1
|
Hu Z, Li J, Feng L, Zhu Y, Zhao R, Yu C, Xu R, Wang W, Ding H, Yang P. Coassembly of Dual-Modulated AIE-ESIPT Photosensitizers and UCNPs for Enhanced NIR-Excited Photodynamic Therapy. NANO LETTERS 2024; 24:16426-16435. [PMID: 39661654 DOI: 10.1021/acs.nanolett.4c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Aggregation-induced emission (AIE) photosensitizers are promising for photodynamic therapy, yet their short excitation wavelengths present a limitation. In this study, we develop a series of organic photosensitizers with dual modulation capabilities based on excited-state intramolecular proton transfer (ESIPT) and AIE. Notably, we synthesize near-infrared (NIR)-excited photosensitive nanoparticles through a coassembly strategy utilizing upconversion nanoparticles (UCNPs) and amphiphilic polymers. The spectroscopic analysis and theoretical calculations elucidate the significant impact of additional or π-spacer groups on the conformational change and the energy barrier of the ESIPT process. An efficient Förster resonance energy transfer between the photosensitizer and UCNPs is achieved through the coassembly strategy. Both in vitro and in vivo experiments demonstrate the antitumor efficacy of these nanoparticles under NIR excitation. This work not only introduces a novel approach for simultaneously modulating AIE properties and the ESIPT process but also provides a robust solution for overcoming the excitation wavelength limitations of many organic photosensitizers.
Collapse
Affiliation(s)
- Zhen Hu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Jialin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Rongchen Xu
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, P. R. China
| | - Wenzhuo Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
2
|
Castro RC, Páscoa RNMJ, Saraiva MLMFS, Santos JLM, Ribeiro DSM. Exploring Distinct Second-Order Data Approaches for Thiamine Quantification via Carbon Dot/Silver Nanoparticle FRET Reversion. BIOSENSORS 2024; 14:604. [PMID: 39727869 DOI: 10.3390/bios14120604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy acceptors was developed. The aqueous synthesis of AgNPs using microwave irradiation was optimized to obtain efficient plasmonic nanoparticles for FRET applications, targeting maximal absorbance intensity, stability, and wavelength alignment. Using a central composite orthogonal design (CCOD), the optimal conditions were identified as a 12.5 min microwave reaction time, a Ag molar ratio of 0.72, and a pH of 8.28. The FRET sensing scheme was applied for thiamine determination, where the vitamin's presence impaired the FRET process, restoring CDs' photoluminescence (PL) emission in a concentration-dependent manner. To mitigate interference from other vitamins, PL kinetic data and excitation-emission matrix (EEM) data were analyzed using unfolded partial least-squares (U-PLS) with the subsequent application of the residual bilinearization technique (RBL), achieving high sensitivity and specificity for thiamine detection. This method demonstrated its accuracy and robustness by attaining a determination coefficient (R2) of 0.952 and a relative error of prediction (REP%) of 11%. This novel method offers highly sensitive and interference-free thiamine detection, with significant potential for a wide range of analytical applications.
Collapse
Affiliation(s)
- Rafael C Castro
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Ricardo N M J Páscoa
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - David S M Ribeiro
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Liu L, He JH, Wu XQ, Liu JJ, Lv WY, Huang CZ, Liu H, Li CM. Simultaneous detection of multiple microRNAs based on fluorescence resonance energy transfer under a single excitation wavelength. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124788. [PMID: 38986256 DOI: 10.1016/j.saa.2024.124788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
MicroRNAs (miRNAs) play a key role in physiological processes, and their dysregulation is closely related to various human diseases. Simultaneous detection of multiple miRNAs is pivotal to cancer diagnosis at an early stage. However, most multicomponent analyses generally involve multiple excitation wavelengths, which are complicated and often challenging to simultaneously acquire multiple detection signals. In this study, a convenient and sensitive sensor was developed to simultaneously detection of multiple miRNAs under a single excitation wavelength through the fluorescence resonance energy transfer between the carbon dots (CDs)/quantum dots (QDs) and graphene oxide (GO). A hybridization chain reaction (HCR) was triggered by miRNA-141 and miRNA-21, resulting in the high sensitivity with a limit of detection (LOD) of 50 pM (3σ/k) for miRNA-141 and 60 pM (3σ/k) for miRNA-21. This simultaneous assay also showed excellent specificity discrimination against the mismatch. Furthermore, our proposed method successfully detected miRNA-21 and miRNA-141 in human serum samples at a same time, indicating its diagnostic potential in a clinical setting.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Jia Hui He
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Qiao Wu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Jia Jun Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Wen Yi Lv
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Hui Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| | - Chun Mei Li
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China; NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substance, Chongqing 401121, PR China.
| |
Collapse
|
4
|
Meng M, Ma X, Yu L, Zhang X, Chen Y, Li W, Wen Q, Xu D, Chen Q, Xiong Y, Ren J. Phage-induced "one-to-many" FRET sensor for highly sensitive detection of Escherichia coli O157:H7. Biosens Bioelectron 2024; 264:116661. [PMID: 39142229 DOI: 10.1016/j.bios.2024.116661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
As a foodborne pathogen capable of causing severe illnesses, early detection of Escherichia coli O157:H7 (E. coli O157:H7) is crucial for ensuring food safety. While Förster resonance energy transfer (FRET) is an efficient and precise detection technique, there remains a need for amplification strategies to detect low concentrations of E. coli O157:H7. In this study, we presented a phage (M13)-induced "one to many" FRET platform for sensitively detecting E. coli O157:H7. The aptamers, which specifically recognize E. coli O157:H7 were attached to magnetic beads as capture probes for separating E. coli O157:H7 from food samples. The peptide O157S, which specifically targets E. coli O157:H7, and streptavidin binding peptide (SBP), which binds to streptavidin (SA), were displayed on the P3 and P8 proteins of M13, respectively, to construct the O157S-M13K07-SBP phage as a detection probe for signal output. Due to the precise distance (≈3.2 nm) between two neighboring N-terminus of P8 protein, the SA-labeled FRET donor and acceptor can be fixed at the Förster distance on the surface of O157S-M13K07-SBP via the binding of SA and SBP, inducing FRET. Moreover, the P8 protein, with ≈2700 copies, enabled multiple FRET (≈605) occurrences, amplifying FRET in each E. coli O157:H7 recognition event. The O157S-M13K07-SBP-based FRET sensor can detect E. coli O157:H7 at concentration as low as 6 CFU/mL and demonstrates excellent performance in terms of selectivity, detection time (≈3 h), accuracy, precision, practical application, and storage stability. In summary, we have developed a powerful tool for detecting various targets in food safety, environmental monitoring, and medical diagnosis.
Collapse
Affiliation(s)
- Meng Meng
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xiaoyong Ma
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Liping Yu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xinfang Zhang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yanni Chen
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Wang Li
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Qian Wen
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Dong Xu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Qi Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Ying Xiong
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
5
|
Li G, Wang C, Jin B, Sun T, Sun K, Wang S, Fan Z. Advances in smart nanotechnology-supported photodynamic therapy for cancer. Cell Death Discov 2024; 10:466. [PMID: 39528439 PMCID: PMC11554787 DOI: 10.1038/s41420-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer has emerged as a formidable challenge in the 21st century, impacting society, public health, and the economy. Conventional cancer treatments often exhibit limited efficacy and considerable side effects, particularly in managing the advanced stages of the disease. Photodynamic therapy (PDT), a contemporary non-invasive therapeutic approach, employs photosensitizers (PS) in conjunction with precise light wavelengths to selectively target diseased tissues, inducing the generation of reactive oxygen species and ultimately leading to cancer cell apoptosis. In contrast to conventional therapies, PDT presents a lower incidence of side effects and greater precision in targeting. The integration of intelligent nanotechnology into PDT has markedly improved its effectiveness, as evidenced by the remarkable synergistic antitumor effects observed with the utilization of multifunctional nanoplatforms in conjunction with PDT. This paper provides a concise overview of the principles underlying PS and PDT, while also delving into the utilization of nanomaterial-based PDT in the context of cancer treatment.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Dalian, China
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Cong Wang
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Binghui Jin
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Tao Sun
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Dalian, China
| | - Kang Sun
- Department of Digestive Endoscopy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuang Wang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China.
| |
Collapse
|
6
|
Demers SME, Sobecki C, Deschaine L. Optimization and Multimachine Learning Algorithms to Predict Nanometal Surface Area Transfer Parameters for Gold and Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1741. [PMID: 39513822 PMCID: PMC11547468 DOI: 10.3390/nano14211741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Interactions between gold metallic nanoparticles and molecular dyes have been well described by the nanometal surface energy transfer (NSET) mechanism. However, the expansion and testing of this model for nanoparticles of different metal composition is needed to develop a greater variety of nanosensors for medical and commercial applications. In this study, the NSET formula was slightly modified in the size-dependent dampening constant and skin depth terms to allow for modeling of different metals as well as testing the quenching effects created by variously sized gold, silver, copper, and platinum nanoparticles. Overall, the metal nanoparticles followed more closely the NSET prediction than for Förster resonance energy transfer, though scattering effects began to occur at 20 nm in the nanoparticle diameter. To further improve the NSET theoretical equation, an attempt was made to set a best-fit line of the NSET theoretical equation curve onto the Au and Ag data points. An exhaustive grid search optimizer was applied in the ranges for two variables, 0.1≤C≤2.0 and 0≤α≤4, representing the metal dampening constant and the orientation of donor to the metal surface, respectively. Three different grid searches, starting from coarse (entire range) to finer (narrower range), resulted in more than one million total calculations with values C=2.0 and α=0.0736. The results improved the calculation, but further analysis needed to be conducted in order to find any additional missing physics. With that motivation, two artificial intelligence/machine learning (AI/ML) algorithms, multilayer perception and least absolute shrinkage and selection operator regression, gave a correlation coefficient, R2, greater than 0.97, indicating that the small dataset was not overfitting and was method-independent. This analysis indicates that an investigation is warranted to focus on deeper physics informed machine learning for the NSET equations.
