1
|
Loos R, Daouk S, Marinov D, Gómez L, Porcel-Rodríguez E, Sanseverino I, Amalric L, Potalivo M, Calabretta E, Ferenčík M, Colzani L, DellaVedova L, Amendola L, Saurini M, Di Girolamo F, Lardy-Fontan S, Sengl M, Kunkel U, Svahn O, Weiss S, De Martin S, Gelao V, Bazzichetto M, Tarábek P, Stipaničev D, Repec S, Zacs D, Ricci M, Golovko O, Flores C, Ramani S, Rebane R, Rodríguez JA, Lettieri T. Summary recommendations on "Analytical methods for substances in the Watch List under the Water Framework Directive". THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168707. [PMID: 37992820 DOI: 10.1016/j.scitotenv.2023.168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Watch List (WL) is a monitoring program under the European Water Framework Directive (WFD) to obtain high-quality Union-wide monitoring data on potential water pollutants for which scarce monitoring data or data of insufficient quality are available. The main purpose of the WL data collection is to determine if the substances pose a risk to the aquatic environment at EU level and subsequently to decide whether a threshold, the Environmental Quality Standards (EQS) should be set for them and, potentially to be listed as priority substance in the WFD. The first WL was established in 2015 and contained 10 individual or groups of substances while the 4th WL was launched in 2022. The results of monitoring the substances of the first WL showed that some countries had difficulties to reach an analytical Limit of Quantification (LOQ) below or equal to the Predicted No-Effect Concentrations (PNEC) or EQS. The Joint Research Centre (JRC) of the European Commission (EC) organised a series of workshops to support the EU Member States (MS) and their activities under the WFD. Sharing the knowledge among the Member States on the analytical methods is important to deliver good data quality. The outcome and the discussion engaged with the experts are described in this paper, and in addition a literature review of the most important publications on the analysis of 17-alpha-ethinylestradiol (EE2), amoxicillin, ciprofloxacin, metaflumizone, fipronil, metformin, and guanylurea from the last years is presented.
Collapse
Affiliation(s)
- Robert Loos
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | | | | | - Livia Gómez
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | | | | | | | | | | | - Martin Ferenčík
- Povodí Labe, státní podnik, Czech Republic; Institute of Environmental and Chemical Engineering, University of Pardubice, Czech Republic
| | - Luisa Colzani
- ARPA Lombardia, the Regional Environmental Protection Agency-Lombardy Region, Italy
| | - Luisa DellaVedova
- ARPA Lombardia, the Regional Environmental Protection Agency-Lombardy Region, Italy
| | - Luca Amendola
- ARPA Lazio, the Regional Environmental Protection Agency-Lazio Region, Italy
| | - Mariateresa Saurini
- ARPA Lazio, the Regional Environmental Protection Agency-Lazio Region, Italy
| | | | - Sophie Lardy-Fontan
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), France
| | | | - Uwe Kunkel
- Bavarian Environment Agency (LfU), Germany
| | - Ola Svahn
- Kristianstad University, MoLab, Sweden
| | - Stefan Weiss
- Federal Environment Agency, Umweltbundesamt (GmbH), Austria
| | - Stefano De Martin
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Vito Gelao
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Michele Bazzichetto
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Peter Tarábek
- Water Research Institute (VÚVH), National Water Reference Laboratory, Slovakia
| | | | - Siniša Repec
- Josip Juraj Strossmayer Water Institute, Central Water Laboratory, Croatia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Latvia
| | - Marina Ricci
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | | | - Riin Rebane
- Estonian Environmental Research Centre, Estonia
| | - Juan Alández Rodríguez
- Área de Vigilancia y Control de Calidad de las Aguas, Ministerio para la Transición Ecológica y el Reto Demográfico, Spain
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy.
| |
Collapse
|
2
|
Detection of progesterone in aqueous samples by molecularly imprinted photonic polymers. Mikrochim Acta 2022; 189:174. [DOI: 10.1007/s00604-022-05290-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
|
3
|
Functional Nanomaterials Based Opto-Electrochemical Sensors for the Detection of Gonadal Steroid Hormones. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Mestres J, Pérez-Albaladejo E, Porte C, Postigo C. High-throughput analysis of the steroid profile in placental cell cultures to evaluate endocrine disrupting effects of contaminant exposure. J Chromatogr A 2022; 1667:462886. [DOI: 10.1016/j.chroma.2022.462886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022]
|
5
|
Li Y, Yan Z, Li X, Yin X, Li K. UPLC-TOF-MS Method for Simultaneous Quantification of Steroid Hormones in Tissue Homogenates of Zebrafish with Solid-Phase Extraction. Molecules 2021; 26:molecules26206213. [PMID: 34684799 PMCID: PMC8539474 DOI: 10.3390/molecules26206213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The quantification of steroid hormones of individual zebrafish (Danio rerio) provides perspective to understand endogenous hormone function. A UPLC–TOF–MS method was developed to provide a reproducible, sensitive, and efficient assay to determine the concentration of steroid hormones, including cortisol, testosterone, androstenedione, 11-deoxycortisol, 11-deoxycorticosterone, and 17-hydroxyprogesterone in whole-body homogenates of each zebrafish. Solid-phase extraction was used to sample matrix clean-up and acquired a recovery from 89.7% to 107.9%. The analytes were separated on an Aquity BEH C18 column using gradient elution. Mass spectrometric analysis was performed by single reaction monitoring (SRM) using positive electrospray ionization mode. The total running time was 6 min, which was greatly shortened compared with a previously reported method. The developed method exhibited excellent linearity for all the analytes, with regression coefficients higher than 0.99. The limit of detection varied between 0.1 and 0.5 ng/L and the limit of quantification was 0.5–1.7 ng/L for all analytes. The precision of the method was assessed on replicate measurements and was found to be in the ranges of 1.9 % to 6.6% and 4.3% to 8.6%, for intra- and inter-day analysis, respectively. This method was validated according to FDA guidance and applied to determine steroid hormone levels in the tissue homogenate of zebrafish acutely treated with caffeine and ethanol.
Collapse
Affiliation(s)
- Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.L.); (Z.Y.); (X.L.); (X.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.L.); (Z.Y.); (X.L.); (X.Y.)
- School of Ocean, Yantai University, Yantai 264005, China
| | - Xiaodong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.L.); (Z.Y.); (X.L.); (X.Y.)
| | - Xiuli Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.L.); (Z.Y.); (X.L.); (X.Y.)
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.L.); (Z.Y.); (X.L.); (X.Y.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: ; Tel.: +86-535-210-8286
| |
Collapse
|
6
|
Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Steroid hormones are active substances that are necessary in the normal functioning of all physiological activities in the body, such as sexual characteristics, metabolism, and mood control. They are also widely used as exogenous chemicals in medical and pharmaceutical applications as treatments and at times growth promoters in animal farming. The vast application of steroid hormones has resulted in them being found in different matrices, such as food, environmental, and biological samples. The presence of hormones in such matrices means that they can easily come into contact with humans and animals as exogenous compounds, resulting in abnormal concentrations that can lead to endocrine disruption. This makes their determination in different matrices a vital part of pollutant management and control. Although advances in analytical instruments are constant, it has been determined that these instruments still require some sample preparation steps to be able to determine the occurrence of pollutants in the complex matrices in which they occur. Advances are still being made in sample preparation to ensure easier, selective, and sensitive analysis of complex matrices. Molecularly imprinted polymers (MIPs) have been termed as advanced solid-phase (SPE) materials for the selective extraction and preconcentration of hormones in complex matrices. This review explores the preparation and application of MIPs for the determination of steroid hormones in different sample types.
