1
|
Zhong WL, Yang JY. Fluorescent carbon quantum dots for heavy metal sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177473. [PMID: 39522783 DOI: 10.1016/j.scitotenv.2024.177473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Many heavy metals pose significant threats to the environment and human health. Traditional methods for detecting heavy metals are often limited by complex procedures, high costs, and challenges in field monitoring. Carbon quantum dots (CQDs), a novel class of fluorescent carbon nanomaterials, have garnered significant interest due to their excellent biocompatibility, low cost, and minimal toxicity. This paper reviews the primary synthesis methods, luminescence mechanisms, and fluorescence quenching mechanisms of CQDs, as well as their recent applications in detecting heavy metals. In heavy metal sensing applications, the simplest hydrothermal method is commonly employed for the one-step synthesis and surface modification of CQDs. Various green reagents and biomass materials, such as citric acid, glutathione, orange peel, and bagasse, can be used for CQDs' preparation. Quantum confinement effects and surface defects give CQDs their distinctive luminescence properties, enabling the detection of heavy metals through fluorescence quenching or enhancement. Additionally, CQDs can be applied in biological imaging and smart detection, and when combined with adsorption materials, they can offer multifunctional capabilities. This review also discusses the future development prospects of CQDs.
Collapse
Affiliation(s)
- Wen-Lin Zhong
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Zou J, Zou J, Li L, Chen H, Liu S, Gao Y, Huang X, Wang L, Lu L. Enhanced electrocatalytic activity in MOFs-derived 3D hollow NiCo-LDH nanocages decorated porous biochar for simultaneously ultra-sensitive electrochemical sensing of Cu 2+ and Hg 2. Talanta 2024; 279:126624. [PMID: 39089079 DOI: 10.1016/j.talanta.2024.126624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/18/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Layered double hydroxides (LDHs) have attracted significant attention due to their compositional and structural flexibility. However, it is challenging but meaningful to design and fabricate hierarchical mixed-dimensional LDHs with synergistic effects to increase the electrical conductivity of LDHs and promote the intrinsic activity. Herein, 3D hollow NiCo-LDH nanocages decorated porous biochar (3D NiCo-LDH/PBC) has been synthesized by using ZIF-67 as precursor, which was utilized for constructing electrochemical sensing platform to realize simultaneous determination of Cu2+ and Hg2+. The 3D NiCo-LDH/PBC possessed the characteristics of hollow material and three-dimensional porous material, revealing a larger surface area, more exposed active sites, and faster electron transfer, which is beneficial to enhancing its electrochemical performance. Consequently, the developed sensor displayed good performance for simultaneously detecting Cu2+ and Hg2+ with ultra-low limit of detection (LOD) of 0.03 μg L-1 and 0.03 μg L-1, respectively. The proposed sensor also demonstrated excellent stability, repeatability and reproducibility. Furthermore, the sensor can be successfully used for the electrochemical analysis of Cu2+ and Hg2+ in lake water sample with satisfactory recovery, which is of great feasibility for practical application.
Collapse
Affiliation(s)
- Jiamin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Jin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Li Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Hui Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Shuwu Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Yansha Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xigen Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Linyu Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
3
|
Srinivasan P, P Sivaraman S, Mohan AM, Madhu DK, K Chinaraga P, Rao CVSB, Nagarajan S, Deivasigamani P. Chromoionophoric molecular probe infused bimodal porous polymer rostrum as solid-state ocular sensor for the selective and expeditious optical sensing of ultra-trace toxic mercury ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135483. [PMID: 39173372 DOI: 10.1016/j.jhazmat.2024.135483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
This study presents a distinctive solid-state naked-eye colorimetric sensing approach by encapsulating a chromoionophoric probe onto a hybrid macro-/meso-pore polymer scaffold for fast and selective sensing of ultra-trace Hg(II). The customized structural/surface properties of the poly(VPy-co-TM) monolith are attained by specific proportions of 2-vinylpyridine (VPy), trimethylolpropane trimethacrylate (TM), and pore-tuning solvents. The interconnected porous network of poly(VPy-co-TM), inherent superior surface area and porosity, is captivating for the homogeneous/voluminous incorporation of probe molecules, i.e., 7-((4-methoxyphenyl)diazenyl)quinoline-8-ol (MPDQ), for the target-specific colorimetric detection. The structural morphology, surface topography, and phase characteristics of the bare poly(VPy-co-TM) monolith and MPDQ@poly(VPy-co-TM) sensor are examined using HR-TEM-SAED (High-Resolution Transmission Electron Microscopy - Selected Area Electron Diffraction), FE-SEM-EDAX (Field Emission Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), p-XRD (Powder X-Ray Diffraction), FT-IR (Fourier Transform Infrared Spectroscopy), UV-Vis-DRS (Ultraviolet-Visible Diffuse Reflectance Spectroscopy), and BET/BJH (Brunauer-Emmett-Teller / Barrett-Joyner-Halenda) analysis. The distinctive properties of the sensor reveal a constrained geometrical orientation of the MPDQ probe onto the long-range continuous monolithic network of meso-/-macropore template, enabling selective interaction with Hg(II) with peculiar color transfiguration from pale yellow to deep brown. The sensor demonstrates a linear spectral-color alliance in the 0-200 ppb concentration range for Hg(II), with quantification and detection limits of 0.63 and 0.19 ppb. The sensor efficacy is verified using certified contaminated water and tobacco samples, with excellent reusability, reliability, and reproducibility of ≥ 99.23 % (RSD ≤1.89 %) and ≥ 99.19 % (RSD ≤1.94 %) of Hg(II), respectively.
Collapse
Affiliation(s)
- Prabhakaran Srinivasan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sushmitha P Sivaraman
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Deepan Kumar Madhu
- Department of Chemistry, K. Ramakrishnan College of Technology, Samayapuram, Tiruchirapalli, Tamil Nadu 621112, India
| | - Pitchaiah K Chinaraga
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu 603102, India
| | - C V S Brahmananda Rao
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu 603102, India
| | - Sivaraman Nagarajan
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu 603102, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
4
|
Han F, Cheng C, Zhao J, Wang H, Zhao G, Zhang Y, Zhang N, Wang Y, Zhang J, Wei Q. Single-atom nanozymes: Emerging talent for sensitive detection of heavy metals. Colloids Surf B Biointerfaces 2024; 242:114093. [PMID: 39029248 DOI: 10.1016/j.colsurfb.2024.114093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
In recent years, the increasingly severe pollution of heavy metals has posed a significant threat to the environment and human safety. Heavy metal ions are highly non-biodegradable, with a tendency to accumulate through biomagnification. Consequently, accurate detection of heavy metal ions is of paramount importance. As a new type of synthetic nanomaterials, single-atom nanozymes (SANs) boast exceptional enzyme-like properties, setting them apart from natural enzymes. This unique feature affords SANs with a multitude of advantages such as dispersed active sites, low cost and variety of synthetic methods over natural enzymes, making them an enticing prospect for various applications in industrial, medical and biological fields. In this paper, we systematically summarize the synthetic methods and catalytic mechanisms of SANs. We also briefly review the analytical methods for heavy metal ions and present an overall overview of the research progress in recent years on the application of SANs in the detection of environmental heavy metal ions. Eventually, we propose the existing challenges and provide a vision for the future.
Collapse
Affiliation(s)
- Fangqin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Chunfang Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jingyu Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Huixin Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Guanhui Zhao
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, People's Republic of China.
