1
|
Su C, Liu X, Zhang K, Jiang B, Hu J, Li M, Cheng L, Luo H, Xie W, Liu C, Fan L, Chen W, Zhang X. A molecularly imprinted electrochemical sensor based on in-situ polymerization for rapid and selective detection of tonalide in aqueous environment. Anal Biochem 2025; 698:115730. [PMID: 39617160 DOI: 10.1016/j.ab.2024.115730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025]
Abstract
Given the adverse effects of tonalide (AHTN) on aquatic organisms and humans, coupled with the limitations of current detection methods, which are time-consuming, require expensive equipment and complicated sample preparation procedures, there is a clear need to develop a new technique for detecting AHTN that is highly sensitive, rapid, cost-effective and efficient. In this study, a new simple electrochemical sensor for the determination of AHTN in aqueous environments was developed for the first time through the in-situ polymerization of an AHTN-imprinted polymer on the surface of a graphene (G)-modified carbon electrode (GCE). Following a series of comparative tests, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), the novel AHTN molecularly imprinted sensor (AHTN-MIP/G/GCE) has been demonstrated to be an effective tool for monitoring AHTN. The results demonstrate that the linear detection range of the current response of the AHTN-MIP/G/GCE 1electrode to AHTN was 0.01 μM-4 μM (i.e., 2.584 μg/L-1033.6 μg/L), with a detection limit of 2.3 × 10⁻⁹ M (i.e., 594.32 ng/L), following the optimization of the experimental conditions. Furthermore, the new sensor was successfully employed for the detection of AHTN in water samples, with recoveries of 97.1%-108.2 % with the added standards. Consequently, the new electrochemical sensor demonstrated good stability and acceptable reproducibility. This study provides a new method for the future detection of AHTN in the aqueous environment.
Collapse
Affiliation(s)
- Chengxin Su
- Department of Municipal Engineering, College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Xiaoling Liu
- Department of Information Engineering, Sichuan Water Conservancy Vocational College, Chengdu, 611231, China
| | - Ke Zhang
- Department of Municipal Engineering, College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China
| | - Bing Jiang
- School of Business and Tourism, Sichuan Agricultural University, Chengdu, 611830, China
| | - Jiashuai Hu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Li
- School of Urban and Rural Construction, Chengdu University, Chengdu, 610106, China
| | - Lin Cheng
- Department of Municipal Engineering, College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Hongbing Luo
- Department of Municipal Engineering, College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China.
| | - Wanchen Xie
- Department of Municipal Engineering, College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Cheng Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liangqian Fan
- Department of Information Engineering, Sichuan Water Conservancy Vocational College, Chengdu, 611231, China
| | - Wei Chen
- Department of Information Engineering, Sichuan Water Conservancy Vocational College, Chengdu, 611231, China
| | - Xiaohong Zhang
- Department of Municipal Engineering, College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| |
Collapse
|
2
|
Zou S, Peng G, Ma Z. Surface-Functionalizing Strategies for Multiplexed Molecular Biosensing: Developments Powered by Advancements in Nanotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2014. [PMID: 39728549 DOI: 10.3390/nano14242014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Multiplexed biosensing methods for simultaneously detecting multiple biomolecules are important for investigating biological mechanisms associated with physiological processes, developing applications in life sciences, and conducting medical tests. The development of biosensors, especially those advanced biosensors with multiplexing potentials, strongly depends on advancements in nanotechnologies, including the nano-coating of thin films, micro-nano 3D structures, and nanotags for signal generation. Surface functionalization is a critical process for biosensing applications, one which enables the immobilization of biological probes or other structures that assist in the capturing of biomolecules. During this functionalizing process, nanomaterials can either be the objects of surface modification or the materials used to modify other base surfaces. These surface-functionalizing strategies, involving the coordination of sensor structures and materials, as well as the associated modifying methods, are largely determinative in the performance of biosensing applications. This review introduces the current studies on biosensors with multiplexing potentials and focuses specifically on the roles of nanomaterials in the design and functionalization of these biosensors. A detailed description of the paradigms used for method selection has been set forth to assist understanding and accelerate the application of novel nanotechnologies in the development of biosensors.
Collapse
Affiliation(s)
- Shangjie Zou
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangdun Peng
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
3
|
Li Y, Luo L, Senicar L, Asrosa R, Kizilates B, Xing K, Torres E, Xu L, Li D, Graham N, Heslegrave A, Zetterberg H, Sharp DJ, Li B. An Ultrasensitive Molecularly Imprinted Point-Of-Care Electrochemical Sensor for Detection of Glial Fibrillary Acidic Protein. Adv Healthc Mater 2024; 13:e2401966. [PMID: 39221506 PMCID: PMC11616259 DOI: 10.1002/adhm.202401966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Accurate assessment of neurological disease through monitoring of biomarkers has been made possible using the antibody-based assays. But these assays suffer from expensive development of antibody probes, reliance on complicated equipments, and high maintenance costs. Here, using the novel reduced graphene oxide/polydopamine-molecularly imprinted polymer (rGO/PDA-MIP) as the probe layer, a robust electrochemical sensing platform is demonstrated for the ultrasensitive detection of glial fibrillary acidic protein (GFAP), a biomarker for a range of neurological diseases. A miniaturized integrated circuit readout system is developed to interface with the electrochemical sensor, which empowers it with the potential to be used as a point-of-care (POC) diagnostic tool in primary clinical settings. This innovative platform demonstrated good sensitivity, selectivity, and stability, with imprinting factor evaluated as 2.8. A record low limit-of-detection (LoD) is down to 754.5 ag mL-1, with a wide dynamic range from 1 to 106 fg mL-1. The sensing platform is validated through the analysis of GFAP in clinical plasma samples, yielding a recovery rate range of 81.6-108.8% compared to Single Molecule Array (Simoa). This cost-effective and user-friendly sensing platform holds the potential to be deployed in primary and resource-limited clinical settings for the assessment of neurological diseases.