Collapse
|
7
|
Capillary electrophoresis and liquid chromatography for determining steroids in concentrates of purified water from Päijänne Lake. J Chromatogr A 2021; 1649:462233. [PMID: 34038782 DOI: 10.1016/j.chroma.2021.462233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/11/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022]
Abstract
The research was done with partial filling micellar electrokinetic chromatography, microemulsion electrokinetic chromatography, and ultra-high performance liquid chromatography. The study focuses on determination of male and female steroids from cold and hot tap water of households in Helsinki City. The district´s raw water is made run from Päijänne Lake through a water tunnel to the purification plants in Helsinki area. The effluents delivered from the plants to households as tap water were sampled and used for the study. They were concentrated with solid phase extraction to exceed the detection limits of the three methods. With partial filling method the limits were 0.50, 0.48, 0.33, and 0.50 mg/L for androsterone, testosterone, progesterone, and testosterone-glucuronide, respectively. In microemulsion method the limit values were 1.33, 1.11, and 0.40 mg/L for androsterone, testosterone, and progesterone, respectively, and 0.83, 0.45, and 0.50 mg/L for hydrocortisone, 17-α-hydroxyprogesterone, and 17-α-methyltestosterone, respectively. In the tap water samples, progesterone concentrations represented the highest values being 0.22 and 1.18 ng/L in cold and hot water, respectively. They also contained testosterone (in all samples), its glucuronide metabolite (in 25% of the samples), and androstenedione (in 75% of the samples). The ultra-high liquid chromatographic method with mass spectrometric detection was used for identification of the steroids at µg/L level.
Collapse
|
8
|
Huang F, Karu K, Campos LC. Simultaneous measurement of free and conjugated estrogens in surface water using capillary liquid chromatography tandem mass spectrometry. Analyst 2021; 146:2689-2704. [PMID: 33751008 DOI: 10.1039/d0an02335c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given detrimental impacts induced by estrogens at trace level, determination of them is significant but challenging due to their low content in environmental samples and inherent weak ionisation. A modified derivatisation-based methodology was applied for the first time to detect estrogen in free and conjugated forms including some isomers simultaneously using liquid chromatography tandem mass spectrometry (LC-MSn). Derivatisation reaction with previously used 1,2-dimethyl-1H-imidazole-5-sulphonyl chloride allowed significant increase of mass spectrometric signal of analytes and also provided distinctive fragmentation for their confirmation even in complicated matrix. Then satisfactory recovery (>75%) for the majority of analytes was achieved following optimisation of solid phase extraction (SPE) factors. The linearity was validated over a wide concentration with the correlation coefficient around 0.995. The repeatability of this methodology was also confirmed via the intra-day and inter-day precision and was less than 11.73%. Validation of method quantification limits (MQLs) for all chosen estrogens was conducted using 1000 mL surface water, ranging from 7.0 to 132.3 pg L-1. The established methodology was applied to profile presence of targeted estrogens in natural surface water samples. Out of the ten compounds of interest, three free estrogens (E1, E2, E3) and two sulphate estrogens (E1-3S and E2-3S) were found over their MQLs, being in the range of 0.05-0.32 ng L-1.
Collapse
Affiliation(s)
- Fan Huang
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| | - Kersti Karu
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Exploration of a Molecularly Imprinted Polymer (MIPs) as an Adsorbent for the Enrichment of Trenbolone in Water. Processes (Basel) 2021. [DOI: 10.3390/pr9020186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The presence of endocrine disruptors in surface waters can have negative implications on wildlife and humans both directly and indirectly. A molecularly imprinted polymer (MIP) was explored for its potential to enhance the UV-Vis determination of trenbolone in water using solid-phase extraction (SPE). The synthesized MIP was studied using Fourier transform infrared spectra (FTIR) and scanning electron microscopy (SEM). Using the MIP resulted in a preconcentration and enrichment factor of 14 and 8, respectively. Trenbolone binding on the MIP was shown to follow a Langmuir adsorption and had a maximum adsorption capacity of 27.5 mg g−1. Interference studies showed that the MIP selectivity was not compromised by interferences in the sample. The MIP could be recycled three times before significant loss in analyte recovery.
Collapse
|
10
|
Disha, Kumari P, Nayak MK, Kumar P. An electrochemical biosensing platform for progesterone hormone detection using magnetic graphene oxide. J Mater Chem B 2021; 9:5264-5271. [PMID: 34151922 DOI: 10.1039/d1tb00380a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent times, graphene and its derivatives have turned out to be emerging nanomaterials as transducers to promote electron transport in the field of biosensing using electrochemical techniques. In electrochemical biosensing strategies, key factors such as signal amplification, stability, and sensitivity are necessary for attaining improved sensor performance. In the present work, we synthesized magnetic nanocomposites of graphene oxide and employed them as an electrode material for the loading of bio receptors. The increased surface area with high electric conductance enhanced the sensor's response. The immobilization of progesterone (PGN) antibodies on the modified electrode-sensing surface led to a hindered electron transport that decreased the current response. The developed electrochemical immunosensor assembled successfully in a stepwise process using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies along with the electrochemical impedance spectroscopy (EIS) analysis. The current response decreased linearly with the increased progesterone (PGN) concentration range of 0.01 pM-1000 nM with excellent detection limits of 0.15 pM (DPV) and 0.17 pM (CV) under optimal experimental conditions. The label-free electrochemical immunosensor has shown a promising platform for rapid and direct analysis of PGN due to its high sensitivity, selectivity, stability, and repeatability in water samples.
Collapse
Affiliation(s)
- Disha
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Poonam Kumari
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj K Nayak
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parveen Kumar
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India.
| |
Collapse
|
11
|
Glineur A, Nott K, Carbonnelle P, Ronkart S, Purcaro G. Development And Validation Of A Method For Determining Estrogenic Compounds In Surface Water At The Ultra-Trace Level Required By The EU Water Framework Directive Watch List. J Chromatogr A 2020; 1624:461242. [DOI: 10.1016/j.chroma.2020.461242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
|
12
|
Oxidized carbon nanotubes as sorbent for miniaturized solid-phase extraction of progestins from environmental water samples prior to their determination by HPLC-UV. Mikrochim Acta 2020; 187:153. [DOI: 10.1007/s00604-020-4116-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
|
13
|
Li Y, Xu R, Wei D, Feng R, Fan D, Zhang N, Wei Q. A photoelectrochemical aptasensor for the detection of 17β-estradiol based on In 2S 3 and CdS co-sensitized cerium doped TiO 2. NEW J CHEM 2020. [DOI: 10.1039/c9nj05435a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In2S3 and CdS co-sensitized Ce doped TiO2 optimized the transmission path of electrons.
