1
|
Tananaiko O, Walcarius A. Composite Silica-Based Films as Platforms for Electrochemical Sensors. CHEM REC 2024; 24:e202300194. [PMID: 37737456 DOI: 10.1002/tcr.202300194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Sol-gel-derived silica thin films generated onto electrode surfaces in the form of organic-inorganic hybrid coatings or other composite layers have found tremendous interest for being used as platforms for the development of electrochemical sensors and biosensors. After a brief description of the strategies applied to prepare such materials, and their interest as electrode modifier, this review will summarize the major advances made so far with composite silica-based films in electroanalysis. It will primarily focus on electrochemical sensors involving both non-ordered composite films and vertically oriented mesoporous membranes, the biosensors exploiting the concept of sol-gel bioencapsulation on electrode, the spectroelectrochemical sensors, and some others.
Collapse
Affiliation(s)
- Oksana Tananaiko
- Department of Analytical Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Str., 64, Kyiv, Ukraine, 01601
| | | |
Collapse
|
2
|
Wu Y, Chen K, Wang F. C-undecylcalix[4]resorcinarene Langmuir-Blodgett/Porous Reduced Graphene Oxide Composite Film as a Electrochemical Sensor for the Determination of Tryptophan. BIOSENSORS 2023; 13:1024. [PMID: 38131784 PMCID: PMC10742033 DOI: 10.3390/bios13121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
In this study, a composite film was developed for the electrochemical sensing of tryptophan (Trp). Porous reduced graphene oxide (PrGO) was utilized as the electron transfer layer, and a C-undecylcalix[4]resorcinarene Langmuir-Blodgett (CUCR-LB) film served as the molecular recognition layer. Atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, scanning electron microscopy (SEM), and electrochemical experiments were employed to analyze the characteristics of the CUCR-LB/PrGO composite film. The electrochemical behavior of Trp on the CUCR-LB/PrGO composite film was investigated, revealing a Trp linear response range of 1.0 × 10-7 to 3.0 × 10-5 mol L-1 and a detection limit of 3.0 × 10-8 mol L-1. Furthermore, the developed electroanalytical method successfully determined Trp content in an amino acid injection sample. This study not only introduces a rapid and reliable electrochemical method for the determination of Trp but also presents a new strategy for constructing high-performance electrochemical sensing platforms.
Collapse
Affiliation(s)
| | | | - Fei Wang
- School of Chemical Engineering and Dyeing Engineering, Henan University of Engineering, Zhengzhou 450007, China; (Y.W.); (K.C.)
| |
Collapse
|
3
|
Sohrabi H, Maleki F, Khaaki P, Kadhom M, Kudaibergenov N, Khataee A. Electrochemical-Based Sensing Platforms for Detection of Glucose and H 2O 2 by Porous Metal-Organic Frameworks: A Review of Status and Prospects. BIOSENSORS 2023; 13:347. [PMID: 36979559 PMCID: PMC10046199 DOI: 10.3390/bios13030347] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Establishing enzyme-free sensing assays with great selectivity and sensitivity for glucose and H2O2 detection has been highly required in biological science. In particular, the exploitation of nanomaterials by using noble metals of high conductivity and surface area has been widely investigated to act as selective catalytic agents for molecular recognition in sensing platforms. Several approaches for a straightforward, speedy, selective, and sensitive recognition of glucose and H2O2 were requested. This paper reviews the current progress in electrochemical detection using metal-organic frameworks (MOFs) for H2O2 and glucose recognition. We have reviewed the latest electrochemical sensing assays for in-place detection with priorities including straightforward procedure and manipulation, high sensitivity, varied linear range, and economic prospects. The mentioned sensing assays apply electrochemical systems through a rapid detection time that enables real-time recognition. In profitable fields, the obstacles that have been associated with sample preparation and tool expense can be solved by applying these sensing means. Some parameters, including the impedance, intensity, and potential difference measurement methods have permitted low limit of detections (LODs) and noticeable durations in agricultural, water, and foodstuff samples with high levels of glucose and H2O2.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Fatemeh Maleki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Pegah Khaaki
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz 51666-16471, Iran
| | - Mohammed Kadhom
- Department of Environmental Science, College of Energy and Environmental Science, Alkarkh University of Science, Baghdad 10081, Iraq
| | - Nurbolat Kudaibergenov
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
4
|
Challier L, Forget A, Bazin C, Tanniou S, Doare JL, Davy R, Bernard H, Tripier R, Laes-Huon A, Poul NL. An ultrasensitive and highly selective nanomolar electrochemical sensor based on an electrocatalytic peak shift analysis approach for copper trace detection in water. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Tu K, Wu J, Zhu W. Fabrication and characterization of novel macroporous hydrogels based on the polymerizable surfactant AAc-Span80 and their enhanced drug-delivery capacity. RSC Adv 2022; 12:29677-29687. [PMID: 36321091 PMCID: PMC9577311 DOI: 10.1039/d2ra02443h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