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Jie Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
5
|
Yan Z, Lin S, Li F, Qiang J, Zhang S. Food nanotechnology: opportunities and challenges. Food Funct 2024; 15:9690-9706. [PMID: 39262316 DOI: 10.1039/d4fo02119c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Food nanotechnology, which applies nanotechnology to food systems ranging from food production to food processing, packaging, and transportation, provides tremendous opportunities for conventional food science and industry innovation and improvement. Although great progress and rapid growth have been achieved in food nanotechnology research owing to the unique food features rendered by nanotechnology, at a fundamental level, food nanotechnology is still in its initial stages and the potential adverse effects of nanomaterials are still a controversial problem that attract public attention. Food-derived nanomaterials, compared to some inorganic nanoparticles and synthetic organic macromolecules, can be digested rapidly and produce similar digestion products to those produced normally, which become the mainstream and trend for food nanotechnology in practical applications, and are expected to be a vital tool for addressing the security problem and easing public concerns. These food-derived materials enable the favourable characteristics of nanostructures to be combined with the safety, biocompatibility, and bioactivity of natural food. Very recently, diverse food-derived nanomaterials have been explored and widely applied in multiple fields. Herein, we thoroughly summarize the fabrication and development of nanomaterials for use in food technology, as well as the recent advances in the improvement of food quality, revolutionizing food supply, and boosting food industries based on foodborne nanomaterials. The current challenges in food nanotechnology are also discussed. We hope this review can provide a detailed reference for experts and food manufacturers and inspire researchers to participate in the development of food nanotechnology for highly efficient food industry growth.
Collapse
Affiliation(s)
- Zhiyu Yan
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Fanghan Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Jiaxin Qiang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
6
|
Sengupta J, Hussain CM. Sensitive and selective detection of heavy metal ions and organic pollutants with graphene-integrated sensing platforms. NANOSCALE 2024; 16:14195-14212. [PMID: 39016018 DOI: 10.1039/d4nr00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Graphene-based sensors have emerged as promising tools for environmental monitoring due to their exceptional properties such as high surface area, excellent electrical conductivity, and sensitivity to various analytes. This paper presents a review of recent advancements in the development and application of graphene-based sensors for the detection of heavy metal ions and organic pollutants. These sensors employ either graphene or its derivatives, often in combination with graphene hybrid nanocomposites, as the primary sensing material. The synthesis methods of graphene and sensing mechanisms of graphene-based sensors are discussed. Furthermore, performance metrics including the determination range and detection limits of these sensors are itemized. The potential challenges and future directions in the field of graphene-based sensors for environmental monitoring are also highlighted. Overall, this review provides valuable insights into the current state-of-the-art technologies and paves the way for the development of highly efficient and reliable sensors for environmental monitoring purposes.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata - 700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, New Jersey, USA.
| |
Collapse
|
7
|
Singh A, Dhau J, Kumar R, Badru R, Kaushik A. Exploring the fluorescence properties of tellurium-containing molecules and their advanced applications. Phys Chem Chem Phys 2024; 26:9816-9847. [PMID: 38497121 DOI: 10.1039/d3cp05740b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This review article explores the fascinating realm of fluorescence using organochalcogen molecules, with a particular emphasis on tellurium (Te). The discussion encompasses the underlying mechanisms, structural motifs influencing fluorescence, and the applications of these intriguing phenomena. This review not only elucidates the current state of knowledge but also identifies avenues for future research, thereby serving as a valuable resource for researchers and enthusiasts in the field of fluorescence chemistry with a focus on Te-based molecules. By highlighting challenges and prospects, this review sparks a conversation on the transformative potential of Te-containing compounds across different fields, ranging from environmental solutions to healthcare and materials science applications. This review aims to provide a comprehensive understanding of the distinct fluorescence behaviors exhibited by Te-containing compounds, contributing valuable insights to the evolving landscape of chalcogen-based fluorescence research.
Collapse
Affiliation(s)
- Avtar Singh
- Research and Development, Molekule Group Inc., 3802 Spectrum Blvd., Tampa, Florida 33612, USA.
- Department of Chemistry, Sri Guru Teg Bahadur Khalsa College, Anandpur Sahib, Punjab 140118, India
| | - Jaspreet Dhau
- Research and Development, Molekule Group Inc., 3802 Spectrum Blvd., Tampa, Florida 33612, USA.
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Rahul Badru
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140406, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| |
Collapse
|
8
|
Zhang D, Fang L, Liu L, Zhao B, Hu B, Yu S, Wang X. Uranium extraction from seawater by novel materials: A review. Sep Purif Technol 2023; 320:124204. [DOI: doi.org/10.1016/j.seppur.2023.124204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
9
|
Zhao Z, Zhang L, Zhao Y, Li Y, Shi J, Zhi J, Dong Y. Helical Self-Assembly and Fe 3+ Detection of V-Shaped AIE-Active Chiral Tetraphenylbutadiene-Based Polyamides. Chemistry 2023; 29:e202301035. [PMID: 37200207 DOI: 10.1002/chem.202301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Chiral aggregation-induced emission (AIE) molecules have drawn attention for their helical self-assembly and special optical properties. The helical self-assembly of AIE-active chiral non-linear main-chain polymers can produce some desired optical features. In this work, a series of V-shaped chiral AIE-active polyamides P1-C3, P1-C6, P1-C12 and linear P2-C3, P2-C6, bearing n-propyl/hexyl/dodecyl side-chains, based on tetraphenylbutadiene (TPB), were prepared. All target main-chain polymers exhibit distinct AIE characteristics. The polymer P1-C6 with moderate length alkyl chains shows better AIE properties. The V-shaped main-chains and the chiral induction of (1R,2R)-(+)-1,2-cyclohexanediamine in each repeating unit promote the polymer chains display helical conformation, and multiple helical polymer chains induce nano-fibers helicity when the polymer chains aggregate and self-assemble in THF/H2 O mixtures. Simultaneously, the helical conformation polymer chains and helical nano-fibers cause P1-C6 produce strong circular dichroism (CD) signals with positive Cotton effect. Moreover, P1-C6 could also occur fluorescence quenching response to Fe3+ selectively with a low detection limit of 3.48 μmol/L.
Collapse
Affiliation(s)
- Zixuan Zhao
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Lulu Zhang
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ying Zhao
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yanji Li
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Jianbing Shi
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Junge Zhi
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| |
Collapse
|
10
|
Paul S, Nandi S, Das M, Bora A, Hossain MT, Ghosh S, Giri PK. Two-dimensional bismuth oxyselenide quantum dots as nanosensors for selective metal ion detection over a wide dynamic range: sensing mechanism and selectivity. NANOSCALE 2023; 15:12612-12625. [PMID: 37462457 DOI: 10.1039/d3nr02029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Bismuth oxyselenide (Bi2O2Se) nanosheets, a new 2D non-van der Waals nanomaterial having unique semiconducting properties, could be favorable for various sensing applications. In the present report, a top-down chemical approach was adopted to synthesize ultrathin Bi2O2Se quantum dots (QDs) in an appropriate solution. The as-prepared 2D Bi2O2Se QDs with an average size of ∼3 nm, exhibiting strong visible fluorescence, were utilized for heavy-metal ion detection with high selectivity. The QDs show a high optical band gap and a reasonably high fluorescence quantum yield (∼4%) in the green region without any functionalization. A series of heavy metal ions were detected using these QDs. The as-prepared QDs exhibit selective detection of Fe3+ over a wide dynamic range with a high quenching ratio and a low detection limit (<0.5 μM). The mechanism of visible fluorescence and Fe3+ ion-induced quenching was investigated in detail based on a model involving adsorption and charge transfer. Density functional theory (DFT) first principles calculations show that fluorescence quenching occurred selectively due to the efficient trapping of electrons in the bandgap states created by the Fe atoms. This work presents a sustainable and scalable method to synthesize 2D Bi2O2Se QDs for heavy metal ion sensing over a wide dynamic range and these 2D QDs could find potential uses in gas sensors, biosensors and optoelectronics.