Collapse
Affiliation(s)
- Yuewen Li
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Rui Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Dong Wei
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Rui Feng
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
14
|
Analysis of Environmental Protection Agency priority endocrine disruptor hormones and bisphenol A in tap, surface and wastewater by online concentration liquid chromatography tandem mass spectrometry. J Chromatogr A 2019; 1591:87-98. [DOI: 10.1016/j.chroma.2019.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
|
15
|
Kanda R. Reproductive Impact of Environmental Chemicals on Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:41-70. [PMID: 31471794 DOI: 10.1007/978-3-030-23633-5_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wildlife is exposed to a diverse range of natural and man-made chemicals. Some environmental chemicals possess specific endocrine disrupting properties, which have the potential to disrupt reproductive and developmental process in certain animals. There is growing evidence that exposure to endocrine disrupting chemicals plays a key role in reproductive disorders in fish, amphibians, mammals, reptiles and invertebrates. This evidence comes from field-based observations and laboratory based exposure studies, which provide substantial evidence that environmental chemicals can cause adverse effects at environmentally relevant doses. There is particular concern about wildlife exposures to cocktails of biologically active chemicals, which combined with other stressors, may play an even greater role in reproductive disorders than can be reproduced in laboratory experiments. Regulation of chemicals affords some protection to animals of the adverse effects of exposure to legacy chemicals but there continues to be considerable debate on the regulation of emerging pollutants.
Collapse
Affiliation(s)
- Rakesh Kanda
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.
| |
Collapse
|
16
|
Liquid chromatography–time-of-flight high-resolution mass spectrometry study and determination of the dansylated products of estrogens and their hydroxylated metabolites in water and wastewater. Anal Bioanal Chem 2018; 410:7909-7919. [DOI: 10.1007/s00216-018-1412-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/13/2018] [Accepted: 09/28/2018] [Indexed: 11/27/2022]
|
17
|
Maurício R, Dias R, Ribeiro V, Fernandes S, Vicente AC, Pinto MI, Noronha JP, Amaral L, Coelho P, Mano AP. 17α-Ethinylestradiol and 17β-estradiol removal from a secondary urban wastewater using an RBC treatment system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:320. [PMID: 29717352 DOI: 10.1007/s10661-018-6701-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
The presence of micropollutants that include endocrine-disrupting compounds (EDC) in aquatic environments is currently one of the most relevant aspects of water quality due to their adverse effects on aquatic organisms and human health. From the several categories of EDC, 17β-estradiol (E2) is a natural hormone, which is prevalent in vertebrates, associated with the female reproductive system and maintenance of the sexual characters. 17α-Ethinylestradiol (EE2) is a synthetic hormone produced from the natural hormone E2 and is an essential component of oral contraceptives. These compounds are susceptible to bioconcentration and have high potential to bioaccumulation. Wastewater treatment plants are the main point source of E2 and EE2 into aquatic environments, but conventional wastewater treatment systems are not specifically designed for steroid removal. To overcome this problem, biological tertiary treatment may be a solution for the removal of emergent pollutants such as E2 and EE2. The main purpose of the present study is to provide a solution based on the optimization of a rotating biological contactor system to remove estrogens, specifically E2 and EE2, and to quantify their removal efficiency on different matrices, namely real wastewater and different synthetic wastewaters. All assays presented viable removal efficiencies for compound E2 with values always above 50%; real wastewater yielded the highest removal efficiencies. EE2 removal had better removal efficiencies with synthetic wastewater as feed solution, with removals above 15%, whereas the removal efficiency with real wastewater was inexistent.
Collapse
Affiliation(s)
- R Maurício
- CENSE, Center for Environmental and Sustainability Research; Department of Environmental Sciences and Engineering; NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - R Dias
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - V Ribeiro
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - S Fernandes
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - A C Vicente
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - M I Pinto
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - J P Noronha
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - L Amaral
- CENSE, Center for Environmental and Sustainability Research; Department of Environmental Sciences and Engineering; NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - P Coelho
- MARE, Marine and Environmental Sciences Centre, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - A P Mano
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
18
|
Könemann S, Kase R, Simon E, Swart K, Buchinger S, Schlüsener M, Hollert H, Escher BI, Werner I, Aït-Aïssa S, Vermeirssen E, Dulio V, Valsecchi S, Polesello S, Behnisch P, Javurkova B, Perceval O, Di Paolo C, Olbrich D, Sychrova E, Schlichting R, Leborgne L, Clara M, Scheffknecht C, Marneffe Y, Chalon C, Tušil P, Soldàn P, von Danwitz B, Schwaiger J, San Martín Becares MI, Bersani F, Hilscherová K, Reifferscheid G, Ternes T, Carere M. Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Hettwer K, Jähne M, Frost K, Giersberg M, Kunze G, Trimborn M, Reif M, Türk J, Gehrmann L, Dardenne F, De Croock F, Abraham M, Schoop A, Waniek JJ, Bucher T, Simon E, Vermeirssen E, Werner A, Hellauer K, Wallentits U, Drewes JE, Dietzmann D, Routledge E, Beresford N, Zietek T, Siebler M, Simon A, Bielak H, Hollert H, Müller Y, Harff M, Schiwy S, Simon K, Uhlig S. Validation of Arxula Yeast Estrogen Screen assay for detection of estrogenic activity in water samples: Results of an international interlaboratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:612-625. [PMID: 29195208 DOI: 10.1016/j.scitotenv.2017.11.211] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 05/26/2023]
Abstract
Endocrine-active substances can adversely impact the aquatic ecosystems. A special emphasis is laid, among others, on the effects of estrogens and estrogen mimicking compounds. Effect-based screening methods like in vitro bioassays are suitable tools to detect and quantify endocrine activities of known and unknown mixtures. This study describes the validation of the Arxula-Yeast Estrogen Screen (A-YES®) assay, an effect-based method for the detection of the estrogenic potential of water and waste water. This reporter gene assay, provided in ready to use format, is based on the activation of the human estrogen receptor alpha. The user-friendly A-YES® enables inexperienced operators to rapidly become competent with the assay. Fourteen laboratories from four countries with different training levels analyzed 17β-estradiol equivalent concentrations (EEQ) in spiked and unspiked waste water effluent and surface water samples, in waste water influent and spiked salt water samples and in a mixture of three bisphenols. The limit of detection (LOD) for untreated samples was 1.8ng/L 17β-estradiol (E2). Relative repeatability and reproducibility standard deviation for samples with EEQ above the LOD (mean EEQ values between 6.3 and 20.4ng/L) ranged from 7.5 to 21.4% and 16.6 to 28.0%, respectively. Precision results are comparable to other frequently used analytical methods for estrogens. The A-YES® has been demonstrated to be an accurate, precise and robust bioassay. The results have been included in the ISO draft standard. The assay was shown to be applicable for testing of typical waste water influent, effluent and saline water. Other studies have shown that the assay can be used with enriched samples, which lower the LOD to the pg/L range. The validation of the A-YES® and the development of a corresponding international standard constitute a step further towards harmonized and reliable bioassays for the effect-based analysis of estrogens and estrogen-like compounds in water samples.