Collapse
|
7
|
Sytu MRC, Hahm JI. Principles and Applications of ZnO Nanomaterials in Optical Biosensors and ZnO Nanomaterial-Enhanced Biodetection. BIOSENSORS 2024; 14:480. [PMID: 39451693 PMCID: PMC11506539 DOI: 10.3390/bios14100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Significant research accomplishments have been made so far for the development and application of ZnO nanomaterials in enhanced optical biodetection. The unparalleled optical properties of ZnO nanomaterials and their reduced dimensionality have been successfully exploited to push the limits of conventional optical biosensors and optical biodetection platforms for a wide range of bioanalytes. ZnO nanomaterial-enabled advancements in optical biosensors have been demonstrated to improve key sensor performance characteristics such as the limit of detection and dynamic range. In addition, all nanomaterial forms of ZnO, ranging from 0-dimensional (0D) and 1D to 2D nanostructures, have been proven to be useful, ensuring their versatile fabrication into functional biosensors. The employment of ZnO as an essential biosensing element has been assessed not only for ensembles but also for individual nanomaterials, which is advantageous for the realization of high miniaturization and minimal invasiveness in biosensors and biodevices. Moreover, the nanomaterials' incorporations into biosensors have been shown to be useful and functional for a variety of optical detection modes, such as absorption, colorimetry, fluorescence, near-band-edge emission, deep-level emission, chemiluminescence, surface evanescent wave, whispering gallery mode, lossy-mode resonance, surface plasmon resonance, and surface-enhanced Raman scattering. The detection capabilities of these ZnO nanomaterial-based optical biosensors demonstrated so far are highly encouraging and, in some cases, permit quantitative analyses of ultra-trace level bioanalytes that cannot be measured by other means. Hence, steady research endeavors are expected in this burgeoning field, whose scientific and technological impacts will grow immensely in the future. This review provides a timely and much needed review of the research efforts made in the field of ZnO nanomaterial-based optical biosensors in a comprehensive and systematic manner. The topical discussions in this review are organized by the different modes of optical detection listed above and further grouped by the dimensionality of the ZnO nanostructures used in biosensors. Following an overview of a given optical detection mode, the unique properties of ZnO nanomaterials critical to enhanced biodetection are presented in detail. Subsequently, specific biosensing applications of ZnO nanomaterials are discussed for ~40 different bioanalytes, and the important roles that the ZnO nanomaterials play in bioanalyte detection are also identified.
Collapse
Affiliation(s)
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
8
|
Li C, Xie Y, Cheng X, Xu L, Yao G, Li Q, Shen J, Fan C, Li M. Single-Molecule Assessment of DNA Hybridization Kinetics on Dye-Loaded DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402870. [PMID: 38844986 DOI: 10.1002/smll.202402870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Indexed: 10/04/2024]
Abstract
DNA nanostructures offer a versatile platform for precise dye assembly, making them promising templates for creating photonic complexes with applications in photonics and bioimaging. However, despite these advancements, the effect of dye loading on the hybridization kinetics of single-stranded DNA protruding from DNA nanostructures remains unexplored. In this study, the DNA points accumulation for imaging in the nanoscale topography (DNA-PAINT) technique is employed to investigate the accessibility of functional binding sites on DNA-templated excitonic wires. The results indicate that positively charged dyes on DNA frameworks can accelerate the hybridization kinetics of protruded ssDNA through long-range electrostatic interactions. Furthermore, the impacts of various charged dyes and binding sites are explored on diverse DNA frameworks with varying cross-sizes. The research underscores the crucial role of electrostatic interactions in DNA hybridization kinetics within DNA-dye complexes, offering valuable insights for the functionalization and assembly of biomimetic photonic systems.
Collapse
Affiliation(s)
- Cong Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Cheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lifeng Xu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Hu Y, Wang X, Niu Y, He K, Tang M. Application of quantum dots in brain diseases and their neurotoxic mechanism. NANOSCALE ADVANCES 2024; 6:3733-3746. [PMID: 39050959 PMCID: PMC11265591 DOI: 10.1039/d4na00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
The early-stage diagnosis and therapy of brain diseases pose a persistent challenge in the field of biomedicine. Quantum dots (QDs), nano-luminescent materials known for their small size and fluorescence imaging capabilities, present promising capabilities for diagnosing, monitoring, and treating brain diseases. Although some investigations about QDs have been conducted in clinical trials, the concerns about the toxicity of QDs have continued. In addition, the lack of effective toxicity evaluation methods and systems and the difference between in vivo and in vitro toxicity evaluation hinder QDs application. The primary objective of this paper is to introduce the neurotoxic effects and mechanisms attributable to QDs. First, we elucidate the utilization of QDs in brain disorders. Second, we sketch out three pathways through which QDs traverse into brain tissue. Ultimately, expound upon the adverse consequences of QDs on the brain and the mechanism of neurotoxicity in depth. Finally, we provide a comprehensive summary and outlook on the potential development of quantum dots in neurotoxicity and the difficulties to be overcome.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Keyu He
- Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University Nanjing Jiangsu 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
10
|
Fan K, Sergeeva KA, Sergeev AA, Zhang L, Chan CCS, Li Z, Zhong X, Kershaw SV, Liu J, Rogach AL, Wong KS. Slow Hot-Exciton Cooling and Enhanced Interparticle Excitonic Coupling in HgTe Quantum Dots. ACS NANO 2024; 18:18011-18021. [PMID: 38935537 DOI: 10.1021/acsnano.4c05061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Rapid hot-carrier/exciton cooling constitutes a major loss channel for photovoltaic efficiency. How to decelerate the hot-carrier/exciton relaxation remains a crux for achieving high-performance photovoltaic devices. Here, we demonstrate slow hot-exciton cooling that can be extended to hundreds of picoseconds in colloidal HgTe quantum dots (QDs). The energy loss rate is 1 order of magnitude smaller than bulk inorganic semiconductors, mediated by phonon bottleneck and interband biexciton Auger recombination (BAR) effects, which are both augmented at reduced QD sizes. The two effects are competitive with the emergence of multiple exciton generation. Intriguingly, BAR dominates even under low excitation fluences with a decrease in interparticle distance. Both experimental evidence and numerical evidence reveal that such efficient BAR derives from the tunneling-mediated interparticle excitonic coupling induced by wave function overlap between neighboring HgTe QDs in films. Thus, our study unveils the potential for realizing efficient hot-carrier/exciton solar cells based on HgTe QDs. Fundamentally, we reveal that the delocalized nature of quantum-confined wave function intensifies BAR. The interparticle excitonic coupling may cast light on the development of next-generation photoelectronic materials, which can retain the size-tunable confinement of colloidal semiconductor QDs while simultaneously maintaining high mobilities and conductivities typical for bulk semiconductor materials.
Collapse
Affiliation(s)
- Kezhou Fan
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
| | - Kseniia A Sergeeva
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., P. R. China
| | - Aleksandr A Sergeev
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
- Far-Eastern Branch of Russian Academy of Sciences, Institute of Automation and Control Processes, Vladivostok 690041, Russia
| | - Lu Zhang
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
| | - Christopher C S Chan
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
| | - Zhuo Li
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., P. R. China
- City University of Hong Kong Matter Science Research Institute (Futian, Shenzhen), Shenzhen 518048, P. R. China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Xiaoyan Zhong
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., P. R. China
- City University of Hong Kong Matter Science Research Institute (Futian, Shenzhen), Shenzhen 518048, P. R. China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., P. R. China
| | - Junwei Liu
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., P. R. China
| | - Kam Sing Wong
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
| |
Collapse
|
11
|
Aguilar GT, Mijares MM, Solís-Pomar F, Gutiérrez-Lazos CD, Pérez-Tijerina EG, Cruz AF. One-Pot Synthesis of CdTe/ZnS Quantum Dots and their Physico-Chemical Characterization. J Fluoresc 2024; 34:1801-1810. [PMID: 37624469 DOI: 10.1007/s10895-023-03406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
A known property of quantum dots (QDs) is their characteristic luminescence, which would make it possible to detect different types of cancers after being functionalized with some type of biological molecule. For this reason, in the present investigation a methodological analysis of the physicochemical characteristics of the CdTe/ZnS core/shell QDs was carried out, using techniques such as Optical Absorbance Spectroscopy (UV-Vis), Molecular Fluorescence, Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Zeta Potential that allowed to verify the photoluminescent effectiveness of these semiconductor nanocrystals as an alternative to conventional techniques currently used for the detection of specific cancers smaller than 1 cm. The study consisted of theoretically determining the bandgap energy, the size of the nanocrystals and the molar absorptivity from the wavelength value for the maximum intensity of the excitonic peak. It was also possible to verify the maximum intensity for each sample and thus evaluate its photoluminescent response, as well as it was possible to determine the charge distribution, the hydrodynamic size and the surface composition of each quantum dot. The results obtained correspond to what has been reported in the literature, which makes them good candidates for the detection of cancer in precancerous stages.
