1
|
Tsai CL, Chien CY, Pan CY, Tseng YT, Wang TC, Lin TK. Effects of long-term Tai Chi vs. aerobic exercise on antioxidant activity and cognitive function in individuals with Parkinson's disease. Behav Brain Res 2025; 476:115274. [PMID: 39332640 DOI: 10.1016/j.bbr.2024.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
An imbalance between the generation of reactive oxygen species and the body's antioxidant defense mechanisms is closely related to the development and progression of Parkinson's disease (PD). Considering that physical exercise is a potential therapeutic intervention for modulating oxidative stress markers and cognitive function in PD, the primary purpose of this study was to compare the effects of different long-term exercise modalities on antioxidants and cognitive performance in patients with PD. In addition, the secondary purpose was to explore whether changes in the levels of these biochemical markers are associated with alterations in cognitive performance pre- and post-intervention. In all, 61 participants were randomly divided into the aerobic exercise (AE, n=20), Tai Chi exercise (TCE, n=21), or control (n=20) group. Blood samples were collected before and after a 12-week intervention period for the analysis of antioxidant markers [leukocyte 8-hydroxydeoxyguanosine (8-OHdG), catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-Px), oxidized glutathione (GSSG), superoxide dismutase (SOD), and uric acid (UA)]. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Although no significant changes were observed in the activity of 8-OhdG, GSH-Px, GSSG, GSH:GSSG ratio, SOD, and cognitive performance in the AE and TCE groups, the 12-week AE intervention led to a significant increase in CAT and GSH levels, along with a significantly decrease in UA levels among individuals with PD. Conversely, the TCE intervention resulted in a significant increase in GSH levels. However, SOD activity and MMSE scores were significantly decreased after 12 weeks in the control group. The correlations between changes in MMSE scores and changes in the levels of GSH and UA prior to and after the intervention reached significance in the AE group. Thus, long-term AE and TCE might serve as effective strategies for reducing oxidative damage and preserving cognitive function in PD, with AE exhibiting greater benefits compared with TCE. These findings hold potential clinical relevance as complementary measures to standard medical treatments and alternative therapies, such as antioxidant supplements and dietary adjustments, particularly for individuals in the early stages of PD.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Taiwan; Department of Psychology, National Cheng Kung University, Taiwan.
| | - Chung-Yao Chien
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan
| | - Chien-Yu Pan
- Department of Physical Education, National Kaohsiung Normal University, Taiwan
| | - Yu-Ting Tseng
- Department of Kinesiology, National Tsing Hua University, Taiwan
| | - Tsai-Chiao Wang
- General Research Service Center, National Pingtung University of Science and Technology, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Taiwan; Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Taiwan.
| |
Collapse
|
2
|
Abolarin PO, Amin A, Nafiu AB, Ogundele OM, Owoyele BV. Optimization of Parkinson's disease therapy with plant extracts and nutrition's evolving roles. IBRO Neurosci Rep 2024; 17:1-12. [PMID: 38872839 PMCID: PMC11167367 DOI: 10.1016/j.ibneur.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Death of dopaminergic cells in the SNpc leads to manifestations of motor dysfunction and non-motor symptoms of PD. The progression of PD symptoms severely affects the quality of life of patients and poses socio-economic problems to families and society at large. The clinical and neuropathological characteristics of PD are triggered by multiple factors such as oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein aggregation. Notwithstanding the advancements in pharmacological therapy in PD management, there is burgeoning interest in alternative and complementary approaches, essentially nutrition and plant extracts strategies. This review gives widespread analysis of the role of nutrition and plant extracts in the management of PD. Studies that investigated the effects of various dietary compounds and plant extract on PD symptoms and progression were reviewed from existing literatures. Nutraceuticals, including vitamins and phytochemicals such as Mucuna pruriens have shown potential neuroprotective functions in preclinical and clinical studies. Indeed, these strategies ameliorate mitochondrial dysfunction, oxidative stress, and neuroinflammation, all which are implicated in the pathogenesis of PD. The neuroprotective mechanisms of nutrition and plant extracts in PD, with emphasis on their capacity to target multiple pathways implicated in PD are discussed. Additionally, challenges and limitations related with translating preclinical findings into clinical practice including standardization of dosing regimens, bioavailability, and inter-individual variability are discussed. Largely, this review elucidates on the role of nutrition and plant extracts as adjunctive therapy in PD management.
Collapse
Affiliation(s)
- Patrick Oluwole Abolarin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | | | - Olalekan Michael Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Bamidele Victor Owoyele
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
3
|
Sandeep, Subba R, Mondal AC. Does COVID-19 Trigger the Risk for the Development of Parkinson's Disease? Therapeutic Potential of Vitamin C. Mol Neurobiol 2024; 61:9945-9960. [PMID: 37957424 DOI: 10.1007/s12035-023-03756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which was proclaimed a pandemic by the World Health Organization (WHO) in March 2020. There is mounting evidence that older patients with multimorbidity are more susceptible to COVID-19 complications than are younger, healthy people. Having neuroinvasive potential, SARS-CoV-2 infection may increase susceptibility toward the development of Parkinson's disease (PD), a progressive neurodegenerative disorder with extensive motor deficits. PD is characterized by the aggregation of α-synuclein in the form of Lewy bodies and the loss of dopaminergic neurons in the dorsal striatum and substantia nigra pars compacta (SNpc) of the nigrostriatal pathway in the brain. Increasing reports suggest that SARS-CoV-2 infection is linked with the worsening of motor and non-motor symptoms with high rates of hospitalization and mortality in PD patients. Common pathological changes in both diseases involve oxidative stress, mitochondrial dysfunction, neuroinflammation, and neurodegeneration. COVID-19 exacerbates the damage ensuing from the dysregulation of those processes, furthering neurological complications, and increasing the severity of PD symptomatology. Phytochemicals have antioxidant, anti-inflammatory, and anti-apoptotic properties. Vitamin C supplementation is found to ameliorate the common pathological changes in both diseases to some extent. This review aims to present the available evidence on the association between COVID-19 and PD, and discusses the therapeutic potential of vitamin C for its better management.