Collapse
Affiliation(s)
- Yixuan Li
- Institute for Materials DiscoveryDepartment of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Liuxiong Luo
- School of Materials Science and EngineeringCentral South UniversityChangsha410083P. R. China
| | - Lenart Senicar
- Institute for Materials DiscoveryDepartment of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Rica Asrosa
- Institute for Materials DiscoveryDepartment of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Burcu Kizilates
- Institute for Materials DiscoveryDepartment of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Kaizhong Xing
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Elias Torres
- Graphenea SemiconductorPaseo Mikeletegi 83San Sebastián20009Spain
| | - Lizhou Xu
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215P. R. China
| | - Danyang Li
- Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107P. R. China
| | - Neil Graham
- Department of Brain SciencesImperial College LondonLondonW12 0BZUK
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCLUniversity College LondonLondonWC1E 6BTUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonWC1E 6BTUK
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCLUniversity College LondonLondonWC1E 6BTUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonWC1E 6BTUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalS‐431 80Sweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalS‐431 80Sweden
- Hong Kong Centre for Neurodegenerative DiseasesHong Kong999077P. R. China
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWI53792USA
| | - David J. Sharp
- Department of Brain SciencesImperial College LondonLondonW12 0BZUK
- Care Research & Technology CentreUK Dementia Research InstituteLondonW12 0BZUK
| | - Bing Li
- Institute for Materials DiscoveryDepartment of ChemistryUniversity College LondonLondonWC1E 7JEUK
- Department of Brain SciencesImperial College LondonLondonW12 0BZUK
- Care Research & Technology CentreUK Dementia Research InstituteLondonW12 0BZUK
| |
Collapse
|
4
|
Tang W, Han J, Zhang W, Li H, Chen J, Song W, Wang L. Molecularly imprinted polymer sensors for biomarker detection in cardiovascular diseases. Analyst 2024; 149:5617-5637. [PMID: 39508117 DOI: 10.1039/d4an01103a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cardiovascular diseases (CVDs) are recognized as a significant threat to global health. The rapid, sensitive, and precise measurement of relevant biomarkers is essential for the timely diagnosis of CVDs. Molecularly imprinted polymers (MIPs), which act as artificial receptor recognition materials, have been extensively utilized in the detection of CVD biomarkers. Their widespread application is due to their cost-effectiveness, physical and chemical stability, straightforward preparation processes, and excellent compatibility with various sensor types. This review introduces the principles of MIP sensors in combination with electrochemical, optical, thermal transfer, and acoustic detection techniques for detecting CVD-related biomarkers. It then discusses methods developed over the past decade for detecting biomarkers of three major CVDs-coronary artery disease (CAD), acute myocardial infarction (AMI), and heart failure (HF)-using MIP sensors. Finally, the review summarizes the potential of MIP sensors in CVD biomarker detection and provides an outlook on future research directions.
Collapse
Affiliation(s)
- Wenteng Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China.
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China.
| | - Wenhong Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China.
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China.
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China.
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China.
| |
Collapse
|
5
|
Zito G, Siciliano G, Seifalinezhad A, Miranda B, Lanzio V, Schwartzberg A, Gigli G, Turco A, Rendina I, Mocella V, Primiceri E, Romano S. Molecularly Imprinted Polymer Sensor Empowered by Bound States in the Continuum for Selective Trace-Detection of TGF-beta. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401843. [PMID: 39236340 PMCID: PMC11538715 DOI: 10.1002/advs.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Indexed: 09/07/2024]
Abstract
The integration of advanced materials and photonic nanostructures can lead to enhanced biodetection capabilities, crucial in clinical scenarios and point-of-care diagnostics, where simplified strategies are essential. Herein, a molecularly imprinted polymer (MIP) photonic nanostructure is demonstrated, which selectively binding to transforming growth factor-beta (TGF-β), in which the sensing transduction is enhanced by bound states in the continuum (BICs). The MIP operating as a synthetic antibody matrix and coupled with BIC resonance, enhances the optical response to TGF-β at imprinted sites, leading to an augmented detection capability, thoroughly evaluated through spectral shift and optical lever analogue readout. The validation underscores the MIP-BIC sensor capability to detect TGF-β in spiked saliva, achieving a limit of detection of 10 fM and a resolution of 0.5 pM at physiological concentrations, with a precision of two orders of magnitude above discrimination threshold in patients. The MIP tailored selectivity is highlighted by an imprinting factor of 52, showcasing the sensor resistance to interference from other analytes. The MIP-BIC sensor architecture streamlines the detection process eliminating the need for complex sandwich immunoassays and demonstrates the potential for high-precision quantification. This positions the system as a robust tool for biomarker detection, especially in real-world diagnostic scenarios.
Collapse
Affiliation(s)
- Gianluigi Zito
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Giulia Siciliano
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Aida Seifalinezhad
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
- Department of EngineeringUniversità degli Studi di Napoli ParthenopeCentro Direzionale di Napoli, Isola C4Naples80143Italy
| | - Bruno Miranda
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Vittorino Lanzio
- Molecular FoundryLawrence Berkeley National Laboratory1 Cyclotron RdBerkeleyCA94720USA
| | - Adam Schwartzberg
- Molecular FoundryLawrence Berkeley National Laboratory1 Cyclotron RdBerkeleyCA94720USA
| | - Giuseppe Gigli
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Antonio Turco
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Ivo Rendina
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Vito Mocella
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Elisabetta Primiceri
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Silvia Romano
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| |
Collapse
|
6
|
He K, Chen Q, Chen X, Zhang C, Feng S, Shan L. Magnetic molecularly imprinted polymer based on coordination for the determination of trace banned substance furosemide in human urine. J Sep Sci 2024; 47:e2400003. [PMID: 39034895 DOI: 10.1002/jssc.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Furosemide (FUR), banned in sports events by the World Anti-Doping Agency, is a key target in drug tests, necessitating a pretreatment material capable of selectively, rapidly, and sufficiently separating/enriching analytes from complex matrices. Herein, a metal-mediated magnetic molecularly imprinted polymer (mMIP) was rationally designed and synthesized for the specific capture of FUR. The preparations involved the utilization of chromium (III) as the binding pivot, (3-aminopropyl)triethoxysilane as functional monomer, and Fe3O4 as core, all assembled via free radical polymerization. Both the morphologies and adsorptive properties of the mMIP were characterized using multiple methods. The resulting Cr(III)-mediated mMIP (ChM-mMIP) presented excellent selectivity and specificity toward FUR. Under optimized conditions, the adsorption capacity reached 128.50 mg/g within 10 min, and the imprinting factor was 10.41. Moreover, it was also successfully applied as a dispersive solid-phase extraction material, enabling the detection of FUR concentration as low as 20 ng/mL in human urine samples when coupled with a high-performance liquid chromatography/photodiode array. Overall, this study offers a valuable strategy for the development of novel recognition material.