In this study, macroporous pH-sensitive poly[N-isopropylacrylamide-co-acrylic acid-sorbitan monooleate] hydrogels, termed as PNIPAM-co-AAc-Span80 hydrogels, with an enhanced hydrophobic property and a rich pore structure were prepared by free-radical polymerization in an ethanol/water mixture. The polymerizable surfactant AAc-Span80 was obtained by the esterification of acrylic acid (AAc) and sorbitan monooleate (Span80), which was used to copolymerize with N-isopropylacrylamide (NIPAM). The chemical structure, thermal stability, morphology, and amphipathy of the PNIPAM-co-AAc-Span80 hydrogels were characterized. The results showed that the polymerizable surfactant AAc-Span80 macromolecule introduced into the hydrogels could not only increase the hydrophobic property but also ameliorate the porous network morphology, which was conducive to high adsorption capacity for adriamycin hydrochloride (DOX). The adsorption results showed that the equilibrium adsorption capacity of DOX reached 467.5 mg g−1 within 48 h at pH 7.4, and the hydrophobic interactions and intermolecular hydrogen bonds were the main force in the adsorption process of DOX. The release results demonstrated that the macroporous pH-sensitive hydrogels loaded with DOX could release 98.7% of DOX at pH 5.0, which would be highly beneficial for the release of anti-cancer drugs in the environment of cancer cells. All the results demonstrate that the PNIPAM-co-AAc-Span80 hydrogels have great potential for the delivery of anti-cancer drugs. PNIPAM-co-AAc-Span80 shows an enhanced hydrophobic property, rich pore structure, and good adsorption performance for DOX. The desorption results demonstrate that 98.7% of DOX can be released efficiently in an acidic environment.![]()
Collapse
Affiliation(s)
- Kai Tu
- School of Chemical Engineering, Zhengzhou UniversityZhengzhou 450001HenanChina
| | - Junyan Wu
- School of Chemical Engineering, Zhengzhou UniversityZhengzhou 450001HenanChina
| | - Weixia Zhu
- School of Chemical Engineering, Zhengzhou UniversityZhengzhou 450001HenanChina
| |
Collapse
|
6
|
Simultaneous electrochemical determination of morphine and methadone by using CMK-5 mesoporous carbon and multivariate calibration. Sci Rep 2022; 12:8270. [PMID: 35585173 PMCID: PMC9117690 DOI: 10.1038/s41598-022-12506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
For the first time, a sensitive electrochemical sensor using a glassy carbon electrode modified with CMK-5 Ordered mesoporous carbon was fabricated for simultaneous analysis of morphine and methadone. Modern electrochemical FFT-SWV techniques and partial least-squares as a multivariable analysis were used in this method. CMK-5 nanostructures were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and Raman spectroscopy. Variables such as accumulation time and pH for the proposed sensor were optimized before quantitative analysis. To train the proposed sensor, standard mixtures of morphine (MOR), and methadone (MET) were prepared in the established linear ranges of the analyzes. The results obtained from training samples were used for PLS modeling. The efficiency of the model was determined using test and real matrix samples. The root mean square error of prediction and the squared correlation coefficients (R2p) for MET and MOR were estimated to be 0.00772 and 0.00892 and 0.948 to 0.990, respectively. The recoveries in urine samples were reported to be 97.0 and 105.6% for both MOR and MET, respectively.
Collapse
|
7
|
Padmalaya G, Krishna Kumar K, Senthil Kumar P, Sreeja BS, Bose S. A recent advancement on nanomaterials for electrochemical sensing of sulfamethaoxole and its futuristic approach. CHEMOSPHERE 2022; 290:133115. [PMID: 34952010 DOI: 10.1016/j.chemosphere.2021.133115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Sulfamethoxazole (SMX) forms the high harmfulness and causing negative health impacts to well-being human and environment that found to be major drastic concern. It is subsequently important to keep in track for monitoring of SMX through convenient detecting devices which include the requirement of being minimal expense and potential for on location environmental applications. Nanomaterials based design has been proposed to determine the SMX antibiotic which in turn provides the solution for this issue. In spite of the critical advancement accomplished in research, further endeavors are yet to foster the progress on electrochemical sensors with the guide of various functional nanomaterials and guarantee the effective transportability for such sensors with improved coherence. Moreover, it has been noticed that, only few reports on electrochemical sensing of SMX detection using nanomaterials was observed. Hence an in-depth evaluation of electrochemical sensing systems using various nanomaterials for SMX detection was summarized in this review. Additionally this current review centers with brief presentation around SMX hazard evaluation followed by study on the current logical techniques to feature the importance for SMX detection. This review will provide the sum up view towards the future ideas of this field which assists in improving the detecting strategies for SMX detection.
Collapse
Affiliation(s)
- G Padmalaya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India
| | - K Krishna Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India.
