1
|
Habrowska-Górczyńska DE, Kozieł MJ, Urbanek KA, Kowalska K, Piastowska-Ciesielska AW. FOXO3a/PI3K/Akt pathway participates in the ROS- induced apoptosis triggered by α-ZEL and β-ZEL. Sci Rep 2024; 14:13281. [PMID: 38858492 PMCID: PMC11164887 DOI: 10.1038/s41598-024-64350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Zearalenone (ZEN), an estrogenic mycotoxin, is one of the most common food and feed contaminants. Also, its metabolites α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) are considered to induce oxidative stress, however its effect in prostate cells is not known yet. Our previous observations showed that forehead box transcription factor 3a (FOXO3a) expression is modified in hormone- sensitive cells in the response to mycotoxins, similar to the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway. Thus, this study evaluated the direct molecular effect of α-ZEL and β-ZEL in a dose of 30 µM in hormone-dependent human prostate cancer (PCa) cells with the focus of the involvement of FOXO3a and PI3K/Akt signaling pathway in that effect. We observed that both active metabolites of ZEN reduced cell viability, induced oxidative stress, cell cycle arrest and apoptosis in PCa cells. Furthermore, we observed that FOXO3a as well as PI3K/Akt signaling pathway participate in ZELs induced toxicity in PCa cells, indicating that this signaling pathway might be a regulator of mycotoxin-induced toxicity generally.
Collapse
Affiliation(s)
| | - Marta Justyna Kozieł
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216, Lodz, Poland
| | - Kinga Anna Urbanek
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Karolina Kowalska
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216, Lodz, Poland
| |
Collapse
|
2
|
Singh V, Mandal P, Chauhan SS, Saifi IJ, Marhaba, Sandeep PV, Jagdale P, Ayanur A, Ansari KM. Chronic exposure to Zearalenone leads to endometrial hyperplasia in CD-1 mice by altering the inflammatory markers. Toxicol Res (Camb) 2024; 13:tfae055. [PMID: 38645625 PMCID: PMC11031408 DOI: 10.1093/toxres/tfae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Background Zearalenone (ZEA), a natural food contaminant, is reported to act as a mycoestrogen due to its estrogen-mimicking properties. According to studies, ZEA has a greater potential for estrogenic activity compared to any other naturally occurring non-steroidal estrogen. ZEA has been found in the endometrium of individuals with reproductive problems and the serum of children facing early puberty. These studies suggested a possible link between ZEA exposure and endometrial toxicity; nonetheless, no thorough research has been done. This study assessed the endometrium's response to chronic ZEA exposure. Methods Four groups of CD-1 female mice were exposed to control, estradiol (E2), and two different doses of ZEA for 90 days. At the end of treatment, blood and uterus were collected, and samples were used for inflammatory cytokines level, immunochemical, histopathological, and biophysical analysis. Results Our data indicated that the uterus showed a change in body/organ weight ratio, while other organs did not have any notable changes. Immunochemical and histological studies showed hyperplasia and a higher number of glands in the endometrium after ZEA and E2 exposure. Similarly, proliferation markers such as proliferative cell nuclear antigen (PCNA), Ki-67, and inflammatory cytokines such as interleukin 6 (IL-6), interleukin 8 (IL-8), and interferon-gamma (IFN-?) levels were found to be higher in the E2 and ZEA-exposed groups. Conclusion Our finding conclude that ZEA targets the uterus and cause inflammation due to increased levels of inflammatory cytokines and proliferation mediators, as well as systemic toxicity denoted by a strong binding affinity with serum proteins.
Collapse
Affiliation(s)
- Varsha Singh
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Payal Mandal
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shweta Singh Chauhan
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
- Computational Toxicology Facility, Toxicoinformatics and Industrial Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ishrat Jahan Saifi
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Marhaba
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - P V Sandeep
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pankaj Jagdale
- Central Pathology Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Mitchell CT, Bridgeman L, Moyano-López C, Penalva-Olcina R, Juan C, Juan-García A. Study of cytotoxicity in neuroblastoma cell line exposed to patulin and citrinin. Food Chem Toxicol 2024; 186:114556. [PMID: 38432441 DOI: 10.1016/j.fct.2024.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Mycotoxins can be found in food and feed storage as well as in several kinds of foodstuff and are capable of harming mammals and some of them even in small doses. This study investigated on the undifferentiated neuronal cell line SH-SY5Y the effects of two mycotoxins: patulin (PAT) and citrinin (CTN), which are predominantly produced by fungi species Penicillium and Aspergillus. Here, the individual and combined cytotoxicity of PAT and CTN was investigated using the cytotoxic assay MTT. Our findings indicate that after 24 h of treatment, the IC50 value for PAT is 2.01 μM, which decreases at 1.5 μM after 48 h. In contrast, CTN did not attain an IC50 value at the tested concentration. Therefore, we found PAT to be the more toxic compared to CTN. However, the combined treatment suggests an additive toxic effect. With 2,7-dichlorodihydrofluorescin diacetate (DCFH-DA) DCFH-DA assay, ROS generation was demonstrated after CTN treatment, but PAT showed only small changes. The mixture presented a very constant behavior over time. Finally, the median-effect/combination index (CI-) isobologram equation demonstrated an additive effect after 24 h, but an antagonistic effect after 48 h for the interaction of the two mycotoxins.