Collapse
Affiliation(s)
| | - Martin Jähne
- QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany
| | - Kirstin Frost
- QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany
| | - Martin Giersberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seestadt, OT Gatersleben, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Seestadt, OT Gatersleben, Germany
| | | | - Martin Reif
- Erftverband, Am Erftverband 6, 50126 Bergheim, Germany
| | - Jochen Türk
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Linda Gehrmann
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Freddy Dardenne
- University of Antwerp, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171/U7, 2020 Antwerp, Belgium
| | - Femke De Croock
- University of Antwerp, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171/U7, 2020 Antwerp, Belgium
| | - Marion Abraham
- Leibniz Institute for Baltic Sea Research Warnemünde, Department Marine Chemistry, Seestraße 15, 18119 Rostock, Germany
| | - Anne Schoop
- Leibniz Institute for Baltic Sea Research Warnemünde, Department Marine Chemistry, Seestraße 15, 18119 Rostock, Germany
| | - Joanna J Waniek
- Leibniz Institute for Baltic Sea Research Warnemünde, Department Marine Chemistry, Seestraße 15, 18119 Rostock, Germany
| | - Thomas Bucher
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstraße 133, 8600 Dübendorf, Switzerland
| | - Eszter Simon
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstraße 133, 8600 Dübendorf, Switzerland
| | - Etienne Vermeirssen
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstraße 133, 8600 Dübendorf, Switzerland
| | - Anett Werner
- Technical University Dresden, Institute of Natural Science, Bioprocess Engineering, Helmholtzstraße 10, 01062 Dresden, Germany
| | - Karin Hellauer
- Technical University of Munich, Department of Civil, Geo and Environmental Engineering, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Ursula Wallentits
- Technical University of Munich, Department of Civil, Geo and Environmental Engineering, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Jörg E Drewes
- Technical University of Munich, Department of Civil, Geo and Environmental Engineering, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Detlef Dietzmann
- SYNLAB Umweltinstitut GmbH, Hauptstraße 105, 04416 Markkleeberg, Germany
| | - Edwin Routledge
- Brunel University London, Institute for Environment, Health and Societies, Halsbury Building, UB8 3PH Uxbridge, United Kingdom
| | - Nicola Beresford
- Brunel University London, Institute for Environment, Health and Societies, Halsbury Building, UB8 3PH Uxbridge, United Kingdom
| | - Tamara Zietek
- Technical University of Munich, Department of Nutritional Physiology, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Margot Siebler
- Technical University of Munich, Department of Nutritional Physiology, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Anne Simon
- IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany
| | - Helena Bielak
- IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Yvonne Müller
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Maike Harff
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Sabrina Schiwy
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Kirsten Simon
- New diagnostics GmbH, Pollinger Straße 11, 81377 München, Germany
| | - Steffen Uhlig
- QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany.
| |
Collapse
|
20
|
Glineur A, Barbera B, Nott K, Carbonnelle P, Ronkart S, Lognay G, Tyteca E. Trace analysis of estrogenic compounds in surface and groundwater by ultra high performance liquid chromatography-tandem mass spectrometry as pyridine-3-sulfonyl derivatives. J Chromatogr A 2018; 1534:43-54. [DOI: 10.1016/j.chroma.2017.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
|
21
|
Mijangos L, Ziarrusta H, Olivares M, Zuloaga O, Möder M, Etxebarria N, Prieto A. Simultaneous determination of 41 multiclass organic pollutants in environmental waters by means of polyethersulfone microextraction followed by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 2017; 410:615-632. [DOI: 10.1007/s00216-017-0763-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 01/18/2023]
|
22
|
Česen M, Heath E. Disk-based solid phase extraction for the determination of diclofenac and steroidal estrogens E1, E2 and EE2 listed in the WFD watch list by GC-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:832-837. [PMID: 28284637 DOI: 10.1016/j.scitotenv.2017.02.222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 05/12/2023]
Abstract
The aim of this study was to develop and validate an analytical method for determining estrone, 17β-estradiol, 17α-ethynyl estradiol and diclofenac in whole surface water samples at or below the limits of quantification as set out in Decision 2015/495/EU. The method is based on solid-phase extraction using Atlantic® HLB disks in a semi-automated system (SPE-DEX® 4790). The method involved extracting 10L of whole surface water samples followed by derivatization with N-methyl-N-(trimethylsilyl)trifluoroacetamide) and analysis by gas chromatography-mass spectrometry. Drying the disks overnight at 25°C followed by elution with ethyl acetate resulted in extraction recoveries between 75.9% and 120% and limits of quantification of 0.290ngL-1 for estrone, 1.37ngL-1 for 17β-estradiol, 0.724ngL-1 for 17α-ethynyl estradiol and 0.119ngL-1 for diclofenac. Despite extracting 10L of sample, obtained limits of quantification for 17β-estradiol and 17α-ethynyl estradiol were above those set in the Decision 2015/495/EU, while limits of quantification for estrone and diclofenac were lower. The method was applied to six Slovene surface waters, among which four contained detectable concentrations of only diclofenac (0.313ngL-1-5.69ngL-1). To our knowledge, this is the first study reporting a large volume solid-phase extraction using disks for the determination of estrone, 17β-estradiol, 17α-ethynyl estradiol and diclofenac in whole surface waters.
Collapse
Affiliation(s)
- Marjeta Česen
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Čelić M, Insa S, Škrbić B, Petrović M. Development of a sensitive and robust online dual column liquid chromatography-tandem mass spectrometry method for the analysis of natural and synthetic estrogens and their conjugates in river water and wastewater. Anal Bioanal Chem 2017; 409:5427-5440. [DOI: 10.1007/s00216-017-0408-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 11/29/2022]
|
24
|
Magda B, Dobi Z, Mészáros K, Szabó É, Márta Z, Imre T, Szabó PT. Charged derivatization and on-line solid phase extraction to measure extremely low cortisol and cortisone levels in human saliva with liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2017; 140:223-231. [DOI: 10.1016/j.jpba.2017.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 10/24/2022]
|
25
|
Saeed T, Al-Jandal N, Abusam A, Taqi H, Al-Khabbaz A, Zafar J. Sources and levels of endocrine disrupting compounds (EDCs) in Kuwait's coastal areas. MARINE POLLUTION BULLETIN 2017; 118:407-412. [PMID: 28284584 DOI: 10.1016/j.marpolbul.2017.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/26/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
The sources and levels of endocrine disrupting compounds in Kuwait's coastal areas were investigated. Phthalates, alkylphenols and estrogens were measured in the inflows and outflows of three sewage treatment plants as well as in the seawater and sediments from the sewage impacted coastal areas. Phthalate levels in the inflow of the treatment plants ranged from 8.9 to 78.3μg/l; alkylphenols from 0.7 to 279ng/l and estrogens from 30 to 368ng/l. On average, the treatment plants removed about 80% of these compounds. The outflows, however, contained significant levels of all three classes of compounds. The seawater from the sewage impacted area also contained detectable levels of these compounds. Sediment samples from these locations contained elevated levels of phthalates (ranging from 2145 to 15,722μg/kg) and lower levels of alkylphenols (ranging from 2.49 to 15.14μg/kg) and estrogens (ranging from 4.1 to 214μg/kg, dry wt.).