| | - B S Sreeja
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India; Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India
| | - Sanchali Bose
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India
| |
Collapse
|
8
|
Yang Z, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108684] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Yuan B, Sun P, Fernandez C, Wang H, Guan P, Xu H, Niu Y. Molecular fluorinated cobalt phthalocyanine immobilized on ordered mesoporous carbon as an electrochemical sensing platform for sensitive detection of hydrogen peroxide and hydrazine in alkaline medium. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Jain R, Nirbhaya V, Chandra R, Kumar S. Nanostructured Mesoporous Carbon Based Electrochemical Biosensor for Efficient Detection of Swine Flu. ELECTROANAL 2022. [DOI: 10.1002/elan.202100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Raghav Jain
- Department of Chemistry University of Delhi Delhi 110007 India
| | | | - Ramesh Chandra
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Suveen Kumar
- Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
11
|
Ullah W, Herzog G, Vilà N, Walcarius A. Polyaniline nanowire arrays generated through oriented mesoporous silica films: effect of pore size and spectroelectrochemical response. Faraday Discuss 2021; 233:77-99. [PMID: 34889333 DOI: 10.1039/d1fd00034a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Indium-tin oxide electrodes modified with vertically aligned silica nanochannel membranes have been produced by electrochemically assisted self-assembly of cationic surfactants (cetyl- or octadecyl-trimethylammonium bromide) and concomitant polycondensation of the silica precursors (tetraethoxysilane). They exhibited pore diameters in the 2-3 nm range depending on the surfactant used. After surfactant removal, the bottom of mesopores was derivatized with aminophenyl groups via electrografting (i.e., electrochemical reduction of in situ generated aminophenyl monodiazonium salt). These species covalently bonded to the ITO substrate were then exploited to grow polyaniline nanofilaments by electropolymerization of aniline through the nanochannels. Under potentiostatic conditions, the length of polyaniline wires is controllable by tuning the electropolymerization time. From cyclic voltammetry characterization performed either before or after dissolution of the silica template, it appeared that both the polyaniline/silica composite and the free polyaniline nanowire arrays were electroactive, yet with much larger peak currents in the latter case as a result of larger effective surface area offered to the electrolyte solution. At identical electropolymerization time, the amount of deposited polyaniline was larger when using the silica membrane with larger pore diameter. All polyaniline deposits exhibited electrochromic properties. However, the spectroelectrochemical data indicated more complete interconversion between the coloured oxidized form and colourless reduced polyaniline for the arrays of nanofilaments in comparison to bulky films. In addition, the template-free nanowire arrays (i.e., after silica dissolution) were characterized by faster electrochromic behaviour than the polyaniline/silica hybrid, confirming the potential interest of such polyaniline nano-brushes for practical applications.
Collapse
Affiliation(s)
- Wahid Ullah
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| |
Collapse
|
12
|
Dubrovin EV, Klinov DV. Atomic Force Microscopy of Biopolymers on Graphite Surfaces. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x2106002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Inorganofunctionalization of Ti(IV) and Zr(IV) on the MCM-41 Surface and its Interaction with a Mixed Valence Complex to use as Isoniazid Sensing. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Vinoth S, Shalini Devi K, Pandikumar A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116274] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Safaei M, Shishehbore MR. A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 2021; 229:122247. [PMID: 33838767 DOI: 10.1016/j.talanta.2021.122247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
It is widely accepted that cancer, the second leading cause of death, is a morbidity with big impacts on the global health. In the last few years, chemo-therapeutic treatment continually induces alone most lengthy consequents, which is extremely harmful for the physiological and psychological health of the patients. In the present research, we discuss the recent techniques for employed for extraction, and quantitative determination of such compounds in pharmaceutical, and biological specimens. In the frame of this information, this review aims to provide basic principles of chromatography, spectroscopy, and electroanalytical methods for the analysis of anticancer drugs published in the last three years. The review also describes the recent developments regarding enhancing the limit of detection (LOD), the linear dynamic range, and so forth. The results show that the LOD for the chromatographic techniques with the UV detector was obtained equaled over the range 2.0 ng mL-1-0.2 μg mL-1, whereas the LOD values for analysis by chromatographic technique with the mass spectrometry (MS) detector was found between 10.0 pg mL-1-0.002 μg mL-1. The biological fluids could be directly injected to capillary electrophoresis (CE) in cases where the medicine concentration is at the contents greater than mg L-1 or g L-1. Additionally, electrochemical detection of the anticancer drugs has been mainly conducted by the voltammetry techniques with diverse modified electrodes, and lower LODs were estimated between 3.0 ng mL-1-0.3 μg mL-1. It is safe to say that the analyses of anticancer drugs can be achieved by employing a plethora of techniques such as electroanalytical, spectroscopy, and chromatography techniques.
Collapse
Affiliation(s)
- Mohadeseh Safaei
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | |
Collapse
|
16
|
Simplified synthesis of N-doped carbon nanotube arrayed mesoporous carbon for electrochemical detection of amitrole. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
18
|
Ullah W, Herzog G, Vilà N, Brites Helú M, Walcarius A. Electrochemically Assisted Deposition of Nanoporous Silica Membranes on Gold Electrodes: Effect of 3‐Mercaptopropyl(trimethoxysilane) “Molecular Glue” on Film Formation, Permeability and Metal Underpotential Deposition. ChemElectroChem 2020. [DOI: 10.1002/celc.202001347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wahid Ullah
- Université de Lorraine, CNRS, LCPME Nancy France
| | | | - Neus Vilà
- Université de Lorraine, CNRS, LCPME Nancy France
| | | | | |
Collapse
|
19
|
Dong Li, Luo HQ, Li NB. A Tin Film CMK-3 Modified Carbon Paste Electrode as an Environmentally Friendly Sensor to Detect Trace Cadmium. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820090099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Otero F, Magner E. Biosensors-Recent Advances and Future Challenges in Electrode Materials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3561. [PMID: 32586032 PMCID: PMC7349852 DOI: 10.3390/s20123561] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Electrochemical biosensors benefit from the simplicity, sensitivity, and rapid response of electroanalytical devices coupled with the selectivity of biorecognition molecules. The implementation of electrochemical biosensors in a clinical analysis can provide a sensitive and rapid response for the analysis of biomarkers, with the most successful being glucose sensors for diabetes patients. This review summarizes recent work on the use of structured materials such as nanoporous metals, graphene, carbon nanotubes, and ordered mesoporous carbon for biosensing applications. We also describe the use of additive manufacturing (AM) and review recent progress and challenges for the use of AM in biosensing applications.