Collapse
Affiliation(s)
- Cassandra T Mitchell
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain; Faculty of Biology, Johannes Gutenberg - University Mainz, Mainz, D-55128, Germany
| | - Luna Bridgeman
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain
| | - Claudia Moyano-López
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain
| | - Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain.
| |
Collapse
|
4
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
5
|
Bridgeman L, Juan C, Berrada H, Juan-García A. Effect of Acrylamide and Mycotoxins in SH-SY5Y Cells: A Review. Toxins (Basel) 2024; 16:87. [PMID: 38393165 PMCID: PMC10892127 DOI: 10.3390/toxins16020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Thermal processes induce the formation of undesired toxic components, such as acrylamide (AA), which has been shown to induce brain toxicity in humans and classified as Group 2A by the International Agency of Research in Cancer (IARC), as well as some mycotoxins. AA and mycotoxins' toxicity is studied in several in vitro models, including the neuroblastoma cell line model SH-SY5Y cells. Both AA and mycotoxins occur together in the same food matrix cereal base (bread, pasta, potatoes, coffee roasting, etc.). Therefore, the goal of this review is to deepen the knowledge about the neurological effects that AA and mycotoxins can induce on the in vitro model SH-SY5Y and its mechanism of action (MoA) focusing on the experimental assays reported in publications of the last 10 years. The analysis of the latest publications shows that most of them are focused on cytotoxicity, apoptosis, and alteration in protein expression, while others are interested in oxidative stress, axonopathy, and the disruption of neurite outgrowth. While both AA and mycotoxins have been studied in SH-SY5Y cells separately, the mixture of them is starting to draw the interest of the scientific community. This highlights a new and interesting field to explore due to the findings reported in several publications that can be compared and the implications in human health that both could cause. In relation to the assays used, the most employed were the MTT, axonopathy, and qPCR assays. The concentration dose range studied was 0.1-10 mM for AA and 2 fM to 200 µM depending on the toxicity and time of exposure for mycotoxins. A healthy and varied diet allows the incorporation of a large family of bioactive compounds that can mitigate the toxic effects associated with contaminants present in food. Although this has been reported in some publications for mycotoxins, there is still a big gap for AA which evidences that more investigations are needed to better explore the risks for human health when exposed to AA and mycotoxins.
Collapse
Affiliation(s)
| | | | | | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (L.B.); (C.J.); (H.B.)
| |
Collapse
|
6
|
Penalva-Olcina R, Juan C, Fernández-Franzón M, Juan-García A. Cell cycle and enzymatic activity alterations induced by ROS production in human neuroblastoma cells SH-SY5Y exposed to Fumonisin B1, Ochratoxin A and their combination. Toxicol In Vitro 2023; 93:105670. [PMID: 37633472 DOI: 10.1016/j.tiv.2023.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The presence of mycotoxins such as Fumonisin B1(FB1) and Ochratoxin A (OTA) in food and feed has become a threat to human and animal health since they can produce several afflictions. Different mechanisms of action by which they exercise their cytotoxic activity have been attributed to them, including the production of reactive oxygen species (ROS). For this reason, a measurement of the production of ROS species, and an evaluation of the intrinsic cell enzymatic antioxidant activity, including glutathione peroxidase (GPx), glutathione transferase (GTS), and catalase (CAT) together with a cytotoxicity and cell cycle assay have been performed in undifferentiated SH-SY5Y cells exposed to FB1, OTA and [FB1 + OTA] after 24 h and 48 h. FB1 and OTA. Monitoring of intracellular ROS production was carried out by the H2-DCFDA probe; while spectrometry analysis of absorbances was used for measuring GPx, GST and CAT activity. Finally, cell proliferation and cell cycle distribution were studied by flow cytometry. When cells were treated with OTA, an increase in GPx and GST activity was observed compared to FB1 and [FB1 + OTA]; conversely, a decrease in CAT activity was observed when cells were exposed to OTA coinciding with the results observed for ROS measurement. Regarding the cell cycle, when cells were exposed to OTA, a decrease in G0/G1 was detected, revealing an arrest of cell division for SH-SY5Y cells at the concentrations studied.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Mónica Fernández-Franzón
- Laboratory of food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| |
Collapse
|
7
|
Protective effect of glucosamine on zearalenone-induced reproductive toxicity and placental dysfunction in mice. Food Chem Toxicol 2023; 172:113539. [PMID: 36462645 DOI: 10.1016/j.fct.2022.113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
This study was conducted to determine the effects of glucosamine (GlcN) on zearalenone (ZEA)-induced reproductive toxicity and placental dysfunction in mice. The pregnant mice were randomly divided into one of the four groups, such as the control group, the ZEA group, the GlcN group, and the GlcN plus ZEA group. Reproductive toxicity was induced by consecutive gavages of ZEA at 5 mg/kg body weight during gestational days (GDs 0-14) and in the presence or absence of oral administration of GlcN (0.5 mM). The results showed that GlcN significantly alleviated the decrease of growth performance induced by ZEA exposure of pregnant mice. Meanwhile, ZEA ingestion significantly reduced the number and weight of fetuses, and reduction of placenta weight. Moreover, results of blood biochemical markers indicated that ZEA exposure led to increased oxidative stress levels in pregnant mice. Further analyses demonstrated that ZEA inhibited placental development, resulted in placental inflammation, increased the expression of pro-apoptotic proteins, and decreased the expression of placental tight junction proteins, which were reversed by the administration of GlcN. Results of western blot revealed that GlcN reversed ZEA-mediated phenotype by activating PI3K, while inhibiting MAPK signaling pathway. All these findings showed that GlcN was effective in the protection against ZEA-induced placental dysfunction and reproductive toxicity in pregnant mice. Supplementation of GlcN might be potential nutritional intervention with an ability to alleviate ZEA-induced toxicity in pregnant mice.
