1
|
Zhang T, Mi H, Wei S, Xu Y, Yang Z, Liang S, Ding X. Automated LA-DBD-TLC-MS device for accurate detection of biogenic amines in fishery products coupled with machine learning algorithms. Food Chem 2025; 470:142651. [PMID: 39742603 DOI: 10.1016/j.foodchem.2024.142651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025]
Abstract
A novel, compact, and automated laser ablation dielectric barrier discharge thin layer chromatography-mass spectrometry (LA-DBD-TLC-MS) device was developed for the rapid detection of biogenic amines (BAs) in fishery products. This plug-and-play system integrates thermal desorption via diode laser, DBD plasma ionization, and tandem MS detection, with key operational parameters optimized through experimental and computational methods. Utilizing nanoscale carbon black as a matrix, the device achieved a detection limit of 0.230 pg/mm2. It demonstrated comparable efficacy to HPLC-MS/MS in screening six BAs and enabled species discrimination and spoilage assessment in fish with machine learning algorithms (PCA, RF, SVM, MLP), yielding high accuracies. A multi-linear regression model predicted salmon spoilage with a strong correlation (R2 = 0.974). This study confirms the LA-DBD-TLC-MS device as a reliable, precise, and high throughput tool for rapid BA analysis in fishery products, with potential for direct trace analysis of organic compounds in food matrices.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, Qingdao 266071, China
| | - Haonan Mi
- School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, Qingdao 266071, China
| | - Shichao Wei
- School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, Qingdao 266071, China
| | - Yuan Xu
- Qingdao Pansi Technology Co., Ltd., Qingdao 266100, China
| | - Zhao Yang
- Qingdao Institute for Food and Drug Control, Qingdao 266071, China.
| | - Shuai Liang
- School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, Qingdao 266071, China; Qingdao University - Aliben Science & Technology Collaborative Instrument R&D Center, Qingdao 266071, China.
| | - Xuelu Ding
- School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, Qingdao 266071, China; Qingdao University - Aliben Science & Technology Collaborative Instrument R&D Center, Qingdao 266071, China.
| |
Collapse
|
2
|
Ge X, Xing X, Wang X, Yin Y, Shen X, Ouyang J, Na N. Glass electrospray for mass spectrometry in situ detection of living cells. Chem Commun (Camb) 2025. [PMID: 39967488 DOI: 10.1039/d4cc06657j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Here, we developed a platform consisting of glass electrospray coupled with mass spectrometry (MS) to detect living cells cultured on glass slides. With a high electric voltage, the adherent cells detached from the glass surface and then migrated to the tip of the glass slide. In this way, the intact cells could be well detected without needing to be diluted and without showing matrix affinity, adsorption, contamination, or damage.
Collapse
Affiliation(s)
- Xiyang Ge
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiner Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoni Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiaotong Shen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jin Ouyang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Wu Y, Li M, Liu R, Li J, Guo Y, Yang D, Xu W, Hou K. Photothermal Desorption and Reagent-Assisted Low-Temperature Plasma Ionization Miniature IT-MS/MS for On-Site Analysis of Illicit Drugs in Saliva and Urine. Anal Chem 2025; 97:2801-2808. [PMID: 39874602 DOI: 10.1021/acs.analchem.4c05146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Globally, drug-impaired driving fatalities now exceed those from drunk driving, urging the need for on-site and roadside detection methods. In this study, a photothermal desorption and reagent-assisted low-temperature plasma ionization miniature ion trap mass spectrometer (PDRA-LTP-ITMS) was developed for on-site detection of drug-impaired driving. The pseudomultiple reaction monitoring (MRM) in PDRA-LTP-ITMS enables continuous ion selection during ion introduction and improved sensitivity to nearly 3-fold compared with the conventional full scan mode. The PDRA-LTP integrated the ionization source and photothermal desorption region into the LTP tube with a volume of 0.05 mL. Photoionization and Penning ionization from LTP discharging facilitate proton transfer reactions with the dopant and produce characteristic [M + H]+ for drugs. Dopants of butanol and acetone were separately employed to enhance the thermal desorption and ionization efficiency, resulting in a 2.6-fold sensitivity increase. Saliva and urine samples were collected with a medical swab, and only 10 μL of sample is required for each analysis. The sample is rapidly heated to 250 °C using a halogen lamp and analyzed within 5 s. With these designs, a 4-fold and 10-fold increase in sensitivity was achieved compared to APPI and nano-ESI, respectively. The limits of detection (S/N = 3) of illicit drugs, including MDMA, MDA, methamphetamine, amphetamine, ketamine, and cocaine, in saliva ranged from 4.5 pg μL -1 to 20 pg μL-1 and met the threshold values of GA1333-2017. The performance of the PDRA-LTP-ITMS was even comparable to that of LTQ-Orbitrap Velos Pro ETD MS, providing a novel method of rapid on-site drug-impaired driving analysis.
Collapse
Affiliation(s)
- Yun Wu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ruidong Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jing Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yingzhe Guo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Dong Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Keyong Hou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
García-Rojas NS, Sierra-Álvarez CD, Ramos-Aboites HE, Moreno-Pedraza A, Winkler R. Identification of Plant Compounds with Mass Spectrometry Imaging (MSI). Metabolites 2024; 14:419. [PMID: 39195515 DOI: 10.3390/metabo14080419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The presence and localization of plant metabolites are indicative of physiological processes, e.g., under biotic and abiotic stress conditions. Further, the chemical composition of plant parts is related to their quality as food or for medicinal applications. Mass spectrometry imaging (MSI) has become a popular analytical technique for exploring and visualizing the spatial distribution of plant molecules within a tissue. This review provides a summary of mass spectrometry methods used for mapping and identifying metabolites in plant tissues. We present the benefits and the disadvantages of both vacuum and ambient ionization methods, considering direct and indirect approaches. Finally, we discuss the current limitations in annotating and identifying molecules and perspectives for future investigations.