Collapse
Affiliation(s)
- Sumana Paul
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sanju Nandi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Mandira Das
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Abhilasha Bora
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Md Tarik Hossain
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Subhradip Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
11
|
Wang J, Chen D, Huang W, Yang N, Yuan Q, Yang Y. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. EXPLORATION (BEIJING, CHINA) 2023; 3:20210027. [PMID: 37933385 PMCID: PMC10624392 DOI: 10.1002/exp.20210027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Nano-biosensors that are composed of recognition molecules and nanomaterials have been extensively utilized in disease diagnosis, health management, and environmental monitoring. As a type of nano-biosensors, molecular specificity field-effect transistor (FET) biosensors with signal amplification capability exhibit prominent advantages including fast response speed, ease of miniaturization, and integration, promising their high sensitivity for molecules detection and identification. With intrinsic characteristics of high stability and structural tunability, aptamer has become one of the most commonly applied biological recognition units in the FET sensing fields. This review summarizes the recent progress of FET biosensors based on aptamer functionalized nanomaterials in medical diagnosis and environmental monitoring. The structure, sensing principles, preparation methods, and functionalization strategies of aptamer modified FET biosensors were comprehensively summarized. The relationship between structure and sensing performance of FET biosensors was reviewed. Furthermore, the challenges and future perspectives of FET biosensors were also discussed, so as to provide support for the future development of efficient healthcare management and environmental monitoring devices.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Wanting Huang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Nianjun Yang
- Department of Chemistry, Insititute of Materials ResearchHasselt UniversityHasseltBelgium
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| |
Collapse
|
12
|
Chen Y, Zhao P, Liang Y, Ma Y, Liu Y, Zhao J, Hou J, Hou C, Huo D. A sensitive electrochemical sensor based on 3D porous melamine-doped rGO/MXene composite aerogel for the detection of heavy metal ions in the environment. Talanta 2023; 256:124294. [PMID: 36696736 DOI: 10.1016/j.talanta.2023.124294] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Herein, we developed a unique screen-printed carbon electrode (SPCE) with three-dimensional melamine-doped graphene oxide/MXene composite aerogel (3D MGMA) modification, which is used for the simultaneous and sensitive detection of three metal ions (Zn2+, Cd2+, and Pb2+) in the environment. A self-assembly method was used to fabricate 3D MXene aerogels based on MXene, graphene oxide (GO), and melamine. Notably, the network-like 3D structure combining 2D MXene and rGO sheets can provide a high ratio of surface area and enriched functional clusters, which are beneficial for improving the electrical conductivity and promoting the uptake of heavy metal ions. In the linear range of 3-900 μg L-1, the constructed innovative sensing platform can sensitively detect Zn2+, Cd2+, and Pb2+ simultaneously, with detection limits of 0.48 μg L-1,0.45 μg L-1 and 0.29 μg L-1 respectively. This work reflects precision and reliability in the detection of three water samples (tap water, Minzhu lake and Yangtze River) and four cereal samples (sorghum, rice, wheat and corn), proposing a novel strategy for monitoring heavy metal ions in the natural environment.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yi Liang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, 644000, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jinsong Zhao
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, 644000, PR China; Sichuan Liqour Group Co., Ltd, Chengdu, 610000, PR China
| | - Jingzhou Hou
- Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| | - Changjun Hou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, 644000, PR China.
| |
Collapse
|
13
|
Li G, Liu Z, Gao W, Tang B. Recent advancement in graphene quantum dots based fluorescent sensor: Design, construction and bio-medical applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Huang L, Zhang Z, Xing H, Sui X, Yang J, Wang Y. Quantitative and qualitative analyses of metal ions in food and water by using a multicolor sensor array and chemometrics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:906-915. [PMID: 36541673 DOI: 10.1039/d2ay01771g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rapid and accurate detection of toxic metal ions is the key to combating food contamination and environmental pollution. In sensor arrays, gold nanoparticles play a crucial role in monitoring metal ions based on surface plasmon resonance. However, identifying metal ions with unknown concentrations in a complex system through this assay is difficult because of its monotonous color change and weak anti-interference ability. To overcome these limitations, a sensitive, flexible, low-cost, and multicolor sensor array was designed herein. The applicability of the sensor array for the qualitative and quantitative analyses of metal ions in food and water was also verified. The developed sensor array could classify 14 metal ions (Cu2+, Fe2+, Fe3+, Mn2+, Ni2+, Zn2+, Cd2+, Cr3+, Co2+, Ba2+, K+, Tl+, Pb2+, and Hg2+) of unknown concentration with an accuracy of 100%. In addition, partial least squares models were established to quantify Tl+, Pb2+, and Hg2+ in water and rice samples, with square correlation coefficients (R2) of 0.9991, 0.9742, and 0.9731, respectively. This method can be used for accurate quantitative and qualitative analyses of heavy metal ions in water and food.
Collapse
Affiliation(s)
- Lijuan Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Zinan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Huanchun Xing
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
15
|
Deshwal N, Singh MB, Bahadur I, Kaushik N, Kaushik NK, Singh P, Kumari K. A review on recent advancements on removal of harmful metal/metal ions using graphene oxide: Experimental and theoretical approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159672. [PMID: 36306838 DOI: 10.1016/j.scitotenv.2022.159672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide is a two-dimensional carbon nanomaterial and has gained huge popularity over the last decade. Because, the graphene oxide can be dispersed in water easily and it is one of the most researched two-dimensional materials in the current time. The extraordinary properties shown by graphene oxide (GO) are due to its unique chemical structure; includes various hydrophilic functional groups containing oxygen such as carboxyl, hydroxyl, carbonyl and tiny sp2 carbon domains surrounded by sp3 domains. These groups are very peculiar for various applications as they allow covalent functionalisation with a plethora of compounds. Large surface area, intrinsic fluorescence, excellent surface functionality, amphiphilicity, improved conductivity, high adsorption capacity and superior biocompatibility are some of the chemical properties have drawn research from various fields. Graphene oxide has various interactions such as coordination, chelation, hydrogen bonding, electrostatic interaction, hydrophobic effects, π-π interaction, acid base interaction etc., with various metal ions. This review is focused on the removal of metals and metal ions due to their interactions mentioned above. Further, potential of composites of graphene oxide in the removal of metal and metal ions is also discussed. Further, the current challenges in this field at industrial-scale are also discussed.
Collapse
Affiliation(s)
- Nidhi Deshwal
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, South Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
16
|
Qiu J, Zeng D, Lin Y, Ye W, Chen C, Xu Z, Hu G, Liu Y. Carbon-polymer dot-based UV absorption and fluorescence performances for heavy metal ion detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121913. [PMID: 36198239 DOI: 10.1016/j.saa.2022.121913] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
In previous reports, carbon dots (CDs) were customarily used as fluorescent probes to detect heavy metal ions. However, scientists neglected to take advantage of the excellent UV absorption properties of CDs to detect heavy metal ions. Herein, we synthesized nitrogen-containing carbon polymer dots (N-CPDs) for the determination of Co2+ ions in water samples by a one-step hydrothermal method using l-histidine and ethylene imine polymer as raw materials. The N-CPDs were characterized by ultraviolet-visible spectrum (UV-vis), infrared spectrum (FT-IR), X-ray photoelectron spectrum (XPS) and transmission electron microscopy (TEM) techniques. They possess superior full-band UV absorption performance and the surface is rich in multifunctional groups such as -COOH, -CN-, -OH, etc. When Co2+ was added to N-CPDs solution, the color of the solution rapidly changed from colorless to yellow-brown, which was visible to the naked eye. The UV absorption intensity of N-CPDs changed, and the fluorescence was instantly quenched, due to the formation of chelate between Co2+ and N-CPDs, and the FRET process occurred. The detection of Co2+ showed good linearity for both fluorescence and UV absorption spectroscopy modes in the range of 0-200 μM, and the limit of detection were 1.0023 μM and 0.75 μM, respectively. These two methods have the advantages of simple operation, remarkable selectivity and small sample size, which can be applied to the field detection of Co2+ in water samples. It is possible to develop the UV absorption properties of CDs to detect the ions.
Collapse
Affiliation(s)
- Jiemin Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Danhong Zeng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yichun Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Weihao Ye
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Congcong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guangqi Hu
- College of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China.
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Chen Z, Zhang Z, Qi J, You J, Ma J, Chen L. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129889. [PMID: 36087533 DOI: 10.1016/j.jhazmat.2022.129889] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 05/27/2023]
Abstract
Detection of heavy metal ions has drawn significant attention in environmental and food area due to their threats to the human health and ecosystem. Colorimetry is one of the most frequently-used methods for the detection of heavy metal ions owing to its simplicity, easy operation and rapid on-site detection. The development of chromogenic materials and their sensing mechanisms are the key research direction in the area of colorimetric method. Since each chromogenic material has their unique optical and chemical properties, they have totally different colorimetric sensing mechanisms. This review focuses on the chromogenic materials and their sensing strategies for the colorimetric detection of heavy metal ions. We divide the chromogenic materials into three types, including organic materials, inorganic materials, and other materials. As for each type of chromogenic material, we discuss their detailed sensing strategies, sensing performance, and real sample applications. Moreover, current challenges and perspectives related to the colorimetry of heavy metal ions are also discussed in this review. The aim of this review is to help readers to better understand the principles of colorimetric methods for heavy metal ions and push the development of rapid detection of heavy metal ions.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 264003, China.