Collapse
Affiliation(s)
- Kunlin He
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xueling Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Chungu Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Lianhai Shan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
7
|
Ghosh A, Sharma M, Zhao Y. Cell-penetrating protein-recognizing polymeric nanoparticles through dynamic covalent chemistry and double imprinting. Nat Commun 2024; 15:3731. [PMID: 38702306 PMCID: PMC11068882 DOI: 10.1038/s41467-024-48131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Molecular recognition of proteins is key to their biological functions and processes such as protein-protein interactions (PPIs). The large binding interface involved and an often relatively flat binding surface make the development of selective protein-binding materials extremely challenging. A general method is reported in this work to construct protein-binding polymeric nanoparticles from cross-linked surfactant micelles. Preparation involves first dynamic covalent chemistry that encodes signature surface lysines on a protein template. A double molecular imprinting procedure fixes the binding groups on the nanoparticle for these lysine groups, meanwhile creating a binding interface complementary to the protein in size, shape, and distribution of acidic groups on the surface. These water-soluble nanoparticles possess excellent specificities for target proteins and sufficient affinities to inhibit natural PPIs such as those between cytochrome c (Cytc) and cytochrome c oxidase (CcO). With the ability to enter cells through a combination of energy-dependent and -independent pathways, they intervene apoptosis by inhibiting the PPI between Cytc and the apoptotic protease activating factor-1 (APAF1). Generality of the preparation and the excellent molecular recognition of the materials have the potential to make them powerful tools to probe protein functions in vitro and in cellulo.
Collapse
Affiliation(s)
- Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA
| | - Mansi Sharma
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA.
| |
Collapse
|
8
|
Shen Q, Zhang Q, Yang Y, Yu X, Zang L, Zhang W, Shen D. Wavelength-dependent photoelectrochemical response demonstrated by the determination of acetaminophen and rutin in differential molecularly imprinted polymers strategy. Talanta 2024; 270:125640. [PMID: 38211357 DOI: 10.1016/j.talanta.2024.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Herein, the excitation wavelength-dependent responses of the molecularly imprinted polymer (MIP) photoelectrochemical (PEC) sensors were investigated, using acetaminophen (AP), rutin (RT) and perfluorooctanoate (PFOA) as the model templates, pyrrole as functional monomer, CuInS2@ZnS/TiO2 NTs as the basic photoelectrode. With wavelength λ > 240 nm, the photocurrent of MIPPFOA enhanced at higher concentrations of PFOA. With increasing AP concentration, the photocurrents of MIPAP could decline with λ < 271 nm, not change at λ = 270 nm, or increase with λ > 270 nm. As RT concentration increased, the photocurrents of MIPRT could decrease (λ < 431 nm), not change (λ = 431 nm) or increase (λ > 431 nm). The PEC responses depend on the comprehensive interaction of two contrary mechanisms from the template molecules within the MIP membrane. The photocurrent is enhanced by the role of the electron donor for photo-generated holes but attenuated due to the steric hindrance effect and the excitation light intensity loss via absorption or scattering. The apparent molar absorption coefficient of AP and RT within MIP membranes are 9.1-19.4 folds of those measured from dilute solutions. By using a routine UV lamp as the light source, the photocurrents of MIPRT at 254 nm and MIPAP at 365 nm were used to determine RT and AP, with the detection limits of 5.3 and 16 nM, respectively. The interference from the non-specific adsorption of interferents on the surfaces of MIPAP and MIPRT was reduced by one order of magnitude via a differential strategy.
Collapse
Affiliation(s)
- Qirui Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Qiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Yan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Xifeng Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Lixin Zang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
9
|
Mostafa AM, Barton SJ, Wren SP, Barker J. Development of Highly Sensitive Fluorescent Sensors for Separation-Free Detection and Quantitation Systems of Pepsin Enzyme Applying a Structure-Guided Approach. BIOSENSORS 2024; 14:151. [PMID: 38534258 DOI: 10.3390/bios14030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Two fluorescent molecularly imprinted polymers (MIPs) were developed for pepsin enzyme utilising fluorescein and rhodamine b. The main difference between both dyes is the presence of two (diethylamino) groups in the structure of rhodamine b. Consequently, we wanted to investigate the effect of these functional groups on the selectivity and sensitivity of the resulting MIPs. Therefore, two silica-based MIPs for pepsin enzyme were developed using 3-aminopropyltriethoxysilane as a functional monomer and tetraethyl orthosilicate as a crosslinker to achieve a one-pot synthesis. Results of our study revealed that rhodamine b dyed MIPs (RMIPs) showed stronger binding, indicated by a higher binding capacity value of 256 mg g-1 compared to 217 mg g-1 for fluorescein dyed MIPs (FMIPs). Moreover, RMIPs showed superior sensitivity in the detection and quantitation of pepsin with a linear range from 0.28 to 42.85 µmol L-1 and a limit of detection (LOD) as low as 0.11 µmol L-1. In contrast, FMIPs covered a narrower range from 0.71 to 35.71 µmol L-1, and the LOD value reached 0.34 µmol L-1, which is three times less sensitive than RMIPs. Finally, the developed FMIPs and RMIPs were applied to a separation-free quantification system for pepsin in saliva samples without interference from any cross-reactors.
Collapse
Affiliation(s)
- Aya M Mostafa
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, London KT1 2EE, UK
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stephen J Barton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, London KT1 2EE, UK
| | - Stephen P Wren
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, London KT1 2EE, UK
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, London KT1 2EE, UK
| |
Collapse
|
10
|
Ilyas F, Fazal H, Ahmed M, Iqbal A, Ishaq M, Jabeen M, Butt M, Farid S. Advances in ionic liquids as fluorescent sensors. CHEMOSPHERE 2024; 352:141434. [PMID: 38401867 DOI: 10.1016/j.chemosphere.2024.141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Ionic liquids (ILs) are a class of liquid salts with characteristics such as a low melting point, an ionic nature, non-volatility, and tunable properties. Because of their adaptability, they have a significant influence in the field of fluorescence. This paper reviews the primary literature on the use of ILs in fluorescence sensing technologies. The kind of target material is utilized to classify the fluorescence sensors made with the use of ILs. They include using ILs as probes for metals, nitro explosives, small organic compounds, anions, and gases. The efficacy of an IL-based fluorescence sensor depends on the precise design to guarantee specificity, sensitivity, and a consistent reaction to the desired analyte. The precise method can differ depending on the chemical properties of the IL, the choice of fluorophore, and the interactions with the analyte. Overall, the viability of the aforementioned materials for chemical analysis is evaluated, and prospective possibilities for further development are identified.