Collapse
Affiliation(s)
- Nancy Shyrley García-Rojas
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | | | - Hilda E Ramos-Aboites
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Abigail Moreno-Pedraza
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Robert Winkler
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| |
Collapse
|
5
|
García-Martínez J, Caño-Carrillo I, Gilbert-López B, Bouza M, Beneito-Cambra M, Franzke J, Molina-Díaz A, García-Reyes JF. Miniaturized flexible micro-tube plasma ionization source for the effective ionization of non-easily ionizable pesticides in food with liquid chromatography/mass spectrometry. Talanta 2024; 274:126011. [PMID: 38574537 DOI: 10.1016/j.talanta.2024.126011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
In this article, we have studied the potential of flexible microtube plasma (FμTP) as ionization source for the liquid chromatography high-resolution mass spectrometry detection of non-easily ionizable pesticides (viz. nonpolar and non-ionizable by acid/basic moieties). Phthalimide-related compounds such as dicofol, dinocap, o-phenylphenol, captan, captafol, folpet and their metabolites were studied. Dielectric barrier discharge ionization (DBDI) was examined using two electrode configurations, including the miniaturized one based on a single high-voltage (HV) electrode and a virtual ground electrode configuration (FμTP), and also the two-ring electrode DBDI configuration. Different ionization pathways were observed to ionize these challenging, non-easily ionizable nonpolar compounds, involving nucleophilic substitutions and proton abstraction, with subtle differences in the spectra obtained compared with APCI. An average sensitivity increase of 5-fold was attained compared with the standard APCI source. In addition, more tolerance with matrix effects was observed in both DBDI sources. The importance of the data reported is not just limited to the sensitivity enhancement compared to APCI, but, more notably, to the ability to effectively ionize nonpolar, late-eluting (in reverse-phase chromatography) non-ionizable compounds. Besides o-phenylphenol ([M - H]-), all the parent species were efficiently ionized through different mechanisms involving bond cleavages through the effect of plasma reagent species or its combination with thermal degradation and subsequent ionization. This tool can be used to figure out overlooked nonpolar compounds in different environmental samples of societal interest through non-target screening (NTS) strategies.
Collapse
Affiliation(s)
- Julio García-Martínez
- University of Jaén, Analytical Chemistry Research Group (FQM-323), Campus Las Lagunillas, Edif. B3, 23071, Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Irene Caño-Carrillo
- University of Jaén, Analytical Chemistry Research Group (FQM-323), Campus Las Lagunillas, Edif. B3, 23071, Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Bienvenida Gilbert-López
- University of Jaén, Analytical Chemistry Research Group (FQM-323), Campus Las Lagunillas, Edif. B3, 23071, Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Marcos Bouza
- University of Jaén, Analytical Chemistry Research Group (FQM-323), Campus Las Lagunillas, Edif. B3, 23071, Jaén, Spain
| | - Miriam Beneito-Cambra
- University of Jaén, Analytical Chemistry Research Group (FQM-323), Campus Las Lagunillas, Edif. B3, 23071, Jaén, Spain
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V, Dortmund, Germany
| | - Antonio Molina-Díaz
- University of Jaén, Analytical Chemistry Research Group (FQM-323), Campus Las Lagunillas, Edif. B3, 23071, Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Juan F García-Reyes
- University of Jaén, Analytical Chemistry Research Group (FQM-323), Campus Las Lagunillas, Edif. B3, 23071, Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain.
| |
Collapse
|
6
|
Liu J, Zheng Z, Wang N, Li G. Plasma-Droplet Fusion-Mass Spectrometry Reveals Sub-Millisecond Protein Unfolding Dynamics Induced by Reactive Oxygen Species. Anal Chem 2024; 96:2292-2296. [PMID: 38295309 DOI: 10.1021/acs.analchem.3c03419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Investigating the connection between reactive oxygen species (ROS) and oxidative protein unfolding is critical to reveal the mechanisms underlying disease involving elevated ROS and protein misfolding. This could inform the development of therapeutics targeting cells based on their redox status. In this study, we developed a plasma-droplet fusion-mass spectrometry platform to rapidly assess protein resilience to ROS. This home-built system fuses ROS generated from the microplasma source with protein microdroplets from a tunable nanospray source. At the droplet-plasma intersection, ROS interact with proteins before entering the mass spectrometer for mass identification and structural characterization. Benefiting from the small-sized microdroplet with adjustable traveling velocity, the platform enables the first sub-millisecond kinetic study of ROS-induced protein unfolding, with a rate constant of approximately 1.81 ms-1. Capturing ROS-induced protein unfolding intermediates and the resultant ligand release dynamics can be extended to many more protein systems. We foresee broad applications for establishing previously undetected protein unfolding events when biologically impactful ROS are enriched in time and space with functional proteins and complexes.