Collapse
Affiliation(s)
- Gabriela Travieso Aguilar
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G. Vedado, 10400, La Habana, Cuba
| | - Maykel Márquez Mijares
- Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana, Zapata y G. Vedado, 10400, La Habana, Cuba
| | - Francisco Solís-Pomar
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| | - C D Gutiérrez-Lazos
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Eduardo G Pérez-Tijerina
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Abel Fundora Cruz
- Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana, Zapata y G. Vedado, 10400, La Habana, Cuba
| |
Collapse
|
12
|
Sudewi S, Sai Sashank PV, Kamaraj R, Zulfajri M, Huang GG. Understanding Antibiotic Detection with Fluorescence Quantum Dots: A Review. J Fluoresc 2024:10.1007/s10895-024-03743-4. [PMID: 38771407 DOI: 10.1007/s10895-024-03743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The utilization of fluorescent quantum dots (FL QDs) has gained significant traction in the realm of antibiotic detection, owing to their exceptional FL properties and versatility. Various types of QDs have been tailored to exhibit superior FL characteristics, employing diverse capping agents such as metals, surfactants, polymers, and biomass to protect and stabilize their surfaces. In their evolution, FL QDs have demonstrated both "turn-off" and "turn-on" mechanisms in response to the presence of analytes, offering promising avenues for biosensing applications. This review article provides a comprehensive overview of the recent advancements in antibiotic detection utilizing FL QDs as biosensors. It encompasses an extensive examination of different types of FL QDs, including carbon, metal, and core-shell QDs, deployed for the detection of antibiotics. Furthermore, the synthesis methods employed for the fabrication of various FL QDs are elucidated, shedding light on the diverse approaches adopted in their preparation. Moreover, this review delves into the intricate sensing mechanisms underlying FL QDs-based antibiotic detection. Various mechanisms, such as photoinduced electron transfer, electron transfer, charge transfer, Forster resonance energy transfer, static quenching, dynamic quenching, inner filter effect, hydrogen bonding, and aggregation-induced emission, are discussed in detail. These mechanisms provide a robust scientific rationale for the detection of antibiotics using FL QDs, showcasing their potential for sensitive and selective sensing applications. Finally, the review addresses current challenges and offers perspectives on the future improvement of FL QDs in sensing applications. Insights into overcoming existing limitations and harnessing emerging technologies are provided, charting a course for the continued advancement of FL QDs-based biosensing platforms in the field of antibiotic detection.
Collapse
Affiliation(s)
- Sri Sudewi
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Manado, 95115, Indonesia
| | - Penki Venkata Sai Sashank
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Rajiv Kamaraj
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Aceh, 23245, Indonesia.
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
13
|
Salerno G, Palladino P, Marelli M, Polito L, Minunni M, Berti D, Scarano S, Biagiotti G, Richichi B. CdSe/ZnS Quantum Rods (QRs) and Phenyl Boronic Acid BODIPY as Efficient Förster Resonance Energy Transfer (FRET) Donor-Acceptor Pair. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:794. [PMID: 38727388 PMCID: PMC11085751 DOI: 10.3390/nano14090794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The reversibility of the covalent interaction between boronic acids and 1,2- or 1,3-diols has put the spotlight on this reaction for its potential in the development of sensors and for the fishing of bioactive glycoconjugates. In this work, we describe the investigation of this reaction for the reversible functionalization of the surface of CdSe/ZnS Quantum Rods (QRs). With this in mind, we have designed a turn-off Förster resonance energy transfer (FRET) system that ensures monitoring the extent of the reaction between the phenyl boronic residue at the meso position of a BODIPY probe and the solvent-exposed 1,2-diols on QRs' surface. The reversibility of the corresponding boronate ester under oxidant conditions has also been assessed, thus envisioning the potential sensing ability of this system.
Collapse
Affiliation(s)
- Gianluca Salerno
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Pasquale Palladino
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” del Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Laura Polito
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” del Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Maria Minunni
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Debora Berti
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Simona Scarano
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 13, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
14
|
Wang S, Wang X, Ning K, Xiang G. Fluorescent Molybdenum Disulfide Quantum Dots for Sensitive Detecting Curcumin in Food Samples through FRET Mechanism. J Fluoresc 2024:10.1007/s10895-024-03720-x. [PMID: 38647960 DOI: 10.1007/s10895-024-03720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
A selective and sensitive fluorometric assay was developed for specific determination of curcumin (Cur) based on fluorescence resonance energy transfer (FRET) between molybdenum disulfide quantum dots (MoS2 QDs) and Cur. The MoS2 QDs were prepared via a one-step hydrothermal protocol using sodium molybdate dihydrate, L-cysteine (Cys) as precursors, and sodium cholate (SC) as a modification agent. The as-prepared MoS2 QDs possessed maximum fluorescence emission at 460 nm with a 20% of fluorescence quantum yield (FQY). It was found that the fluorescence of MoS2 QDs could be quantitatively quenched by Cur through FRET mechanism. Therefore, Cur could be detected in the range of 0.1-20 µg mL- 1 with a detection limit of 5 ng mL- 1. Additionally, the developed MoS2 QDs based fluorescent assay has been successfully applied for real food sample analysis with satisfactory results.
Collapse
Affiliation(s)
- Shuangshuang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Xinyu Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Keke Ning
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Guoqiang Xiang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China.
| |
Collapse
|
15
|
Feld LG, Boehme SC, Morad V, Sahin Y, Kaul CJ, Dirin DN, Rainò G, Kovalenko MV. Quantifying Förster Resonance Energy Transfer from Single Perovskite Quantum Dots to Organic Dyes. ACS NANO 2024; 18:9997-10007. [PMID: 38547379 PMCID: PMC11008358 DOI: 10.1021/acsnano.3c11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Colloidal quantum dots (QDs) are promising regenerable photoredox catalysts offering broadly tunable redox potentials along with high absorption coefficients. QDs have thus far been examined for various organic transformations, water splitting, and CO2 reduction. Vast opportunities emerge from coupling QDs with other homogeneous catalysts, such as transition metal complexes or organic dyes, into hybrid nanoassemblies exploiting energy transfer (ET), leveraging a large absorption cross-section of QDs and long-lived triplet states of cocatalysts. However, a thorough understanding and further engineering of the complex operational mechanisms of hybrid nanoassemblies require simultaneously controlling the surface chemistry of the QDs and probing dynamics at sufficient spatiotemporal resolution. Here, we probe the ET from single lead halide perovskite QDs, capped by alkylphospholipid ligands, to organic dye molecules employing single-particle photoluminescence spectroscopy with single-photon resolution. We identify a Förster-type ET by spatial, temporal, and photon-photon correlations in the QD and dye emission. Discrete quenching steps in the acceptor emission reveal stochastic photobleaching events of individual organic dyes, allowing a precise quantification of the transfer efficiency, which is >70% for QD-dye complexes with strong donor-acceptor spectral overlap. Our work explores the processes occurring at the QD/molecule interface and demonstrates the feasibility of sensitizing organic photocatalysts with QDs.
Collapse
Affiliation(s)
- Leon G. Feld
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Simon C. Boehme
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Viktoriia Morad
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Yesim Sahin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Christoph J. Kaul
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Dmitry N. Dirin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
16
|
Sudewi S, Li CH, Chabib L, Rasool A, Arputharaj E, Zulfajri M, Huang GG. Turn-off/turn-on biosensing of tetracycline and ciprofloxacin antibiotics using fluorescent iron oxide quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1261-1271. [PMID: 38323472 DOI: 10.1039/d3ay02168h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A fluorescence probe based on iron oxide quantum dots (IO-QDs) was synthesized using the hydrothermal method for the determination of tetracycline (TCy) and ciprofloxacin (CPx) in aqueous solution. The IO-QDs were characterized using high-resolution transmission electron microscopy (HR-TEM), powder X-ray diffraction (P-XRD), vibrating sample magnetometry (VSM), and Fourier-transform infrared spectroscopy (FTIR). The as-prepared IO-QDs are fluorescent, stable, and with a fluorescence quantum yield (QY) of 9.8 ± 0.12%. The fluorescence of IO-QDs was observed to be quenched and enhanced in the presence of TCy and CPx, respectively. The fluorescence intensity ratio shows linearity at concentrations from 1-100 μM and 5-100 μM for TCy and CPx, respectively; the detection limit for TCy and CPx was estimated to be 0.71 μM and 1.56 μM, respectively. The proposed method was also successfully utilized in the spiked samples of drinking water and honey with good recoveries. The method offered convenience, rapid detection, high sensitivity, selectivity, and cost-efficient alternative options for the determination of TCy and CPx in real samples.