Collapse
Affiliation(s)
- Talat Saeed
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, Safat 13109, Kuwait.
| | - Noura Al-Jandal
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, Safat 13109, Kuwait
| | - Abdalla Abusam
- Water Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, Safat 13109, Kuwait
| | - Hameeda Taqi
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, Safat 13109, Kuwait
| | - Ahmad Al-Khabbaz
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, Safat 13109, Kuwait
| | - Jamal Zafar
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
26
|
Kupcová E, Reiffová K. Dispersive liquid-liquid microextraction as an effective preanalytical step for the determination of estradiol in human urine. J Sep Sci 2017; 40:2620-2628. [DOI: 10.1002/jssc.201700123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Kupcová
- Department of Analytical Chemistry, Faculty of Science; Pavol Jozef Šafárik University in Košice; Košice Slovakia
| | - Katarína Reiffová
- Department of Analytical Chemistry, Faculty of Science; Pavol Jozef Šafárik University in Košice; Košice Slovakia
| |
Collapse
|
27
|
Mulabagal V, Wilson C, Hayworth JS. An ultrahigh-performance chromatography/tandem mass spectrometry quantitative method for trace analysis of potential endocrine disrupting steroid hormones in estuarine sediments. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:419-429. [PMID: 27957780 DOI: 10.1002/rcm.7807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Estuaries are dynamic ecosystems, providing vital habitat for unique organisms of great ecological and commercial importance. The influx of natural and synthetic steroid hormones into estuaries poses risks to these organisms and to broader ecosystem health. However, detecting these trace level pollutants in estuarine water and sediment requires improved analytical techniques. METHODS We describe an optimized ultrahigh-performance chromatography/tandem mass spectrometry (UHPLC/MS/MS) method for simultaneous quantitation of four classes of steroid hormones (estrogens, glucocorticoids, androgens and progestins) in sediment samples collected from an Alabama estuary. Sediment samples were homogenized using Hydromatrix (HM) sorbent and extracted with methanol and water (70%, v/v). Centrifuged extracts were purified using an Agilent Bond Elut QuEChERS dispersive-SPE kit to eliminate interfering substances that could negatively influence the ionization process. Chromatographic separation was achieved on a Poroshell 120 Phenyl-Hexyl column using an Agilent 1290 Infinity II UHPLC pump. Quantitation was carried out using an Agilent triple quadrupole mass spectrometer equipped with a JetStream/ESI source in dual mode. RESULTS Chromatographic separation and better peak resolution were accomplished on an Agilent Poroshell 120 Phenyl-Hexyl column using a binary gradient method with a mobile phase consisting of 1 mM ammonium fluoride in water and a mixture of methanol/acetonitrile. A dynamic multiple reaction monitoring (MRM) method was developed by optimizing various MS parameters. The method was used to analyze target steroid hormones in estuarine sediments. A total of ten steroid hormones were detected at trace amounts in estuarine sediments. CONCLUSIONS The optimized analytical method described here involves reasonably simple sample preparation and simultaneous trace level quantitation of four classes (estrogens, glucocorticoids, androgens and progestins) of steroid hormones in a single experimental run. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Vanisree Mulabagal
- Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Caleb Wilson
- Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Joel S Hayworth
- Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
28
|
Tiedeken EJ, Tahar A, McHugh B, Rowan NJ. Monitoring, sources, receptors, and control measures for three European Union watch list substances of emerging concern in receiving waters - A 20year systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1140-1163. [PMID: 27741430 DOI: 10.1016/j.scitotenv.2016.09.084] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/25/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Pollution of European receiving waters with contaminants of emerging concern (CECs), such as with 17-beta-estradiol (a natural estrogenic hormone, E2), along with pharmaceutically-active compounds diclofenac (an anti-inflammatory drug, DCL) and 17-alpha-ethynylestradiol (a synthetic estrogenic hormone, EE2)) is a ubiquitous phenomenon. These three CECs were added to the EU watch list of emerging substances to be monitoring in 2013, which was updated in 2015 to comprise 10 substances/groups of substances in the field of water policy. A systematic literature review was conducted of 3952 potentially relevant articles over period 1995 to 2015 that produced a new EU-wide database consisting of 1268 publications on DCL, E2 and EE2. European surface water concentrations of DCL are typically reported below the proposed annual average environmental quality standard (AA EQS) of 100ng/l, but that exceedances frequently occur. E2 and EE2 surface water concentrations are typically below 50ng/l and 10ng/l respectively, but these values greatly exceed the proposed AA EQS values for these compounds (0.04 and 0.035ng/l respectively). However, levels of these CECs are frequently reported to be disproportionately high in EU receiving waters, particularly in effluents at control points that require urgent attention. Overall it was found that DCL and EE2 enter European aquatic environment mainly following human consumption and excretion of therapeutic drugs, and by incomplete removal from influent at urban wastewater treatment plants (WWTPs). E2 is a natural hormone excreted by humans which also experiences incomplete removal during WWTPs treatment. Current conventional analytical chemistry methods are sufficiently sensitive for the detection and quantification of DCL but not for E2 and EE2, thus alternative, ultra-trace, time-integrated monitoring techniques such as passive sampling are needed to inform water quality for these estrogens. DCL appears resistant to conventional wastewater treatment while E2 and EE2 have high removal efficiencies that occur through biodegradation or sorption to organic matter. There is a pressing need to determine fate and behaviour of these CECs in European receiving waters such as using GIS-modelling of river basins as this will identify pressure points for informing priority decision making and alleviation strategies for upgrade of WWTPs and for hospital effluents with advanced treatment technologies. More monitoring data for these CECs in receiving waters is urgently needed for EU legislation and effective risk management.
Collapse
Affiliation(s)
- Erin Jo Tiedeken
- Bioscience Research Institute, Athlone Institute of Technology, Co. Westmeath, Ireland
| | - Alexandre Tahar
- Bioscience Research Institute, Athlone Institute of Technology, Co. Westmeath, Ireland
| | - Brendan McHugh
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Co. Westmeath, Ireland.
| |
Collapse
|
29
|
Moon YJ, Myung SW. Determination of Estrogens in Environmental Aqueous Samples Using Dispersive Liquid-Liquid Microextraction and HPLC/UV-Vis System. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.11016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yeon-Joo Moon
- Department of Chemistry; Kyonggi University; Yeongtong-Gu Korea 16227
| | - Seung-Woon Myung
- Department of Chemistry; Kyonggi University; Yeongtong-Gu Korea 16227
| |
Collapse
|
30
|
Pérez RA, Albero B, Tadeo JL, Sánchez-Brunete C. Determination of endocrine-disrupting compounds in water samples by magnetic nanoparticle-assisted dispersive liquid–liquid microextraction combined with gas chromatography–tandem mass spectrometry. Anal Bioanal Chem 2016; 408:8013-8023. [DOI: 10.1007/s00216-016-9899-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/02/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
|
31
|
Determination of estrogenic compounds in milk and yogurt samples by hollow-fibre liquid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. Anal Bioanal Chem 2016; 408:7447-59. [DOI: 10.1007/s00216-016-9833-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
|
32
|
de Lima Stebbins D, Docs J, Lowe P, Cohen J, Lei H. Evaluation of analytical methodology for the detection of hormones and their attenuation during aquifer recharge and recovery cycles. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:613-623. [PMID: 27146029 DOI: 10.1039/c6em00031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hormones listed in the screening survey list 2 of the Unregulated Contaminant Monitoring Rule 3 (estrone, 17-β-estradiol, 17-α-ethynylestradiol, 16-α-hydroxyestradiol (estriol), equilin, testosterone and 4-androstene-3,17-dione) were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Two analytical methods were compared: EPA method 539 and the isotope dilution method. EPA method 539 was successfully utilized in river and drinking water matrices with fortified recoveries of 98.9 to 108.5%. Samples from the Hillsborough River reflected levels below the method detection limit (MDL) for the majority of the analytes, except estrone (E1), which was detected at very low concentrations (<0.5 to 1 ng L(-1)) in the majority of samples. No hormones were detected in drinking water samples. The isotope dilution method was used to analyze reclaimed and aquifer storage and recovery (ASR) water samples as a result of strong matrix/solid phase extraction (SPE) losses observed in these more complex matrices. Most of the compounds were not detected or found at relatively low concentrations in the ASR samples. Attenuation of 50 to 99.1% was observed as a result of the ASR recharge/recovery cycles for most of the hormones, except for estriol (E3). Relatively stable concentrations of E3 were found, with only 10% attenuation at one of the sites and no measureable attenuation at another location. These results have substantiated that while EPA method 539 works well for most environmental samples, the isotope dilution method is more robust when dealing with complex matrices such as reclaimed and ASR samples.