Collapse
|
8
|
Alvarez-Ortega N, Caballero-Gallardo K, Juan C, Juan-Garcia A, Olivero-Verbel J. Cytoprotective, Antiproliferative, and Anti-Oxidant Potential of the Hydroethanolic Extract of Fridericia chica Leaves on Human Cancer Cell Lines Exposed to α- and β-Zearalenol. Toxins (Basel) 2023; 15:36. [PMID: 36668856 PMCID: PMC9864583 DOI: 10.3390/toxins15010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 01/22/2023] Open
Abstract
Fridericia chica (Bignoniaceae) is a Colombian Caribbean plant with numerous health benefits, including properties such as wound healing, immune system stimulation, and antioxidant capacity, among others. Mycotoxins alpha-zearalenol (α-ZEL) and beta-zearalenol (β-ZEL) are phase I metabolites of zearalenone, a natural product involved in endocrine disruption and cell proliferation processes. This study aimed to investigate the cytotoxic potential of the hydroethanolic extract of F. chica leaves (HEFc) and determine their protective effects against proliferation induced by α-ZEL and β-ZEL on human hepatoma HepG2, lung cancer Calu-1, and primary normal human epidermal keratinocytes, neonatal (HEKn). The cytotoxicity of HEFc was measured in a range from 4 to 1000 µg/mL and from 0.4 to 100 μM for both α-ZEL and β-ZEL. Cell production of intracellular ROS was monitored using the H2-DCFDA probe. The cells exposed to HEFc presented IC50 of 128, 249, and 602 µg/mL for the HepG2, Calu-1, and HEKn cells, respectively. A greater selectivity was seen in HepG2 cells [selectivity index (SI) = 3.5] than in Calu-1 cells (SI = 2.4). Cells treated with mycotoxins remained viable during the first day, and cell proliferation increased at low tested concentrations (0.4-6.3 µM) in all three cell lines. However, after 48 h treatment, cells exposed to 50 and 100 µM of α-ZEL and β-ZEL displayed decreased viability. HEFc at 16 µg/mL was able to give some protection against cytotoxicity induced by high concentrations of β-ZEL in HepG2, reducing also cell proliferation elicited at low levels of α-ZEL and β-ZEL. ROS production was not observed in cells treated with this HEFc concentration; however, it prevented ROS formation induced by treatment with 50 µM α-ZEL or β-ZEL. In summary, HEFc isolated from plants grown in northern Colombia displayed promising results against cell proliferation and oxidative stress caused by mycotoxins.
Collapse
Affiliation(s)
- Neda Alvarez-Ortega
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia (Spain)—Avda, Vicent Andrés Estellés, s/n. Burjassot, 46100 València, Spain
| | - Ana Juan-Garcia
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia (Spain)—Avda, Vicent Andrés Estellés, s/n. Burjassot, 46100 València, Spain
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| |
Collapse
|
9
|
Juan-García A, Pakkanen H, Juan C, Vehniäinen ER. Alterations in Daphnia magna exposed to enniatin B and beauvericin provide additional value as environmental indicators. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114427. [PMID: 36516623 DOI: 10.1016/j.ecoenv.2022.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Mycotoxins beauvericin (BEA) and enniatin B (ENN B) affect negatively several systems and demand more studies as the mechanisms are still unclear. The simultaneous presence of contaminants in the environment manifests consequences of exposure for both animals and flora. Daphnia magna is considered an ideal invertebrate to detect effects of toxic compounds and environmental alterations. In this study, the potential toxicity and the basic mechanism of BEA and ENN B individually and combined were studied in D. magna. Acute and delayed toxicity were evaluated, and transcript levels of genes involved in xenobiotic metabolism (mox, gst, abcb1, and abcc5), reproduction, and oxidative stress (vtg-SOD) were analyzed by qPCR. Though no acute toxicity was found, results revealed a spinning around and circular profile of swimming, a strong decrease of survival after 72 h for BEA and ENN B at 16 µM and 6.25 µM, respectively, while for BEA + ENN B [8 + 1.6] µM after 96 h. The amount of mycotoxin remaining in the media revealed that the higher the concentration assayed the higher the amount remaining in the media. Differential regulation of genes suggests that xenobiotic metabolism is affected denoting different effects on transcription for tested mycotoxins. The results provide new insights into the underlying risk assessment of BEA and ENN B not only through food for consumers but also for the environment.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain; Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, FI-40014 Jyväskylä, Finland.