Collapse
Affiliation(s)
- Farva Ilyas
- Department of Materials Science and Engineering, College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China; Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hira Fazal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhktiar Ahmed
- Chemistry of Interfaces, Luleå University of Technology, SE-97 187, Luleå, Sweden
| | - Asma Iqbal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Maher Jabeen
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Madiha Butt
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sumbal Farid
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
11
|
Li Y, Guan C, Liu C, Li Z, Han G. Disease diagnosis and application analysis of molecularly imprinted polymers (MIPs) in saliva detection. Talanta 2024; 269:125394. [PMID: 37980173 DOI: 10.1016/j.talanta.2023.125394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Saliva has significantly evolved as a diagnostic fluid in recent years, giving a non-invasive alternative to blood analysis. A high protein concentration in saliva is delivered directly from the bloodstream, making it a "human mirror" that reflects the body's physiological state. It plays an essential role in detecting diseases in biomedical and fitness monitoring. Molecularly imprinted polymers (MIPs) are biomimetic materials with custom-designed synthetic recognition sites that imitate biological counterparts renowned for sensitive analyte detection. This paper reviews the progress made in research about MIP biosensors for detecting saliva biomarkers. Specifically, we investigate the link between saliva biomarkers and various diseases, providing detailed insights into the corresponding biosensors. Furthermore, we discuss the principles of molecular imprinting for disease diagnostics and application analysis, including recent advances in integrated MIP-sensor technologies for high-affinity analyte detection in saliva. Notably, these biosensors exhibit high discrimination, allowing for the detection of saliva biomarkers linked explicitly to chronic stress disorders, diabetes, cancer, bacterial or viral-induced illnesses, and exposure to illicit toxic substances or tobacco smoke. Our findings indicate that MIP-based biosensors match and perhaps surpass their counterparts featuring integrated natural antibodies in terms of stability, signal-to-noise ratios, and detection limits. Additionally, we highlight the design of MIP coatings, strategies for synthesizing polymers, and the integration of advanced biodevices. These tailored biodevices, designed to assess various salivary biomarkers, are emerging as promising screening or diagnostic tools for real-time monitoring and self-health management, improving quality of life.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
12
|
Battaglia F, Torrini F, Palladino P, Scarano S, Minunni M. Serotonin: A new super effective functional monomer for molecular imprinting. The case of TNF-α detection in real matrix by Surface Plasmon Resonance. Biosens Bioelectron 2023; 242:115713. [PMID: 37801835 DOI: 10.1016/j.bios.2023.115713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Molecular imprinting and related technologies are becoming increasingly appreciated in bioanalysis and diagnostic applications. Among the imprinted polymers, we have already demonstrated that the endogenous neurotransmitters (NTs) dopamine (DA) and norepinephrine (NE) can be efficiently used as natural and sustainable monomers to straightforwardly design and synthesize a new generation of green and "soft" Molecularly Imprinted BioPolymers (MIBPs). Here, we demonstrated for the first time the ability of a further NT, i.e., serotonin (SE), in forming adhesive imprinted nanofilms coupled to label-free optical biosensing. Its imprinting efficiency is compared with those obtained with PDA and PNE. As a model study, tumor necrosis factor-alpha (TNF-α) was selected as a biomolecular target of interest in clinical diagnostics. The biomimetic receptor was coupled to Surface Plasmon Resonance (SPR), and TNF-α detection was performed in label-free and real-time manner both in buffer and biological matrices, i.e. synovial fluid and human serum. The results indicate that, under the same imprinting and binding conditions, the analytical performances of PSE are impressively superior to those of PDA and PNE. The PSE-based MIBP was able to detect TNF-α in human matrices with a good sensitivity, selectivity, and repeatability.
Collapse
Affiliation(s)
- Federica Battaglia
- Department of Chemistry "Ugo Schiff', University of Florence, 50019, Sesto Fiorentino, FI, Italy.
| | - Francesca Torrini
- Department of Chemistry and Applied Biosciences, ETH Zurich, Ramistrasse 101, 8092, Zurich, Switzerland.
| | - Pasquale Palladino
- Department of Chemistry "Ugo Schiff', University of Florence, 50019, Sesto Fiorentino, FI, Italy.
| | - Simona Scarano
- Department of Chemistry "Ugo Schiff', University of Florence, 50019, Sesto Fiorentino, FI, Italy.
| | - Maria Minunni
- Department of Chemistry "Ugo Schiff', University of Florence, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
13
|
Cabaleiro-Lago C, Hasterok S, Gjörloff Wingren A, Tassidis H. Recent Advances in Molecularly Imprinted Polymers and Their Disease-Related Applications. Polymers (Basel) 2023; 15:4199. [PMID: 37959879 PMCID: PMC10649583 DOI: 10.3390/polym15214199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) and the imprinting technique provide polymeric material with recognition elements similar to natural antibodies. The template of choice (i.e., the antigen) can be almost any type of smaller or larger molecule, protein, or even tissue. There are various formats of MIPs developed for different medical purposes, such as targeting, imaging, assay diagnostics, and biomarker detection. Biologically applied MIPs are widely used and currently developed for medical applications, and targeting the antigen with MIPs can also help in personalized medicine. The synthetic recognition sites of the MIPs can be tailor-made to function as analytics, diagnostics, and drug delivery systems. This review will cover the promising clinical applications of different MIP systems recently developed for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Celia Cabaleiro-Lago
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| | - Sylwia Hasterok
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Anette Gjörloff Wingren
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Helena Tassidis
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| |
Collapse
|
14
|
Stephen AN, Dennison SR, Holden MA, Reddy SM. Rapid sub-nanomolar protein determination in serum using electropolymerized molecularly imprinted polymers (E-MIPs). Analyst 2023; 148:5476-5485. [PMID: 37767770 DOI: 10.1039/d3an01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Rapid detection of biologicals is important for a range of applications such as medical screening and diagnostics. Antibodies are typically employed for biosensing with high sensitivity and selectivity but can take months to prepare. Here, we investigate electropolymerized molecularly imprinted polymers (E-MIPs), which are produced in minutes as alternative-antibody rapid biosensors for the selective recognition of model proteins bovine haemoglobin (BHb) and bovine serum albumin (BSA). We evaluated two disposable screen-printed electrodes (SPE) designated AT-Au and BT-Au based on their different annealing temperatures. E-MIPs for BHb demonstrated an imprinting factor of 146 : 1 at 1 nM and 12 : 1 at 0.1 nM, showing high effectiveness of E-MIPs compared to their control non-imprinted polymers. The BHb imprinted E-MIP, when tested against BSA as a non-target protein, gave a selectivity factor of 6 : 1 for BHb. Sensor sensitivity directly depended on the nature of the SPE, with AT-Au SPE demonstrating limits of detection in the sub-micromolar range typically achieved for MIPs, while BT-Au SPE exhibited sensitivity in the sub-nanomolar range for target protein. We attribute this to differences in electrode surface area between AT-Au and BT-Au SPEs. The E-MIPs were also tested in calf serum as a model biological medium. The BT-Au SPE MIPs detected the presence of target protein in <10 min with an LOD of 50 pM and LOQ of 100 pM, suggesting their suitability for protein determination in serum with minimal sample preparation. Using electrochemical impedance spectroscopy, we determine equilibrium dissociation constants (KD) for E-MIPs using the Hill-Langmuir adsorption model. KD of BHb E-MIP was determined to be 0.86 ± 0.11 nM.