Collapse
Affiliation(s)
- Daniela de Lima Stebbins
- Chemical & Biomedical Engineering Department, University of South Florida, 4202 E Fowler Ave ENB118, Tampa, FL 33620, USA
| | | | | | | | | |
Collapse
|
33
|
Naldi AC, Fayad PB, Prévost M, Sauvé S. Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem Cent J 2016; 10:30. [PMID: 27158261 PMCID: PMC4859969 DOI: 10.1186/s13065-016-0174-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/26/2016] [Indexed: 12/02/2022] Open
Abstract
Background In recent years, endocrine disrupting compounds (EDCs) have been found in rivers that receive significant inputs of wastewater. Among EDCs, natural and synthetic steroid hormones are recognized for their potential to mimic or interfere with normal hormonal functions (development, growth and reproduction), even at ultratrace levels (ng L−1). Although conjugated hormones are less active than free hormones, they can be cleaved and release the unconjugated estrogens through microbial processes before or during the treatment of wastewater. Due to the need to identify and quantify these compounds, a new fully automated method was developed for the simultaneous determination of the two forms of several steroid hormones (free and conjugated) in different water matrixes and in urine. Results The method is based on online solid phase extraction coupled with liquid chromatography and tandem mass spectrometry (SPE–LC–MS/MS). Several parameters were assessed in order to optimize the efficiency of the method, such as the type and flow rate of the mobile phase, the various SPE columns, chromatography as well as different sources and ionization modes for MS. The method demonstrated good linearity (R2 > 0.993) and precision with a coefficient of variance of less than 10 %. The quantification limits vary from a minimum of 3–15 ng L−1 for an injection volume of 1 and 5 mL, respectively, with the recovery values of the compounds varying from 72 to 117 %. Conclusion The suggested method has been validated and successfully applied for the simultaneous analysis of several steroid hormones in different water matrixes and in urine. Electronic supplementary material The online version of this article (doi:10.1186/s13065-016-0174-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A C Naldi
- Department of Chemistry, Université de Montréal, Montreal, QC Canada
| | - P B Fayad
- Department of Chemistry, Université de Montréal, Montreal, QC Canada
| | - M Prévost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, QC Canada
| | - S Sauvé
- Department of Chemistry, Université de Montréal, Montreal, QC Canada
| |
Collapse
|
34
|
Polydopamine-coated magnetic nanoparticles for isolation and enrichment of estrogenic compounds from surface water samples followed by liquid chromatography-tandem mass spectrometry determination. Anal Bioanal Chem 2016; 408:4011-20. [DOI: 10.1007/s00216-016-9489-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
|
35
|
Collection and separation of extract in dispersive liquid-liquid microextraction with hollow fiber. Anal Bioanal Chem 2016; 408:3359-67. [DOI: 10.1007/s00216-016-9410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/24/2016] [Accepted: 02/09/2016] [Indexed: 01/26/2023]
|
36
|
Luo G, Li Y, Bao JJ. Development and application of a high-throughput sample cleanup process based on 96-well plate for simultaneous determination of 16 steroids in biological matrices using liquid chromatography–triple quadrupole mass spectrometry. Anal Bioanal Chem 2016; 408:1137-49. [DOI: 10.1007/s00216-015-9213-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
|
37
|
Krauss M. High-Resolution Mass Spectrometry in the Effect-Directed Analysis of Water Resources. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/bs.coac.2016.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
D'Orazio G, Hernández-Borges J, Asensio-Ramos M, Rodríguez-Delgado MÁ, Fanali S. Capillary electrochromatography and nano-liquid chromatography coupled to nano-electrospray ionization interface for the separation and identification of estrogenic compounds. Electrophoresis 2015; 37:356-62. [DOI: 10.1002/elps.201500327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/27/2015] [Accepted: 10/05/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Giovanni D'Orazio
- Instituto di Metodologie Chimiche; Consiglio Nazionale delle Ricerche (C.N.R.); Monterotondo Roma Italia
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); La Laguna Tenerife España
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); La Laguna Tenerife España
| | - María Asensio-Ramos
- Instituto Volcanológico de Canarias (INVOLCAN); Parque Taoro Puerto de la Cruz Tenerife España
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); La Laguna Tenerife España
| | - Salvatore Fanali
- Instituto di Metodologie Chimiche; Consiglio Nazionale delle Ricerche (C.N.R.); Monterotondo Roma Italia
| |
Collapse
|
39
|
Corrotea Y, Aguilera N, Honda L, Richter P. Determination of Hormones in Wastewater Using Rotating Disk Sorptive Extraction and Gas Chromatography–Mass Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1098653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Avar P, Maasz G, Takács P, Lovas S, Zrinyi Z, Svigruha R, Takátsy A, Tóth LG, Pirger Z. HPLC-MS/MS analysis of steroid hormones in environmental water samples. Drug Test Anal 2015; 8:123-7. [DOI: 10.1002/dta.1829] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/18/2015] [Accepted: 05/24/2015] [Indexed: 11/07/2022]
Affiliation(s)
- P. Avar
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry; University of Pecs; Pécs H-7624 Hungary
| | - G. Maasz
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry; University of Pecs; Pécs H-7624 Hungary
- Adaptive Neuroethology, Department of Experimental Zoology Balaton Limnological Institute; MTA Centre for Ecological Research; Tihany H-8237 Hungary
| | - P. Takács
- Department of Hydrozoology, Balaton Limnological Institute; MTA Centre for Ecological Research; Tihany H-8237 Hungary
| | - S. Lovas
- Adaptive Neuroethology, Department of Experimental Zoology Balaton Limnological Institute; MTA Centre for Ecological Research; Tihany H-8237 Hungary
| | - Z. Zrinyi
- Adaptive Neuroethology, Department of Experimental Zoology Balaton Limnological Institute; MTA Centre for Ecological Research; Tihany H-8237 Hungary
| | - R. Svigruha
- Limnoecology Research Group, Department of Limnology; University of Pannonia; Veszprém H-8200 Hungary
| | - A. Takátsy
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry; University of Pecs; Pécs H-7624 Hungary
| | - L. G. Tóth
- Department of Hydrozoology, Balaton Limnological Institute; MTA Centre for Ecological Research; Tihany H-8237 Hungary
| | - Z. Pirger
- Adaptive Neuroethology, Department of Experimental Zoology Balaton Limnological Institute; MTA Centre for Ecological Research; Tihany H-8237 Hungary
| |
Collapse
|
41
|