Collapse
Affiliation(s)
- Jun Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Zheng
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ning Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Chan GCY, Engelhard C, Wiley JS, Shoulds AU, Cooks RG, Hieftje GM, Shelley JT. Characterization of a Low-Temperature Plasma (LTP) Ambient Ionization Source Using Temporally Resolved Monochromatic Imaging Spectrometry. APPLIED SPECTROSCOPY 2023; 77:940-956. [PMID: 37604115 DOI: 10.1177/00037028231184501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The low-temperature plasma (LTP) probe is a common plasma-based source used for ambient desorption-ionization mass spectrometry (MS). While the LTP probe has been characterized in detail with MS, relatively few studies have used optical spectroscopy. In this paper, two-dimensional (2D) imaging at selected wavelengths is used to visualize important species in the LTP plasma jet. First, 2D steady-state images of the LTP plume for N2+ (391.2 nm), He I (706.5 nm), and N2 (337.1 nm) emissions were recorded under selected plasma conditions. Second, time-resolved 2D emission maps of radiative species in the LTP plasma jet were recorded through the use of a 200 ns detection gate and varying gate delays with respect to the LTP trigger pulse. Emission from He I, N2+, and N2 in the plasma jet region was found to show a transient behavior (often referred to as plasma bullets) lasting only a few microseconds. The N2+ and He I maps were highly correlated in spatial and temporal structure. Further, emission from N2 showed two maxima in time, one before and one after the maximum emission for N2+ and He I, due to an initial electronic excitation wave and ion-electron recombination, respectively. Third, the interaction of the LTP probe with a sample substrate and an electrically grounded metallic needle was studied. Emission from a fluorophore on the sample substrate showed an initial photon-induced excitation from plasma-generated photons followed by electronic excitation by other plasma species. The presence of a grounded needle near the plasma jet significantly extended the plasma jet lifetime and also generated a long-lived corona discharge on the needle. The effect of LTP operating parameters on emission spectra was correlated with mass-spectral results including reagent-ion signals. Lastly, five movies provide a side-by-side comparison of the temporal behavior of emitting species and insights into the interactions of the emission clouds with a sample surface as well as an external needle. Temporally and spatially resolved imaging provided insights into important processes in the LTP plasma jet, which will help improve analyte ion sampling in LTP-MS.
Collapse
Affiliation(s)
- George C-Y Chan
- Department of Chemistry, Indiana University, Bloomington, IN, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carsten Engelhard
- Department of Chemistry, Indiana University, Bloomington, IN, USA
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Joshua S Wiley
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ayanna U Shoulds
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Gary M Hieftje
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Jacob T Shelley
- Department of Chemistry, Indiana University, Bloomington, IN, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
8
|
Jia S, Zhou X, Hu X, Yang X, Wang X, Chang S, Liu Y, Huang X, Zhong H. Direct mass spectrometric imaging of document handwriting with laser desorption ionization and post ultraviolet photodissociation. Anal Chim Acta 2023; 1265:341267. [PMID: 37230564 DOI: 10.1016/j.aca.2023.341267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Handwriting represents personal education and physical or psychological states. This work describes a chemical imaging technique for document evaluation that combines laser desorption ionization with post ultraviolet photo-induced dissociation (LDI-UVPD) in mass spectrometry. Taken the advantages of chromophores in ink dyes, handwriting papers were subjected to direct laser desorption ionization without additional matrix materials. It is a surface-sensitive analytical method that uses a low intensity pulsed laser at 355 nm to remove chemical components from very outermost surfaces of overlapped handwritings. Meanwhile, the transfer of photoelectrons to those compounds leads to the ionization and the formation of radical anions. The gentle evaporation and ionization property enable the dissection of chronological orders. Paper documents maintain intact without extensive damages after laser irradiation. The evolving plume resulting from the irradiation of the 355 nm laser is fired by the second ultraviolet laser at 266 nm that is in parallel to the sample surface. In contrast to collision activated dissociation in tandem MS/MS, such post ultraviolet photodissociation generates much more different fragment ions through electron-directed specific cleavages of chemical bonds. LDI-UVPD can not only provide graphic representation of chemical components but also reveal hidden dynamic features such as alterations, pressures and aging.
Collapse
Affiliation(s)
- Shanshan Jia
- Center for Instrumental Analysis of Guangxi University, Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Chemistry, National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Xin Zhou
- Center for Instrumental Analysis of Guangxi University, Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xuewen Hu
- College of Chemistry, National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Xiaojie Yang
- College of Chemistry, National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Xin Wang
- Academy of Forensic Science, Shanghai, 200063, PR China
| | - Shao Chang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yuqi Liu
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xingchen Huang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Hongying Zhong
- Center for Instrumental Analysis of Guangxi University, Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Chemistry, National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, 430079, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
9
|
Chen X, Newsome GA, Buchanan M, Glasper J, Hua L, Latif M, Gandhi V, Li X, Larriba-Andaluz C. Flow-Optimized Model for Gas Jet Desorption Sampling Mass Spectrometry. J Phys Chem A 2023; 127:1353-1359. [PMID: 36701191 DOI: 10.1021/acs.jpca.2c07999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thermal gas jet probes, including post-plasma desorption/ionization sources, have not been studied using computational fluid dynamics (CFD) models, as have other ambient mass spectrometry sampling techniques. Two systems were constructed: a heated nitrogen jet probe to establish practical bounds for a sampling/transmission experiment and a CFD model to study trajectories of particles desorbed from a surface through optimization of streamlines and temperatures. The physical model configuration as tested using CFD revealed large losses, transmitting less than 10% of desorbed particles. Different distances between the desorption probe and the transport tube and from the sample surface were studied. The transmission improved when the system was very close to the sample, because the gas jet otherwise creates a region of low pressure that guides the streamlines below the inlet. A baffle positioned to increase pressure in the sample region improves collection efficiency. A Lagrangian particle tracking approach confirms the optimal design leading to a transmission of almost 100%.