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 264003, China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
18
|
Mahmoud ZH, Salman HNKA, Hussein HH, Adhab AH, Al-Majdi K, Rasheed T, Abdulhussien HA, Sasirekha N, Abd AN, Kianfar E. Organic chemical Nano sensors: synthesis, properties, and applications. BRAZ J BIOL 2023; 84:e268893. [PMID: 37194801 DOI: 10.1590/1519-6984.268893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/20/2023] [Indexed: 05/18/2023] Open
Abstract
Nanosensors work on the "Nano" scale. "Nano" is a unit of measurement around 10- 9 m. A nanosensor is a device capable of carrying data and information about the behavior and characteristics of particles at the nanoscale level to the macroscopic level. Nanosensors can be used to detect chemical or mechanical information such as the presence of chemical species and nanoparticles or monitor physical parameters such as temperature on the nanoscale. Nanosensors are emerging as promising tools for applications in agriculture. They offer an enormous upgrade in selectivity, speed, and sensitivity compared to traditional chemical and biological methods. Nanosensors can be used for the determination of microbe and contaminants. With the advancement of science in the world and the advent of electronic equipment and the great changes that have taken place in recent decades, the need to build more accurate, smaller and more capable sensors was felt. Today, high-sensitivity sensors are used that are sensitive to small amounts of gas, heat, or radiation. Increasing the sensitivity, efficiency and accuracy of these sensors requires the discovery of new materials and tools. Nano sensors are nanometer-sized sensors that, due to their small size and nanometer size, have such high accuracy and responsiveness that they react even to the presence of several atoms of a gas. Nano sensors are inherently smaller and more sensitive than other sensors.
Collapse
Affiliation(s)
- Z H Mahmoud
- Science College University of Diyala, Chemistry Department, Diyala, Iraq
| | - H N K Al Salman
- University of Basrah, College of Pharmacy, Department of pharmaceutical Chemistry, Basrah, Iraq
| | - H H Hussein
- University of Basrah, College of Pharmacy, Department of pharmaceutical Chemistry, Basrah, Iraq
| | - A H Adhab
- Al-Zahrawi University College, Department of Medical Laboratory Technics, Karbala, Iraq
| | - K Al-Majdi
- Ashur University College, Department of Biomedialc Engineering, Baghdad, Iraq
| | - T Rasheed
- Prince Sattam Bin Abdulaziz University, College of Science and Humanities, Department of English, Al-Kharj, Alkharj, Saudi Arabia
| | | | - N Sasirekha
- Sona College of Technology, Salem, Tamil Nadu, India
| | - A N Abd
- University of Diyala, Science College, Chemistry Department, Diyala, Iraq
| | - E Kianfar
- Islamic Azad University, Department of Chemical Engineering, Arak Branch, Arak, Iran
- Islamic Azad University, Young Researchers and Elite Club, Gachsaran Branch, Gachsaran, Iran
| |
Collapse
|
19
|
Yang HK, Yu Y, Zhao ZH, Zhang HY, Zhang YM, Chen J, Wang L, He YC. Synthesis, structure, and electrochemical properties of a novel coordination polymer based on a nitrogen-rich ligand. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Abbas Q, Shinde PA, Abdelkareem MA, Alami AH, Mirzaeian M, Yadav A, Olabi AG. Graphene Synthesis Techniques and Environmental Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7804. [PMID: 36363396 PMCID: PMC9658785 DOI: 10.3390/ma15217804] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications.
Collapse
Affiliation(s)
- Qaisar Abbas
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Engineering, Computing & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Pragati A. Shinde
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- Chemical Engineering Department, Minia University, Minya 61519, Egypt
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mojtaba Mirzaeian
- School of Engineering, Computing & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty 050012, Kazakhstan
| | - Arti Yadav
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdul Ghani Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
21
|
Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Sharmoukh W, Abdelrahman MS, Shaban E, Khattab TA. Metallochromic Hydrazone‐Based Chemosensor with Application in a Colorimetric Paper Strip for Selective Detection of Cu
2+. ChemistrySelect 2022. [DOI: 10.1002/slct.202200811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Walid Sharmoukh
- Advanced Materials Technology and Mineral Resources Research Institute Inorganic Chemistry Department National Research Centre Cairo 12622 Egypt
| | - Meram S. Abdelrahman
- Dyeing Printing and Auxiliaries Department National Research Centre Cairo 12622 Egypt
| | - Elkhabiry Shaban
- Dyeing Printing and Auxiliaries Department National Research Centre Cairo 12622 Egypt
| | - Tawfik A. Khattab
- Dyeing Printing and Auxiliaries Department National Research Centre Cairo 12622 Egypt
| |
Collapse
|
23
|
Aerogel Assembled by Two Types of Carbon Nanoparticles for Efficient Removal of Heavy Metal Ions. Gels 2022; 8:gels8080459. [PMID: 35892718 PMCID: PMC9329938 DOI: 10.3390/gels8080459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
Both sodium alginate and polyethyleneimine (PEI) have a good ability to adsorb heavy metal ions. PEI and sodium alginate were used as important precursors to synthesize positively charged carbon nanoparticles (p-CNDs) with hydroxyl and carboxyl, and negatively charged carbon nanoparticles (n-CNDs) with amino, respectively. The carbon nanoparticles (CNDs) aerogel with a large specific surface area and rich functional groups were constructed by self-assembled p-CNDs and n-CNDs via electrostatic attraction for adsorption of heavy metal ions in water. The results show that CNDs aerogel has good adsorption properties for Pb2+ (96%), Cu2+ (91%), Co2+ (86%), Ni2+ (82%), and Cd2+ (78%). Furthermore, the fluorescence emission intensity of CNDs aerogel will gradually decrease with the increase in the adsorption rate, indicating that it can detect the adsorption process synchronously. In addition, the cytotoxicity test reveals that CNDs have good biocompatibility and will not cause secondary damage to biological cells.
Collapse
|
24
|
Novel NBN-Embedded Polymers and Their Application as Fluorescent Probes in Fe 3+ and Cr 3+ Detection. Polymers (Basel) 2022; 14:polym14102025. [PMID: 35631907 PMCID: PMC9145644 DOI: 10.3390/polym14102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
The isosteric replacement of C═C by B–N units in conjugated organic systems has recently attracted tremendous interest due to its desirable optical, electronic and sensory properties. Compared with BN-, NBN- and BNB-doped polycyclic aromatic hydrocarbons, NBN-embedded polymers are poised to expand the diversity and functionality of olefin polymers, but this new class of materials remain underexplored. Herein, a series of polymers with BNB-doped π-system as a pendant group were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization from NBN-containing vinyl monomers, which was prepared via intermolecular dehydration reaction between boronic acid and diamine moieties in one pot. Poly{2-(4-Vinylphenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine} (P1), poly{N-(4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)phenyl)acrylamide} (P2) and poly{N-(4-(1H-benzo[d][1,3,2]diazaborol-2(3H)-yl)phenyl)acrylamide} (P3) were successfully synthesized. Their structure, photophysical properties and application in metal ion detection were investigated. Three polymers exhibit obvious solvatochromic fluorescence. As fluorescent sensors for the detection of Fe3+ and Cr3+, P1 and P2 show excellent selectivity and sensitivity. The limit of detection (LOD) achieved by Fe3+ is 7.30 nM, and the LOD achieved by Cr3+ is 14.69 nM, which indicates the great potential of these NBN-embedded polymers as metal fluorescence sensors.