Säfholm M, Jansson E, Fick J, Berg C. Mixture effects of levonorgestrel and ethinylestradiol: estrogenic biomarkers and hormone receptor mRNA expression during sexual programming. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:146-153. [PMID: 25703176 DOI: 10.1016/j.aquatox.2015.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/22/2014] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Synthetic progesterone (progestins) and estrogens are widely used pharmaceuticals. Given that their simultaneous unintentional exposure occurs in wildlife and also in human infants, data on mixture effects of combined exposures to these hormones during development is needed. Using the Xenopus (Silurana) tropicalis test system we investigated mixture effects of levonorgestrel (LNG) and ethinylestradiol (EE2) on hormone sensitive endpoints. After larval exposure to LNG (0.1nM), or EE2 (0.1nM) singly, or in combination with LNG (0.01, 0.1, 1.0nM), the gonadal sex ratio was determined histologically and hepatic mRNA levels of genes encoding vitellogenin (vtg beta1) and the estrogen (esr1, esr2), progesterone (ipgr) and androgen (ar) receptors were quantified using quantitative PCR. All EE2-exposed groups showed female-biased sex ratios and increased vtg beta1 mRNA levels compared with the controls. Compared with the EE2-alone group (positive control) there were no significant alterations in vtg beta1 levels or in sex ratios in the co-exposure groups. Exposure to LNG-alone caused an increase in ar mRNA levels in females, but not in males, compared to the controls and the co-exposed groups, indicating that co-exposure to EE2 counteracted the LNG-induced ar levels. No treatment related impacts on the mRNA expression of esr1, esr2, and ipgr in female tadpoles were found, suggesting that these endpoints are insensitive to long-term exposure to estrogen or progestin. Due to the EE2-induced female-biased sex ratios, the mRNA expression data for the low number of males in the EE2-exposed groups were not statistically analyzed. In conclusion, our results suggest that induced vtg expression is a robust biomarker for estrogenic activity in exposure scenarios involving both estrogens and progestins. Developmental exposure to LNG caused an induction of hepatic ar mRNA expression that was antagonized by combined exposure to EE2 and LNG. To our knowledge this is the first study to report effects of combined exposures to EE2 and LNG during the period of sexual programming.
Collapse
Affiliation(s)
- Moa Säfholm
- Uppsala University, Department of Environmental Toxicology, Centre for Reproductive Biology in Uppsala, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Erika Jansson
- Uppsala University, Department of Environmental Toxicology, Centre for Reproductive Biology in Uppsala, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Jerker Fick
- Umeå University, Department of Chemistry, KBC 6A, Linnaeus väg 6, 901 87 Umeå, Sweden.
| | - Cecilia Berg
- Uppsala University, Department of Environmental Toxicology, Centre for Reproductive Biology in Uppsala, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| |
Collapse
|
42
|
Kumar V, Johnson AC, Trubiroha A, Tumová J, Ihara M, Grabic R, Kloas W, Tanaka H, Kroupová HK. The challenge presented by progestins in ecotoxicological research: a critical review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2625-2638. [PMID: 25611781 DOI: 10.1021/es5051343] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Around 20 progestins (also called gestagens, progestogens, or progestagens) are used today in assisting a range of medical conditions from endometrial cancer to uterine bleeding and as an important component of oral contraception. These progestins can bind to a wide range of receptors including progestin, estrogen, androgen, glucocorticoid, and mineralocorticoid receptor, as well as sex hormone and corticosteroid binding globulins. It appears that only five of these (four synthetic and one natural) progestins have so far been studied in sewage effluent and surface waters. Analysis has reported values as either nondetects or low nanograms per liter in rivers. Seven of the progestins have been examined for their effects on aquatic vertebrates (fish and frogs). The greatest concern is associated with levonorgestrel, norethisterone, and gestodene and their ability to reduce egg production in fish at levels of 0.8-1.0 ng/L. The lack of environmental measurements, and some of the contradictions in existing values, however, hampers our ability to make a risk assessment. Only a few nanograms per liter of ethynodiol diacetate and desogestrel in water would be needed for fish to receive a human therapeutic dose for these progestins according to modeled bioconcentration factors. But for the other synthetic progestins levels would need to reach tens or hundreds of nanograms per liter to achieve a therapeutic dose. Nevertheless, the wide range of compounds, diverse receptor targets, and the effect on fish reproduction at sub-nanogram-per-liter levels should prompt further research. The ability to impair female reproduction at very low concentrations makes the progestins arguably the most important pharmaceutical group of concern after ethinylestradiol.
Collapse
Affiliation(s)
- Vimal Kumar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice , Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Heub S, Tscharner N, Monnier V, Kehl F, Dittrich PS, Follonier S, Barbe L. Automated and portable solid phase extraction platform for immuno-detection of 17β-estradiol in water. J Chromatogr A 2015; 1381:22-8. [DOI: 10.1016/j.chroma.2014.12.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/09/2014] [Accepted: 12/28/2014] [Indexed: 11/26/2022]
|
44
|
Casis N, Busatto C, Fidalgo de Cortalezzi MM, Ravaine S, Estenoz DA. Molecularly imprinted hydrogels from colloidal crystals for the detection of progesterone. POLYM INT 2014. [DOI: 10.1002/pi.4851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Natalia Casis
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450 3000 Santa Fe Argentina
| | - Carlos Busatto
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450 3000 Santa Fe Argentina
| | | | - Serge Ravaine
- Centre de Recherche Paul Pascal - CNRS; 115 avenue du Dr Schweitzer 33600 Pessac France
| | - Diana A Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450 3000 Santa Fe Argentina
| |
Collapse
|
45
|
Waller CC, McLeod MD. A simple method for the small scale synthesis and solid-phase extraction purification of steroid sulfates. Steroids 2014; 92:74-80. [PMID: 25286236 DOI: 10.1016/j.steroids.2014.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/27/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
Steroid sulfates are a major class of steroid metabolite that are of growing importance in fields such as anti-doping analysis, the detection of residues in agricultural produce or medicine. Despite this, many steroid sulfate reference materials may have limited or no availability hampering the development of analytical methods. We report simple protocols for the rapid synthesis and purification of steroid sulfates that are suitable for adoption by analytical laboratories. Central to this approach is the use of solid-phase extraction (SPE) for purification, a technique routinely used for sample preparation in analytical laboratories around the world. The sulfate conjugates of sixteen steroid compounds encompassing a wide range of steroid substitution patterns and configurations are prepared, including the previously unreported sulfate conjugates of the designer steroids furazadrol (17β-hydroxyandrostan[2,3-d]isoxazole), isofurazadrol (17β-hydroxyandrostan[3,2-c]isoxazole) and trenazone (17β-hydroxyestra-4,9-dien-3-one). Structural characterization data, together with NMR and mass spectra are reported for all steroid sulfates, often for the first time. The scope of this approach for small scale synthesis is highlighted by the sulfation of 1μg of testosterone (17β-hydroxyandrost-4-en-3-one) as monitored by liquid chromatography-mass spectrometry (LCMS).