Collapse
Affiliation(s)
- Sandeep
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rhea Subba
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Niu F, Xie W, Zhang W, Kawuki J, Yu X. Vitamin C, vitamin E, β-carotene and risk of Parkinson's disease: a systematic review and dose-response meta-analysis of observational studies. Nutr Neurosci 2024; 27:329-341. [PMID: 36961747 DOI: 10.1080/1028415x.2023.2192561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
OBJECTIVE This study aimed to explore the relationship between the intake of vitamin C, vitamin E and β-carotene, and the risk of Parkinson's disease (PD). METHODS Web of Science, Embase, PubMed, Cochrane library, CNKI, and WanFang databases were searched from inception to 29 August 2022 for observational studies reporting the odds ratios (ORs) or relative risks (RRs) or hazard ratios (HRs) and 95% confidence intervals (CIs) of PD by Vitamin C/Vitamin E/β-carotene intake. Random-effects models, publication bias assessment, subgroup, sensitivity and dose-response analyses were performed, using.Stata version 12.0. RESULTS A total of 13 studies were included. There was no significant association between high-dose vitamin C intake and the risk of PD compared with low-dose vitamin C intake (RR = 0.98, 95%CI:0.89,1.08). Compared with low-dose intake, high-dose intake of vitamin E can prevent the risk of PD (RR = 0.87, 95%CI:0.77,0.99). Compared with lower β-carotene intake, there was a borderline non-significant correlation between higher intake and PD risk (RR = 0.91, 95%CI:0.82,1.01), and high dose β-carotene intake was found to be associated with a lower risk of PD in women (RR = 0.78, 95%CI:0.64,0.96). CONCLUSION This study shows that vitamin E intake can reduce the risk of PD and play a preventive role.
Collapse
Affiliation(s)
- Fang Niu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Weihua Xie
- Department of Quality Management, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weili Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Joseph Kawuki
- Centre for Health Behaviours Research, JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Xiaojin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Mthana MS, Mthiyane DMN. Low dietary oyster mushroom spent substrate limitedly ameliorates detrimental effects of feeding combined marula seed cake and mucuna seed meal as soya bean replacements in broiler chickens. Trop Anim Health Prod 2024; 56:37. [PMID: 38194011 PMCID: PMC10776489 DOI: 10.1007/s11250-023-03878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
This study investigated ameliorative effects of dietary oyster mushroom (Pleurotus ostreatus) spent substrate (OMSS) in broiler chickens fed diets supplemented with combined marula seed cake (MSC) and mucuna seed meal (MSM) replacing soya bean meal (SBM). In a completely randomised design (CRD), 400 day-old Ross 308 chicks were randomly allocated to 5 iso-nitrogenous-energetic diets (control with 100% SBM, control with 60% MSC and 40% MSM replacing SBM (MSC + MSM), MSC + MSM with 1.25% OMSS, MSC + MSM with 2.5% OMSS, and MSC + MSM with 5% OMSS) each with 8 replicate pens of 10 during starter, grower and finisher phases. Dietary MSC + MSM decreased (P < 0.001) feed intake (FI), body weight gain (BWG), and feed conversion efficiency (FCE); slaughter weight, hot carcass weight (HCW), cold carcass weight (CCW), breast weight, and back lengths (P < 0.001); serum SDMA and alanine transaminase (P < 0.05). In contrast, it increased the weights of the thigh (P < 0.001), wing (P < 0.01), liver (P < 0.001), proventriculus (P < 0.001), gizzard (P < 0.001), duodenum (P < 0.001), jejunum (P < 0.001), ileum (P < 0.001), and caecum (P < 0.01) and serum alkaline phosphatase (P < 0.05) and cholesterol (P < 0.01). Further, it increased meat redness and decreased its hue angle at 45 min post-slaughter (P < 0.01) whilst it decreased its pH (P < 0.01) and increased its shear force (P < 0.05) at 24 h post-slaughter. Compared to higher levels, low (1.25%) dietary OMSS improved, though limitedly, FI, BWG, and FCE at grower and finisher phases only (P < 0.001) whilst it reversed MSC plus MSM-induced deleterious effects on slaughter weight, HCW, and CCW (P < 0.001) and increases in gizzard weight (P < 0.001) and meat shear force at 24 h post-slaughter (P < 0.05). Otherwise, OMSS generally decreased (P < 0.05) serum SDMA and alanine transaminase whilst it abrogated and augmented increases in serum alkaline phosphatase (P < 0.05) and cholesterol (P < 0.01), respectively, and reversed the increase and decrease in meat redness (P < 0.01) and hue angle (P < 0.05), respectively. In conclusion, dietary replacement of SBM with combined MSC plus MSM induced deleterious effects in broiler chickens that were limitedly abrogated by low (1.25%) inclusion level of OMSS.