| | - Hannu Pakkanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, FI-40014 Jyväskylä, Finland
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, FI-40014 Jyväskylä, Finland
| |
Collapse
|
10
|
Bryła M, Pierzgalski A, Zapaśnik A, Uwineza PA, Ksieniewicz-Woźniak E, Modrzewska M, Waśkiewicz A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2022; 11:3465. [PMID: 36360078 PMCID: PMC9659149 DOI: 10.3390/foods11213465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is one of the most susceptible crops to pathogenic fungal infections, and in particular to the Fusarium species. Secondary metabolites of Fusarium spp.-mycotoxins are not only phytotoxic, but also harmful to humans and animals. They can cause acute or chronic diseases with various toxic effects. The European Union member states apply standards and legal regulations on the permissible levels of mycotoxins in food and feed. This review summarises the most recent knowledge on the occurrence of toxic secondary metabolites of Fusarium in maize, taking into account modified forms of mycotoxins, the progress in research related to the health effects of consuming food or feed contaminated with mycotoxins, and also the development of biological methods for limiting and/or eliminating the presence of the same in the food chain and in compound feed.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Zapaśnik
- Department of Microbiology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|
11
|
Caballero-Gallardo K, Quintero-Rincón P, Stashenko EE, Olivero-Verbel J. Photoprotective Agents Obtained from Aromatic Plants Grown in Colombia: Total Phenolic Content, Antioxidant Activity, and Assessment of Cytotoxic Potential in Cancer Cell Lines of Cymbopogon flexuosus L. and Tagetes lucida Cav. Essential Oils. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131693. [PMID: 35807645 PMCID: PMC9269283 DOI: 10.3390/plants11131693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 05/02/2023]
Abstract
Photoprotective agents obtained from plants provide benefits for the health of the skin. The present study aims to assess the total phenolic content (TPC) and in vitro UV-protective properties of twelve essential oils (EOs) from plants grown in Colombia and to evaluate the antioxidant and cytotoxic potential of two species identified as photoprotective potentials: Cymbopogon flexuosus and Tagetes lucida. The composition of EOs was studied by GC/MS. The cytotoxicity of both EOs was examined using an MTT assay, and an H2-DCFDA probe was employed to estimate the intracellular production of ROS in HepG2 and Calu-1 cells. Major constituents (≥10%) were neral, geranial, geranyl acetate in C. flexuosus and estragole in T. lucida. The TPC for C. flexuosus and T. lucida EOs were ≥10 mg GAE/g of byproduct. Both EOs showed photoprotective properties (SPFin vitro: 13−14), and long-wavelength UVA protection (λc > 370 nm). HepG2 and Calu-1 cells exposed to C. flexuosus exhibited antiproliferative activity (˂50%) at 125 µg/mL, while T. lucida was at 250 and 500 µg/mL. The IC50 values for C. flexuosus were 75 and 100 µg/mL in HepG2 and Calu-1 cells, respectively, whereas those for T. lucida were >250 µg/mL. These EOs achieved significant inhibitory effects (between 15.6 and 40.4%) against H2O2-induced oxidative stress. The results showed that EO compounds recognized as antioxidants could counteract the effects elicited by H2O2.
Collapse
Affiliation(s)
- Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; (K.C.-G.); (P.Q.-R.)
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Patricia Quintero-Rincón
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; (K.C.-G.); (P.Q.-R.)
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Elena E. Stashenko
- Center for Chromatography and Mass Spectrometry CROM-MASS, Research Center for Biomolecules CIBIMOL, School of Chemistry, Universidad Industrial de Santander, Bucaramanga 680006, Colombia;
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; (K.C.-G.); (P.Q.-R.)