Collapse
Affiliation(s)
- Xi Chen
- Department of Mechanical and Energy Engineering, IUPUI, 799 W. Michigan St., Indianapolis, Indiana 46202, United States.,Department of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - G Asher Newsome
- Smithsonian Museum Conservation Institute, 4210 Silver Hill Rd., Suitland, Maryland 20746, United States
| | - Michael Buchanan
- Department of Mechanical and Energy Engineering, IUPUI, 799 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Jeremy Glasper
- Department of Mechanical and Energy Engineering, IUPUI, 799 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Leyan Hua
- Department of Mechanical and Energy Engineering, IUPUI, 799 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Mohsen Latif
- Department of Mechanical and Energy Engineering, IUPUI, 799 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Viraj Gandhi
- Department of Mechanical and Energy Engineering, IUPUI, 799 W. Michigan St., Indianapolis, Indiana 46202, United States.,Department of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Xintong Li
- Department of Mechanical and Energy Engineering, IUPUI, 799 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Carlos Larriba-Andaluz
- Department of Mechanical and Energy Engineering, IUPUI, 799 W. Michigan St., Indianapolis, Indiana 46202, United States
| |
Collapse
|
10
|
Torres-Ortega R, Guillén-Alonso H, Alcalde-Vázquez R, Ramírez-Chávez E, Molina-Torres J, Winkler R. In Vivo Low-Temperature Plasma Ionization Mass Spectrometry (LTP-MS) Reveals Regulation of 6-Pentyl-2H-Pyran-2-One (6-PP) as a Physiological Variable during Plant-Fungal Interaction. Metabolites 2022; 12:metabo12121231. [PMID: 36557269 PMCID: PMC9783819 DOI: 10.3390/metabo12121231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs) comprises a broad class of small molecules (up to ~300 g/mol) produced by biological and non-biological sources. VOCs play a vital role in an organism's metabolism during its growth, defense, and reproduction. The well-known 6-pentyl-α-pyrone (6-PP) molecule is an example of a major volatile biosynthesized by Trichoderma atroviride that modulates the expression of PIN auxin-transport proteins in primary roots of Arabidopsis thaliana during their relationship. Their beneficial relation includes lateral root formation, defense induction, and increased plant biomass production. The role of 6-PP has been widely studied due to its relevance in this cross-kingdom relationship. Conventional VOCs measurements are often destructive; samples require further preparation, and the time resolution is low (around hours). Some techniques enable at-line or real-time analyses but are highly selective to defined compounds. Due to these technical constraints, it is difficult to acquire relevant information about the dynamics of VOCs in biological systems. Low-temperature plasma (LTP) ionization allows the analysis of a wide range of VOCs by mass spectrometry (MS). In addition, LTP-MS requires no sample preparation, is solvent-free, and enables the detection of 6-PP faster than conventional analytical methods. Applying static statistical methods such as Principal Component Analysis (PCA) and Discriminant Factorial Analysis (DFA) leads to a loss of information since the biological systems are dynamic. Thus, we applied a time series analysis to find patterns in the signal changes. Our results indicate that the 6-PP signal is constitutively emitted by T. atroviride only; the signal shows high skewness and kurtosis. In A. thaliana grown alone, no signal corresponding to 6-PP is detected above the white noise level. However, during T. atroviride-A. thaliana interaction, the signal performance showed reduced skewness and kurtosis with high autocorrelation. These results suggest that 6-PP is a physiological variable that promotes homeostasis during the plant-fungal relationship. Although the molecular mechanism of this cross-kingdom control is still unknown, our study indicates that 6-PP has to be regulated by A. thaliana during their interaction.
Collapse
Affiliation(s)
- Rosina Torres-Ortega
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Héctor Guillén-Alonso
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
- Department of Biochemical Engineering, Nacional Technological Institute, Celaya 38010, Mexico
| | - Raúl Alcalde-Vázquez
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Enrique Ramírez-Chávez
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
| | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
- Correspondence:
| |
Collapse
|
11
|
Ayala-Cabrera JF, Montero L, Meckelmann SW, Uteschil F, Schmitz OJ. Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part I: Current ion source developments and improvements in ionization strategies. Anal Chim Acta 2022; 1238:340353. [DOI: 10.1016/j.aca.2022.340353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
|
12
|
Basham V, Hancock T, McKendrick J, Tessarolo N, Wicking C. Detailed chemical analysis of a fully formulated oil using dielectric barrier discharge ionisation-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9320. [PMID: 35484791 PMCID: PMC9286547 DOI: 10.1002/rcm.9320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Fully formulated oils (FFOs) are integral to automotive lubrication; however, detailed compositional analysis is challenging due to high levels of chemical complexity. In particular, existing mass spectrometric approaches often target particular FFO components, leading to poor analytical coverage of the overall formulation, with increased overheads and analytical timescales. METHODS Herein we report the application of a commercially available SICRIT SC-20 dielectric barrier discharge ionisation (DBDI) source and Thermo Fisher Scientific LTQ Orbitrap XL to the analysis of an FFO. Nitrogen was used as a discharge gas for the DBDI source, and was modified using a range of commonplace solvents to tailor the experimental conditions for the analysis of various components. RESULTS The reported method allowed analysis of a range of FFO components of interest, encompassing a wide range of chemistries, in under 1 min. By modifying the discharge gas used for ionisation, experiments could be optimised for the analysis of particular FFO components across positive and negative ion modes. In particular, use of water vapour as a discharge gas modifier with positive ion mode mass spectrometry permitted concomitant analysis of antioxidants and base oil hydrocarbons. Furthermore, case studies of selected linear alkanes and alkenes profile the differences in the range of ions formed across these saturated and unsaturated aliphatic compounds, giving insight into the fate of base oil hydrocarbons in FFO analyses. CONCLUSIONS A rapid method for analysis of FFO compositions has been developed and provides coverage of a range of components of interest. The results indicate that the method presented may be of utility in analysis of other FFOs or similarly challenging complex mixtures.