Collapse
Affiliation(s)
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| |
Collapse
|
21
|
Diouf A, Moufid M, Bouyahya D, Österlund L, El Bari N, Bouchikhi B. An electrochemical sensor based on chitosan capped with gold nanoparticles combined with a voltammetric electronic tongue for quantitative aspirin detection in human physiological fluids and tablets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110665. [PMID: 32204094 DOI: 10.1016/j.msec.2020.110665] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Inflammatory diseases increase has recently sparked the research interest for drugs diagnostic tools development. At therapeutic doses, acetylsalicylic acid (ASA or aspirin) is widely used for these diseases' treatment. ASA overdoses can however give rise to adverse side effects including ulcers, gastric damage. Hence, development of simple, portable and sensitive methods for ASA detection is desirable. This paper reports aspirin analysis in urine, saliva and pharmaceutical tablet using an electrochemical sensor and a voltammetric electronic tongue (VE-Tongue). The electrochemical sensor was fabricated by self-assembling chitosan capped with gold nanoparticles (Cs + AuNPs) on a screen-printed carbon electrode (SPCE). It exhibits a logarithmic-linear relationship between its response and the ASA concentration in the range between 1 pg/mL and 1 μg/mL. A low detection limit (0.03 pg/mL), good selectivity against phenol and benzoic acid interference, and successful practical application were demonstrated. Qualitative analysis was performed using the VE-Tongue based unmodified metal electrodes combined with two chemometric approaches to classify urine samples spiked with different aspirin concentrations. Partial least squares (PLS) method provided prediction models obtained from the data of both devices with a regression correlation coefficient R2 = 0.99. Correspondingly, the SPCE/(Cs + AuNPs) electrochemical sensor and VE-Tongue could be viable tools for biological analysis of drugs.
Collapse
Affiliation(s)
- Alassane Diouf
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco.; Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, 50003 Meknes, Morocco
| | - Mohammed Moufid
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco.; Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, 50003 Meknes, Morocco
| | - Driss Bouyahya
- School of arts and humanities, Moulay Ismaïl University of Meknes, Morocco
| | - Lars Österlund
- Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, SE-75121 Uppsala, Sweden
| | - Nezha El Bari
- Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, 50003 Meknes, Morocco
| | - Benachir Bouchikhi
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco..
| |
Collapse
|
22
|
Wang H, Liu Y, Hu G, Ye Y, Pan L, Zhu P, Yao S. Ultrasensitive electrochemical sensor for determination of trace carbadox with ordered mesoporous carbon/GCE. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Song H, Liu Z, Gai H, Wang Y, Qiao L, Zhong C, Yin X, Xiao M. Nitrogen-Dopped Ordered Mesoporous Carbon Anchored Pd Nanoparticles for Solvent Free Selective Oxidation of Benzyl Alcohol to Benzaldehyde by Using O 2. Front Chem 2019; 7:458. [PMID: 31316968 PMCID: PMC6610524 DOI: 10.3389/fchem.2019.00458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022] Open
Abstract
Introducing electron-rich nitrogen atoms to ordered mesoporous carbons (OMC) as supports for noble metal catalysts, not only improves the hydrophilic properties of a mesoporous carbon surface, but also enhances the coordination and binding abilities of metal ion. In the present work, nitrogen-doped ordered mesoporous carbons (NOMCs) were successfully fabricated via a facile hydrothermal self-assembly. The prepared NOMCs were characterized through powder X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherm. The analyses demonstrated that the NOMCs prepared at a pyrolysis temperature of 750°C possessed an ordered 2D hexagonal mesoporous structure, a high graphitization degree, large surface area, and a well-distributed pore size. In particular, NOMCs could anchor Pd nanoparticles uniformly because of the introducing N atoms with strong electronegativity, which were selected as efficient catalysts for the partial oxidation of benzyl alcohol to benzaldehyde. Approximately 24.63% conversion with 85.71% selectivity to benzaldehyde was obtained without using any solvent by molecular O2 oxidation. Most importantly, the TOF value of the catalyst in the reaction system was up to 8698 h−1. After five runs reaction, TOF and selectivity of the catalyst remained essentially same. Hence, the proposed catalyst has a potential engineering application value.