- Correspondence:
| |
Collapse
|
12
|
Agahi F, Penalva-Olcina R, Font G, Juan-García A, Juan C. Effects of Voghiera garlic extracts in neuronal human cell line against zearalenone's derivates and beauvericin. Food Chem Toxicol 2022; 162:112905. [PMID: 35257812 DOI: 10.1016/j.fct.2022.112905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
The Fusarium toxins constitute one of the largest groups of mycotoxins produced by Fusarium species, which are major pathogens of cereal plants. In the present study neuroprotection effect of Allium sativum L garlic extract which is known as Voghiera garlic, from a local garlic ecotype of Ferrara (Italy) was examined on an undifferentiated SH-SY5Y neuronal cells against ZEA's metabolites (α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL)) and beauvericin (BEA) mycotoxins which are considered as the most reported Fusarium mycotoxins, via MTT (3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, over 24 h and 48 h through direct treatment, simultaneous treatment and pre-treatment strategies. The results demonstrated remarkable improvement in cells viability in simultaneous and pre-treatment strategy with Voghiera garlic extract (VGE); specifically, for simultaneous treatment of VGE with β-ZEL which viability increased significantly up to 56%, and subsequently with α-ZEL and BEA by up to 38% and 37% respectively, compared to each mycotoxin tested alone for their highest concentrations assayed, while direct treatments for each mycotoxins individually decreased significantly (for α-ZEL up to 69%, for β-ZEL 82% and for BEA up to 43%). It is proposed by the present study that VGE extract found to be effective in reducing the cytotoxicity/neurotoxicity of α-ZEL, β-ZEL and BEA mycotoxins encountered in food and feed commodity.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
13
|
Yang G, Wang Y, Wang T, Wang D, Weng H, Wang Q, Chen C. Variations of enzymatic activity and gene expression in zebrafish (Danio rerio) embryos co-exposed to zearalenone and fumonisin B1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112533. [PMID: 34303040 DOI: 10.1016/j.ecoenv.2021.112533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The natural co-occurrence of multiple mycotoxins has been reported in cereals and cereal products worldwide. Even though the dietary exposure to mycotoxins constitutes a serious human health, most reports are limited to the toxic effect of individual mycotoxins. The purpose of the present study was to assess the combined toxic effects of zearalenone (ZEN) and fumonisin B1 (FB1) and the potential interaction of their mixture on zebrafish (Danio rerio) embryos. Our results showed that ZEN possessed the higher toxicity to embryonic zebrafish (7-day LC50 value of 0.78 mg a.i. L-1) compared with FB1 (7-day LC50 value of 227.7 mg a.i. L-1). The combination of ZEN and FB1 exerted an additive effect on zebrafish embryos. Meanwhile, the activities of antioxidant CAT, caspase-3, and detoxification enzyme CYP450, as well as the expressions of six genes (Mn-sod, cas9, bax, cc-chem, ERα, and crh) associated with oxidative stress, cellular apoptosis, immune system, and endocrine system were prominently altered in the mixture exposure compared with the corresponding single treatment group of ZEN or FB1. Taken together, the regulatory standards of mycotoxins in food and feed should be updated based on the mixture effects of mycotoxins, and there is an increased need on effective detoxification methods for controlling and reducing the toxicity of multiple mycotoxins in animal feed and throughout the food supply chain.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Tiancai Wang
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chen Chen
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Public Health, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
14
|
Xu J, Li S, Jiang L, Gao X, Liu W, Zhu X, Huang W, Zhao H, Wei Z, Wang K, Yang Z. Baicalin protects against zearalenone-induced chicks liver and kidney injury by inhibiting expression of oxidative stress, inflammatory cytokines and caspase signaling pathway. Int Immunopharmacol 2021; 100:108097. [PMID: 34521024 DOI: 10.1016/j.intimp.2021.108097] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
Zearalenone (ZEA) is a secondary metabolite produced by fungi such as Fusarium and Fusarium flavum, which is classified as a mycotoxin. Crops and feed in a humid surrounding are widely polluted by ZEA, which further endangering the healthful aquaculture of poultry and even human health. Up to now, prevention and cure of mycotoxicosis is still a crucial subject of poultry husbandry. Baicalin (BAI) is a flavonoid refined from dried roots of Scutellaria baicalensis possessing the function of hepatoprotective, anti-inflammatory, anti-oxidant, and anti-atherosclerotic efficacies.etc. But whether Baicalin also has a protective effect against ZEA intoxication is unclear. Therefore, the aim of this study was to establish a model of ZEA-induced toxic injury in chicks, and then to investigate the way in which Baicalin plays a protective role in the mechanism of ZEA-induced liver and kidney injury in chicks. The results exhibit that Baicalin could not only significantly decrease aspartate aminotransferase (AST) , alanine aminotransferase (ALT) and creatinine (Cre) levels in serum, but also ameliorate ZEA-induced pathologic changes of liver and kidney. Baicalin could also significantly regulate ZEA-induced the changes of catalase (CAT) , malondialdehyde (MDA) , total sulfhydryl group , except for glutathione peroxidase (GSH-px) , and inhibit the mRNA levels of inflammatory cytokines tumor necrosis factor-α (TNF-α) , interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) with caspase-3 and caspase-11 in the caspase signaling pathway , meanwhile inhibit the cell apoptosis in immunohistochemistry. In summary, we successfully established a model of ZEA-induced liver injury in chicks, and confirm that Baicalin can reduce ZEA-induced liver and kidney injury in chicks. The mechanism of these effects is via inhibiting inflammation, oxidative stress and apoptosis, which also indicates the potential applicability of Baicalin for the prevention and treatment of ZEA-induced toxicity in chicks.
Collapse
Affiliation(s)
- Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Shurou Li
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Xinxin Gao
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Wei Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Xingyi Zhu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Wenlong Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Haiguang Zhao
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China
| | - Kai Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China.