Collapse
Affiliation(s)
- Sri Sudewi
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Manado 95115, Indonesia
| | - Chien-Hung Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Lutfi Chabib
- Pharmacy Study Program, Faculty of Mathematics and Science, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
| | - Akhtar Rasool
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), KST BJ Habibie, Setu, Tangerang Selatan 15314, Indonesia
| | - Emmanuvel Arputharaj
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh 23245, Indonesia
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
17
|
Dubey N, Chandra S. Miniaturized Biosensors Based on Lanthanide-Doped Upconversion Polymeric Nanofibers. BIOSENSORS 2024; 14:116. [PMID: 38534223 DOI: 10.3390/bios14030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Electrospun nanofibers possess a large surface area and a three-dimensional porous network that makes them a perfect material for embedding functional nanoparticles for diverse applications. Herein, we report the trends in embedding upconversion nanoparticles (UCNPs) in polymeric nanofibers for making an advanced miniaturized (bio)analytical device. UCNPs have the benefits of several optical properties, like near-infrared excitation, anti-Stokes emission over a wide range from UV to NIR, narrow emission bands, an extended lifespan, and photostability. The luminescence of UCNPs can be regulated using different lanthanide elements and can be used for sensing and tracking physical processes in biological systems. We foresee that a UCNP-based nanofiber sensing platform will open opportunities in developing cost-effective, miniaturized, portable and user-friendly point-of-care sensing device for monitoring (bio)analytical processes. Major challenges in developing microfluidic (bio)analytical systems based on UCNPs@nanofibers have been reviewed and presented.
Collapse
Affiliation(s)
- Neha Dubey
- Department of Chemistry, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Sudeshna Chandra
- Hanse-Wissenschaftskolleg-Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany
| |
Collapse
|
18
|
Hastman DA, Hooe S, Chiriboga M, Díaz SA, Susumu K, Stewart MH, Green CM, Hildebrandt N, Medintz IL. Multiplexed DNA and Protease Detection with Orthogonal Energy Transfer on a Single Quantum Dot Scaffolded Biosensor. ACS Sens 2024; 9:157-170. [PMID: 38160434 DOI: 10.1021/acssensors.3c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Almost all pathogens, whether viral or bacterial, utilize key proteolytic steps in their pathogenesis. The ability to detect a pathogen's genomic material along with its proteolytic activity represents one approach to identifying the pathogen and providing initial evidence of its viability. Here, we report on a prototype biosensor design assembled around a single semiconductor quantum dot (QD) scaffold that is capable of detecting both nucleic acid sequences and proteolytic activity by using orthogonal energy transfer (ET) processes. The sensor consists of a central QD assembled via peptidyl-PNA linkers with multiple DNA sequences that encode complements to genomic sequences originating from the Ebola, Influenza, and COVID-19 viruses, which we use as surrogate targets. These are hybridized to complement strands labeled with a terbium (Tb) chelate, AlexaFluor647 (AF647), and Cy5.5 dyes, giving rise to two potential FRET cascades: the first includes Tb → QD → AF647 → Cy5.5 (→ = ET step), which is detected in a time-gated modality, and QD → AF647 → Cy5.5, which is detected from direct excitation. The labeled DNA-displaying QD construct is then further assembled with a RuII-modified peptide, which quenches QD photoluminescence by charge transfer and is recognized by a protease to yield the full biosensor. Each of the labeled DNAs and peptides can be ratiometrically assembled to the QD in a controllable manner to tune each of the ET pathways. Addition of a given target DNA displaces its labeled complement on the QD, disrupting that FRET channel, while protease addition disrupts charge transfer quenching of the central QD scaffold and boosts its photoluminescence and FRET relay capabilities. Along with characterizing the ET pathways and verifying biosensing in both individual and multiplexed formats, we also demonstrate the ability of this construct to function in molecular logic and perform Boolean operations; this highlights the construct's ability to discriminate and transduce signals between different inputs or pathogens. The potential application space for such a sensor device is discussed.
Collapse
Affiliation(s)
- David A Hastman
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
- American Society for Engineering Education, Washington ,District of Columbia20036, United States
| | - Shelby Hooe
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Matthew Chiriboga
- Northrop Grumman Corporation, Mission Systems, Baltimore, Maryland, 21240, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Michael H Stewart
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Canada
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| |
Collapse
|
19
|
Wang C, Si J, Yan L, Li T, Hou X. Energy transfer enhanced photoluminescence of 2D/3D CsPbBr3 hybrid assemblies. J Chem Phys 2024; 160:034704. [PMID: 38226829 DOI: 10.1063/5.0187699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Energy transfer has been proven to be an effective method to optimize optoelectronic conversion efficiency by improving light absorption and mitigating nonradiative losses. We prepared 2D/3D CsPbBr3 hybrid assemblies at different reaction temperatures using the hot injection method and found that the photoluminescence quantum yields (PLQYs) of these hybrids were greatly enhanced from 53.4% to 72.57% compared with 3D nanocrystals (NCs). Femtosecond transient absorption measurements were used to study the PLQY enhancement mechanisms, and it was found that the hot carrier lifetime improved from 0.36 to 1.88 ps for 2D/3D CsPbBr3 hybrid assemblies owing to the energy transfer from 2D nanoplates to 3D NCs. The energy transfer benefits the excited carrier accumulation and prolonged hot carrier lifetime in 3D NCs in hybrid assemblies, as well as PLQY enhancement in materials.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Ting Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| |
Collapse
|
20
|
Wu R, Liu X, Wang X, Guo F, Wang S, Li B, Cheng LY, Miao X. Transient absorption study on fluorescence quenching of InP/ZnS quantum dots by MXene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123359. [PMID: 37690400 DOI: 10.1016/j.saa.2023.123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Fluorescence quenching due to energy transfer from InP/ZnS quantum dots (QDs) to Ti3C2Tx MXene materials was investigated by the transient absorption spectroscopy. During the fluorescence quenching, the photo-induced absorption feature in the transient spectrum was blue-shifted due to the higher photon energy required for the upward transition. The lifetime of stimulated emission was gradually extended from 0.86 μs to 2.28 μs with increasing Ti3C2Tx MXene. The fluorescence quenching of QDs can be quantitatively characterized by analyzing the lifetime of the stimulated emission feature in the transient absorption spectrum, which was used as a Ti3C2Tx MXene detection with the sensitivity of 6.63 mL/mg. The results of this study provide the basis for the design of optical sensors.
Collapse
Affiliation(s)
- Ruixiang Wu
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| | - Xin Liu
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
| | - Xiaoshuai Wang
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
| | - Fengjie Guo
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
| | - Shengzhi Wang
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
| | - Bin Li
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
| | - Liu-Yong Cheng
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
| | - Xiangyang Miao
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| |
Collapse
|
21
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
22
|
Ranjbari F, Fathi F. Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy. Anticancer Agents Med Chem 2024; 24:733-744. [PMID: 38409708 DOI: 10.2174/0118715206295598240215112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Semiconductor quantum dots (QD) are a kind of nanoparticle with unique optical properties that have attracted a lot of attention in recent years. In this paper, the characteristics of these nanoparticles and their applications in nanophototherapy have been reviewed. Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has gained special importance because of its high accuracy and local treatment due to the activation of the drug at the tumor site. PDT is a new way of cancer treatment that is performed by activating light-sensitive compounds named photosensitizers (PS) by light. PSs cause the destruction of diseased tissue through the production of singlet oxygen. PTT is another non-invasive method that induces cell death through the conversion of near-infrared light (NIR) into heat in the tumor situation by the photothermal agent (PA). Through using energy transfer via the FRET (Förster resonance energy transfer) process, QDs provide light absorption wavelength for both methods and cover the optical weaknesses of phototherapy agents.
Collapse
Affiliation(s)
- Faride Ranjbari
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
23
|
Belal F, Mabrouk M, Hammad S, Ahmed H, Barseem A. Recent Applications of Quantum Dots in Pharmaceutical Analysis. J Fluoresc 2024; 34:119-138. [PMID: 37222883 DOI: 10.1007/s10895-023-03276-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Nanotechnology has emerged as one of the most potential areas for pharmaceutical analysis. The need for nanomaterials in pharmaceutical analysis is comprehended in terms of economic challenges, health and safety concerns. Quantum dots (QDs)or colloidal semiconductor nanocrystals are new groups of fluorescent nanoparticles that bind nanotechnology to drug analysis. Because of their special physicochemical characteristics and small size, QDs are thought to be promising candidates for the electrical and luminescent probes development. They were originally developed as luminescent biological labels, but are now discovering new analytical chemistry applications, where their photo-luminescent properties are used in pharmaceutical, clinical analysis, food quality control and environmental monitoring. In this review, we discuss QDs regarding properties and advantages, advances in methods of synthesis and their recent applications in drug analysis in the recent last years.