Collapse
Affiliation(s)
- Makiwa Simeon Mthana
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X 2046, Mmabatho, 2735, South Africa
| | - Doctor Mziwenkosi Nhlanhla Mthiyane
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X 2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Mmabatho, 2735, South Africa.
| |
Collapse
|
6
|
Briñez-Gallego P, da Costa Silva DG, Horn AP, Hort MA. Effects of curcumin to counteract levodopa-induced toxicity in zebrafish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:950-964. [PMID: 37767720 DOI: 10.1080/15287394.2023.2261120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction due to the death of dopaminergic neurons in the substantia nigra pars compacta. Currently, treatment of PD has focused on increasing dopamine levels, using a dopamine precursor, levodopa (L-DOPA) or stimulation of dopaminergic receptors. Prolonged use of L-DOPA is associated with the occurrence of motor complications and dyskinesia, attributed to neurotoxic effects of this drug. The aim of this study was to investigate the effects of curcumin (CUR), a lipophilic polyphenol, to counteract L-DOPA induced toxicity. Zebrafish larvae were pre-treated with CUR (0.05 µM) or vehicle dimethyl sulfoxide (DMSO) for 24 hr and subsequently exposed to L-DOPA (1 mM) or vehicle. Immediately and 24 hr after L-DOPA exposure, spontaneous swimming and dark/light behavioral tests were performed. In addition, levels of reactive oxygen species (ROS) and lipid peroxidation products were determined at the end of treatment. CUR significantly improved the motor impairment induced by 24 hr L-DOPA treatment, and reduced levels of ROS and lipoperoxidation products in zebrafish larvae. In conclusion, our results suggest that CUR acts as a neuroprotector against toxicity initiated by L-DOPA. Evidence suggests the observed effects of CUR are associated with its antioxidant properties.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| |
Collapse
|
7
|
Vilairat C, Kobtrakul K, Vimolmangkang S. Enhanced Physicochemical Stability of the L-DOPA Extract of Mucuna pruriens Seeds by Adding Phyllanthus emblica. Molecules 2023; 28:molecules28041573. [PMID: 36838562 PMCID: PMC9961372 DOI: 10.3390/molecules28041573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Levodopa (L-DOPA) is an essential drug for the treatment of Parkinson's disease. Currently, L-DOPA can be produced by chemical synthesis and can also be found naturally in many herbs, especially Mucuna Pruriens (MP). According to clinical research, the MP extract containing L-DOPA for the treatment of Parkinson's disease could reduce side effects more than the synthetic one. Unfortunately, MP extracts can be easily degraded. Changes in physical and chemical properties such as the appearance (color, melt, solid lump) and the reduction of L-DOPA content in the extract were commonly observed. Therefore, it is necessary to develop an extraction procedure to stabilize the extract of L-DOPA. This study attempted to enhance the extraction process by modifying the traditional acidification approach using hydrochloric acid, citric acid, or ascorbic acid. According to the stability test results, using Phyllanthus emblica water (PEW) as a solvent improved the preservative properties more than other solvents. The color of the PEW-MP powder changed slightly after 12 months of accelerated storage, but the amount of L-DOPA remained the highest (73.55%). Moreover, L-DOPA was only detected in MP and PEW-MP, but not PEW alone (the HPTLC chromatogram at Rf 0.48 and the HPLC chromatogram at Rt 6.0 min). The chemical profiles of PEW and L-DOPA observed in the chromatograms indicated that they are independently separated. As a result, they can be applied to a quality control process. Therefore, PEW was proven to be a powerful solvent for L-DOPA herbal extract that could be readily used as a raw material for herbal products.
Collapse
Affiliation(s)
- Chayarit Vilairat
- Graduate Program in Pharmaceutical Science and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khwanlada Kobtrakul
- Graduate Program in Pharmaceutical Science and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sornkanok Vimolmangkang
- Center of Excellence in Plant-Produced Pharmaceuticals, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-2188-358
| |
Collapse
|
8
|
Abrishamdar M, Farbood Y, Sarkaki A, Rashno M, Badavi M. Evaluation of betulinic acid effects on pain, memory, anxiety, catalepsy, and oxidative stress in animal model of Parkinson's disease. Metab Brain Dis 2023; 38:467-482. [PMID: 35708868 DOI: 10.1007/s11011-022-00962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/11/2022] [Indexed: 01/25/2023]
Abstract
Parkinson's disease (PD) is known for motor impairments. Betulinic acid (BA) is a natural compound with antioxidant activity. The present study addresses the question of whether BA affects motor and non-motor dysfunctions and molecular changes in the rat model of PD. The right medial forebrain bundle was lesioned by injection of 6-hydroxydopamine in Male Wistar rats (10-12 weeks old, 270-320 g). Animals were divided into Sham, PD, 3 treated groups with BA (0.5, 5, and 10 mg/kg, IP), and a positive control group received L-dopa (20 mg/kg, P.O) for 7 days. rigidity, anxiety, analgesia, and memory were assessed by bar test, open-field, elevated plus-maze (EPM), tail-flick, and shuttle box. Additionally, the malondialdehyde (MDA), Superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, Brain-derived neurotrophic factor (BDNF) and Interleukin 10 (IL10) levels in the whole brain were measured. BA significantly reversed the 6-hydroxydopamine-induced motor and memory complication in the bar test and shuttle box. It modified anxiety-like behavior neither in open-field nor in EPM. It only decreased the time spent in open arms. Moreover, no significant changes were found in the tail-flick between treatment and sham groups. On the other hand, the level of MDA & IL10 were decreased, while the activity of GPx levels of SOD & BDNF in the rats' brains was increased. Our results showed that BA as a free radical scavenger can account for a possible promise as a good therapeutic agent for motor and non-motor complications in PD however further studies may be needed.