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, PR China.
| |
Collapse
|
15
|
Juan-García A, Juan C, Bind MA, Engert F. Study of locomotion response and development in zebrafish (Danio rerio) embryos and larvae exposed to enniatin A, enniatin B, and beauvericin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146075. [PMID: 33677298 PMCID: PMC8154722 DOI: 10.1016/j.scitotenv.2021.146075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 05/12/2023]
Abstract
Mycotoxins are secondary metabolites produced by a variety of fungi that contaminate food and feed resources, and are capable of inducing a wide range of toxicity. Here, we studied the developmental and behavioral toxicity in zebrafish (Danio rerio) embryos and larvae exposed to three mycotoxins: beauvericin (BEA), Enniatin A (ENN A), and Ennitain B (ENN B). Zebrafish embryos were collected after fertilization, treated individually from 1 to 6 dpf with BEA at 8, 16, 32 and, 64 μM and for both enniatins at 3.12, 6.25, 12.5 and, 25 μM. Mixture of mycotoxins were assayed as follows: i) for BEA + ENN A and BEA + ENN B at [32 + 12.5] μM and [16 + 6.25] μM; ii) for ENN A + ENN B at [12.5 + 12.5] μM and [6.25 + 6.25] μM and, iii) for BEA + ENN A + ENN B at [32 + 12.5 + 12.5] μM and [16 + 6.25 + 6.25] μM. Response was collected after a white light-flash intermittent coming on for 5 s during 2 h with a imaging platform. Outcomes measured were: time to death, response to light, and circadian rhythm. This last outcome was measured in a plate where embryos had evolved in natural intervals of light and dark until day 7 or in a plate maintained in darkness. Images of all stages and evolution were collected. Results indicated that mycotoxins induced toxicity at the concentrations tested. All exposed zebrafish induced developmental defects, specifically hatching time and motion activity. After exposure, fish showed enhanced baseline activity but they lost their responsiveness to light.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA.
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Marie-Abèle Bind
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA
| |
Collapse
|
16
|
Pérez-Fuentes N, Alvariño R, Alfonso A, González-Jartín J, Gegunde S, Vieytes MR, Botana LM. Single and combined effects of regulated and emerging mycotoxins on viability and mitochondrial function of SH-SY5Y cells. Food Chem Toxicol 2021; 154:112308. [PMID: 34062223 DOI: 10.1016/j.fct.2021.112308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
Co-occurrence of emerging and regulated mycotoxins in contaminated samples has been widely documented, but studies about their combined toxicity are scarce. In this report, the regulated mycotoxins deoxynivalenol, fumonisin B1 and zearalenone, and the emerging ones enniatin A, enniatin B and beauvericin were tested in SH-SY5Y human neuroblastoma cells. Their individual and binary combined effects on cell viability and mitochondrial function were evaluated. The results with individual mycotoxins revealed that deoxynivalenol and emerging mycotoxins were the most damaging to neuronal cells, presenting IC50 values between 0.35 and 2.4 μM. Interestingly, non-regulated mycotoxins triggered apoptosis by affecting to mitochondrial membrane potential. However, when regulated and non-regulated mycotoxins were binary mixed, antagonistic effects were found in all cases. Finally, cow feed and milk extracts were analysed by UHPLC-MS/MS, detecting the presence of several mycotoxins included in this study. These extracts were tested in neuroblastoma cells, and damaging effects on cell viability were found. Although binary combinations of mycotoxins produced antagonistic effects, their mixture in natural matrixes induces greater effects than expected. Therefore, it would be interesting to explore the matrix influence on mycotoxin toxicity, and to continue studying the neurotoxic mechanism of action of emerging mycotoxins, as they could be a health hazard.
Collapse
Affiliation(s)
- Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain.
| | - Jesús González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| | - Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| |
Collapse
|
17
|
Alonso-Garrido M, Frangiamone M, Font G, Cimbalo A, Manyes L. In vitro blood brain barrier exposure to mycotoxins and carotenoids pumpkin extract alters mitochondrial gene expression and oxidative stress. Food Chem Toxicol 2021; 153:112261. [PMID: 34015425 DOI: 10.1016/j.fct.2021.112261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022]
Abstract
Food and feed are daily exposed to mycotoxin contamination which effects may be counteracted by antioxidants like carotenoids. Some mycotoxins as well as carotenoids penetrate the blood brain barrier (BBB) inducing alterations related to redox balance in the mitochondria. Therefore, the in vitro BBB model ECV304 was subcultured for 7 days and exposed to beauvericine, enniatins, ochratoxin A, zearalenone (100 nM each), individually and combined, and pumpkin extract (500 nM). Reactive oxygen species were measured by fluorescence using the dichlorofluorescein diacetate probe at 0 h, 2 h and 4 h. Intracellular ROS generation reported was condition dependent. RNA extraction was performed and gene expression was analyzed by qPCR after 2 h exposure. The selected genes were related to the Electron Transport Chain (ETC) and mitochondrial activity. Gene expression reported upregulation for exposures including mycotoxins plus pumpkin extract versus individual mycotoxins. Beauvericin and Beauvericin-Enniatins exposure significantly downregulated Complex I and pumpkin addition reverted the effect upregulating Complex I. Complex IV was the most downregulated structure of the ETC. Thioredoxin Interacting Protein was the most upregulated gene. These data confirm that mitochondrial processes in the BBB could be compromised by mycotoxin exposure and damage could be modulated by dietary antioxidants like carotenoids.