Collapse
|
25
|
Kajal N, Singh V, Gupta R, Gautam S. Metal organic frameworks for electrochemical sensor applications: A review. ENVIRONMENTAL RESEARCH 2022; 204:112320. [PMID: 34740622 DOI: 10.1016/j.envres.2021.112320] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) are broadly known as porous coordination polymers, synthesized by metal-based nodes and organic linkers. MOFs are used in various fields like catalysis, energy storage, sensors, drug delivery etc., due to their versatile properties (tailorable pore size, high surface area, and exposed active sites). This review presents a detailed discussion of MOFs as an electrochemical sensor and their enhancement in the selectivity and sensitivity of the sensor. These sensors are used for the detection of heavy metal ions like Cd2+, Pb2+, Hg2+, and Cu2+ from groundwater. Various types of organic pollutants are also detected from the water bodies using MOFs. Furthermore, electrochemical sensing of antibiotics, phenolic compounds, and pesticides has been explored. In addition to this, there is also a detailed discussion of metal nano-particles and metal-oxide based composites which can sense various compounds like glucose, amino acids, uric acid etc. The review will be helpful for young researchers, and an inspiration to future research as challenges and future opportunities of MOF-based electrochemical sensors are also reported.
Collapse
Affiliation(s)
- Navdeep Kajal
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Vishavjeet Singh
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Ritu Gupta
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Sanjeev Gautam
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
26
|
Tang XY, Bai FY, Zhao Y, You ZX, Wang M, Xing YH, Shi Z. A Cu-BTC material encapsulated by chemical chromophore 1,3,6,8-tetrakis (p-benzoic acid) pyrene: Fluorescent sensing in recognition of the different ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
A K A, Babu A R S, A Anappara A, N K R. Specific ultralow level chemo-recognition using Graphene-fluorophore supramolecular assembly: Fine-tuning the fluorophore framework. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120408. [PMID: 34592481 DOI: 10.1016/j.saa.2021.120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The non-covalent interactions between graphene and aromatic fluorophores have generated highly sensitive fluorimetric turn-on sensors for various significant analytes. Herein, the supramolecular interaction between reduced graphene oxide and 7-Hydroxy-4-Methyl-8-Amino Coumarin is made use of for tracing Cu2+ at sub-zeptomole level with excellent selectivity among a collection of nineteen metal ions. The system enables quantification of the analyte in a commendably wide range, from micromolar to zeptomolar, a feature that almost all-optical sensors lack. Handy solid-state sensor strip fabricated using the above-mentioned supramolecular combination enabled visual recognition of Cu2+ions at the molecular level. Based on the chemo recognition ability of the fluorophore, multiple Boolean logic devices operating at the molecular level are proposed. By screening pertinent coumarin derivatives, it is demonstrated that the selectivity and sensitivity of the sensors of this sort are decided by the number of π- interaction centers of the fluorophores and the strength by which they interact with graphene, respectively, which will enable identification and modification of proper fluorophores for ultra-trace detection of contaminants of environmental relevance from aqueous solutions.
Collapse
Affiliation(s)
- Akhila A K
- Department of Chemistry, University of Calicut, Kerala 673635, India
| | - Suresh Babu A R
- Department of Chemistry, University of Calicut, Kerala 673635, India.
| | - Aji A Anappara
- Department of Physics, National Institute of Technology Calicut (NITC), Kerala 673601, India.
| | - Renuka N K
- Department of Chemistry, University of Calicut, Kerala 673635, India.
| |
Collapse
|
28
|
Liu Y, Wang Y, Zhang XS, Sheng YS, Li WZ, Yang AA, Luan J, Liu HZ, Wang ZG. A novel 3D Zn-coordination polymer based on a multiresponsive fluorescent sensor demonstrating outstanding sensitivities and selectivities for the efficient detection of multiple analytes. Dalton Trans 2021; 50:15176-15186. [PMID: 34622902 DOI: 10.1039/d1dt02260a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel and unusual 3D luminescent coordination polymer (CP) [Zn2(3-bpah)(bpta)(H2O)]·3H2O (1), where 3-bpah denotes N,N'-bis(3-pyridinecarboxamide)-1,2-cyclohexane and H4bpta denotes 2,2',4,4'-biphenyltetracarboxylic acid, was successfully synthesized via hydrothermal methods from Zn(II) ions and 3-bpah and bpta ligands. The structure of this CP was investigated via powder X-ray diffraction (PXRD) analysis along with single crystal X-ray diffraction. Notably, 1 exhibits remarkable fluorescence behavior and stability over a wide pH range and in various pure organic solvents. More importantly, 1 can become an outstanding candidate for the selective and sensitive sensing of Fe3+, Mg2+, Cr2O72-, MnO4-, nitrobenzene (NB) and nitromethane (NM), at an extremely low detection limit. The changes in the fluorescence intensity exhibited by these six analytes in the presence of 1 over a wide pH range indicate that this polymer can be an excellent luminescent sensor. To the best of our knowledge, 1 is a rare example of a CP-based multiresponsive fluorescent sensor for metal cations, anions, and toxic organic solvents.
Collapse
Affiliation(s)
- Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Yan Wang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Yu-Shu Sheng
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Ai-Ai Yang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, 100819, P. R. China.
| | - Hong-Zhu Liu
- Post-Doctoral Research Station of Dalian Zhenbang Fluorocarbon Paint Stock Co., Ltd, Dalian, 116036, P. R. China
| | - Zhong-Gang Wang
- State Key Laboratory of fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
29
|
Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection. Talanta 2021; 239:122903. [PMID: 34857381 DOI: 10.1016/j.talanta.2021.122903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Heavy metal pollution has severe threats to the ecological environment and human health. Thus, it is urgent to achieve the rapid, selective, sensitive and portable detection of heavy metal ions. To overcome the defects of traditional methods such as time-consuming, low sensitivity, high cost and complicated operation, QDs (Quantum dots)-based nanomaterials have been used in sensors to significantly improve the sensing performance. Due to their excellent physicochemical properties, high specific surface area, high adsorption and reactive capacity, nanomaterials could act as potential probes or offer enhanced sensitivity and create a promising nanosensors platform. In this review, the rapidly advancing types of QDs for heavy metal ions detection are first summarized. Modified with ligands, nanomaterials, or biomaterials, QDs are assembled on sensors by the interaction of electrostatic adsorption, chemical bonding, steric hindrance, and base-pairing. The stability of QDs-based nanosensors is improved by doping the elements to QDs, providing the reference substance, optimizing the assemble strategies and so on. Then, according to transducer principles, the two most typical sensor categories based on QDs: optical and electrochemical sensors are highlighted to be discussed. In the meanwhile, portable devices combining with QDs to adapt the practical detection in complex situations are summarized. The deficiencies and future challenges of QDs in toxicity, specificity, portability, multi-metal co-detection and degradation during the detection are also pointed out. In the end, the development trends of QDs-based nanosensors for heavy metal ions detection are discussed. This review presents an overall understanding, recent advances, current challenges and future outlook of QDs-based nanosensors for heavy metal detection.
Collapse
|
30
|
Reagen S, Wu Y, Liu X, Shahni R, Bogenschuetz J, Wu X, Chu QR, Oncel N, Zhang J, Hou X, Combs C, Vasquez A, Zhao JX. Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for In Vitro Cell Imaging and Metal Ion Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43952-43962. [PMID: 34495635 DOI: 10.1021/acsami.1c10533] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene quantum dots (GQDs) are a subset of fluorescent nanomaterials that have gained recent interest due to their photoluminescence properties and low toxicity and biocompatibility features for bioanalysis and bioimaging. However, it is still a challenge to prepare highly near-infrared (NIR) fluorescent GQDs using a facile pathway. In this study, NIR GQDs were synthesized from the biomass-derived organic molecule cis-cyclobutane-1,2-dicarboxylic acid via one-step pyrolysis. The resulting GQDs were then characterized by various analytical methods such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Moreover, the photostability and stability over a wide pH range were also investigated, which indicated the excellent stability of the prepared GQDs. Most importantly, two peaks were found in the fluorescence emission spectra of the GQDs, one of which was located in the NIR region of about 860 nm. Finally, the GQDs were applied for cell imaging with human breast cancer cell line, MCF-7, and cytotoxicity analysis with mouse macrophage cell line, RAW 246.7. The results showed that the GQDs entered the cells through endocytosis on the fluorescence images and were not toxic to the cells up to a concentration of 200 μg/mL. Thus, the developed GQDs could be a potential effective fluorescent bioimaging agent. Finally, the GQDs depicted fluorescence quenching when treated with mercury metal ions, indicating that the GQDs could be used for mercury detection in biological samples as well.