Collapse
Affiliation(s)
- A N Stephen
- Department of Chemistry, UCLan Centre for Smart Materials, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| | - S R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - M A Holden
- Department of Chemistry, UCLan Centre for Smart Materials, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| | - S M Reddy
- Department of Chemistry, UCLan Centre for Smart Materials, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
15
|
Pan Y, Wu M, Shi M, Shi P, Zhao N, Zhu Y, Karimi-Maleh H, Ye C, Lin CT, Fu L. An Overview to Molecularly Imprinted Electrochemical Sensors for the Detection of Bisphenol A. SENSORS (BASEL, SWITZERLAND) 2023; 23:8656. [PMID: 37896749 PMCID: PMC10611091 DOI: 10.3390/s23208656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Bisphenol A (BPA) is an industrial chemical used extensively in plastics and resins. However, its endocrine-disrupting properties pose risks to human health and the environment. Thus, accurate and rapid detection of BPA is crucial for exposure monitoring and risk mitigation. Molecularly imprinted electrochemical sensors (MIES) have emerged as a promising tool for BPA detection due to their high selectivity, sensitivity, affordability, and portability. This review provides a comprehensive overview of recent advances in MIES for BPA detection. We discuss the operating principles, fabrication strategies, materials, and methods used in MIES. Key findings show that MIES demonstrate detection limits comparable or superior to conventional methods like HPLC and GC-MS. Selectivity studies reveal excellent discrimination between BPA and structural analogs. Recent innovations in nanomaterials, novel monomers, and fabrication techniques have enhanced sensitivity, selectivity, and stability. However, limitations exist in reproducibility, selectivity, and stability. While challenges remain, MIES provide a low-cost portable detection method suitable for on-site BPA monitoring in diverse sectors. Further optimization of sensor fabrication and characterization will enable the immense potential of MIES for field-based BPA detection.
Collapse
Grants
- 52272053, 52075527, 52102055 National Natural Science Foundation of China
- 2022YFA1203100, 2022YFB3706602, 2021YFB3701801 National Key R&D Program of China
- 2021Z120, 2021Z115, 2022Z084, 2022Z191 Ningbo Key Scientific and Technological Project
- 2021A-037-C, 2021A-108-G Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 Youth Fund of Chinese Academy of Sciences
- 2020M681965, 2022M713243 China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- 2021ZDYF020196, 2021ZDYF020198 Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001 Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Mengfan Wu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mingjiao Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Yangguang Zhu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
16
|
Vacek J, Zatloukalová M, Dorčák V, Cifra M, Futera Z, Ostatná V. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field. Mikrochim Acta 2023; 190:442. [PMID: 37847341 PMCID: PMC10582152 DOI: 10.1007/s00604-023-05999-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
Collapse
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic.
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Vlastimil Dorčák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, 18200, Prague, Czech Republic
| | - Zdeněk Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Kralovopolska 135, 61200, Brno, Czech Republic
| |
Collapse
|
17
|
Nazim T, Lusina A, Cegłowski M. Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers (Basel) 2023; 15:3868. [PMID: 37835917 PMCID: PMC10574876 DOI: 10.3390/polym15193868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) encompass a diverse array of polymeric matrices that exhibit the unique capacity to selectively identify a designated template molecule through specific chemical moieties. Thanks to their pivotal attributes, including exceptional selectivity, extended shelf stability, and other distinct characteristics, this class of compounds has garnered interest in the development of highly responsive sensor systems. As a result, the incorporation of MIPs in crafting distinctive sensors and analytical procedures tailored for specific analytes across various domains has increasingly become a common practice within contemporary analytical chemistry. Furthermore, the range of polymers amenable to MIP formulation significantly influences the potential utilization of both conventional and innovative analytical methodologies. This versatility expands the array of possibilities in which MIP-based sensing can be employed in recognition systems. The following review summarizes the notable progress achieved within the preceding seven-year period in employing MIP-based sensing techniques for analyte determination.
Collapse
Affiliation(s)
| | | | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (T.N.); (A.L.)