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
24
|
Silva GBL, Campos FV, Guimarães MCC, Oliveira JP. Recent Developments in Lateral Flow Assays for Salmonella Detection in Food Products: A Review. Pathogens 2023; 12:1441. [PMID: 38133324 PMCID: PMC10747123 DOI: 10.3390/pathogens12121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Salmonellosis is a disease transmitted by contaminated food and is one of the leading causes of infections worldwide, making the early detection of Salmonella of crucial importance for public health. However, current detection methods are laborious and time-consuming, thus impacting the entire food supply chain and leading to production losses and economic sanctions. To mitigate these issues, a number of different biosensors have been developed, including lateral flow assays (LFAs), which have emerged as valuable tools in pathogen detection due to their portability, ease of use, time efficiency, and cost effectiveness. The performance of LFAs has been considerably enhanced by the development of new nanomaterials over the years. In this review, we address the principles and formats of the assay and discuss future prospects and challenges with an emphasis on LFAs developed for the detection of different Salmonella serovars in food.
Collapse
Affiliation(s)
| | | | | | - Jairo P. Oliveira
- Morphology Department, Health Sciences Center, Federal University of Espírito Santo, Av Marechal Campos 1468, Vitória 29040-090, Brazil; (G.B.L.S.); (F.V.C.); (M.C.C.G.)
| |
Collapse
|
25
|
Chen B, Zheng W, Chun F, Xu X, Zhao Q, Wang F. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chem Soc Rev 2023; 52:8374-8409. [PMID: 37947021 DOI: 10.1039/d3cs00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper indium sulfide (CuInS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap with a high absorption coefficient. In attempts to explore their practical applications, nanoscale CuInS2 has been synthesized with crystal sizes down to the quantum confinement regime. The merits of CuInS2 nanocrystals (NCs) include wide emission tunability, a large Stokes shift, long decay time, and eco-friendliness, making them promising candidates in photoelectronics and photovoltaics. Over the past two decades, advances in wet-chemistry synthesis have achieved rational control over cation-anion reactivity during the preparation of colloidal CuInS2 NCs and post-synthesis cation exchange. The precise nano-synthesis coupled with a series of hybridization strategies has given birth to a library of CuInS2 NCs with highly customizable photophysical properties. This review article focuses on the recent development of CuInS2 NCs enabled by advanced synthetic and hybridization techniques. We show that the state-of-the-art CuInS2 NCs play significant roles in optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
26
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
27
|
Saha A, Yadav R, Aldakov D, Reiss P. Gallium Sulfide Quantum Dots with Zinc Sulfide and Alumina Shells Showing Efficient Deep Blue Emission. Angew Chem Int Ed Engl 2023; 62:e202311317. [PMID: 37735098 DOI: 10.1002/anie.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
Solution-processed quantum dot (QD) based blue emitters are of paramount importance in the field of optoelectronics. Despite large research efforts, examples of efficient deep blue/near UV-emitting QDs remain rare due to lack of luminescent wide band gap materials and high defect densities in the existing ones. Here, we introduce a novel type of QDs based on heavy metal free gallium sulfide (Ga2 S3 ) and their core/shell heterostructures Ga2 S3 /ZnS as well as Ga2 S3 /ZnS/Al2 O3 . The photoluminescence (PL) properties of core Ga2 S3 QDs exhibit various decay pathways due to intrinsic defects, resulting in a broad overall PL spectrum. We show that the overgrowth of the Ga2 S3 core QDs with a ZnS shell results in the suppression of the intrinsic defect-mediated states leading to efficient deep-blue emission at 400 nm. Passivation of the core/shell structure with amorphous alumina yields a further enhancement of the PL quantum yield approaching 50 % and leads to an excellent optical and colloidal stability. Finally, we develop a strategy for the aqueous phase transfer of the obtained QDs retaining 80 % of the initial fluorescence intensity.
Collapse
Affiliation(s)
- Avijit Saha
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Ranjana Yadav
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Dmitry Aldakov
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Peter Reiss
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| |
Collapse
|
28
|
Jia Z, Shi C, Yang X, Zhang J, Sun X, Guo Y, Ying X. QD-based fluorescent nanosensors: Production methods, optoelectronic properties, and recent food applications. Compr Rev Food Sci Food Saf 2023; 22:4644-4669. [PMID: 37680064 DOI: 10.1111/1541-4337.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Food quality and safety are crucial public health concerns with global significance. In recent years, a series of fluorescence detection technologies have been widely used in the detection/monitoring of food quality and safety. Due to the advantages of wide detection range, high sensitivity, convenient and fast detection, and strong specificity, quantum dot (QD)-based fluorescent nanosensors have emerged as preferred candidates for food quality and safety analysis. In this comprehensive review, several common types of QD production methods are introduced, including colloidal synthesis, self-assembly, plasma synthesis, viral assembly, electrochemical assembly, and heavy-metal-free synthesis. The optoelectronic properties of QDs are described in detail at the electronic level, and the effect of food matrices on QDs was summarized. Recent advancements in the field of QD-based fluorescent nanosensors for trace level detection and monitoring of volatile components, heavy metal ions, food additives, pesticide residues, veterinary-drug residues, other chemical components, mycotoxins, foodborne pathogens, humidity, and temperature are also thoroughly summarized. Moreover, we discuss the limitations of the QD-based fluorescent nanosensors and present the challenges and future prospects for developing QD-based fluorescent nanosensors. As shown by numerous publications in the field, QD sensors have the advantages of strong anti-interference ability, convenient and quick operation, good linear response, and wide detection range. However, the reported assays are laboratory-focused and have not been industrialized and commercialized. Promising research needs to examine the potential applications of bionanotechnology in QD-based fluorescent nanosensors, and focus on the development of smart packaging films, labeled test strips, and portable kits-based sensors.
Collapse
Affiliation(s)
- Zhixin Jia
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xinting Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jiaran Zhang
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Daxing District, Beijing, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoguo Ying
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
29
|
Chang JF, Yu JM. High-Performance Vertical Light-Emitting Transistors Based on ZnO Transistor/Quantum-Dot Light-Emitting Diode Integration and Electron Injection Layer Modification. MICROMACHINES 2023; 14:1933. [PMID: 37893370 PMCID: PMC10609005 DOI: 10.3390/mi14101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Vertical light-emitting transistors (VLETs) consisting of vertically stacked unipolar transistors and organic light-emitting diodes (OLEDs) have been proposed as a prospective building block for display technologies. In addition to OLEDs, quantum-dot (QD) LEDs (QLEDs) with high brightness and high color purity have also become attractive light-emitting devices for display applications. However, few studies have attempted to integrate QLEDs into VLETs, as this not only involves technical issues such as compatible solution process of QDs and fine patterning of electrodes in multilayer stacked geometries but also requires a high driving current that is demanding on transistor design. Here we show that these integration issues of QLEDs can be addressed by using inorganic transistors with robust processability and high mobility, such as the studied ZnO transistor, which facilitates simple fabrication of QD VLETs (QVLETs) with efficient emission in the patterned channel area, suitable for high-resolution display applications. We perform a detailed optimization of QVLET by modifying ZnO:polyethylenimine nanocomposite as the electron injection layer (EIL) between the integrated ZnO transistor/QLED, and achieve the highest external quantum efficiency of ~3% and uniform emission in the patterned transistor channel. Furthermore, combined with a systematic study of corresponding QLEDs, electron-only diodes, and electroluminescence images, we provide a deeper understanding of the effect of EIL modification on current balance and distribution, and thus on QVLET performance.
Collapse
Affiliation(s)
- Jui-Fen Chang
- Department of Optics and Photonics, National Central University, Zhongli 320317, Taiwan;
| | | |
Collapse
|
30
|
Liang YF, Li JD, Fang RY, Xu ZL, Luo L, Chen ZJ, Yang JY, Shen YD, Ueda H, Hammock B, Wang H. Design of an Antigen-Triggered Nanobody-Based Fluorescence Probe for PET Immunoassay to Detect Quinalphos in Food Samples. Anal Chem 2023; 95:12321-12328. [PMID: 37527540 DOI: 10.1021/acs.analchem.3c01696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Photoinduced electron-transfer (PET) immunoassay based on a fluorescence site-specifically labeled nanobody, also called mini Quenchbody (Q-body), exhibits extraordinary sensitivity and saves much time in the homogeneous noncompetitive mode and is therefore regarded as a valuable method. However, limited by the efficiency of both quenching and dequenching of the fluorescence signal before and after antigen binding associated with the PET principle, not all original nanobodies can be used as candidates for mini Q-bodies. Herein, with the anti-quinalphos nanobody 11A (Nb-11A) as the model, we, for the first time, adopt a strategy by combining X-ray structural analysis with site-directed mutagenesis to design and produce a mutant Nb-R29W, and then successfully generate a mini Q-body by labeling with ATTO520 fluorescein. Based on this, a novel PET immunoassay is established, which exhibits a limit of detection of 0.007 μg/mL with a detection time of only 15 min, 25-fold improved sensitivity, and faster by 5-fold compared to the competitive immunoassay. Meanwhile, the recovery test of vegetable samples and validation by the standard ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) both demonstrated that the established PET immunoassay is a novel, sensitive, and accurate detection method for quinalphos. Ultimately, the findings of this work will provide valuable insights into the development of triggered PET fluorescence probes by using existing antibody resources.