Collapse
Affiliation(s)
- Hongbing Song
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zong Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hengjun Gai
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yongjie Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Lin Qiao
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Caiyun Zhong
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiangyang Yin
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meng Xiao
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Ramírez A, Gacitúa M, Ortega E, Díaz F, del Valle M. Electrochemical in situ synthesis of polypyrrole nanowires. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Pérez-Rodríguez S, Sebastián D, Lázaro MJ. Electrochemical oxidation of ordered mesoporous carbons and the influence of graphitization. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Amperometric sandwich immunoassay for determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbon. Mikrochim Acta 2019; 186:262. [PMID: 30929076 DOI: 10.1007/s00604-019-3359-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 02/01/2023]
Abstract
An ultrasensitive sandwich-type electrochemical immunosensor was developed for the amperometric determination of serum myeloperoxidase (MPO). The method is making use of (a) gold nanoparticles encapsulated in graphitized mesoporous carbons (AuNP@GMC); and (b) horseradish peroxidase (HRP) labeled secondary antibody (HRP@Ab2) immobilized on AuNP@GMC. MPO capture antibody (Ab1) was immobilized on the electrode modified with an AuNP-graphene oxide nanocomposite. The sandwich immunoreaction leads to the formation of the complex composed of Ab1, MPO, and HRP@Ab2. An amplified electrochemical signal is produced by electrocatalytic reduction of H2O2 (at a typical voltage of -0.18 V vs. Ag/AgCl) in the presence of enzymatically oxidized thionine. The peak current of thionine was measured using differential pulse voltammetry. Under optimized steady-state conditions, the reduction peak increases in the 1 to 300 pg.mL-1 MPO concentration range, and the detection limit is 0.1 pg.mL-1 (at S/N = 3). Graphical abstract Schematic presentation of AuNP-GO based sandwich-type electrochemical immunoassay for the determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbons (AuNP@GMC) as a carrier for horseradish peroxidase (HRP) labeled secondary antibody (HRP@Ab2).
Collapse
|
27
|
Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q. New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 2018; 47:8766-8803. [PMID: 30306180 DOI: 10.1039/c8cs00658j] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesoporous materials are ideal carriers for guest molecules and they have been widely used in analytical science. The unique mesoporous structure provides special properties including large specific surface area, tunable pore size, and excellent pore connectivity. The structural properties of mesoporous materials have been largely made use of to improve the performance of analytical methods. For instance, the large specific surface area of mesoporous materials can provide abundant active sites and increase the probability of contact between analytes and active sites to produce stronger signals, thus leading to the improvement of detection sensitivity. The connections between analytical performances and the structural properties of mesoporous materials have not been discussed previously. Understanding the "structure-performance relationship" is highly important for the development of analytical methods with excellent performance based on mesoporous materials. In this review, we discuss the structural properties of mesoporous materials that can be optimized to improve the analytical performance. The discussion is divided into five sections according to the analytical performances: (i) selectivity-related structural properties, (ii) sensitivity-related structural properties, (iii) response time-related structural properties, (iv) stability-related structural properties, and (v) recovery time-related structural properties.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
28
|
Cao M, Yin X, Bo X, Guo L. High-performance electrocatalyst based on metal-organic framework/macroporous carbon composite for efficient detection of luteolin. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Mutyala S, Kinsly J, Sharma G, Chinnathambi S, Jayaraman M. Non-enzymatic electrochemical hydrogen peroxide detection using MoS2- Interconnected porous carbon heterostructure. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Phenylamide-oxime and phenylamide nanolayer covalently grafted carbon via electroreduction of the corresponding diazonium salts for detection of nickel ions. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Bozdech S, Biecher Y, Savinova ER, Schuster R, Krischer K, Bonnefont A. Oscillations in an array of bistable microelectrodes coupled through a globally conserved quantity. CHAOS (WOODBURY, N.Y.) 2018; 28:045113. [PMID: 31906625 DOI: 10.1063/1.5022475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamical behavior of an array of microelectrodes is investigated under controlled current conditions during CO electrooxidation, a bistable electrochemical reaction with an S-shaped negative differential resistance (S-NDR) current-potential curve. Under these conditions, the total current constitutes a globally conserved quantity, thus coupling all microelectrodes globally. Upon increasing the total current, the microelectrodes activate one by one, with a single microelectrode being on its intermediate S-NDR current branch and the other ones being either on their passive or their active branches. When a few coupled microelectrodes are activated, the electrochemical system exhibits spontaneous potential oscillations. Mathematical analysis shows that oscillations arise already in a two group approximation of the dynamics, the two groups consisting of 1 electrode and n - 1 electrodes with n ≥ 3, respectively, with each group being described by a single evolution equation. In this minimal representation, oscillations occur when the single electrode is on the intermediate branch and the larger group is on the active branch.