Collapse
Affiliation(s)
- Sarah Reagen
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xiao Liu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Rahul Shahni
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jacob Bogenschuetz
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xu Wu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Qianli R Chu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Nuri Oncel
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jin Zhang
- Institute for Energy Studies, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xiaodong Hou
- Institute for Energy Studies, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Colin Combs
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Antonio Vasquez
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
31
|
Biranje A, Azmi N, Tiwari A, Chaskar A. Quantum Dots Based Fluorescent Probe for the Selective Detection of Heavy Metal Ions. J Fluoresc 2021; 31:1241-1250. [PMID: 34181146 DOI: 10.1007/s10895-021-02755-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
Heavy metal ions are one of the primary causes of environmental pollution. A marshal effect of heavy metal ions is a paramount ultimatum to humans, aquatic animals and other organisms present in nature. Multitude arrays of materials have been proclaimed for sensing of heavy metal ions and also many methodologies are applied for heavy metal ion sensing. Due to their toxicity and non-biodegradability, it is required to be perceived immediately prior to its manifestation of harmful effects. Quantum Dots (QDs) are zero-dimensional nanomaterial particles and owing to their distinctive optical and electronic properties, they are utilized as nanosensors. QDs have enriched fluorescence properties which includes broad excitation spectrum, narrow emission spectrum and photostability. QDs offer eclectic and sensitive detection of heavy metal ions due to presence of discrete capping agents and different functional groups present on the surface of the QDs. These capping layers and functional groups attune the sensing capability of the QDs, which leverages the interactions of QDs with various analytes by different mechanisms. This review, comprising of papers from 2011 to 2020,focuses on heavy metal ions sensing potential of various quantum dots and its applicability as a nanosensor for on field heavy metal ions detection in water. Quantum Dots (QDs) based Heavy Metal Detection.
Collapse
Affiliation(s)
- Akshaya Biranje
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India
| | - Namrah Azmi
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India
| | - Abhishekh Tiwari
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India.
| | - Atul Chaskar
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India.
| |
Collapse
|
32
|
Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A. A Review on Biosensors and Nanosensors Application in Agroecosystems. NANOSCALE RESEARCH LETTERS 2021; 16:136. [PMID: 34460019 PMCID: PMC8405745 DOI: 10.1186/s11671-021-03593-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/14/2021] [Indexed: 05/19/2023]
Abstract
Previous decades have witnessed a lot of challenges that have provoked a dire need of ensuring global food security. The process of augmenting food production has made the agricultural ecosystems to face a lot of challenges like the persistence of residual particles of different pesticides, accretion of heavy metals, and contamination with toxic elemental particles which have negatively influenced the agricultural environment. The entry of such toxic elements into the human body via agricultural products engenders numerous health effects such as nerve and bone marrow disorders, metabolic disorders, infertility, disruption of biological functions at the cellular level, and respiratory and immunological diseases. The exigency for monitoring the agroecosystems can be appreciated by contemplating the reported 220,000 annual deaths due to toxic effects of residual pesticidal particles. The present practices employed for monitoring agroecosystems rely on techniques like gas chromatography, high-performance liquid chromatography, mass spectroscopy, etc. which have multiple constraints, being expensive, tedious with cumbersome protocol, demanding sophisticated appliances along with skilled personnel. The past couple of decades have witnessed a great expansion of the science of nanotechnology and this development has largely facilitated the development of modest, quick, and economically viable bio and nanosensors for detecting different entities contaminating the natural agroecosystems with an advantage of being innocuous to human health. The growth of nanotechnology has offered rapid development of bio and nanosensors for the detection of several composites which range from several metal ions, proteins, pesticides, to the detection of complete microorganisms. Therefore, the present review focuses on different bio and nanosensors employed for monitoring agricultural ecosystems and also trying to highlight the factor affecting their implementation from proof-of-concept to the commercialization stage.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Vimal Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Mayur Mukut Murlidhar Sharma
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Anupam Patra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia
| |
Collapse
|
33
|
Liu C, Ye Z, Wei X, Mao S. Recent advances in field‐effect transistor sensing strategies for fast and highly efficient analysis of heavy metal ions. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Chengbin Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| | - Ziwei Ye
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| | - Xiaojie Wei
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| |
Collapse
|
34
|
Ru J, Wang X, Cui X, Wang F, Ji H, Du X, Lu X. GaOOH-modified metal-organic frameworks UiO-66-NH 2: Selective and sensitive sensing four heavy-metal ions in real wastewater by electrochemical method. Talanta 2021; 234:122679. [PMID: 34364479 DOI: 10.1016/j.talanta.2021.122679] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/16/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023]
Abstract
Heavy metal pollution in the environment poses a serious threat to the ecosystem and human health, which has attracted widespread attention. In this study, an octahedral structure composite composed of UiO-66-NH2 MOFs and semiconductor GaOOH materials has been prepared and used as electrode materials successfully. These composites can be used for the real-time and online determination of Cd2+, Cu2+, Hg2+, and Pb2+ in real water samples simultaneously or alone via an electrochemical method. Zr-MOF has a large and unique surface area that is beneficial to the adsorption and preconcentration of heavy metal ions. The experiment parameters such as pH, deposition potential, and deposition time were optimized. Under the optimized conditions, the electrochemical performances and practical applications of Zr-MOF composites modified electrode have been investigated, which shows excellent wider linear range and lower detection limit (LOD). The results demonstrated excellent selectivity, reproducibility, stability and applicability for the detection of four metal ions. These superior features stem from the synergistic reaction mechanism of UiO-66-NH2 and GaOOH. In addition, it has been established a new detection strategy for heavy metal ions through the form of metal-organic framework (MOF) composite in this work. It may provide a novel platform for the quantitative determination of heavy metal ions in various environmental samples.
Collapse
Affiliation(s)
- Jing Ru
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xuemei Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| | - Xinglan Cui
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Fangbing Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Hong Ji
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xinzhen Du
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| |
Collapse
|
35
|
Guo W, Zhang C, Ma T, Liu X, Chen Z, Li S, Deng Y. Advances in aptamer screening and aptasensors' detection of heavy metal ions. J Nanobiotechnology 2021; 19:166. [PMID: 34074287 PMCID: PMC8171055 DOI: 10.1186/s12951-021-00914-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution has become more and more serious with industrial development and resource exploitation. Because heavy metal ions are difficult to be biodegraded, they accumulate in the human body and cause serious threat to human health. However, the conventional methods to detect heavy metal ions are more strictly to the requirements by detection equipment, sample pretreatment, experimental environment, etc. Aptasensor has the advantages of strong specificity, high sensitivity and simple preparation to detect small molecules, which provides a new direction platform in the detection of heavy metal ions. This paper reviews the selection of aptamers as target for heavy metal ions since the 21th century and aptasensors application for detection of heavy metal ions that were reported in the past five years. Firstly, the selection methods for aptamers with high specificity and high affinity are introduced. Construction methods and research progress on sensor based aptamers as recognition element are also introduced systematically. Finally, the challenges and future opportunities of aptasensors in detecting heavy metal ions are discussed.