Collapse
Affiliation(s)
- Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jia-Dong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ru-Yu Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hiroshi Ueda
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Bruce Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
31
|
Tsai HY, Robidillo CJT, Matharu GK, O'Connor K, Cheong IT, Ni C, Veinot JGC, Algar WR. Spectrotemporal characterization of photoluminescent silicon nanocrystals and their energy transfer to dyes. NANOSCALE 2023. [PMID: 37449921 DOI: 10.1039/d3nr02461j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Silicon nanocrystals (SiNCs) are a promising material for applications in bioanalysis and imaging. Compared to other types of semiconductor nanocrystals, the development and characterization of energy transfer (ET) configurations with SiNCs has been far more limited, resulting in an equally limited understanding of this process and its SiNC-specific nuances. Here, we present a systematic and detailed study of ET between SiNCs and dyes. A combination of spectroelectrophoresis and time-gated and time-resolved photoluminescence measurements were used to characterize the photophysical properties of ensembles of SiNCs and gain insight into how these properties varied as a function of nanocrystal size. ET between SiNC donors and a series of non-fluorescent Black Hole Quencher (BHQ) dyes and fluorescent sulfo-Cyanine 5.5 dye acceptors was evaluated in terms of spectral properties, wavelength-resolved efficiencies, trends with spectral overlap integral, and differences between two methods of BHQ association with the SiNCs. The overall results were consistent with a Förster resonance energy transfer (FRET) mechanism where the polydispersity of the SiNCs had a significant impact on the observed ET: the choice of wavelength and timing parameters were important, and ensemble measurements represented an average of heterogeneous ET behaviors. Prospective advantages and disadvantages of SiNCs as ET donors are discussed. This study serves as a foundation for the continued and optimized development of ET configurations with SiNCs.
Collapse
Affiliation(s)
- Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1.
| | - Christopher Jay T Robidillo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
- Department of Physical Sciences and Mathematics, University of the Philippines Manila, P. Faura Street, Ermita, Manila 1000, Philippines
| | - Gunwant K Matharu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Kevin O'Connor
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - I Teng Cheong
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Chuyi Ni
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1.
| |
Collapse
|
32
|
Demers SME, Kuhne WW, Swindle AR, Dick DD, Coopersmith KJ. Quantum Dot-DNA FRET Conjugates for Direct Analysis of Methylphosphonic Acid in Complex Media. ACS OMEGA 2023; 8:23017-23023. [PMID: 37396263 PMCID: PMC10308513 DOI: 10.1021/acsomega.3c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Rapid detection of nerve agents from complex matrices with minimal sample preparation is essential due to their high toxicity and bioavailability. In this work, quantum dots (QDs) were functionalized with oligonucleotide aptamers that specifically targeted a nerve agent metabolite, methylphosphonic acid (MePA). These QD-DNA bioconjugates were covalently linked to quencher molecules to form Förster resonance energy transfer (FRET) donor-acceptor pairs that quantitatively measure the presence of MePA. Using the FRET biosensor, the MePA limit of detection was 743 nM in artificial urine. A decrease in the QD lifetime was measured upon DNA binding and was recovered with MePA. The biosensor's flexible design makes it a strong candidate for the rapid detection of chemical and biological agents for deployable, in-field detectors.
Collapse
|
33
|
Mubeen M, Ain NU, Khalid MA, Mukhtar M, Naz B, Siddique Z, Ul-Hamid A, Iqbal A. Enhancing the FRET by tuning the bandgap of acceptor ternary ZnCdS quantum dots. RSC Adv 2023; 13:19096-19105. [PMID: 37362335 PMCID: PMC10288831 DOI: 10.1039/d3ra03233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
In this article, we report the band gap tuning of ternary ZnCdS quantum dots (QDs) by varying the concentration of the capping ligand, mercaptoacetic acid (MAA). The functionalization of QDs leads to the control of their size and band gap due to the quantum confinement effect, causing blue shift in the absorption and photoluminescence (PL) spectra with a gradual change in the concentration of the capping ligand from 0.5 to 2.5 M. Ensulizole (2-phenylbenzimidazole-5-sulfonic acid) is an important organic ultraviolet (UV) filter that is frequently used in sunscreen cosmetics. An effective overlapping of the PL spectrum of ensulizole and the absorption spectrum of QDs with 2.5 M MAA is achieved. A formidable decrease in the PL intensity and the PL lifetime of ensulizole promotes an efficient Förster resonance energy transfer (FRET) from sunscreen ensulizole to the QDs. The magnitude of the FRET efficiency (E) is ∼70%. This very high value of E is the signature of the existence of a very fast energy transfer process from ensulizole to the MAA functionalized ZnCdS QDs. The dyad system consisting of ZnCdS QDs and ensulizole sunscreen can serve as a prototype model to develop a better understanding of the photochemistry of ensulizole and consequently the formulation of more efficient sunscreen cosmetics.
Collapse
Affiliation(s)
- Muhammad Mubeen
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| | - Noor Ul Ain
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| | | | - Maria Mukhtar
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| | - Bushra Naz
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| | - Zumaira Siddique
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Azhar Iqbal
- Department of Chemistry, Quaid-I-Azam University Islamabad-45320 Pakistan
| |
Collapse
|
34
|
Mahmood R, Mananquil T, Scenna R, Dennis ES, Castillo-Rodriguez J, Koivisto BD. Light-Driven Energy and Charge Transfer Processes between Additives within Electrospun Nanofibres. Molecules 2023; 28:4857. [PMID: 37375412 DOI: 10.3390/molecules28124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Electrospinning is a cost-effective and efficient method of producing polymeric nanofibre films. The resulting nanofibres can be produced in a variety of structures, including monoaxial, coaxial (core@shell), and Janus (side-by-side). The resulting fibres can also act as a matrix for various light-harvesting components such as dye molecules, nanoparticles, and quantum dots. The addition of these light-harvesting materials allows for various photo-driven processes to occur within the films. This review discusses the process of electrospinning as well as the effect of spinning parameters on resulting fibres. Building on this, we discuss energy transfer processes that have been explored in nanofibre films, such as Förster resonance energy transfer (FRET), metal-enhanced fluorescence (MEF), and upconversion. A charge transfer process, photoinduced electron transfer (PET), is also discussed. This review highlights various candidate molecules that have been used for photo-responsive processes in electrospun films.
Collapse
Affiliation(s)
- Reeda Mahmood
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Tristan Mananquil
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Rebecca Scenna
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Emma S Dennis
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Judith Castillo-Rodriguez
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Bryan D Koivisto
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| |
Collapse
|
35
|
Park E, Choi SY, Kim J, Hildebrandt N, Lee JS, Nam JM. Nanotechnologies for the Diagnosis and Treatment of SARS-CoV-2 and Its Variants. SMALL METHODS 2023:e2300034. [PMID: 37189215 DOI: 10.1002/smtd.202300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease 2019 (COVID-19) pandemic, has caused well over 750 million infections and 6.8 million deaths. Rapid diagnosis and isolation of infected patients are the primary aims of the concerned authorities to minimize the casualties. The endeavor to mitigate the pandemic has been impeded by the emergence of newly identified genomic variants of SARS-CoV-2. Some of these variants are considered as serious threats because of their higher transmissibility and potential immune evasion, leading to reduced vaccine efficiency. Nanotechnology can play an important role in advancing both diagnosis and therapy of COVID-19. In this review, nanotechnology-based diagnostic and therapeutic strategies against SARS-CoV-2 and its variants are introduced. The biological features and functions of the virus, the mechanism of infection, and currently used approaches for diagnosis, vaccination, and therapy are discussed. Then, nanomaterial-based nucleic acid- and antigen-targeting diagnostic methods and viral activity suppression approaches that have a strong potential to advance both diagnostics and therapeutics toward control and containment of the COVID-19 pandemic are focused upon.
Collapse
Affiliation(s)
- Eunhye Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jin Seok Lee
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
36
|
Lyu Y, An L, Zeng H, Zheng F, Guo J, Zhang P, Yang H, Li H. First-passage time analysis of diffusion-controlled reactions in single-molecule detection. Talanta 2023; 260:124569. [PMID: 37116360 DOI: 10.1016/j.talanta.2023.124569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Single-molecule detection (SMD) aims to achieve the ultimate limit-of-detection (LOD) in biosensing. This method detects a countable number of targeted analyte molecules in solution, where the dynamics of molecule diffusion, capturing, identification and delivery greatly impact the SMD's efficiency and accuracy. In this study, we adopt the first-passage time method to investigate the diffusion-controlled reaction process in SMD. We analyze the influence of detection conditions on incubation time and the expected coefficient of variation (CV) under three SMD molecule capturing strategies, including solid-phase capturing (one-dimensional solid-liquid interface fixation), liquid-phase magnetic bead (MB) capturing, and liquid-phase direct fluorescence pair labeling. We find that inside a finite-sized reaction chamber, a finite average reaction time exists in all three capturing strategies, while the liquid-phase strategies are in general more efficient than the solid-phase approaches. CV can be estimated by averaging first-passage time solely in all three strategies, and the CV reduction is achievable given an extended reaction time. To further enable zeptomolar detection, extra treatments, such as adopting liquid-phase fluorescence pairs with high diffusion rates to label the molecule, or designing specific sensing devices with large effective sensing areas would be required. This framework provides solid theoretical support to guide the design of SMD sensing strategies and sensor structures to achieve desired measurement time and CV.