| |
Collapse
|
18
|
Sathirapongsasuti N, Panaksri A, Jusain B, Boonyagul S, Pechprasarn S, Jantanasakulwong K, Suksuwan A, Thongkham S, Tanadchangsaeng N. Enhancing protein trapping efficiency of graphene oxide-polybutylene succinate nanofiber membrane via molecular imprinting. Sci Rep 2023; 13:15398. [PMID: 37717111 PMCID: PMC10505162 DOI: 10.1038/s41598-023-42646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Filtration of biological liquids has been widely employed in biological, medical, and environmental investigations due to its convenience; many could be performed without energy and on-site, particularly protein separation. However, most available membranes are universal protein absorption or sub-fractionation due to molecule sizes or properties. SPMA, or syringe-push membrane absorption, is a quick and easy way to prepare biofluids for protein evaluation. The idea of initiating SPMA was to filter proteins from human urine for subsequent proteomic analysis. In our previous study, we developed nanofiber membranes made from polybutylene succinate (PBS) composed of graphene oxide (GO) for SPMA. In this study, we combined molecular imprinting with our developed PBS fiber membranes mixed with graphene oxide to improve protein capture selectivity in a lock-and-key fashion and thereby increase the efficacy of protein capture. As a model, we selected albumin from human serum (ABH), a clinically significant urine biomarker, for proteomic application. The nanofibrous membrane was generated utilizing the electrospinning technique with PBS/GO composite. The PBS/GO solution mixed with ABH was injected from a syringe and transformed into nanofibers by an electric voltage, which led the fibers to a rotating collector spinning for fiber collection. The imprinting process was carried out by removing the albumin protein template from the membrane through immersion of the membrane in a 60% acetonitrile solution for 4 h to generate a molecular imprint on the membrane. Protein trapping ability, high surface area, the potential for producing affinity with proteins, and molecular-level memory were all evaluated using the fabricated membrane morphology, protein binding capacity, and quantitative protein measurement. This study revealed that GO is a controlling factor, increasing electrical conductivity and reducing fiber sizes and membrane pore areas in PBS-GO-composites. On the other hand, the molecular imprinting did not influence membrane shape, nanofiber size, or density. Human albumin imprinted membrane could increase the PBS-GO membrane's ABH binding capacity from 50 to 83%. It can be indicated that applying the imprinting technique in combination with the graphene oxide composite technique resulted in enhanced ABH binding capabilities than using either technique individually in membrane fabrication. The suitable protein elution solution is at 60% acetonitrile with an immersion time of 4 h. Our approach has resulted in the possibility of improving filter membranes for protein enrichment and storage in a variety of biological fluids.
Collapse
Affiliation(s)
- Nuankanya Sathirapongsasuti
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pli, Samut Prakan, Thailand
| | - Anuchan Panaksri
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Benjabhorn Jusain
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Suejit Pechprasarn
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Chiang Mai, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | - Acharee Suksuwan
- The Halal Science Center, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Somprasong Thongkham
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | | |
Collapse
|
19
|
Silva AT, Figueiredo R, Azenha M, Jorge PA, Pereira CM, Ribeiro JA. Imprinted Hydrogel Nanoparticles for Protein Biosensing: A Review. ACS Sens 2023; 8:2898-2920. [PMID: 37556357 PMCID: PMC10463276 DOI: 10.1021/acssensors.3c01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Over the past decade, molecular imprinting (MI) technology has made tremendous progress, and the advancements in nanotechnology have been the major driving force behind the improvement of MI technology. The preparation of nanoscale imprinted materials, i.e., molecularly imprinted polymer nanoparticles (MIP NPs, also commonly called nanoMIPs), opened new horizons in terms of practical applications, including in the field of sensors. Currently, hydrogels are very promising for applications in bioanalytical assays and sensors due to their high biocompatibility and possibility to tune chemical composition, size (microgels, nanogels, etc.), and format (nanostructures, MIP film, fibers, etc.) to prepare optimized analyte-responsive imprinted materials. This review aims to highlight the recent progress on the use of hydrogel MIP NPs for biosensing purposes over the past decade, mainly focusing on their incorporation on sensing devices for detection of a fundamental class of biomolecules, the peptides and proteins. The review begins by directing its focus on the ability of MIPs to replace biological antibodies in (bio)analytical assays and highlight their great potential to face the current demands of chemical sensing in several fields, such as disease diagnosis, food safety, environmental monitoring, among others. After that, we address the general advantages of nanosized MIPs over macro/micro-MIP materials, such as higher affinity toward target analytes and improved binding kinetics. Then, we provide a general overview on hydrogel properties and their great advantages for applications in the field of Sensors, followed by a brief description on current popular routes for synthesis of imprinted hydrogel nanospheres targeting large biomolecules, namely precipitation polymerization and solid-phase synthesis, along with fruitful combination with epitope imprinting as reliable approaches for developing optimized protein-imprinted materials. In the second part of the review, we have provided the state of the art on the application of MIP nanogels for screening macromolecules with sensors having different transduction modes (optical, electrochemical, thermal, etc.) and design formats for single use, reusable, continuous monitoring, and even multiple analyte detection in specialized laboratories or in situ using mobile technology. Finally, we explore aspects about the development of this technology and its applications and discuss areas of future growth.
Collapse
Affiliation(s)
- Ana T. Silva
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Rui Figueiredo
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Manuel Azenha
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Pedro A.S. Jorge
- INESC
TEC−Institute for Systems and Computer Engineering, Technology
and Science, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
- Department
of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Carlos M. Pereira
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - José A. Ribeiro
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| |
Collapse
|
20
|
Vállez-Gomis V, Benedé JL, Combès A, Chisvert A, Pichon V. Solid-phase immunoextraction followed by liquid chromatography-tandem mass spectrometry for the selective determination of thyroxine in human serum. Talanta 2023; 265:124864. [PMID: 37379751 DOI: 10.1016/j.talanta.2023.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
In this work, an analytical method based on solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) has been developed for the selective determination of thyroxine (T4) in human serum. For this purpose, two immunosorbents (ISs) specific to T4 were synthesized by grafting two different T4-specific monoclonal antibodies on a cyanogen bromide (CNBr)-activated-Sepharose® 4B solid support. The grafting yields obtained from the immobilization of each antibody on the CNBr-activated-Sepharose® 4B were over 90%, demonstrating that most of the antibodies were covalently bound to the solid support. The SPE procedure was optimized by studying the retention capability and selectivity of the two ISs in pure media fortified with T4. Under the optimized conditions, high elution efficiencies were achieved in the elution fraction for both specific ISs (i.e., 85%), whereas low ones were obtained in the control ISs (ca. 2%), showing the selectivity of the specific ISs. The ISs were also characterized by studying extraction and synthesis repeatability (RSD <8%), and capacity (104 ng of T4 per 35 mg of ISs, i.e., 3 μg g-1). Finally, the methodology was applied to a pooled human serum sample in order to study its analytical utility and accuracy. Relative recovery (RR) values between 81 and 107% were obtained, showing no matrix effects during the global methodology. Furthermore, the need to perform the immunoextraction was evidenced by comparing the LC-MS scan chromatograms and RR values with and without applying the immunoextraction procedure on a serum sample submitted to protein precipitation. This works exploits, for the first time, the use of an IS on the selective determination of T4 in human serum samples.