Collapse
Affiliation(s)
- S Bozdech
- Institut de Chimie des Procédés, pour l'Energie, l'Environnement et la Santé, UMR7515, CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Y Biecher
- Institut de Chimie des Procédés, pour l'Energie, l'Environnement et la Santé, UMR7515, CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - E R Savinova
- Institut de Chimie des Procédés, pour l'Energie, l'Environnement et la Santé, UMR7515, CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - R Schuster
- Institut für Physikalische Chemie, Karlsruher Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - K Krischer
- Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - A Bonnefont
- Institut de Chimie de Strasbourg, UMR7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
32
|
Ya Y, Jiang C, Yan F, Xie L, Li T, Wang Y, Wei L. A novel electrochemical sensor for chlorophenols based on the enhancement effect of Al-doped mesoporous cellular foam. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Kamysbayev D, Serikbayev B, Arbuz G, Badavamova G, Tasibekov K. Synthesis and Electrochemical Behavior of the Molybdenum- Modified Electrode Based on Rice Husk. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2017. [DOI: 10.18321/ectj679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The article presents the results of electrochemical studies made on carbon paste electrode based on bisorbents powder modified by molybdenum. Bisorbent consists of carbon and SiO2. It was synthesized as a support structure obtained from rice husk thermal decomposition products. The obtained sorption material has surface with high specific area – 200 m2/g. Bisorbent was further modified by (NH4)6Mo7O24 · 4H2O (10 wt.%). The elemental composition of used RH was also determined. The surface morphology of plain and modified BS samples was studied. Recording of voltammetric curves was carried out at рН = 3.80, рН = 6.40 in 0.2 М electrolyte solution of Li2SO4. Cathodic and anodic waves were obtained which related to oxidation and reduction processes of molebdenium compounds in the entire range of the potentials (0.8 ÷ -1.2 V). The range of changing molybdate ions concentrations in solution was 2·10‒4 ÷ 10‒2 M. The dependencies of kinetic and electrochemical parameters on paramolybdate ions concentration were studied for modified electrode. Nature of changes in molybdenum reduction currents and oxidation currents indicates that Mo+6 reduction may occur by different mechanisms depending on the composite electrode properties. Results showed the possibility of further the synthesized composite system use for voltammetric determination of low (10‒4–10‒2) concentrations of ions in a solution.
Collapse
|
34
|
Chen D, Zhou H, Li H, Chen J, Li S, Zheng F. Self-template synthesis of biomass-derived 3D hierarchical N-doped porous carbon for simultaneous determination of dihydroxybenzene isomers. Sci Rep 2017; 7:14985. [PMID: 29101387 PMCID: PMC5670168 DOI: 10.1038/s41598-017-15129-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/20/2017] [Indexed: 11/08/2022] Open
Abstract
Nitrogen doped hierarchical porous carbon materials (HPCs) was achieved by the successful carbonization, using pig lung as biomass precursor. Three-dimensional HPCs constituted with sheets and lines were synergistically inherited from original pig lung. Such structure provided a large specific surface area (958.5 g-1 m2) and rich porous, effectively supported a large number of electro-active species, and greatly enhanced the mass and electron transfer. High graphitization degree of HPCs resulted in good electrical conductivity. Furthermore, the different electronegativity between nitrogen and carbon atoms in HPCs could affect the electron cloud distribution, polarity and then the electrochemical oxidation kinetics of dihydroxybenzene isomers. Based on these characteristics of HPCs, the electrochemical sensor for dihydroxybenzene isomers exhibited high sensitivity, excellent specificity and stability. Quantitative analysis assays by differential pulse voltammetry (DPV) technology showed that the sensor has wide linear ranges (0.5-320, 0.5-340 and 1-360 μmol L-1) and low detection limits (0.078, 0.057 and 0.371 μmol L-1) for the catechol, resorcinol and hydroquinone, respectively. This proposed method was successfully applied for simultaneous detection of dihydroxybenzene isomers in river water.
Collapse
Affiliation(s)
- Dejian Chen
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| | - Haifeng Zhou
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| | - Hao Li
- School of Information and Technology, Northwest University, Xian, Shaanxi, 710069, China
| | - Jie Chen
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| | - Shunxing Li
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou, Fujian, 363000, China.
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology Minnan Normal University, Zhangzhou, Fujian, 363000, China.
| | - Fengying Zheng
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou, Fujian, 363000, China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology Minnan Normal University, Zhangzhou, Fujian, 363000, China
| |
Collapse
|
35
|
Wen X, Xi J, Long M, Tan L, Wang J, Yan P, Zhong L, Liu Y, Tang A. Ni(OH)2/Ni based on TiO2 nanotube arrays binder-free electrochemical sensor for formaldehyde accelerated detection. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Walcarius A. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1863. [PMID: 28800106 PMCID: PMC5579580 DOI: 10.3390/s17081863] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/27/2023]
Abstract
The past decade has seen an increasing number of extensive studies devoted to the exploitation of ordered mesoporous carbon (OMC) materials in electrochemistry, notably in the fields of energy and sensing. The present review summarizes the recent achievements made in field of electroanalysis using electrodes modified with such nanomaterials. On the basis of comprehensive tables, the interest in OMC for designing electrochemical sensors is illustrated through the various applications developed to date. They include voltammetric detection after preconcentration, electrocatalysis (intrinsically due to OMC or based on suitable catalysts deposited onto OMC), electrochemical biosensors, as well as electrochemiluminescence and potentiometric sensors.
Collapse
Affiliation(s)
- Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie Pour l'Environnement (LCPME), UMR 7564, CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France.
| |
Collapse
|
37
|
Xia Y, Qiang Z, Lee B, Becker ML, Vogt BD. Solid state microwave synthesis of highly crystalline ordered mesoporous hausmannite Mn3O4films. CrystEngComm 2017. [DOI: 10.1039/c7ce00900c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microwave calcination of ordered micelle templated manganese carbonate films leads to highly crystalline, ordered mesoporous manganese oxide, while similar temperatures in a furnace lead to disordered, amorphous manganese oxide.