Collapse
Affiliation(s)
- M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - M Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain.
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| |
Collapse
|
18
|
Agahi F, Juan-García A, Font G, Juan C. Study of enzymatic activity in human neuroblastoma cells SH-SY5Y exposed to zearalenone's derivates and beauvericin. Food Chem Toxicol 2021; 152:112227. [PMID: 33878370 DOI: 10.1016/j.fct.2021.112227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022]
Abstract
Beauvericin (BEA), α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL), are produced by several Fusarium species that contaminate cereal grains. These mycotoxins can cause cytotoxicity and neurotoxicity in various cell lines and they are also capable of produce oxidative stress at molecular level. However, mammalian cells are equipped with a protective endogenous antioxidant system formed by no-enzymatic antioxidant and enzymatic protective systems such as glutathione peroxidase (GPx), glutathione S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD). The aim of this study was evaluating the effects of α-ZEL, β-ZEL and BEA, on enzymatic GPx, GST, CAT and SOD activity in human neuroblastoma cells using the SH-SY5Y cell line, over 24 h and 48 h with different treatments at the following concentration range: from 1.56 to 12.5 μM for α-ZEL and β-ZEL, from 0.39 to 2.5 μM for BEA, from 1.87 to 25 μM for binary combinations and from 3.43 to 27.5 μM for tertiary combination. SH-SY5Y cells exposed to α-ZEL, β-ZEL and BEA revealed an overall increase in the activity of i) GPx, after 24 h of exposure up to 24-fold in individual treatments and 15-fold in binary combination; ii) GST after 24 h of exposure up to 10-fold (only in combination forms), and iii) SOD up to 3.5- and 5-fold in individual and combined treatment, respectively after 48 h of exposure. On the other hand, CAT activity decreased significantly in all treatments up to 92% after 24 h except for β-ZEL + BEA, which revealed the opposite.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
19
|
Agahi F, Juan C, Font G, Juan-García A. Neurotoxicity of zearalenone's metabolites and beauvericin mycotoxins via apoptosis and cell cycle disruption. Toxicology 2021; 456:152784. [PMID: 33872728 DOI: 10.1016/j.tox.2021.152784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
Cell cycle progression and programmed cell death are imposed by pathological stimuli of extrinsic or intrinsic including the exposure to neurotoxins, oxidative stress and DNA damage. All can cause abrupt or delayed cell death, inactivate normal cell survival or cell death networks. Nevertheless, the mechanisms of the neuronal cell death are unresolved. One of the cell deaths triggers which have been wildly studied, correspond to mycotoxins produced by Fusarium species, which have been demonstrated cytotoxicity and neurotoxicity through impairing cell proliferation, gene expression and induction of oxidative stress. The aim of present study was to analyze the cell cycle progression and cell death pathway by flow cytometry in undifferentiated SH-SY5Y neuronal cells exposed to α-zearalenol (α-ZEL), β-zearalenol (β-ZEL) and beauvericin (BEA) over 24 h and 48 h individually and combined at the following concentration ranges: from 1.56 to 12.5 μM for α-ZEL and β-ZEL, from 0.39 to 2.5 μM for BEA, from 1.87 to 25 μM for binary combinations and from 3.43 to 27.5 μM for tertiary combination. Alterations in cell cycle were observed remarkably for β-ZEL at the highest concentration in all treatments where engaged (β-ZEL, β-ZEL + BEA and β-ZEL + α-ZEL), for both 24 h and 48 h. by activating the cell proliferation in G0/G1 phase (up to 43.6 %) and causing delays or arrests in S and G2/M phases (up to 19.6 %). Tertiary mixtures revealed increases of cell proliferation in subG0 phase by 4-folds versus control. Similarly, for cell death among individual treatments β-ZEL showed a significant growth in early apoptotic cells population at the highest concentration assayed as well as for all combination treatments where β-ZEL was involved, in both early apoptotic and apoptotic/necrotic cell death pathways.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
20
|
Juan-García A, Agahi F, Drakonaki M, Tedeschi P, Font G, Juan C. Cytoprotection assessment against mycotoxins on HepG2 cells by extracts from Allium sativum L. Food Chem Toxicol 2021; 151:112129. [PMID: 33737112 DOI: 10.1016/j.fct.2021.112129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Cytoprotection effects of Allium sativum L garlic extract from a local garlic ecotype from Ferrara (Italy) on hepatocarcinoma cells, HepG2 cells, is presented in this study. This garlic type is known as Voghiera garlic and has been characterized as PDO (Protected designation of Origin) product. Voghiera garlic extract (VGE) was evaluated against beauvericin (BEA) and two zearalenone (ZEA) metabolites (α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL))-induced cytotoxicity on HepG2 cells by the MTT (3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, over 24 h and 48 h. Direct treatment, simultaneous treatment and pre-treatment strategies at the dilution 1:16-1:00 for VGE and at the concentration range from 0.08 to 2.5 μM for BEA and from 1.6 to 50 μM for both α-ZEL and β-ZEL were tested. Individual IC50 values were detected at all times assayed for BEA (>0.75 μM) and VGE (dilution upper 1:8) while this was not observed for ZEA's metabolites. When simultaneous strategy of VGE + mycotoxin was tested, cytoprotection with increases of viability (upper 50%) were observed. Lastly, in pre-treatment strategy with VGE, viability of HepG2 cells was significantly protected when α-ZEL was tested. As a result, the greatest cytoprotective effect of VGE in HepG2 cells is obtained when simultaneous treatment strategy was performed.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Maria Drakonaki
