolrahman Khezri
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Anna M Lewandowska-Sabat
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Theodore Henry
- Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, United Kingdom
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
37
|
A Mixture of Persistent Organic Pollutants and Perfluorooctanesulfonic Acid Induces Similar Behavioural Responses, but Different Gene Expression Profiles in Zebrafish Larvae. Int J Mol Sci 2017; 18:ijms18020291. [PMID: 28146072 PMCID: PMC5343827 DOI: 10.3390/ijms18020291] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/09/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
Persistent organic pollutants (POPs) are widespread in the environment and some may be neurotoxic. As we are exposed to complex mixtures of POPs, we aimed to investigate how a POP mixture based on Scandinavian human blood data affects behaviour and neurodevelopment during early life in zebrafish. Embryos/larvae were exposed to a series of sub-lethal doses and behaviour was examined at 96 h post fertilization (hpf). In order to determine the sensitivity window to the POP mixture, exposure models of 6 to 48 and 48 to 96 hpf were used. The expression of genes related to neurological development was also assessed. Results indicate that the POP mixture increases the swimming speed of larval zebrafish following exposure between 48 to 96 hpf. This behavioural effect was associated with the perfluorinated compounds, and more specifically with perfluorooctanesulfonic acid (PFOS). The expression of genes related to the stress response, GABAergic, dopaminergic, histaminergic, serotoninergic, cholinergic systems and neuronal maintenance, were altered. However, there was little overlap in those genes that were significantly altered by the POP mixture and PFOS. Our findings show that the POP mixture and PFOS can have a similar effect on behaviour, yet alter the expression of genes relevant to neurological development differently.
Collapse
|