Collapse
Affiliation(s)
- M Abrishamdar
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Medicine Faculty and Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - A Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Rashno
- Department of Immunulogy, Cellular and Molecular Research Center, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Badavi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Agnieszka W, Paweł P, Małgorzata K. How to Optimize the Effectiveness and Safety of Parkinson's Disease Therapy? - A Systematic Review of Drugs Interactions with Food and Dietary Supplements. Curr Neuropharmacol 2022; 20:1427-1447. [PMID: 34784871 PMCID: PMC9881082 DOI: 10.2174/1570159x19666211116142806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Despite increasing worldwide incidence of Parkinson's disease, the therapy is still suboptimal due to the diversified clinical manifestations, lack of sufficient treatment, the poor adherence in advanced patients, and varied response. Proper intake of medications regarding food and managing drug-food interactions may optimize Parkinson's disease treatment. OBJECTIVES We investigated potential effects that food, beverages, and dietary supplements may have on the pharmacokinetics and pharmacodynamics of drugs used by parkinsonian patients; identified the most probable interactions; and shaped recommendations for the optimal intake of drugs regarding food. METHODS We performed a systematic review in adherence to PRISMA guidelines, and included a total of 81 studies in the qualitative synthesis. RESULTS AND CONCLUSION We found evidence for levodopa positive interaction with coffee, fiber and vitamin C, as well as for the potential beneficial impact of low-fat and protein redistribution diet. Contrastingly, high-protein diet and ferrous sulfate supplements can negatively affect levodopa pharmacokinetics and effectiveness. For other drugs, the data of food impact are scarce. Based on the available limited evidence, all dopamine agonists (bromocriptine, cabergoline, ropinirole), tolcapone, rasagiline, selegiline in tablets, safinamide, amantadine and pimavanserin can be taken with or without a meal. Opicapone and orally disintegrating selegiline tablets should be administered on an empty stomach. Of monoamine oxidase B inhibitors, safinamide is the least susceptible for interaction with the tyramine-rich food, whereas selegiline and rasagiline may lose selectivity to monoamine oxidase B when administered in supratherapeutic doses. The level of presented evidence is low due to the poor studies design, their insufficient actuality, and missing data.
Collapse
Affiliation(s)
- Wiesner Agnieszka
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland;
| | - Paśko Paweł
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland;
| | - Kujawska Małgorzata
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland,Address correspondence to this author at the Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland; Tel/Fax: +48618472081, +4861847072; E-mail:
| |
Collapse
|
10
|
Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM, Teleanu RI. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23115938. [PMID: 35682615 PMCID: PMC9180653 DOI: 10.3390/ijms23115938] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress has been linked with a variety of diseases, being involved in the debut and/or progress of several neurodegenerative disorders. This review intends to summarize some of the findings that correlate the overproduction of reactive oxygen species with the pathophysiology of Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Oxidative stress was also noted to modify the inflammatory response. Even though oxidative stress and neuroinflammation are two totally different pathological events, they are linked and affect one another. Nonetheless, there are still several mechanisms that need to be understood regarding the onset and the progress of neurodegenerative diseases in order to develop efficient therapies. As antioxidants are a means to alter oxidative stress and slow down the symptoms of these neurodegenerative diseases, the most common antioxidants, enzymatic as well as non-enzymatic, have been mentioned in this paper as therapeutic options for the discussed disorders.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.M.T.); (O.V.); (E.R.); (R.I.T.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (I.I.L.)
| | - Iulia Ioana Lungu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (I.I.L.)
- National Institute of Laser, Plasma and Radiation Physics (NILPRP), 077125 Magurele, Romania
| | - Crina Ioana Radu
- Department of Neurosurgery (I), Bucharest University Emergency Hospital, 050098 Bucharest, Romania;
| | - Oana Vladâcenco
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.M.T.); (O.V.); (E.R.); (R.I.T.)
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania
| | - Eugenia Roza
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.M.T.); (O.V.); (E.R.); (R.I.T.)
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania
| | - Bogdan Costăchescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (I.I.L.)
- ICUB—Research Institute of University of Bucharest, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Raluca Ioana Teleanu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.M.T.); (O.V.); (E.R.); (R.I.T.)