Collapse
Affiliation(s)
- Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| |
Collapse
|
36
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
37
|
Singh H, Bamrah A, Bhardwaj SK, Deep A, Khatri M, Kim KH, Bhardwaj N. Nanomaterial-based fluorescent sensors for the detection of lead ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124379. [PMID: 33309138 DOI: 10.1016/j.jhazmat.2020.124379] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Lead (Pb) poisoning has been a scourge to the human to pose sighnificant health risks (e.g., organ disorders, carcinogenicity, and genotoxicity) as observed from many different parts of the world, especially in developing countries. The demand for accurate sensors for its detection, especially in environmental media (soil, water, food, etc.) has hence been growing steadily over the years. The potential utility of fluorescent nanosensors as an important analytical tool is recognized due to their astonishing characteristics (e.g., high sensitivity/selectivity, enhanced detection performance, low cost, portability, and rapid on-site detection ability). This review is organized to offer insight into the recent developments in fluorescent nanosensing technology for the detection of lead ions (Pb2+). To this end, different types of nanomaterials explored for such applications have been classified and evaluated with respect to performance, especially in terms of sensitivity. This review will help researchers gain a better knowledge on the status and importance of optical nanosensors so as to remediate the contamination of lead and associated problems. The technical challenges and prospects in the development of nanosensing systems for Pb2+ are also discussed.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Amy Bamrah
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Sanjeev K Bhardwaj
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar, 140306 Punjab, India
| | - Akash Deep
- Central Scientific Instruments Organization, Sector 30C, Chandigarh 160030, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
38
|
Fabrication of target specific solid-state optical sensors using chromoionophoric probe-integrated porous monolithic polymer and silica templates for cobalt ions. Anal Bioanal Chem 2021; 413:3177-3191. [PMID: 33677651 DOI: 10.1007/s00216-021-03255-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
The article demonstrates the design of two solid-state sensors for the capturing of industrially relevant ultra-trace Co(II) ions using porous monolithic silica and polymer templates. The mesoporous silica reveals high surface area and voluminous pore dimensions that ensures homogeneous anchoring of 4-((5-(allylthio)-1,3,4-thiadiazol-2-yl)diazenyl)benzene-1,3-diol, as the chromoionophore. We report a first of its kind solid-state macro-/meso-porous polymer monolithic optical sensor from a monomeric chromoionophore, i.e., 2-(4-butylphenyl)diazenyl)-2-hydroxybenzylidene)hydrazine-1-carbothioamide. The monolithic solid-state sensors are characterized using HR-TEM-SAED, FE-SEM-EDAX, p-XRD, XPS, 29Si/13C CPMAS NMR, FT-IR, TGA, and BET/BJH analysis. The electron microscopic images reveal a highly ordered hexagonal mesoporous network of honeycomb pattern for silica monolith, and a long-range macroporous framework with mesoporous channels for polymer monolith. The sensors offer exclusive ion-selectivity and sensitivity for trace cobalt ions, through a concentration proportionate visual color transition, with a response kinetics of ≤ 5 min. The optimization of ion-sensing performance reveals an excellent detection limit of 0.29 and 0.15 ppb for Co(II), using silica- and polymer-based monolithic sensors, respectively. The proposed sensors are tested with industrial wastewater and spent Li-ion batteries, which reveals a superior cobalt ion capturing efficiency of ≥ 99.2% (RSD: ≤ 2.07%).
Collapse
|
39
|
Yang T, Duncan TV. Challenges and potential solutions for nanosensors intended for use with foods. NATURE NANOTECHNOLOGY 2021; 16:251-265. [PMID: 33712739 DOI: 10.1038/s41565-021-00867-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnology-adapted detection technologies could improve the safety and quality of foods, provide new methods to combat fraud and be useful tools in our arsenal against bioterrorism. Yet despite hundreds of published studies on nanosensors each year targeted to the food and agriculture space, there are few nanosensors on the market in this area and almost no nanotechnology-enabled methods employed by public health agencies for food analysis. This Review shows that the field is currently being held back by technical, regulatory, political, legal, economic, environmental health and safety, and ethical challenges. We explore these challenges in detail and provide suggestions about how they may be surmounted. Strategies that may have particular effectiveness include improving funding opportunities and publication venues for nanosensor validation, social science and patent landscape studies; prioritizing research and development of nanosensors that are specifically designed for rapid analysis in non-laboratory settings; and incorporating platform cost and adaptability into early design decisions.
Collapse
Affiliation(s)
- Tianxi Yang
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Bedford Park, IL, USA
| | - Timothy V Duncan
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Bedford Park, IL, USA.
| |
Collapse
|
40
|
Jin J, Xue J, Liu Y, Yang G, Wang YY. Recent progresses in luminescent metal-organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Trans 2021; 50:1950-1972. [PMID: 33527951 DOI: 10.1039/d0dt03930f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discharge of excessive metal ions and anions into water bodies leads to the serious pollution of water and environment, which in turn has a certain impact on industry, agriculture, and human life. Because of the unique advantages of luminescent metal-organic frameworks (LMOFs), they have been successfully explored as various fluorescent probes to quickly and effectively detect these pollutants. This perspective not only introduces the design strategy and classification of LMOFs, especially the construction methods of water-stable LMOFs, but also reports the latest progresses in some LMOFs between 2016 and 2020 as well as expounds the mechanisms of LMOFs for detecting anions and cations. Moreover, the luminescence properties of LMOFs are related to the selection of metal ions, the structure of organic ligands, the pore size, and the interaction of guest molecules. Finally, the further development of LMOFs is summarized and prospected in this field.
Collapse
Affiliation(s)
- Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Juanjuan Xue
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Yanchen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| |
Collapse
|
41
|
Ru J, Wang X, Wang F, Cui X, Du X, Lu X. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111577. [PMID: 33160184 DOI: 10.1016/j.ecoenv.2020.111577] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 05/25/2023]
Abstract
Heavy metal pollution has threatened the ecological environment and human health, therefore, effective removal of these toxic pollutants from various complex substrates is of great significance. So far, adsorption is still one of the most effective approaches. Metal-organic frameworks (MOFs), which are porous crystalline materials consisting of metal ions or metal clusters and organic ligands through coordination bonds. Due to their high surface area, porosity, as well as good chemical/thermal stability, the materials have recently attracted great attention in environmental analytical chemistry. This review mainly focused on the recent studies about the applications of UiO series MOFs and their composites as the emerging MOFs, which have been used effectively for the adsorption and removal of diverse heavy metal ions from a variety of environmental samples as novel adsorption materials. Moreover, an elaboration about UiO-MOFs and its composites including the synthetic methods and the applications of these materials in the removal of heavy metal ions were presented in detail. In addition, the adsorption characteristics and mechanism of UiO-MOFs as solid sorbents for heavy metal ions were discussed, including adsorption isotherms equation, adsorption thermodynamics, and kinetics. To this end, the developing trends of MOF-based composites for the removal of heavy metal ions had also prospected. This review will provide a new idea for the study of the adsorption mechanism of heavy metal ions on sorbents and the development of high-performance media for the efficient removal of pollutants in wastewater.
Collapse
Affiliation(s)
- Jing Ru
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xuemei Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Fangbing Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xinglan Cui
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xinzhen Du
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
42
|
Liu K, Marin L, Xiao L, Cheng X. Fluorescent multi-component polymer sensors for the sensitive and selective detection of Hg 2+/Hg + ions via dual mode fluorescence and colorimetry. NEW J CHEM 2021. [DOI: 10.1039/d1nj04286f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorescent multi-component polymers, which are sensitive and selective to Hg2+/Hg+ through fluorescence and colorimetry, were synthesized by the Heck coupling reaction.
Collapse
Affiliation(s)
- Kaiqi Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Luminita Marin
- Petru Poni’’ Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Li Xiao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| |
Collapse
|
43
|
Ingenious aspartic acid-functionalized gold nanoparticles by one-pot protocol for the sensitive detection of chromium (III) ions. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Yu J, Han J, Li P, Huang Z, Chen S. Simultaneous Determination of Cd
2+
, Cu
2+
, Pb
2+
and Hg
2+
Based on 1,4‐Benzenedithiol‐2,5‐diamino‐hydrochloride‐1,3,5‐triformylbenzene Covalent‐Organic Frameworks. ChemistrySelect 2020. [DOI: 10.1002/slct.202003417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingguo Yu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Jiajia Han
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Pinghua Li
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Zhenzhong Huang
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Shouhui Chen
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| |
Collapse
|
45
|
Huang L, Xiang L, Zhang Y, Wang Y, Nie Z. Simultaneous quantitative analysis of K + and Tl + in serum and drinking water based on UV-Vis spectra and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118392. [PMID: 32445977 DOI: 10.1016/j.saa.2020.118392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The simultaneous detection of K+ and Tl+ can serve as a toxicological diagnostic tool for thallium poisoning. Colorimetric-reaction-based nanoprobes have emerged as promising sensors for the rapid and ultrasensitive detection of molecular species in simple systems. However, the development of viable screening tools for multicomponent analysis in complex systems remains challenging owing to interference from coexisting materials in the media. Herein, a simple chemical sensor array based on the peroxidase-like activity of gold nanoparticles modified with single-stranded DNA (AuNPs-ssDNA) and chemometrics was developed for the simultaneous detection of K+ and Tl+ in aqueous solutions and serum. The use of a K+ adapter conferred high selectivity to the developed method. Optimized AuNPs-ssDNAs were used to construct a sensor array, which together with chemometrics provided fingerprints that can facilitate the simultaneous analysis of multiple components. The developed colorimetric reaction in combination with the chemometrics assay was directly used as a biosensor array, which exhibited detection limits of 107.33 nM for K+ and 19.26 nM for Tl+. The developed method could potentially serve as a diagnostic technique for investigating thallium poisoning and toxicology.