Collapse
Affiliation(s)
- Yanfeng Xia
- Department of Polymer Science
- University of Akron
- Akron
- USA
| | - Zhe Qiang
- Department of Polymer Engineering
- University of Akron
- Akron
- USA
| | - Byeongdu Lee
- X-ray Science Division
- Advanced Photon Source
- Argonne National Laboratory
- Argonne
- USA
| | | | - Bryan D. Vogt
- Department of Polymer Engineering
- University of Akron
- Akron
- USA
| |
Collapse
|
38
|
Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:544-551. [DOI: 10.1016/j.msec.2016.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022]
|
39
|
Porous graphene oxide nanostructure as an excellent scaffold for label-free electrochemical biosensor: Detection of cardiac troponin I. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:447-52. [DOI: 10.1016/j.msec.2016.07.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 11/23/2022]
|
40
|
Chekin F, Singh SK, Vasilescu A, Dhavale VM, Kurungot S, Boukherroub R, Szunerits S. Reduced Graphene Oxide Modified Electrodes for Sensitive Sensing of Gliadin in Food Samples. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00608] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fereshteh Chekin
- Univ.
Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, Avenue Poincaré-CS60069, F-59000 Lille, France
- Department
of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Santosh K. Singh
- Physical
and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 RafiMarg, New Delhi 110 001, India
| | - Alina Vasilescu
- International Center of Biodynamics, 1B Intrarea Portocalelor, Sector 6, Bucharest 060101, Romania
| | - Vishal M. Dhavale
- Chemical
Resources Laboratory, Tokyo Institute of Technology, R1-17, 4259,
Nagatsuta, Midori-ku, Tokyo 1 52-8550, Japan
| | - Sreekumar Kurungot
- Physical
and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 RafiMarg, New Delhi 110 001, India
| | - Rabah Boukherroub
- Univ.
Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, Avenue Poincaré-CS60069, F-59000 Lille, France
| | - Sabine Szunerits
- Univ.
Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, Avenue Poincaré-CS60069, F-59000 Lille, France
| |
Collapse
|
41
|
Simultaneous detection of hydroquinone and catechol on electrochemical-activated glassy carbon electrode by simple anodic and cathodic polarization. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3426-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Kochana J, Wapiennik K, Knihnicki P, Pollap A, Janus P, Oszajca M, Kuśtrowski P. Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products. Anal Bioanal Chem 2016; 408:5199-210. [PMID: 27209590 PMCID: PMC4925687 DOI: 10.1007/s00216-016-9612-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 11/21/2022]
Abstract
A voltammetric biosensor based on tyrosinase (TYR) was developed for determination of tyramine. Carbon material (multi-walled carbon nanotubes or mesoporous carbon CMK-3-type), polycationic polymer-i.e., poly(diallyldimethylammonium chloride) (PDDA), and Nafion were incorporated into titania dioxide sol (TiO2) to create an immobilization matrix. The features of the formed matrix were studied by scanning electron microscopy (SEM) and cyclic voltammetry (CV). The analytical performance of the developed biosensor was evaluated with respect to linear range, sensitivity, limit of detection, long-term stability, repeatability, and reproducibility. The biosensor exhibited electrocatalytic activity toward tyramine oxidation within a linear range from 6 to 130 μM, high sensitivity of 486 μA mM(-1) cm(-2), and limit of detection of 1.5 μM. The apparent Michaelis-Menten constant was calculated to be 66.0 μM indicating a high biological affinity of the developed biosensor for tyramine. Furthermore, its usefulness in determination of tyramine in food product samples was also verified. Graphical abstract Different food samples were analyzed to determine tyramine using biosensor based on tyrosinase.
Collapse
Affiliation(s)
- Jolanta Kochana
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland.
| | - Karolina Wapiennik
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Paweł Knihnicki
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Aleksandra Pollap
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Paula Janus
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Marcin Oszajca
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| |
Collapse
|
43
|
Kamyabi MA, Hajari N. Preparation of mesoporous silica templated metal nanostructure on Ni foam substrate and its application for the determination of hydrogen peroxide. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-0986-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Mierzwa M, Lamouroux E, Vakulko I, Durand P, Etienne M. Electrochemistry and Spectroelectrochemistry with Electrospun Indium Tin Oxide Nanofibers. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Wu D, Wang Y, Zhang Y, Ma H, Yan T, Du B, Wei Q. Sensitive Electrochemical Immunosensor for Detection of Nuclear Matrix Protein-22 based on NH2-SAPO-34 Supported Pd/Co Nanoparticles. Sci Rep 2016; 6:24551. [PMID: 27086763 PMCID: PMC4834490 DOI: 10.1038/srep24551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
A novel sandwich-type electrochemical immunosensor using the new amino group functionalized silicoaluminophosphates molecular sieves (NH2-SAPO-34) supported Pd/Co nanoparticles (NH2-SAPO-34-Pd/Co NPs) as labels for the detection of bladder cancer biomarker nuclear matrix protein-22 (NMP-22) was developed in this work. The reduced graphene oxide-NH (rGO-NH) with good conductivity and large surface area was used to immobilize primary antibody (Ab1). Due to the excellent catalytic activity toward hydrogen peroxide, NH2-SAPO-34-Pd/Co NPs were used as labels and immobilized secondary antibody (Ab2) through adsorption capacity of Pd/Co NPs to protein. The immunosensor displayed a wide linear range (0.001–20 ng/mL) and low detection limit (0.33 pg/mL). Good reproducibility and stability have showed satisfying results in the analysis of clinical urine samples. This novel and ultrasensitive immunosensor may have the potential application in the detection of different tumor markers.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yaoguang Wang