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania
| |
Collapse
|
11
|
Muddapu VRJ, Vijayakumar K, Ramakrishnan K, Chakravarthy VS. A Multi-Scale Computational Model of Levodopa-Induced Toxicity in Parkinson's Disease. Front Neurosci 2022; 16:797127. [PMID: 35516806 PMCID: PMC9063169 DOI: 10.3389/fnins.2022.797127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/15/2022] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is caused by the progressive loss of dopaminergic cells in substantia nigra pars compacta (SNc). The root cause of this cell loss in PD is still not decisively elucidated. A recent line of thinking has traced the cause of PD neurodegeneration to metabolic deficiency. Levodopa (L-DOPA), a precursor of dopamine, used as a symptom-relieving treatment for PD, leads to positive and negative outcomes. Several researchers inferred that L-DOPA might be harmful to SNc cells due to oxidative stress. The role of L-DOPA in the course of the PD pathogenesis is still debatable. We hypothesize that energy deficiency can lead to L-DOPA-induced toxicity in two ways: by promoting dopamine-induced oxidative stress and by exacerbating excitotoxicity in SNc. We present a systems-level computational model of SNc-striatum, which will help us understand the mechanism behind neurodegeneration postulated above and provide insights into developing disease-modifying therapeutics. It was observed that SNc terminals are more vulnerable to energy deficiency than SNc somas. During L-DOPA therapy, it was observed that higher L-DOPA dosage results in increased loss of terminals in SNc. It was also observed that co-administration of L-DOPA and glutathione (antioxidant) evades L-DOPA-induced toxicity in SNc neurons. Our proposed model of the SNc-striatum system is the first of its kind, where SNc neurons were modeled at a biophysical level, and striatal neurons were modeled at a spiking level. We show that our proposed model was able to capture L-DOPA-induced toxicity in SNc, caused by energy deficiency.
Collapse
Affiliation(s)
| | - Karthik Vijayakumar
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | | | - V. Srinivasa Chakravarthy
- Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- *Correspondence: V. Srinivasa Chakravarthy
| |
Collapse
|
12
|
Karamalakova Y, Stefanov I, Georgieva E, Nikolova G. Pulmonary Protein Oxidation and Oxidative Stress Modulation by Lemna minor L. in Progressive Bleomycin-Induced Idiopathic Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:523. [PMID: 35326173 PMCID: PMC8944767 DOI: 10.3390/antiox11030523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/23/2022] Open
Abstract
Bleomycin (BLM) administration is associated with multifunctional proteins inflammations and induction of idiopathic pulmonary fibrosis (IPF). Lemna minor L. extract, a free-floating monocot macrophyte possesses antioxidant and anti-inflammatory potential. The aim of the study was to examine the protective effect of L. minor extract on lung protein oxidation and oxidative stress modulation by BLM-induced pulmonary fibrosis in Balb/c mice. For this purpose, the protein carbonyl content, advanced glycation end product, nitroxide protein oxidation (5-MSL), and lipid peroxidation (as MDA and ROS), in lung cells were examined. The histological examinations, collagen deposition, and quantitative measurements of IL-1β, IL-6, and TNF in lung tissues and blood were investigated. Intraperitoneal, BLM administration (0.069 U/mL; 0.29 U/kg b.w.) for 33 days, caused IPF induction in Balb/c mice. Pulmonary combining therapy was administered with L. minor at dose 120 mg/mL (0.187 mg/kg b.w.). L. minor histologically ameliorated BLM induced IPF in lung tissues. L. minor significantly modulated (p < 0.05) BLM-alterations induced in lung hydroxyproline, carbonylated proteins, 5-MSL-protein oxidation. Oxidative stress decreased levels in antioxidant enzymatic and non-enzymatic systems in the lung were significantly regulated (p < 0.05) by L. minor. L. minor decreased the IL-1β, IL-6, and TNF-α expression in lung tissues and plasma. The L. minor improves the preventive effect/defense response in specific pulmonary protein oxidation, lipid peroxidation, ROS identifications, and cytokine modulation by BLM-induced chronic inflammations, and could be a good antioxidant, anti-inflammatory, and anti-fibrotic alternative or IPF prevention involved in their pathogenesis.
Collapse
Affiliation(s)
- Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| | - Ivaylo Stefanov
- Department of Anatomy, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Ekaterina Georgieva
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| |
Collapse
|
13
|
Chang MC, Kwak SG, Kwak S. Effect of dietary vitamins C and E on the risk of Parkinson's disease: A meta-analysis. Clin Nutr 2021; 40:3922-3930. [PMID: 34139465 DOI: 10.1016/j.clnu.2021.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS A neuroprotective effect of dietary vitamins C and E on Parkinson's disease (PD) has been suggested, however, several human studies have reported controversial results. Therefore, we conducted a meta-analysis on the effect of vitamins C and E on the risk of Parkinson's disease. METHODS A comprehensive literature search was conducted using the PubMed, EMBASE, Cochrane Library, and SCOPUS databases for studies published up to January 23, 2021. We included studies that reported (1) intake of vitamins C and E using validated methods; (2) assessment of odds ratio (OR), relative risk (RR), or hazard ratio (HR); and (3) patients with PD identified by a neurologist, hospital records, or death certificates. The Comprehensive Meta-Analysis Software 2 program was used for statistical analyses of the pooled data. RESULTS A total of 12 studies (four prospective cohort and eight case-control studies) were included in our meta-analysis. No significant risk reduction was observed in the high vitamin C intake group compared to low intake group. On the other hand, the high vitamin E intake group showed a significantly lower risk of development of PD than the low intake group (pooled OR = 0.799. 95% CI = 0.721 to 0.885). CONCLUSIONS We conclude that vitamin E might have a protective effect against PD, while vitamin C does not seem to have such an effect. However, the exact mechanism of the transport and regulation of vitamin E in the CNS remains elusive, and further studies would be necessary in this field.