Collapse
Affiliation(s)
- Vincent Basham
- Department of Chemistry, School of Chemistry, Food and Pharmacy, Whiteknights CampusUniversity of ReadingReadingUK
| | | | - John McKendrick
- Department of Chemistry, School of Chemistry, Food and Pharmacy, Whiteknights CampusUniversity of ReadingReadingUK
| | | | | |
Collapse
|
13
|
Ayala-Cabrera JF, Turkowski J, Uteschil F, Schmitz OJ. Development of a Tube Plasma Ion Source for Gas Chromatography-Mass Spectrometry Analysis and Comparison with Other Atmospheric Pressure Ionization Techniques. Anal Chem 2022; 94:9595-9602. [PMID: 35758294 DOI: 10.1021/acs.analchem.2c00582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A tube plasma ionization (TPI) open-air source for gas chromatography-mass spectrometry (GC-MS) was developed. This source is based on an inverse low temperature plasma configuration where the pin inner electrode is applying the high voltage and the grounded electrode is the housing itself. The ionization possibilities were tested by using an EPA mix of priority contaminants, showing that 68% of the analytes could undergo both proton-transfer and charge-exchange reactions. The potential of using different discharge gases (He and Ar) to ionize the analytes and auxiliary gases (He, N2, O2, and synthetic air) to transport the ions toward the MS was carefully investigated. Additionally, the addition of water was also tested to show the different ionization trends in the TPI source. Finally, the ionization by TPI under both dry and wet conditions was compared with other gas-phase atmospheric pressure ionization sources showing TPI could ionize a wider range of compounds (97%) than atmospheric pressure chemical ionization (APCI, 95%) and atmospheric pressure photoionization (APPI, 87%). Besides, the detection capability of TPI was better than APCI and APPI, achieving instrumental limits of detection down to 3 fg on column, which demonstrates the great potential of this ionization source for GC-MS determinations.
Collapse
Affiliation(s)
- Juan F Ayala-Cabrera
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany.,Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Jasmin Turkowski
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany.,Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Florian Uteschil
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany.,Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany.,Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| |
Collapse
|
14
|
Ionization of semi-fluorinated n-alkanes in controlled atmosphere using flexible micro-tube plasma (FμTP) ionization source with square- and sine-wave voltage. Talanta 2022; 249:123662. [PMID: 35691129 DOI: 10.1016/j.talanta.2022.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/10/2022] [Accepted: 06/04/2022] [Indexed: 11/21/2022]
Abstract
Non-thermal plasma-based ionization sources have been widely used and shown excellent soft ionization performance in mass spectrometry. Despite their extensive application, the ionization mechanisms of these sources are of great interest for further exploring their full potential. A controlled atmosphere can provide a clean and controllable ionization environment and is beneficial for studying the ionization mechanism. The plasma source itself also has a significant impact on the ionization mechanism of the analyte, and the voltage waveform is one of the key parameters for controlling the plasma source. In this paper, a miniature flexible micro-tube plasma (FμTP) ionization source was sustained using both square and sine-wave voltage. The ionization processes of typical semi-fluorinated n-alkanes (SFAs) were investigated in the controlled atmosphere filled with 80% N2 and 20% O2. The main mass peaks using both square and sine-wave voltages are found to be [M-mH]+ and [M-mH+nO]+ (m = 1, 3; n = 0, 1, 2). However, for the square-wave voltage, the [M-H+O]+ species are the most abundant while [M-H]+ species are dominant for the sine-wave voltage, showing that the plasma generated with sine-wave voltage is somewhat "softer" than the one with square-wave voltage for SFAs. With the assistance of optical spectroscopy, the plasma developments in one discharge cycle for both voltage waveforms were obtained. Only one discharge can be found in each half cycle for square-wave voltage while several for the sine-wave voltage. These would be responsible for the different ionization behaviors in these two cases. This work provides more insight into the ionization mechanism of SFAs and more understanding of plasma-based soft ionization. In addition, the analytical performance was evaluated to be comparable when using these two voltage generators with a big difference in cost, which will benefit the instrumental development.
Collapse
|
15
|
García-Rojas NS, Guillén-Alonso H, Martínez-Jarquín S, Moreno-Pedraza A, Soto-Rodríguez LD, Winkler R. Build, Share and Remix: 3D Printing for Speeding Up the Innovation Cycles in Ambient Ionisation Mass Spectrometry (AIMS). Metabolites 2022; 12:185. [PMID: 35208258 PMCID: PMC8874637 DOI: 10.3390/metabo12020185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023] Open
Abstract
Ambient ionisation mass spectrometry (AIMS) enables studying biological systems in their native state and direct high-throughput analyses. The ionisation occurs in the physical conditions of the surrounding environment. Simple spray or plasma-based AIMS devices allow the desorption and ionisation of molecules from solid, liquid and gaseous samples. 3D printing helps to implement new ideas and concepts in AIMS quickly. Here, we present examples of 3D printed AIMS sources and devices for ion transfer and manipulation. Further, we show the use of 3D printer parts for building custom AIMS sampling robots and imaging systems. Using 3D printing technology allows upgrading existing mass spectrometers with relatively low cost and effort.
Collapse
Affiliation(s)
- Nancy Shyrley García-Rojas
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| | - Héctor Guillén-Alonso
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
- Department of Biochemical Engineering, Nacional Technological Institute, Celaya 38010, Mexico
| | | | - Abigail Moreno-Pedraza
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| | - Leonardo D. Soto-Rodríguez
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| |
Collapse
|
16
|
Moreno-Pedraza A, Garcia-Rojas NS, Winkler R. Analyzing the Distribution of Specialized Metabolites from Plant Native Tissues with Laser Desorption Low-Temperature Plasma Mass Spectrometry Imaging. Methods Mol Biol 2022; 2469:145-154. [PMID: 35508836 DOI: 10.1007/978-1-0716-2185-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The localization of metabolites in plant tissues is often related to their biological function and biosynthesis. Mass spectrometry imaging (MSI) provides comprehensive information about the distribution of known and unknown compounds in tissues. In this protocol, we describe the use of laser desorption low-temperature plasma (LD-LTP) ionization MSI. This technology enables the direct analysis of native tissues under ambient conditions.