Collapse
Affiliation(s)
- Víctor Vállez-Gomis
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology and Innovation, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France; GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology and Innovation, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology and Innovation, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France; Sorbonne Université, Paris 75005, France.
| |
Collapse
|
21
|
Molecular imprinted electrochemical sensor for ovalbumin detection based on boronate affinity and signal amplification approach. Food Chem 2023; 409:135292. [PMID: 36584533 DOI: 10.1016/j.foodchem.2022.135292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/28/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Ovalbumin (OVA), a class of glycoproteins, is the main allergen in hen egg white that often causes allergies in humans, especially in babies. Therefore, it is pivotal to be able to detect and separate OVA. This work presents an ingenious sandwich-structured magnetic molecular imprinted electrochemical sensor for OVA detection by utilizing boronate affinity and signal amplification strategy. With anti-OVA antibody-modified gold nanoparticles (AuNPs) as amplifiers, the imprinted cavities in the probe could capture protein to form a sandwich structure. Due to its specific recognition of antibody and molecular imprinted polymers and the signal amplification of AuNPs, the sensor had good selectivity and sensitivity toward OVA and a low detection limit of 3.0 fg/mL. The sensor also had excellent stability and could satisfactorily detect OVA in real red wine samples.
Collapse
|
22
|
Bogdanowicz N, Lusina A, Nazim T, Cegłowski M. Rapid quantification of 2,4-dichlorophenol in river water samples using molecularly imprinted polymers coupled to ambient plasma mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131068. [PMID: 36857825 DOI: 10.1016/j.jhazmat.2023.131068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Rapid quantification of environmental pollutants is important for water quality control and environmental monitoring. In this work, we report the development of molecularly imprinted polymers (MIPs) obtained from poly(methyl vinyl ether-alt-maleic acid) polymer. The synthesized materials were used for selective preconcentration of 2,4-dichlorophenol, a priority pollutant which creates a threat to public health. The structure of poly(methyl vinyl ether-alt-maleic acid) was functionalized with 4-aminomethylpyridine (4-AMP) to incorporate pyridine groups presumably responsible for increased affinity towards 2,4-dichlorophenol. The synthesis was performed with different degree (10%, 20% and 30%) of 4-AMP functionalization to investigate the influence of pyridine group content on the final MIPs properties. The molecular imprinting process was conducted by amidation of polymers' anhydride groups with diethylenetriamine. Moreover, the experimental data indicated that maximum adsorption capacity was observed for the highest 4-AMP functionalization degree. Similarly, MIPs with the highest 4-AMP content proved to possess the highest selectivity towards the analyte. Finally, the functionalized MIPs were used to quantify 2,4-dichlorophenol by their direct introduction into a specially designed ambient mass spectrometry setup. The detection limits were improved significantly over the ones measured for pure analyte solution. The proposed analytical technique was used to quantify 2,4-dichlorophenol in river water and wastewater samples. Good recovery results were obtained, which proves that the method can be used for analysis of complex real-life samples.
Collapse
Affiliation(s)
- Natalia Bogdanowicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Aleksandra Lusina
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Tomasz Nazim
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| |
Collapse
|
23
|
He JY, Li Q, Xu HX, Zheng QY, Zhang QH, Zhou LD, Wang CZ, Yuan CS. Recognition and analysis of biomarkers in tumor microenvironments based on promising molecular imprinting strategies with high selectivity. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
24
|
Lazar MM, Ghiorghita CA, Dragan ES, Humelnicu D, Dinu MV. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution. Molecules 2023; 28:molecules28062798. [PMID: 36985770 PMCID: PMC10055817 DOI: 10.3390/molecules28062798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The introduction of selective recognition sites toward certain heavy metal ions (HMIs) is a great challenge, which has a major role when the separation of species with similar physicochemical features is considered. In this context, ion-imprinted polymers (IIPs) developed based on the principle of molecular imprinting methodology, have emerged as an innovative solution. Recent advances in IIPs have shown that they exhibit higher selectivity coefficients than non-imprinted ones, which could support a large range of environmental applications starting from extraction and monitoring of HMIs to their detection and quantification. This review will emphasize the application of IIPs for selective removal of transition metal ions (including HMIs, precious metal ions, radionuclides, and rare earth metal ions) from aqueous solution by critically analyzing the most relevant literature studies from the last decade. In the first part of this review, the chemical components of IIPs, the main ion-imprinting technologies as well as the characterization methods used to evaluate the binding properties are briefly presented. In the second part, synthesis parameters, adsorption performance, and a descriptive analysis of solid phase extraction of heavy metal ions by various IIPs are provided.
Collapse
Affiliation(s)
- Maria Marinela Lazar
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ecaterina Stela Dragan
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
25
|
Wang J, Yang Y, Shen Q, Shen D, Kang Q. A smartphone-based long optical path colorimetric turntable for selective determination of malachite green and investigation the specific adsorption behavior of the imprinted cavities within molecularly imprinted polymers. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
26
|
Zheng Z, Yuan L, Hu JJ, Xia F, Lou X. Modular Peptide Probe for Protein Analysis. Chemistry 2023; 29:e202203225. [PMID: 36333271 DOI: 10.1002/chem.202203225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
The analysis and regulation of proteins are of great significance for the development of disease diagnosis and treatment. However, complicated analytical environment and complex protein structure severely limit the accuracy of their analysis results. Nowadays, ascribing to the editability and bioactivity of peptides, peptide-based probes could meet the requirements of good selectivity and high affinity to overcome the challenges. In this review, we summarize the advances in the use of modular peptide probes for proteins analysis. It focuses on how to design and optimize the structure of probes, as well as their performance. Then, the strategies and application to improve the analysis result of modular peptide probes are introduced. Finally, we also discuss current challenge and provide some ideas for the future direction for modular peptide probes, hoping to accelerate their clinical transformation.