- Department of Food Technology, Faculty of Food Technology and Nutrition, University of West Attica, Greece
| | - Paola Tedeschi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121, Ferrara, Italy
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| |
Collapse
|
21
|
Agahi F, Juan C, Font G, Juan-García A. In silico methods for metabolomic and toxicity prediction of zearalenone, α-zearalenone and β-zearalenone. Food Chem Toxicol 2020; 146:111818. [PMID: 33098936 PMCID: PMC7576377 DOI: 10.1016/j.fct.2020.111818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Zearalenone (ZEA), α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) (ZEA's metabolites) are co/present in cereals, fruits or their products. All three with other compounds, constitute a cocktail-mixture that consumers (and also animals) are exposed and never entirely evaluated, nor in vitro nor in vivo. Effect of ZEA has been correlated to endocrine disruptor alterations as well as its metabolites (α-ZEL and β-ZEL); however, toxic effects associated to metabolites generated once ingested are unknown and difficult to study. The present study defines the metabolomics profile of all three mycotoxins (ZEA, α-ZEL and β-ZEL) and explores the prediction of their toxic effects proposing an in silico workflow by using three programs of predictions: MetaTox, SwissADME and PASS online. Metabolomic profile was also defined and toxic effect evaluated for all metabolite products from Phase I and II reaction (a total of 15 compounds). Results revealed that products describing metabolomics profile were: from O-glucuronidation (1z and 2z for ZEA and 1 ab, 2 ab and 3 ab for ZEA's metabolites), S-sulfation (3z and 4z for ZEA and 4 ab, 5 ab and 6 ab for ZEA's metabolites) and hydrolysis (5z and 7 ab for ZEA's metabolites, respectively). Lipinsky's rule-of-five was followed by all compounds except those coming from O-glucuronidation (HBA>10). Metabolite products had better properties to reach blood brain barrier than initial mycotoxins. According to Pa values (probability of activation) order of toxic effects studied was carcinogenicity > nephrotoxic > hepatotoxic > endocrine disruptor > mutagenic (AMES TEST) > genotoxic. Prediction of inhibition, induction and substrate function on different isoforms of Cytochrome P450 (CYP1A1, CYP1A2, CYP2C9 and CYP3A4) varied for each compounds analyzed; similarly, for activation of caspases 3 and 8. Relying to our findings, the metabolomics profile of ZEA, α-ZEL and β-ZEL analyzed by in silico programs predicts alteration of systems/pathways/mechanisms that ends up causing several toxic effects, giving an excellent sight and direct studies before starting in vitro or in vivo assays contributing to 3Rs principle; however, confirmation can be only demonstrated by performing those assays.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
22
|
Juan C, de Simone G, Sagratini G, Caprioli G, Mañes J, Juan-García A. Reducing the effect of beauvericin on neuroblastoma SH-SY5Y cell line by natural products. Toxicon 2020; 188:164-171. [PMID: 33164869 DOI: 10.1016/j.toxicon.2020.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022]
Abstract
In the present work, different natural compounds from coffee by-product extracts (coffee silverskin and spent coffee) rich in polyphenols, was investigated against beauvericin (BEA) induced-cytotoxicity on SH-SY5Y cells. Spent coffee arise as waste products through the production of instant coffee and coffee brewing; while the silverskin is a tegument which is removed and eliminated with toasting coffee grains. First of all, polyphenol extraction methods, measurement of total polyphenols content and its identification were carried out. Afterwards evaluating in vitro effects with MTT assay on SH-SY5Y cells of coffee by-product extracts and mycotoxins at different concentrations and exposure times was performed. TPC in silverskin coffee by-product extracts was >10 times higher than in spent coffee by-product extracts. Chlorogenic acid was the majority polyphenol detected. Viability for BEA reached IC50 values at 72h (2.5 μM); boiling water silverskin coffee extract reached the highest viability also in pre-treatment BEA exposure and compared with MeOH and MeOH:H2O (v/v, 50:50) extracts. These results in SH-SY5Y cells highlight the use of such residues as supplements or bioactive compounds in the future.
Collapse
Affiliation(s)
- Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Gaia de Simone
- Laboratory of Food Chemistry, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Gianni Sagratini
- Laboratory of Food Chemistry, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Giovanni Caprioli
- Laboratory of Food Chemistry, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| |
Collapse
|