Collapse
Affiliation(s)
- Min Cheol Chang
- Department of Physical Medicine & Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Soyoung Kwak
- Department of Physical Medicine & Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
14
|
Abd Rashed A, Abd Rahman AZ, Rathi DNG. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021; 26:1107. [PMID: 33669787 PMCID: PMC7922935 DOI: 10.3390/molecules26041107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the improvements in life expectancy, neurodegenerative conditions have arguably become the most dreaded maladies of older people. The neuroprotective and anti-ageing potentials of essential oils (EOs) are widely evaluated around the globe. The objective of this review is to analyse the effectiveness of EOs as neuroprotective remedies among the four common age-related neurodegenerative diseases. The literature was extracted from three databases (PubMed, Web of Science and Google Scholar) between the years of 2010 to 2020 using the medical subject heading (MeSH) terms "essential oil", crossed with "Alzheimer's disease (AD)", "Huntington's disease (HD)", "Parkinson's disease (PD)" or "amyotrophic lateral sclerosis (ALS)". Eighty three percent (83%) of the studies were focused on AD, while another 12% focused on PD. No classifiable study was recorded on HD or ALS. EO from Salvia officinalis has been recorded as one of the most effective acetylcholinesterase and butyrylcholinesterase inhibitors. However, only Cinnamomum sp. has been assessed for its effectiveness in both AD and PD. Our review provided useful evidence on EOs as potential neuroprotective remedies for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Ahmad Zuhairi Abd Rahman
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Devi Nair Gunasegavan Rathi
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| |
Collapse
|
15
|
Muddapu VR, Chakravarthy VS. Influence of energy deficiency on the subcellular processes of Substantia Nigra Pars Compacta cell for understanding Parkinsonian neurodegeneration. Sci Rep 2021; 11:1754. [PMID: 33462293 PMCID: PMC7814067 DOI: 10.1038/s41598-021-81185-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 01/29/2023] Open
Abstract
Parkinson's disease (PD) is the second most prominent neurodegenerative disease around the world. Although it is known that PD is caused by the loss of dopaminergic cells in substantia nigra pars compacta (SNc), the decisive cause of this inexorable cell loss is not clearly elucidated. We hypothesize that "Energy deficiency at a sub-cellular/cellular/systems level can be a common underlying cause for SNc cell loss in PD." Here, we propose a comprehensive computational model of SNc cell, which helps us to understand the pathophysiology of neurodegeneration at the subcellular level in PD. The aim of the study is to see how deficits in the supply of energy substrates (glucose and oxygen) lead to a deficit in adenosine triphosphate (ATP). The study also aims to show that deficits in ATP are the common factor underlying the molecular-level pathological changes, including alpha-synuclein aggregation, reactive oxygen species formation, calcium elevation, and dopamine dysfunction. The model suggests that hypoglycemia plays a more crucial role in leading to ATP deficits than hypoxia. We believe that the proposed model provides an integrated modeling framework to understand the neurodegenerative processes underlying PD.
Collapse
Affiliation(s)
- Vignayanandam Ravindernath Muddapu
- grid.417969.40000 0001 2315 1926Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Sardar Patel Road, Chennai, 600036 Tamil Nadu India
| | - V. Srinivasa Chakravarthy
- grid.417969.40000 0001 2315 1926Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Sardar Patel Road, Chennai, 600036 Tamil Nadu India
| |
Collapse
|
16
|
Araújo NAF, Brandão RM, Barguil BM, Cardoso MDG, Pasqual M, Rezende RALS, Pereira MMA, Buttrós VHT, Dória J. Plant Growth-Promoting Bacteria Improve Growth and Modify Essential Oil in Rose (Rosa hybrida L.) cv. Black Prince. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.606827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rose essential oil is rich in compounds widely used by the pharmaceutical and cosmetic industry, due to the biological activities it presents. However, obtaining oil is costly, as the yield per plant is low, which requires several techniques that aim to increase its production. The application of growth-promoting bacteria has been studied for this purpose. Thus, the objective of this work was to select efficient bacteria for production and evaluate their influence on the phytotechnical characteristics and composition of the essential oils of roses. Seven species of bacteria were evaluated for the potential to promote growth in vitro, being tested for nitrogen fixation, phosphate solubilization, protease production and auxin production. From bacteria tested, four were selected and inoculated on rose plants of cultivar Black Prince to evaluate the influence on phytotechnical variables of flower and stem and the oil production. The evaluation of the production of roses was performed through the characteristics of the flowers (size, weight, and diameter of the stem) and floral bud. The essential oils from the inoculated flowers were extracted and evaluated in terms of content, yield, and chemical composition. The application of B. acidiceler, B. subtilis and B. pumilus resulted in flowers with a diameter up to 29% larger. The floral stem was increased by up to 24.5% when B. acidiceler and B. pumilus were used. Meanwhile, the stem diameter was around 41% greater in the presence of B. acidiceler, B. subtilis and in the control. Bacillus pumilus also increased the weight of fresh petals (104%) and essential oil yield (26%), changing the chemical composition of the extracted essential oil. Thus, it is concluded that B. acidiceler, B. pumilus, and B. subtilis improved the phytotechnical characteristics of roses. Among bacteria, B. pumilus increased the essential oil content as well as positively changed the chemical composition of the extracted essential oil.