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yong Zhang
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Tao Yan
- School of Resources and Environment, University of Jinan, Jinan 250022, P.R. China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, P.R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
46
|
Barroso J, Saa L, Grinyte R, Pavlov V. Photoelectrochemical detection of enzymatically generated CdS nanoparticles: Application to development of immunoassay. Biosens Bioelectron 2016; 77:323-9. [DOI: 10.1016/j.bios.2015.09.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 12/30/2022]
|
47
|
Zhou S, Xu H, Yuan Q, Shen H, Zhu X, Liu Y, Gan W. N-Doped Ordered Mesoporous Carbon Originated from a Green Biological Dye for Electrochemical Sensing and High-Pressure CO2 Storage. ACS APPLIED MATERIALS & INTERFACES 2016; 8:918-926. [PMID: 26653766 DOI: 10.1021/acsami.5b10502] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein, a series of nitrogen-doped ordered mesoporous carbons (NOMCs) with tunable porous structure were synthesized via a hard-template method with a green biological dye as precursor, under various carbonization temperatures (700-1100 °C). Compared with the ordered mesoporous silica-modified and unmodified electrodes, the use of electrodes coated by NOMCs (NOMC-700-NOMC-1100) resulted in enhanced signals and well-resolved oxidation peaks in electrocatalytic sensing of catechol and hydroquinone isomers, attributable to NOMCs' open porous structures and increased edge-plane defect sites on the N-doped carbon skeleton. Electrochemical sensors using NOMC-1000-modified electrode were fabricated and proved feasible in tap water sample analyses. The NOMCs were also used as sorbents for high-pressure CO2 storage. The NOMC with the highest N content exhibits the best CO2 absorption capacities of 800.8 and 387.6 mg/g at 273 and 298 K (30 bar), respectively, which is better than those of other NOMC materials and some recently reported CO2 sorbents with well-ordered 3D porous structures. Moreover, this NOMC shows higher affinity for CO2 than for N2, a benefit of its higher nitrogen content in the porous carbon framework.
Collapse
Affiliation(s)
- Shenghai Zhou
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , Urumqi 830011, China
| | - Hongbo Xu
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , Urumqi 830011, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qunhui Yuan
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , Urumqi 830011, China
| | - Hangjia Shen
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , Urumqi 830011, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xuefeng Zhu
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , Urumqi 830011, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Wei Gan
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , Urumqi 830011, China
| |
Collapse
|
48
|
Mohammadi N, Adeh NB, Najafi M. Synthesis and characterization of highly defective mesoporous carbon and its potential use in electrochemical sensors. RSC Adv 2016. [DOI: 10.1039/c6ra03429b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly defective mesoporous carbon (DMC) was synthesized via a facile mass producible method for the fabrication of electrochemical sensing devices.
Collapse
Affiliation(s)
- Nourali Mohammadi
- Iranian Research & Development Center for Chemical Industries (IRDCI)
- Academic Center for Education, Culture and Research (ACECR)
- Karaj
- Iran
| | - Narmin Bahrami Adeh
- Iranian Research & Development Center for Chemical Industries (IRDCI)
- Academic Center for Education, Culture and Research (ACECR)
- Karaj
- Iran
| | - Mostafa Najafi
- Department of Chemistry
- Faculty of Science
- Imam Hossein University
- Tehran
- Iran
| |
Collapse
|
49
|
Zhou M, Wang HL, Guo S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem Soc Rev 2016; 45:1273-307. [DOI: 10.1039/c5cs00414d] [Citation(s) in RCA: 530] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We summarize and discuss recent developments of different-dimensional advanced carbon nanomaterial-based noble-metal-free high-efficiency oxygen reduction electrocatalysts, including heteroatom-doped, transition metal-based nanoparticle-based, and especially iron carbide (Fe3C)-based carbon nanomaterial composites.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry, and National & Local United Engineering Laboratory for Power Batteries
- Northeast Normal University
- Changchun
- P. R. China
| | - Hsing-Lin Wang
- Physical Chemistry and Applied Spectroscopy
- Chemistry Division
- Los Alamos National Laboratory
- Los Alamos
- USA
| | - Shaojun Guo
- Department of Materials Science and Engineering & Department of Energy and Resources Engineering
- College of Engineering
- Peking University
- Beijing 100871
- P. R. China
| |
Collapse
|
50
|
Liu Y, Liu F, Meng M, Liu Z, Ni L, Zhong G. Synthesis of a Ni(ii) ion imprinted polymer based on macroporous–mesoporous silica with enhanced dynamic adsorption capacity: optimization by response surface methodology. NEW J CHEM 2016. [DOI: 10.1039/c5nj03123k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a Ni(ii) ion imprinted polymer (Ni(ii)-IIP) based on macroporous–mesoporous silica (MMS) was optimally synthesized using a response surface methodology (RSM) approach for enhanced dynamic adsorption capacity.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Fangfang Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Minjia Meng
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Zhanchao Liu
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Liang Ni
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Guoxing Zhong
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| |
Collapse
|