Collapse
Affiliation(s)
- Yingkai Lyu
- National Innovation Center for Advanced Medical Devices, Shenzhen, China; Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lixiang An
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Huaiyang Zeng
- National Innovation Center for Advanced Medical Devices, Shenzhen, China; Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Zheng
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengcheng Zhang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Yang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Li
- National Innovation Center for Advanced Medical Devices, Shenzhen, China.
| |
Collapse
|
37
|
Duan QJ, Zhao ZY, Zhang YJ, Fu L, Yuan YY, Du JZ, Wang J. Activatable fluorescent probes for real-time imaging-guided tumor therapy. Adv Drug Deliv Rev 2023; 196:114793. [PMID: 36963569 DOI: 10.1016/j.addr.2023.114793] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Surgery and drug therapy are the two principal options for cancer treatment. However, their clinical benefits are hindered by the difficulty of accurate location of the tumors and timely monitoring of the treatment efficacy of drugs, respectively. Rapid development of imaging techniques provides promising tools to address these challenges. Compared with conventional imaging techniques such as magnetic resonance imaging and computed tomography etc., fluorescence imaging exhibits high spatial resolution, real-time imaging capability, and relatively low costs devices. The advancements in fluorescent probes further accelerate the implementation of fluorescence imaging in tumor diagnosis and treatment monitoring. In particular, the emergence of site-specifically activatable fluorescent probes fits the demands of tumor delineation and real-time feedback of the treatment efficacy. A variety of small molecule probes or nanoparticle-based probes have been developed and explored for the above-mentioned applications. This review will discuss recent advances in fluorescent probes with a special focus on activatable nanoprobes and highlight the potential implementation of activatable nanoprobes in fluorescence imaging-guided surgery as well as imaging-guided drug therapy.
Collapse
Affiliation(s)
- Qi-Jia Duan
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Zhong-Yi Zhao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yao-Jun Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liangbing Fu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - You-Yong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
38
|
Chiang WH, Chang YH, Lin CC, Kuo HC, Lin GR, Huang JJ. Effect of radiative and nonradiative energy transfer processes of light-emitting diodes combined with quantum dots for visible light communication. NANOSCALE RESEARCH LETTERS 2023; 18:29. [PMID: 36862206 DOI: 10.1186/s11671-023-03812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/22/2023] [Indexed: 05/24/2023]
Abstract
Though light-emitting diodes (LEDs) combined with various color conversion techniques have been widely explored for VLC (visible light communication), E-O (electro-optical) frequency responses of devices with quantum dots (QDs) embedded within the nanoholes have rarely been addressed. Here we propose LEDs with embedded photonic crystal (PhC) nanohole patterns and green light QDs for studying small-signal E-O frequency bandwidths and large signal on-off keying E-O responses. We observe that the E-O modulation quality of PhC LEDs with QDs is better than a conventional LED with QDs when the overall blue mixed with green light output signal is considered. However, the optical response of only QD converted green light shows a contradictory result. The slower E-O conversion response is attributed to multi-path green light generation from both radiative and nonradiative energy transfer processes for QDs coated on the PhC LEDs.
Collapse
Affiliation(s)
- Wen-Hao Chiang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10639, Taiwan
| | - Yu-Hsiang Chang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10639, Taiwan
| | - Chien-Chung Lin
- Department of Electrical Engineering, National Taiwan University, Taipei, 10639, Taiwan
| | - Hao-Chung Kuo
- Department of Photonics and Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineer, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Gong-Ru Lin
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10639, Taiwan
| | - Jian-Jang Huang
- Department of Electrical Engineering, National Taiwan University, Taipei, 10639, Taiwan.
| |
Collapse
|
39
|
Sobhanan J, Anas A, Biju V. Nanomaterials for Fluorescence and Multimodal Bioimaging. CHEM REC 2023; 23:e202200253. [PMID: 36789795 DOI: 10.1002/tcr.202200253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Bioconjugated nanomaterials replace molecular probes in bioanalysis and bioimaging in vitro and in vivo. Nanoparticles of silica, metals, semiconductors, polymers, and supramolecular systems, conjugated with contrast agents and drugs for image-guided (MRI, fluorescence, PET, Raman, SPECT, photodynamic, photothermal, and photoacoustic) therapy infiltrate into preclinical and clinical settings. Small bioactive molecules like peptides, proteins, or DNA conjugated to the surfaces of drugs or probes help us to interface them with cells and tissues. Nevertheless, the toxicity and pharmacokinetics of nanodrugs, nanoprobes, and their components become the clinical barriers, underscoring the significance of developing biocompatible next-generation drugs and contrast agents. This account provides state-of-the-art advancements in the preparation and biological applications of bioconjugated nanomaterials and their molecular, cell, and in vivo applications. It focuses on the preparation, bioimaging, and bioanalytical applications of monomodal and multimodal nanoprobes composed of quantum dots, quantum clusters, iron oxide nanoparticles, and a few rare earth metal ion complexes.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala, 682 018, India
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
| |
Collapse
|
40
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
41
|
Aftab S, Iqbal MZ, Hegazy HH, Azam S, Kabir F. Trends in energy and charge transfer in 2D and integrated perovskite heterostructures. NANOSCALE 2023; 15:3610-3629. [PMID: 36728545 DOI: 10.1039/d2nr07141j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructured transition metal dichalcogenides (TMDs) open up new possibilities for a wide range of optoelectronic applications. Interlayer couplings are responsible for several fascinating physics phenomena, which are in addition to the multifunctionalities that have been discovered in the field of optoelectronics. These couplings can influence the overall charge, or the energy transfer processes via stacking, separation, and dielectric angles. This focused review article summarizes the most recent and promising strategies for interlayer exciton emission in 2D or integrated perovskites and TMD heterostructures. These types of devices require a thorough comprehension and effective control of interlayer couplings in order to realize their functionalities and improve performance, which is demonstrated in this article with the energy or charge transfer mechanisms in the individual devices. An ideal platform for examining the interlayer coupling and the related physical processes is provided by a summary of the recent research findings in 2D perovskites and TMDs. Furthermore, it would encourage more investigation into the comprehension and regulation of excitonic effects and the related optoelectronic applications in vdW heterostructures over a broad spectral response range. Finally, the current challenges and prospects are summarized in this paper.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea.
| | - Muhammad Zahir Iqbal
- Nanotechnology Research Laboratory, Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa, Pakistan
| | - Hosameldin Helmy Hegazy
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikander Azam
- Department of Physics, Faculty of Engineering and Applied Sciences, Riphah International University, I-14 Campus, Islamabad, Islamabad, Pakistan.
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
42
|
Hildebrandt N, Lim M, Kim N, Choi DY, Nam JM. Plasmonic quenching and enhancement: metal-quantum dot nanohybrids for fluorescence biosensing. Chem Commun (Camb) 2023; 59:2352-2380. [PMID: 36727288 DOI: 10.1039/d2cc06178c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Plasmonic metal nanoparticles and semiconductor quantum dots (QDs) are two of the most widely applied nanomaterials for optical biosensing and bioimaging. While their combination for fluorescence quenching via nanosurface energy transfer (NSET) or Förster resonance energy transfer (FRET) offers powerful ways of tuning and amplifying optical signals and is relatively common, metal-QD nanohybrids for plasmon-enhanced fluorescence (PEF) have been much less prevalent. A major reason is the competition between fluorescence quenching and enhancement, which poses important challenges for optimizing distances, orientations, and spectral overlap toward maximum PEF. In this feature article, we discuss the interplay of the different quenching and enhancement mechanisms (a mixed distance dependence of quenching and enhancement - "quenchancement") to better understand the obstacles that must be overcome for the development of metal-QD nanohybrid-based PEF biosensors. The different nanomaterials, their combination within various surface and solution based design concepts, and their structural and photophysical characterization are reviewed and applications toward advanced optical biosensing and bioimaging are presented along with guidelines and future perspectives for sensitive, selective, and versatile bioanalytical research and biomolecular diagnostics with metal-QD nanohybrids.
Collapse
Affiliation(s)
- Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Mihye Lim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Namjun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Da Yeon Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
43
|
Hottechamps J, Noblet T, Méthivier C, Boujday S, Dreesen L. All-quantum dot based Förster resonant energy transfer: key parameters for high-efficiency biosensing. NANOSCALE 2023; 15:2614-2623. [PMID: 36648212 DOI: 10.1039/d2nr06161a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While colloidal quantum dots (QDs) are commonly used as fluorescent donors within biosensors based on Förster resonant energy transfer (FRET), they are hesitantly employed as acceptors. On the sole basis of Förster theory and the well-known behaviour of organic dyes, it is often argued that the QD absorption band over the UV-visible range is too wide. Discarding these preconceptions inherited from classical fluorophores, we experimentally examine the FRET process occurring between donor and acceptor CdTe QDs and provide a mathematical description of it. We evidence that the specific features of QDs unexpectedly lead to the enhancement of acceptors' emission (up to +400%), and are thus suitable for the design of highly efficient all-QD based FRET sensors. Our model enables us to identify the critical parameters maximizing the contrast between positive and negative biosensing readouts: the concentrations of donors and acceptors, their spectral overlap, the densities of their excitonic states, their dissipative coupling with the medium and the statistics of QD-QD chemical pairing emerge as subtle and determinant parameters. We relate them quantitatively to the measured QD-QD FRET efficiency and discuss how they must be optimized for biosensing applications.