Collapse
Affiliation(s)
- Abigail Moreno-Pedraza
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato, Gto, Mexico
| | - Nancy Shyrley Garcia-Rojas
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato, Gto, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato, Gto, Mexico.
| |
Collapse
|
17
|
Massima Mouele ES, Tijani JO, Badmus KO, Pereao O, Babajide O, Zhang C, Shao T, Sosnin E, Tarasenko V, Fatoba OO, Laatikainen K, Petrik LF. Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1683. [PMID: 33578670 PMCID: PMC7916394 DOI: 10.3390/ijerph18041683] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Persistent pharmaceutical pollutants (PPPs) have been identified as potential endocrine disruptors that mimic growth hormones when consumed at nanogram per litre to microgram per litre concentrations. Their occurrence in potable water remains a great threat to human health. Different conventional technologies developed for their removal from wastewater have failed to achieve complete mineralisation. Advanced oxidation technologies such as dielectric barrier discharges (DBDs) based on free radical mechanisms have been identified to completely decompose PPPs. Due to the existence of pharmaceuticals as mixtures in wastewater and the recalcitrance of their degradation intermediate by-products, no single advanced oxidation technology has been able to eliminate pharmaceutical xenobiotics. This review paper provides an update on the sources, occurrence, and types of pharmaceuticals in wastewater by emphasising different DBD configurations previously and currently utilised for pharmaceuticals degradation under different experimental conditions. The performance of the DBD geometries was evaluated considering various factors including treatment time, initial concentration, half-life time, degradation efficiency and the energy yield (G50) required to degrade half of the pollutant concentration. The review showed that the efficacy of the DBD systems on the removal of pharmaceutical compounds depends not only on these parameters but also on the nature/type of the pollutant.
Collapse
Affiliation(s)
- Emile S. Massima Mouele
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, FI-53851 Lappeenranta, Finland;
| | - Jimoh O. Tijani
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Chemistry, Federal University of Technology, PMB 65, P.O. Box 920 Minna, Niger State 920001, Nigeria
| | - Kassim O. Badmus
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Omoniyi Pereao
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Omotola Babajide
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Mechanical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - Cheng Zhang
- Beijing International S&T Cooperation Base for Plasma Science, Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.Z.); (T.S.)
| | - Tao Shao
- Beijing International S&T Cooperation Base for Plasma Science, Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.Z.); (T.S.)
| | - Eduard Sosnin
- Institute of High Current Electronics, Russian Academy of Sciences, 634055 Tomsk, Russia; (E.S.); (V.T.)
| | - Victor Tarasenko
- Institute of High Current Electronics, Russian Academy of Sciences, 634055 Tomsk, Russia; (E.S.); (V.T.)
| | - Ojo O. Fatoba
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Katri Laatikainen
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, FI-53851 Lappeenranta, Finland;
| | - Leslie F. Petrik
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| |
Collapse
|
18
|
Ahmed E, Xiao D, Kabir KMM, Fletcher J, Donald WA. Ambient Pressure Ion Funnel: Concepts, Simulations, and Analytical Performance. Anal Chem 2020; 92:15811-15817. [DOI: 10.1021/acs.analchem.0c02938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ezaz Ahmed
- School of Chemistry, University of New South Wales, Sydney, NSW 2052 Australia
| | - Dan Xiao
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052 Australia
| | - K. M. Mohibul Kabir
- School of Chemistry, University of New South Wales, Sydney, NSW 2052 Australia
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052 Australia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
19
|
Gong X, Zhang D, Embile IB, She Y, Shi S, Gamez G. Low-Temperature Plasma Probe Mass Spectrometry for Analytes Separated on Thin-Layer Chromatography Plates: Direct vs Laser Assisted Desorption. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1981-1993. [PMID: 32810399 DOI: 10.1021/jasms.0c00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thin-layer chromatography (TLC) is a widespread technique because it allows fast, simple, and inexpensive analyte separations. In addition, direct analysis of the compounds separated on TLC plates via mass spectrometry (MS) has been shown to provide high sensitivity and selectivity while avoiding time-consuming sample extraction protocols. Here, direct desorption low-temperature plasma-mass spectrometry (LTP-MS) as well as diode laser assisted desorption (LD) LTP-MS are studied for direct spatially resolved analysis of compounds from TLC plates. Qualitative and quantitative characterization of amino acids, pharmaceuticals, and structural isomers were performed. The nature of the TLC plate stationary phase was found to have a significant influence, together with the analyte's characteristics, on the desorption efficiency. Tandem MS is shown to greatly improve the limits of detection (LODs). Direct desorption LTP-MS, without external thermal assisted desorption, demonstrates its best performance with cellulose TLC plates (LODs, 0.01 ng/mm2 to 2.55 ng/mm2) and restricted performance with normal-phase (NP) TLC plates (several analytes without observable signal). LD LTP-MS, with systematic optimization of irradiance and focal point diameter, is shown to overcome the direct-desorption limitations and reach significantly improved LODs with NP TLC plates (up to ×1000 better). In addition, a wide-ranging characterization of amino acid analytical figures of merit with LD LTP-MS shows that LODs from 84 pg/mm2 down to 0.3 pg/mm2 are achieved on NP TLC plates.