Collapse
Affiliation(s)
- Christopher C Waller
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Malcolm D McLeod
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
46
|
In vitro bioassays to screen for endocrine active pharmaceuticals in surface and waste waters. J Pharm Biomed Anal 2014; 106:107-15. [PMID: 25555519 DOI: 10.1016/j.jpba.2014.11.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 11/21/2022]
Abstract
In the context of the European Water Framework Directive (WFD) it is fully recognized that pharmaceuticals can represent a relevant issue for the achievement of the good chemical and ecological status of European surface water bodies. The recent European Directive on the review of priority substances in surface water bodies has included three pharmaceuticals of widespread use (diclofenac, 17α-ethinylestradiol (EE2), 17β-estradiol (E2)) in the European monitoring list, the so-called watch list. Endocrine active pharmaceuticals such as EE2 and E2 (also occurring as natural hormone) can cause adverse effects on aquatic ecosystems at very low levels. However, monitoring of these pharmaceuticals within the watch list mechanism of the WFD and national monitoring programs can be difficult because of detection problems of most routine analytical methods. With proposed annual average Environmental Quality Standards (AA-EQS) of 0.035 ng/L and 0.4 ng/L, respectively, the estrogenic pharmaceutical EE2 and the natural hormone E2 are among those substances. Sensitive in vitro bioassays could reduce the current detection problems by measuring the estrogenic activity of environmental samples. In a short review article the application of this approach to screen and assess the risks of endocrine active pharmaceuticals with a focus on estrogenic pharmaceuticals in environmental waters is discussed.
Collapse
|
47
|
Aris AZ, Shamsuddin AS, Praveena SM. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. ENVIRONMENT INTERNATIONAL 2014; 69:104-19. [PMID: 24825791 DOI: 10.1016/j.envint.2014.04.011] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/06/2014] [Accepted: 04/13/2014] [Indexed: 05/17/2023]
Abstract
17α-ethynylestradiol (EE2) is a synthetic hormone, which is a derivative of the natural hormone, estradiol (E2). EE2 is an orally bio-active estrogen, and is one of the most commonly used medications for humans as well as livestock and aquaculture activity. EE2 has become a widespread problem in the environment due to its high resistance to the process of degradation and its tendency to (i) absorb organic matter, (ii) accumulate in sediment and (iii) concentrate in biota. Numerous studies have reported the ability of EE2 to alter sex determination, delay sexual maturity, and decrease the secondary sexual characteristics of exposed organisms even at a low concentration (ng/L) by mimicking its natural analogue, 17β-estradiol (E2). Thus, the aim of this review is to provide an overview of the science regarding EE2, the concentration levels in the environment (water, sediment and biota) and summarize the effects of this compound on exposed biota at various concentrations, stage life, sex, and species. The challenges in respect of EE2 include the extension of the limited database on the EE2 pollution profile in the environment, its fate and transport mechanism, as well as the exposure level of EE2 for better prediction and definition revision of EE2 toxicity end points, notably for the purpose of environmental risk assessment.
Collapse
Affiliation(s)
- Ahmad Zaharin Aris
- Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Aida Soraya Shamsuddin
- Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
48
|
Socas-Rodríguez B, Hernández-Borges J, Asensio-Ramos M, Herrera-Herrera AV, Palenzuela JA, Rodríguez-Delgado MÁ. Determination of estrogens in environmental water samples using 1,3-dipentylimidazolium hexafluorophosphate ionic liquid as extraction solvent in dispersive liquid-liquid microextraction. Electrophoresis 2014; 35:2479-87. [DOI: 10.1002/elps.201400024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Bárbara Socas-Rodríguez
- Departamento de Química Analítica; Nutrición y Bromatología, Facultad de Química, Universidad de La Laguna (ULL); La Laguna (Tenerife) Spain
| | - Javier Hernández-Borges
- Departamento de Química Analítica; Nutrición y Bromatología, Facultad de Química, Universidad de La Laguna (ULL); La Laguna (Tenerife) Spain
| | - María Asensio-Ramos
- Instituto Volcanológico de Canarias (INVOLCAN); Puerto de la Cruz Tenerife Spain
| | - Antonio V. Herrera-Herrera
- Servicio General de Apoyo a la Investigación (SEGAI); Universidad de La Laguna (ULL); La Laguna (Tenerife) Spain
| | - Jose A. Palenzuela
- Departamento de Química Orgánica; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL); La Laguna (Tenerife) Spain
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química Analítica; Nutrición y Bromatología, Facultad de Química, Universidad de La Laguna (ULL); La Laguna (Tenerife) Spain
| |
Collapse
|
49
|
Matrix effect during the membrane-assisted solvent extraction coupled to liquid chromatography tandem mass spectrometry for the determination of a variety of endocrine disrupting compounds in wastewater. J Chromatogr A 2014; 1356:163-70. [PMID: 25001332 DOI: 10.1016/j.chroma.2014.06.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/13/2014] [Indexed: 11/23/2022]
Abstract
Membrane-assisted solvent extraction (MASE) coupled to liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) was studied for the determination of a variety of emerging and priority compounds in wastewater. Among the target analytes studied certain hormones (estrone (E1), 17β-estradiol (E2), androsterone (ADT), 17α-ethynyl estradiol (EE2), diethylstilbestrol (DES), equilin (EQ), testosterone (TT), mestranol (MeEE2), 19-norethisterone (NT), progesterone (PG) and equilenin (EQN)), alkylphenols (APs) (4-tert-octylphenol (4tOP), nonylphenol technical mixture (NPs) and 4n-octylphenol (4nOP)) and BPA were included. The work was primarily focused in the LC-MS/MS detection step, both in terms of variable optimization and with respect to the matrix effect study. Both, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were assessed both in the negative and positive mode, including the optimization of MS/MS operating conditions. The best results were obtained, in most of the cases, for ESI using 0.05% ammonium hydroxide as buffer solution in the mobile phase, composed with methanol and water. Under optimum detection conditions, matrix effect during the detection step was thoroughly studied. Dilution, correction with deuterated analogues and clean-up of the extracts were evaluated for matrix effect correction. Clean-up with Florisil together with correction with deuterated analogues provided the most satisfactory results, with apparent recoveries in the 57-136% range and method detection limits in the low ngL(-1) level for most of the analytes. For further validation of the method, two separated extraction procedures, the above mentioned MASE, and conventional solid phase extraction (SPE) were compared during the analysis of real samples and comparable results were successfully obtained for E1, E2, EE2, DES, NT, TT, EQ, PG, BPA, ADT, 4nOP, 4tOP, NPs and EQN.
Collapse
|
50
|
Analysis of Steroid Hormones in Water Using Palmitate-Coated Magnetite Nanoparticles Solid-Phase Extraction and Gas Chromatography–Tandem Mass Spectrometry. Chromatographia 2014. [DOI: 10.1007/s10337-014-2688-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|