Collapse
Affiliation(s)
- Julie Hottechamps
- GRASP-Biophotonics, CESAM, University of Liege, Institute of Physics, Allée du 6 Août 17, 4000 Liège, Belgium.
| | - Thomas Noblet
- GRASP-Biophotonics, CESAM, University of Liege, Institute of Physics, Allée du 6 Août 17, 4000 Liège, Belgium.
| | - Christophe Méthivier
- Sorbonne Universités, UPMC Univ. Paris 6, UMR CNRS 7197 Laboratoire de Réactivité de Surface, F75005 Paris, France
| | - Souhir Boujday
- Sorbonne Universités, UPMC Univ. Paris 6, UMR CNRS 7197 Laboratoire de Réactivité de Surface, F75005 Paris, France
| | - Laurent Dreesen
- GRASP-Biophotonics, CESAM, University of Liege, Institute of Physics, Allée du 6 Août 17, 4000 Liège, Belgium.
| |
Collapse
|
44
|
Kakkar S, Gupta P, Kumar N, Kant K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. BIOSENSORS 2023; 13:249. [PMID: 36832016 PMCID: PMC9953818 DOI: 10.3390/bios13020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive, inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors, including microsystems containing fluorescence-based detection, various model systems with nano materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as the most-used trapping components are also reviewed, and the possibility of their performance in portable devices evaluated. We also present a current market-available portable system which was developed for food screening and highlight the future direction for the development of fluorescence-based systems for on-site detection and stratification of common foodborne pathogens.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Krishna Kant
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
45
|
Fluorescent Carbon Quantum Dots for Effective Tumor Diagnosis: A Comprehensive Review. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
46
|
Green CM, Spangler J, Susumu K, Stenger DA, Medintz IL, Díaz SA. Quantum Dot-Based Molecular Beacons for Quantitative Detection of Nucleic Acids with CRISPR/Cas(N) Nucleases. ACS NANO 2022; 16:20693-20704. [PMID: 36378103 DOI: 10.1021/acsnano.2c07749] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Strategies utilizing the CRISPR/Cas nucleases Cas13 and Cas12 have shown great promise in the development of highly sensitive and rapid diagnostic assays for the detection of pathogenic nucleic acids. The most common approaches utilizing fluorophore-quencher molecular beacons require strand amplification strategies or highly sensitive optical setups to overcome the limitations of the readout. Here, we demonstrate a flexible strategy for assembling highly luminescent and colorimetric quantum dot-nucleic acid hairpin (QD-HP) molecular beacons for use in CRISPR/Cas diagnostics. This strategy utilizes a chimeric peptide-peptide nucleic acid (peptide-PNA) to conjugate fluorescently labeled DNA or RNA hairpins to ZnS-coated QDs. QDs are particularly promising alternatives for molecular beacons due to their greater brightness, strong UV absorbance with large emission offset, exceptional photostability, and potential for multiplexing due to their sharp emission peaks. Using Förster resonance energy transfer (FRET), we have developed ratiometric reporters capable of pM target detection (without nucleotide amplification) for both target DNA and RNA, and we further demonstrated their capabilities for multiplexing and camera-phone detection. The flexibility of this system is imparted by the dual functionality of the QD as both a FRET donor and a central nanoscaffold for arranging nucleic acids and fluorescent acceptors on its surface. This method also provides a generalized approach that could be applied for use in other CRISPR/Cas nuclease systems.
Collapse
Affiliation(s)
- Christopher M Green
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| | - Joseph Spangler
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
- Jacobs Corporation, Hanover, Maryland21076, United States
| | - David A Stenger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| |
Collapse
|
47
|
Shahhosseini M, Beshay PE, Akbari E, Roki N, Lucas CR, Avendano A, Song JW, Castro CE. Multiplexed Detection of Molecular Interactions with DNA Origami Engineered Cells in 3D Collagen Matrices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55307-55319. [PMID: 36509424 PMCID: PMC9785045 DOI: 10.1021/acsami.2c07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
The interactions of cells with signaling molecules present in their local microenvironment maintain cell proliferation, differentiation, and spatial organization and mediate progression of diseases such as metabolic disorders and cancer. Real-time monitoring of the interactions between cells and their extracellular ligands in a three-dimensional (3D) microenvironment can inform detection and understanding of cell processes and the development of effective therapeutic agents. DNA origami technology allows for the design and fabrication of biocompatible and 3D functional nanodevices via molecular self-assembly for various applications including molecular sensing. Here, we report a robust method to monitor live cell interactions with molecules in their surrounding environment in a 3D tissue model using a microfluidic device. We used a DNA origami cell sensing platform (CSP) to detect two specific nucleic acid sequences on the membrane of B cells and dendritic cells. We further demonstrated real-time detection of biomolecules with the DNA sensing platform on the surface of dendritic cells in a 3D microfluidic tissue model. Our results establish the integration of live cells with membranes engineered with DNA nanodevices into microfluidic chips as a highly capable biosensor approach to investigate subcellular interactions in physiologically relevant 3D environments under controlled biomolecular transport.
Collapse
Affiliation(s)
- Melika Shahhosseini
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Peter E. Beshay
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Ehsan Akbari
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Niksa Roki
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Christopher R. Lucas
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Alex Avendano
- Department
of Biomedical Engineering, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan W. Song
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Carlos E. Castro
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
48
|
Martins JR, Krivenkov V, Bernardo CR, Samokhvalov P, Nabiev I, Rakovich YP, Vasilevskiy MI. Statistical Analysis of Photoluminescence Decay Kinetics in Quantum Dot Ensembles: Effects of Inorganic Shell Composition and Environment. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:20480-20490. [PMID: 36523488 PMCID: PMC9743207 DOI: 10.1021/acs.jpcc.2c06134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Discerning the kinetics of photoluminescence (PL) decay of packed quantum dots (QDs) and QD-based hybrid materials is of crucial importance for achieving their promising potential. However, the interpretation of the decay kinetics of QD-based systems, which usually are not single-exponential, remains challenging. Here, we present a method for analyzing photoluminescence (PL) decay curves of fluorophores by studying their statistical moments. A certain combination of such moments, named as the n-th order moments' ratio, R n , is studied for several theoretical decay curves and experimental PL kinetics of CdSe quantum dots (QDs) acquired by time-correlated single photon counting (TCSPC). For the latter, three different case studies using the R n ratio analysis are presented, namely, (i) the effect of the inorganic shell composition and thickness of the core-shell QDs, (ii) QD systems with Förster resonance energy transfer (FRET) decay channels, and (iii) system of QDs near a layer of plasmonic nanoparticles. The proposed method is shown to be efficient for the detection of slight changes in the PL kinetics, being time-efficient and requiring low computing power for performing the analysis. It can also be a powerful tool to identify the most appropriate physically meaningful theoretical decay function, which best describes the systems under study.
Collapse
Affiliation(s)
- João R. Martins
- Center
of Physics-CF-UM-UP, Laboratório de Física para Materiais
e Tecnologias Emergentes (LaPMET), University
of Minho, 4710-057Braga, Portugal
| | - Victor Krivenkov
- Department
of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of Basque Country (UPV/EHU), and Materials
Physics Center (CFM, CSIC-UPV/EHU), 20018Donostia-San Sebastian, Spain
| | - César R. Bernardo
- Center
of Physics-CF-UM-UP, Laboratório de Física para Materiais
e Tecnologias Emergentes (LaPMET), University
of Minho, 4710-057Braga, Portugal
| | - Pavel Samokhvalov
- Laboratory
of Nano-Bioengineering, National Research
Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409Moscow, Russian Federation
| | - Igor Nabiev
- Laboratory
of Research in Nanosciences, University
of Reims Champagne-Ardenne, 51100Reims, France
| | - Yury P. Rakovich
- Department
of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of Basque Country (UPV/EHU), and Materials
Physics Center (CFM, CSIC-UPV/EHU), 20018Donostia-San Sebastian, Spain
- Donostia
International Physics Centre (DIPC), 20018Donostia-San Sebastian, Spain
| | - Mikhail I. Vasilevskiy
- Center
of Physics-CF-UM-UP, Laboratório de Física para Materiais
e Tecnologias Emergentes (LaPMET), University
of Minho, 4710-057Braga, Portugal
- Theory of
Quantum Nanostructures Group, International
Iberian Nano Laboratory (INL), 4715-330Braga, Portugal
| |
Collapse
|
49
|
Li H, Wen X, Ding Y, Wang G, Zhu H, Liu J, Zhao H, Hong X. Photoluminescent and multi-phonon resonance Raman scattering dual-mode immunoassays based on CdS nanoparticles for HIgG detection. Mikrochim Acta 2022; 189:477. [DOI: 10.1007/s00604-022-05530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
|
50
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|