Collapse
Affiliation(s)
- Xiaoxia Gong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Inah B Embile
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yue She
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Songyue Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
20
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
21
|
Burr DS, Fatigante WL, Lartey JA, Jang W, Stelmack AR, McClurg NW, Standard JM, Wieland JR, Kim JH, Mulligan CC, Driskell JD. Integrating SERS and PSI-MS with Dual Purpose Plasmonic Paper Substrates for On-Site Illicit Drug Confirmation. Anal Chem 2020; 92:6676-6683. [DOI: 10.1021/acs.analchem.0c00562] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel S. Burr
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - William L. Fatigante
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jemima A. Lartey
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Wongi Jang
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Ashley R. Stelmack
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Noah W. McClurg
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jean M. Standard
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jamie R. Wieland
- Department of Management and Quantitative Methods, Illinois State University, Normal, Illinois 61790, United States
| | - Jun-Hyun Kim
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | | | - Jeremy D. Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
22
|
García-Rojas NS, Moreno-Pedraza A, Rosas-Román I, Ramírez-Chávez E, Molina-Torres J, Winkler R. Mass spectrometry imaging of thin-layer chromatography plates using laser desorption/low-temperature plasma ionisation. Analyst 2020; 145:3885-3891. [DOI: 10.1039/d0an00446d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An open development kit for ambient ionisation enables the fast scanning and visualisation of TLC plates with high lateral resolution.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert Winkler
- CINVESTAV Unidad Irapuato
- Department of Biochemistry and Biotechnology
- Mexico
| |
Collapse
|
23
|
Zeng N, Long Z, Wang Y, Sun J, Ouyang J, Na N. An Acetone Sensor Based on Plasma-Assisted Cataluminescence and Mechanism Studies by Online Ionizations. Anal Chem 2019; 91:15763-15768. [DOI: 10.1021/acs.analchem.9b04023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ni Zeng
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zi Long
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jianghui Sun
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Huang J, Yang B, Shu J, Zhang Z, Li Z, Jiang K. Kinetic Understanding of the Ultrahigh Ionization Efficiencies (up to 28%) of Excited-State CH 2Cl 2-Induced Associative Ionization: A Case Study with Nitro Compounds. Anal Chem 2019; 91:5605-5612. [PMID: 30841695 DOI: 10.1021/acs.analchem.8b04813] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Excited-state CH2Cl2-induced associative ionization (AI) is a newly developed ionization method that is very effective for oxygenated organics. However, this method is not widely known. In this study, an unprecedented ionization efficiency and ultrafast reaction rate of AI toward nitro compounds were observed. The ionization efficiencies of o-nitrotoluene (o-NT), m-nitrotoluene (m-NT), and nitrobenzene (NB) were as high as (28 ± 3)%, (27 ± 2)%, and (13 ± 1)%, respectively (∼1-3 ions for every 10 molecules). The measured reaction rate coefficients of these nitroaromatics were (0.5-1.3) × 10-7 molecule-1 cm3 s-1 (∼300 K). These unusual rate coefficients indicated strong long-range interactions between the two neutral reactants, which was regarded as a key factor leading to the ultrahigh ionization efficiency. The detection sensitivities of the nitroaromatics, (1.01-2.16) × 104 counts pptv-1 in 10 s acquisition time, were obtained by an AI time-of-flight mass spectrometer (AI-TOFMS). These experimental results not only provide new insight into the AI reaction but also reveal an excellent ionization method that can improve the detection sensitivity of nitroaromatics to an unprecedented degree.
Collapse
Affiliation(s)
- Jingyun Huang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China.,State Key Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China.,State Key Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Zuojian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China.,State Key Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China
| | - Kui Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China.,State Key Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| |
Collapse
|
25
|
Moreno-Pedraza A, Rosas-Román I, Garcia-Rojas NS, Guillén-Alonso H, Ovando-Vázquez C, Díaz-Ramírez D, Cuevas-Contreras J, Vergara F, Marsch-Martínez N, Molina-Torres J, Winkler R. Elucidating the Distribution of Plant Metabolites from Native Tissues with Laser Desorption Low-Temperature Plasma Mass Spectrometry Imaging. Anal Chem 2019; 91:2734-2743. [PMID: 30636413 DOI: 10.1021/acs.analchem.8b04406] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Secondary metabolites of plants have important biological functions, which often depend on their localization in tissues. Ideally, a fresh untreated material should be directly analyzed to obtain a realistic view of the true sample chemistry. Therefore, there is a large interest for ambient mass-spectrometry-based imaging (MSI) methods. Our aim was to simplify this technology and to find an optimal combination of desorption/ionization principles for a fast ambient MSI of macroscopic plant samples. We coupled a 405 nm continuous wave (CW) ultraviolet (UV) diode laser to a three-dimensionally (3D) printed low-temperature plasma (LTP) probe. By moving the sample with a RepRap-based sampling stage, we could perform imaging of samples up to 16 × 16 cm2. We demonstrate the system performance by mapping mescaline in a San Pedro cactus ( Echinopsis pachanoi) cross section, tropane alkaloids in jimsonweed ( Datura stramonium) fruits and seeds, and nicotine in tobacco ( Nicotiana tabacum) seedlings. In all cases, the anatomical regions of enriched compound concentrations were correctly depicted. The modular design of the laser desorption (LD)-LTP MSI platform, which is mainly assembled from commercial and 3D-printed components, facilitates its adoption by other research groups. The use of the CW-UV laser for desorption enables fast imaging measurements. A complete tobacco seedling with an image size of 9.2 × 15.0 mm2 was analyzed at a pixel size of 100 × 100 μm2 (14 043 mass scans), in less than 2 h. Natural products can be measured directly from native tissues, which inspires a broad use of LD-LTP MSI in plant chemistry studies.
Collapse
Affiliation(s)
- Abigail Moreno-Pedraza
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Ignacio Rosas-Román
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Nancy Shyrley Garcia-Rojas
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Héctor Guillén-Alonso
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Cesaré Ovando-Vázquez
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
- CONACYT Potosino Institute of Scientific and Technological Research, National Supercomputing Center , Camino a la Presa San José 2055 , Colonia Lomas 4ta Sección, 78216 San Luis Potosí , Mexico
| | - David Díaz-Ramírez
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Jessica Cuevas-Contreras
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Fredd Vergara
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig , Deutscher Platz 5e , 04103 Leipzig , Germany
| | - Nayelli Marsch-Martínez
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Jorge Molina-Torres
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
| | - Robert Winkler
- Department of Biochemistry and Biotechnology , Center for Research and Advanced Studies Irapuato , Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León , 36824 Irapuato , Guanajuato , Mexico
- Mass Spectrometry Group , Max Planck Institute for Chemical Ecology , Beutenberg Campus, Hans-Knoell-Strasse 8 , 07745 Jena , Germany
| |
Collapse
|
26
|
Mirabelli MF, Gionfriddo E, Pawliszyn J, Zenobi R. Fast screening of illicit drugs in beverages and biological fluids by direct coupling of thin film microextraction to dielectric barrier discharge ionization-mass spectrometry. Analyst 2019; 144:2788-2796. [DOI: 10.1039/c8an02448k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A direct and fast method for quantification of illicit drugs in beverages and biological fluids was developed, using dielectric barrier discharge ionization in combination with high-resolution MS.