Collapse
|
17
|
Gibson AS, Keefe KA, Furlong TM. Accelerated habitual learning resulting from L-dopa exposure in rats is prevented by N-acetylcysteine. Pharmacol Biochem Behav 2020; 198:173033. [PMID: 32888972 DOI: 10.1016/j.pbb.2020.173033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Instrumental actions are initially goal-directed and driven by their associated outcome. However, with repeated experience habitual actions develop which are automated and efficient, as they are instead driven by antecedent stimuli. Dopamine is thought to facilitate the transition from goal-directed to habitual actions. This idea has been largely derived from evidence that psychostimulants accelerate the development of habitual actions. In the current study, we examined the impact of L-dopa (levodopa or L-dihydroxyphenylalanine), which also potentiates dopamine activity, on habitual learning. L-dopa was systemically administered prior to training rats to press a lever for a food outcome. When tested, L-dopa exposed animals were insensitive to changes in the value of the food outcome, and hence demonstrated accelerated habitual behavioral control compared to control animals that remained goal directed. We also showed that when N-acetylcysteine (NAC), an antioxidant and regulator of glutamate activity, was co-administered with L-dopa, it prevented the transition to habitual behavior; an effect demonstrated previously for cocaine. Therefore, this study establishes similarities between L-dopa and psychostimulants in both the development and prevention of habitual actions, and supports the notion that excess dopamine potentiates habitual learning. This finding extends the limited existing knowledge of the impact of L-dopa on learning and behavior, and has implications for neurological disorders where L-dopa is the primary treatment.
Collapse
Affiliation(s)
- Anne S Gibson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Kristen A Keefe
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Teri M Furlong
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, Australia; School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
18
|
The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2082145. [PMID: 32774665 PMCID: PMC7396016 DOI: 10.1155/2020/2082145] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
Oxidative stress (OS) has the ability to damage different molecules and cellular structures, altering the correct function of organs and systems. OS accumulates in the body by endogenous and exogenous mechanisms. Increasing evidence points to the involvement of OS in the physiopathology of various chronic diseases that require prolonged periods of pharmacological treatment. Long-term treatments may contribute to changes in systemic OS. In this review, we discuss the involvement of OS in the pathological mechanisms of some chronic diseases, the pro- or antioxidant effects of their pharmacological treatments, and possible adjuvant antioxidant alternatives. Diseases such as high blood pressure, arteriosclerosis, and diabetes mellitus contribute to the increased risk of cardiovascular disease. Antihypertensive, lipid-lowering, and hypoglycemic treatments help reduce the risk with an additional antioxidant benefit. Treatment with methotrexate in autoimmune systemic inflammatory diseases, such as rheumatoid arthritis, has a dual role in stimulating the production of OS and producing mitochondrial dysfunction. However, it can also help indirectly decrease the systemic OS induced by inflammation. Medicaments used to treat neurodegenerative diseases tend to decrease the mechanisms related to the production of reactive oxygen species (ROS) and balance OS. On the other hand, immunosuppressive treatments used in cancer or human immunodeficiency virus infection increase the production of ROS, causing significant oxidative damage in different organs and systems without widely documented exogenous antioxidant administration alternatives.
Collapse
|
19
|
Park HA, Ellis AC. Dietary Antioxidants and Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070570. [PMID: 32630250 PMCID: PMC7402163 DOI: 10.3390/antiox9070570] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the depletion of dopaminergic neurons in the basal ganglia, the movement center of the brain. Approximately 60,000 people are diagnosed with PD in the United States each year. Although the direct cause of PD can vary, accumulation of oxidative stress-induced neuronal damage due to increased production of reactive oxygen species (ROS) or impaired intracellular antioxidant defenses invariably occurs at the cellular levels. Pharmaceuticals such as dopaminergic prodrugs and agonists can alleviate some of the symptoms of PD. Currently, however, there is no treatment to halt the progression of PD pathology. Due to the nature of PD, a long and progressive neurodegenerative process, strategies to prevent or delay PD pathology may be well suited to lifestyle changes like dietary modification with antioxidant-rich foods to improve intracellular redox homeostasis. In this review, we discuss cellular and genetic factors that increase oxidative stress in PD. We also discuss neuroprotective roles of dietary antioxidants including vitamin C, vitamin E, carotenoids, selenium, and polyphenols along with their potential mechanisms to alleviate PD pathology.
Collapse
|
20
|
Leonova T, Popova V, Tsarev A, Henning C, Antonova K, Rogovskaya N, Vikhnina M, Baldensperger T, Soboleva A, Dinastia E, Dorn M, Shiroglasova O, Grishina T, Balcke GU, Ihling C, Smolikova G, Medvedev S, Zhukov VA, Babakov V, Tikhonovich IA, Glomb MA, Bilova T, Frolov A. Does Protein Glycation Impact on the Drought-Related Changes in Metabolism and Nutritional Properties of Mature Pea ( Pisum sativum L.) Seeds? Int J Mol Sci 2020; 21:E567. [PMID: 31952342 PMCID: PMC7013545 DOI: 10.3390/ijms21020567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Protein glycation is usually referred to as an array of non-enzymatic post-translational modifications formed by reducing sugars and carbonyl products of their degradation. The resulting advanced glycation end products (AGEs) represent a heterogeneous group of covalent adducts, known for their pro-inflammatory effects in mammals, and impacting on pathogenesis of metabolic diseases and ageing. In plants, AGEs are the markers of tissue ageing and response to environmental stressors, the most prominent of which is drought. Although water deficit enhances protein glycation in leaves, its effect on seed glycation profiles is still unknown. Moreover, the effect of drought on biological activities of seed protein in mammalian systems is still unstudied with respect to glycation. Therefore, here we address the effects of a short-term drought on the patterns of seed protein-bound AGEs and accompanying alterations in pro-inflammatory properties of seed protein in the context of seed metabolome dynamics. A short-term drought, simulated as polyethylene glycol-induced osmotic stress and applied at the stage of seed filling, resulted in the dramatic suppression of primary seed metabolism, although the secondary metabolome was minimally affected. This was accompanied with significant suppression of NF-kB activation in human SH-SY5Y neuroblastoma cells after a treatment with protein hydrolyzates, isolated from the mature seeds of drought-treated plants. This effect could not be attributed to formation of known AGEs. Most likely, the prospective anti-inflammatory effect of short-term drought is related to antioxidant effect of unknown secondary metabolite protein adducts, or down-regulation of unknown plant-specific AGEs due to suppression of energy metabolism during seed filling.