Collapse
Affiliation(s)
- Lijuan Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Longyan Xiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Zhiyong Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
46
|
Tan Z, Wu W, Feng C, Wu H, Zhang Z. Simultaneous determination of heavy metals by an electrochemical method based on a nanocomposite consisting of fluorinated graphene and gold nanocage. Mikrochim Acta 2020; 187:414. [PMID: 32602018 DOI: 10.1007/s00604-020-04393-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/15/2020] [Indexed: 01/17/2023]
Abstract
Fluorinated graphene/gold nanocage (FGP/AuNC) nanocomposite was developed for simultaneous determination of heavy metals using square wave anodic stripping voltammetry. Under optimized conditions, with a buffer pH of 5.0, a deposition potential of - 1.25 V, and a deposition time of 140 s, the method can obtain the best results. The FGP/AuNC electrode exhibits low limits of detection (0.08, 0.09, 0.05, 0.19, 0.01 μg L-1), wide linear ranges (6-7000, 4-6000, 6-5000, 4-4000, 6-5000 μg L-1), and well-separated stripping peaks (at - 1.10, - 0.77, - 0.50, - 0.01, 0.31 V vs Ag/AgCl) towards Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+, respectively. Furthermore, the FGP/AuNC electrode is also used for simultaneous determination of Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+ in real samples (peanut, rape bolt, and tea). Highly consistent results are found between the electrochemical method and atomic fluorescence spectrometry/inductively coupled plasma-mass spectrometry. The method has been successfully applied to the determination of heavy metal ions in agricultural food. Graphical abstract Schematic representation of simultaneous determination of heavy metal ions by electrochemical method. The FGP/AuNC (fluorinated graphene/gold nanocage) electrode is used to simultaneous determination of Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+ by square wave anode stripping voltammetry.
Collapse
Affiliation(s)
- Zhao Tan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Key Laboratory of Regional Development and Environmental Response in Hubei Province, Faculty of Resources and Environmental Science, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, People's Republic of China.,Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Wenqin Wu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Chuanqi Feng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Key Laboratory of Regional Development and Environmental Response in Hubei Province, Faculty of Resources and Environmental Science, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, People's Republic of China
| | - Huimin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Key Laboratory of Regional Development and Environmental Response in Hubei Province, Faculty of Resources and Environmental Science, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Zhaowei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| |
Collapse
|
47
|
Jabłońska A, Jaworska A, Kasztelan M, Berbeć S, Pałys B. Graphene and Graphene Oxide Applications for SERS Sensing and Imaging. Curr Med Chem 2020; 26:6878-6895. [PMID: 30289065 DOI: 10.2174/0929867325666181004152247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/22/2022]
Abstract
Surface Enhanced Raman Spectroscopy (SERS) has a long history as an ultrasensitive platform for the detection of biological species from small aromatic molecules to complex biological systems as circulating tumor cells. Thanks to unique properties of graphene, the range of SERS applications has largely expanded. Graphene is efficient fluorescence quencher improving quality of Raman spectra. It contributes also to the SERS enhancement factor through the chemical mechanism. In turn, the chemical flexibility of Reduced Graphene Oxide (RGO) enables tunable adsorption of molecules or cells on SERS active surfaces. Graphene oxide composites with SERS active nanoparticles have been also applied for Raman imaging of cells. This review presents a survey of SERS assays employing graphene or RGO emphasizing the improvement of SERS enhancement brought by graphene or RGO. The structure and physical properties of graphene and RGO will be discussed too.
Collapse
Affiliation(s)
- Anna Jabłońska
- Chemical and Biological Research Centre, University of Warsaw, Zwirki i Wigury str. 101, Warsaw, PL-02- 089, Poland
| | - Aleksandra Jaworska
- Faculty of Chemistry, University of Warsaw, Pasteur str. 1, Warsaw, PL-02-093, Poland
| | - Mateusz Kasztelan
- Faculty of Chemistry, University of Warsaw, Pasteur str. 1, Warsaw, PL-02-093, Poland
| | - Sylwia Berbeć
- Faculty of Chemistry, University of Warsaw, Pasteur str. 1, Warsaw, PL-02-093, Poland
| | - Barbara Pałys
- Chemical and Biological Research Centre, University of Warsaw, Zwirki i Wigury str. 101, Warsaw, PL-02- 089, Poland
| |
Collapse
|
48
|
Wang R, Ng DHL, Liu S. Recovery of nickel ions from wastewater by precipitation approach using silica xerogel. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120826. [PMID: 31299583 DOI: 10.1016/j.jhazmat.2019.120826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/06/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
A facile route was developed to recover nickel ions from a synthetic wastewater. It involved the use of silica xerogel containing amine in the nickel sulphate solution resulting in the formation of a greenish precipitate. It was found that this precipitate was mostly amorphous Ni(OH)2 spherical aggregate composed of nanosheets. The pH level of the solution was monitored, and it was maintained in the range of 10-10.5 due to the steady release of amine from the xerogel into the waste solution. The prepared silica xerogel would provide a stable environment for the chemical precipitation of metal ions in wastewater during the whole precipitation process. The silica xerogel was collected and reused for two more cycles of recovery. The nickel removal efficiencies (99.34˜99.65%) kept unchanged and higher than those reported earlier. The collected precipitate that contained nickel hydroxide with some residual silica could be utilized as glass colorant.
Collapse
Affiliation(s)
- Ruilin Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022 Shandong, PR China
| | - Dickon H L Ng
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Shiquan Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022 Shandong, PR China.
| |
Collapse
|
49
|
Oluwafemi OS, Anyik JL, Zikalala NE, Sakho EHM. Biosynthesis of silver nanoparticles from water hyacinth plant leaves extract for colourimetric sensing of heavy metals. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Anas NAA, Fen YW, Omar NAS, Daniyal WMEMM, Ramdzan NSM, Saleviter S. Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3850. [PMID: 31489912 PMCID: PMC6766831 DOI: 10.3390/s19183850] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023]
Abstract
About 71% of the Earth's surface is covered with water. Human beings, animals, and plants need water in order to survive. Therefore, it is one of the most important substances that exist on Earth. However, most of the water resources nowadays are insufficiently clean, since they are contaminated with toxic metal ions due to the improper disposal of pollutants into water through industrial and agricultural activities. These toxic metal ions need to be detected as fast as possible so that the situation will not become more critical and cause more harm in the future. Since then, numerous sensing methods have been proposed, including chemical and optical sensors that aim to detect these toxic metal ions. All of the researchers compete with each other to build sensors with the lowest limit of detection and high sensitivity and selectivity. Graphene quantum dots (GQDs) have emerged as a highly potential sensing material to incorporate with the developed sensors due to the advantages of GQDs. Several recent studies showed that GQDs, functionalized GQDs, and their composites were able to enhance the optical detection of metal ions. The aim of this paper is to review the existing, latest, and updated studies on optical sensing applications of GQDs-based materials toward toxic metal ions and future developments of an excellent GQDs-based SPR sensor as an alternative toxic metal ion sensor.
Collapse
Affiliation(s)
- Nur Ain Asyiqin Anas
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | - Nur Syahira Md Ramdzan
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Silvan Saleviter
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|