Collapse
Affiliation(s)
- Mario F. Mirabelli
- ETH Zurich
- Department of Chemistry and Applied Biosciences
- 8093 Zurich
- Switzerland
| | | | | | - Renato Zenobi
- ETH Zurich
- Department of Chemistry and Applied Biosciences
- 8093 Zurich
- Switzerland
| |
Collapse
|
27
|
Wang Y, Sun J, Qiao J, Ouyang J, Na N. A "Soft" and "Hard" Ionization Method for Comprehensive Studies of Molecules. Anal Chem 2018; 90:14095-14099. [PMID: 30422630 DOI: 10.1021/acs.analchem.8b04437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ambient mass spectrometry can be rapidly and directly effective for molecular studies, while there still seems to be a gap between two major groups of electrospray ionization (ESI)- and atmospheric pressure chemical ionization (APCI)-related techniques, for detection of moderately polar to polar and low polar to nonpolar molecules in a relatively low mass range, respectively. Here, an extensively applicable "soft" and "hard" ionization method, spray-dependent plasma mass spectrometry (SDP MS), was established for detecting various molecules with diverse polarities or molecular weights. By SDP MS, both fragment ions and intact molecular ions can be obtained. Significantly, cluster ions of aggregates in high mass range formed by weak molecular interactions can also be well recorded, much softer than traditional ESI MS. By filling the gap between ESI-based and APCI-based ionization techniques, SDP MS would enhance MS performance for comprehensive molecular studies and be extensively applicable in fields of organic synthesis, biological chemistry, medical chemistry, and clinical diagnosis.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jianghui Sun
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jinping Qiao
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
28
|
Martínez-Jarquín S, Herrera-Ubaldo H, de Folter S, Winkler R. In vivo monitoring of nicotine biosynthesis in tobacco leaves by low-temperature plasma mass spectrometry. Talanta 2018; 185:324-327. [PMID: 29759207 DOI: 10.1016/j.talanta.2018.03.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/30/2022]
Abstract
Low-temperature plasma (LTP) is capable of ionizing a broad range of organic molecules at ambient conditions. The coupling of LTP to a mass analyzer delivers chemical profiles from delicate objects. To investigate the suitability of LTP ionization for mass spectrometry (MS) based in vivo studies, we monitored the auxin-regulated nicotine biosynthesis in tobacco (Nicotiana tabacum) and evaluated possible biological effects. The measured nicotine concentrations in different experiments were comparable to literature data obtained with conventional methods. The observed compounds suggest the rupture of trichomes, and cell damage was observed on the spots exposed to LTP. However, the lesions only affected a negligible proportion of the leaf surface area and no systemic reaction was noted. Thus, our study provides the proof-of-concept for measuring the biosynthetic activity of plant surfaces in vivo.
Collapse
Affiliation(s)
- Sandra Martínez-Jarquín
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA) - Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA) - Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico.
| | - Robert Winkler
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico.
| |
Collapse
|
29
|
Lara-Ortega FJ, Beneito-Cambra M, Robles-Molina J, García-Reyes JF, Gilbert-López B, Molina-Díaz A. Direct olive oil analysis by mass spectrometry: A comparison of different ambient ionization methods. Talanta 2018; 180:168-175. [DOI: 10.1016/j.talanta.2017.12.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
30
|
Schütz A, Lara-Ortega FJ, Klute FD, Brandt S, Schilling M, Michels A, Veza D, Horvatic V, García-Reyes JF, Franzke J. Soft Argon–Propane Dielectric Barrier Discharge Ionization. Anal Chem 2018; 90:3537-3542. [DOI: 10.1021/acs.analchem.7b05390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander Schütz
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Felipe J. Lara-Ortega
- Analytical Chemistry Research Group, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Felix David Klute
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Sebastian Brandt
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Michael Schilling
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Antje Michels
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Damir Veza
- Department of Physics, Faculty of Science, University of Zagreb, Bijenicka 32, 10000 Zagreb, Croatia
| | | | - Juan F. García-Reyes
- Analytical Chemistry Research Group, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| |
Collapse
|
31
|
Cai Y, Gao XG, Ji ZN, Yu YL, Wang JH. Nonthermal optical emission spectrometry for simultaneous and direct determination of zinc, cadmium and mercury in spray. Analyst 2018; 143:930-935. [DOI: 10.1039/c7an01633f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A nonthermal optical emission spectrometry is developed for the simultaneous and direct determination of zinc, cadmium and mercury in spray.
Collapse
Affiliation(s)
- Yi Cai
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Xin-Gang Gao
- Water Quality Technology Center
- Qingdao Jiaming Measurement and Control Technology Co
- Ltd
- Qingdao 266000
- China
| | - Zhi-Na Ji
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Yong-Liang Yu
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| |
Collapse
|
32
|
|
33
|
Usmanov DT, Hiraoka K, Wada H, Matsumura M, Sanada-Morimura S, Nonami H, Yamabe S. Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source. Anal Chim Acta 2017; 973:59-67. [DOI: 10.1016/j.aca.2017.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/19/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
|