Collapse
Affiliation(s)
- Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Veronika Popova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Christian Henning
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Kristina Antonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Nadezhda Rogovskaya
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 Leningrad Oblast, Russia
| | - Maria Vikhnina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Tim Baldensperger
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Ekaterina Dinastia
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Postovsky Institute of Organic Synthesis of Ural Division of Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | - Mandy Dorn
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Olga Shiroglasova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Gerd U Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A Zhukov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Vladimir Babakov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 Leningrad Oblast, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Marcus A Glomb
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| |
Collapse
|
21
|
Dani C, Proença IT, Marinho J, Peccin P, da Silva IRV, Nique S, Striebel V, Pochmann D, Elsner VR. Aquatic exercise program-modulated oxidative stress markers in patients with Parkinson's disease. Neural Regen Res 2020; 15:2067-2072. [PMID: 32394964 PMCID: PMC7716021 DOI: 10.4103/1673-5374.276337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease is a neurodegenerative disease. Oxidative stress, i.e., the imbalance between the generation of reactive oxygen species and the antioxidant defense capacity of the body, plays an important role in the pathogenesis of this disease. Physical exercise can regulate oxidative stress. The purpose of this study was to analyze the short- and long-term effects of an aquatic exercise program on oxidative stress levels in patients with Parkinson’s disease. The aquatic exercise program was carried out during 1 month with two sessions per week (1 hour/session). Blood samples were collected at four different time points: pre-intervention, immediately, 48 hours, and 30 days after the first session of aquatic exercise program. Our results revealed that water-based programs modulated antioxidant enzyme activity, increased superoxide dismutase activity, reduced catalase activity, and increased the ratio of superoxide dismutase activity to catalase activity in patients with Parkinson’s disease. Compared with pre-intervention and 48 hours after the first session of aquatic exercise program, superoxide dismutase activity was higher and catalase activity was lower immediately and 30 days after the first session. Our results demonstrated that aquatic exercise program could modulate oxidative stress, mainly by the effect of antioxidant enzyme activity. These results could better help understand the target of oxidative stress in Parkinson’s disease. This study was approved by the Ethics Committee of Centro Universitário Metodista IPA (approval No. 1.373.911) on August 9, 2019 and registered with REBEC (registration number: RBR-6NJ4MK).
Collapse
Affiliation(s)
- Caroline Dani
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre; Programa de Pós Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isabel Teixeira Proença
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Jessica Marinho
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Pâmela Peccin
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Ivy Reichert Vital da Silva
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Simone Nique
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Vera Striebel
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Daniela Pochmann
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsner
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA; Curso de Fisioterapia do Centro Universitário Metodista-IPA; Programa de Pós Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Nutritional constituents, health benefits and processing of Rosa Roxburghii: A review. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103456] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
23
|
Ogunruku OO, Ogunyemi BO, Oboh G, Babatunde OO, Boligon AA. Modulation of dopamine metabolizing enzymes and antioxidant status by Capsicum annuum Lin in rotenone-intoxicated rat brain. Toxicol Rep 2019; 6:795-802. [PMID: 31440456 PMCID: PMC6700337 DOI: 10.1016/j.toxrep.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Rotenone is a natural pesticide and environmental neurotoxin which mimics key aspects of Parkinson's disease. This study evaluated the effect of ethyl acetate extract of Capsicum annuum L. (C. annuum) in rotenone-intoxicated rats. Oral doses of C. annuum extract (50, 100 & 200 mg kg-1) and rotenone (2 mg kg-1 i.p.) were co-administered for 25 days during which rearing behavior was monitored. Biochemical alterations in the levels of tyrosine hydroxylase (TH), monoamine oxidase (MAO), superoxide dismutase (SOD) as well as reduced and oxidized glutathione (GSH) were estimated. Decrease in rearing behavior resulting from rotenone exposure was ameliorated by 200 mg kg-1 of C. annuum. Furthermore, rotenone exposure significantly (P < 0.05) decreased TH and increased MAO levels respectively. Impaired brain antioxidant capacity, typified by significantly (P < 0.05) decreased GSH redox status and SOD levels were also observed in rotenone-treated rats. However, co-administration of C. annuum ameliorated rotenone-induced derangements and potentiated the effect of levodopa. These results taken together suggests that C. annuum protects against rotenone-induced neurotoxicity by modulating dopamine metabolism and GSH redox status in rat brain.
Collapse
Affiliation(s)
| | | | - Ganiyu Oboh
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | | | - Aline Augusti Boligon
- Program of Post-Graduation in Pharmaceutical Sciences, Federal University of Santa Maria, Campus Camobi, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|