Collapse
Affiliation(s)
- Zhi Zheng
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
27
|
Woźnica M, Sobiech M, Luliński P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:248. [PMID: 36677999 PMCID: PMC9863567 DOI: 10.3390/nano13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Molecular imprinting technology is a well-known strategy to synthesize materials with a predetermined specificity. For fifty years, the "classical" approach assumed the creation of "memory sites" in the organic polymer matrix by a template molecule that interacts with the functional monomer prior to the polymerization and template removal. However, the phenomenon of a material's "memory" provided by the "footprint" of the chemical entity was first observed on silica-based materials nearly a century ago. Through the years, molecular imprinting technology has attracted the attention of many scientists. Different forms of molecularly imprinted materials, even on the nanoscale, were elaborated, predominantly using organic polymers to induce the "memory". This field has expanded quickly in recent years, providing versatile tools for the separation or detection of numerous chemical compounds or even macromolecules. In this review, we would like to emphasize the role of the molecular imprinting process in the formation of highly specific siloxane-based nanomaterials. The distinct chemistry of siloxanes provides an opportunity for the facile functionalization of the surfaces of nanomaterials, enabling us to introduce additional properties and providing a way for vast applications such as detectors or separators. It also allows for catalyzing chemical reactions providing microreactors to facilitate organic synthesis. Finally, it determines the properties of siloxanes such as biocompatibility, which opens the way to applications in drug delivery and nanomedicine. Thus, a brief outlook on the chemistry of siloxanes prior to the discussion of the current state of the art of siloxane-based imprinted nanomaterials will be provided. Those aspects will be presented in the context of practical applications in various areas of chemistry and medicine. Finally, a brief outlook of future perspectives for the field will be pointed out.
Collapse
|
28
|
Battaglia F, Bonelli F, Sgorbini M, Intorre L, Minunni M, Scarano S, Meucci V. Molecularly imprinted polymers as effective capturing receptors in a pseudo-ELISA immunoassay for procalcitonin detection in veterinary species. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:27-35. [PMID: 36484203 DOI: 10.1039/d2ay01175a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, a new sandwich-type immunoenzymatic assay, based on a molecularly imprinted polymer (MIP) as an artificial antibody (pseudo-ELISA), was developed for the determination of procalcitonin (PCT) in veterinary species. The quantification of PCT in human medicine represents the state of the art for the diagnosis of sepsis; instead the clinical studies on the relevance of PCT as a sepsis predictor in veterinary patients are few, likely due to the total absence of validated assays. MIPs have been widely used as antibody mimics for important applications, and MIP-based sandwich assays have emerged as promising analytical tools for the detection of disease biomarkers. Herein, a polynorepinephrine (PNE)-based imprinted film was directly synthesized on the well surface of a 96-well plate. Subsequently, based on a commercial ELISA kit, the PCT quantification was accomplished via a colorimetric sandwich assay by replacing the capture antibody of the kit with the PNE-based MIP. This method was performed to detect canine and equine PCT in buffer and in plasma samples. Under optimal conditions, the results obtained in plasma samples showed a limit of detection (LOD) of 5.87 ng mL-1 and a reproducibility (CVav%) of 10.0% for canine samples, while a LOD = 4.46 ng mL-1 and CVav% = 7.61% were obtained for equine samples.
Collapse
Affiliation(s)
- Federica Battaglia
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, FI, Italy.
- Department of Veterinary Science, University of Pisa, 56122 Via Livornese, PI, Italy.
| | - Francesca Bonelli
- Department of Veterinary Science, University of Pisa, 56122 Via Livornese, PI, Italy.
| | - Micaela Sgorbini
- Department of Veterinary Science, University of Pisa, 56122 Via Livornese, PI, Italy.
| | - Luigi Intorre
- Department of Veterinary Science, University of Pisa, 56122 Via Livornese, PI, Italy.
| | - Maria Minunni
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, FI, Italy.
| | - Simona Scarano
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, FI, Italy.
| | - Valentina Meucci
- Department of Veterinary Science, University of Pisa, 56122 Via Livornese, PI, Italy.
| |
Collapse
|
29
|
Yu L, Sun L, Zhang Q, Zhou Y, Zhang J, Yang B, Xu B, Xu Q. Nanomaterials-Based Ion-Imprinted Electrochemical Sensors for Heavy Metal Ions Detection: A Review. BIOSENSORS 2022; 12:bios12121096. [PMID: 36551065 PMCID: PMC9775266 DOI: 10.3390/bios12121096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 05/13/2023]
Abstract
Heavy metal ions (HMIs) pose a serious threat to the environment and human body because they are toxic and non-biodegradable and widely exist in environmental ecosystems. It is necessary to develop a rapid, sensitive and convenient method for HMIs detection to provide a strong guarantee for ecology and human health. Ion-imprinted electrochemical sensors (IIECSs) based on nanomaterials have been regarded as an excellent technology because of the good selectivity, the advantages of fast detection speed, low cost, and portability. Electrode surfaces modified with nanomaterials can obtain excellent nano-effects, such as size effect, macroscopic quantum tunneling effect and surface effect, which greatly improve its surface area and conductivity, so as to improve the detection sensitivity and reduce the detection limit of the sensor. Hence, the present review focused on the fundamentals and the synthetic strategies of ion-imprinted polymers (IIPs) and IIECSs for HMIs detection, as well as the applications of various nanomaterials as modifiers and sensitizers in the construction of HMIIECSs and the influence on the sensing performance of the fabricated sensors. Finally, the potential challenges and outlook on the future development of the HMIIECSs technology were also highlighted. By means of the points presented in this review, we hope to provide some help in further developing the preparation methods of high-performance HMIIECSs and expanding their potential applications.
Collapse
Affiliation(s)
- Liangyun Yu
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Liangju Sun
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Qi Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yawen Zhou
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Jingjing Zhang
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
- Correspondence: (B.X.); (Q.X.); Tel.: +86-514-8797-5257 (Q.X.)
| | - Qin Xu
- College of Chemistry and Engineering, Yangzhou University, Yangzhou 225002, China
- Correspondence: (B.X.); (Q.X.); Tel.: +86-514-8797-5257 (Q.X.)
| |
Collapse
|
30
|
Development of magnetic molecularly imprinted polymers for the extraction of salivary pepsin prior to analysis by a novel HPLC-SEC method. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Chen Y, Xia Y, Liu Y, Tang Y, Zhao F, Zeng B. Colorimetric and electrochemical detection platforms for tetracycline based on surface molecularly imprinted polyionic liquid on Mn3O4 nanozyme. Biosens Bioelectron 2022; 216:114650. [DOI: 10.1016/j.bios.2022.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
|
32
|
Stimuli-responsive molecularly imprinted polymers as adsorbents of analytes in complex matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Molecularly Imprinted Nanoparticles towards MMP9 for Controlling Cardiac ECM after Myocardial Infarction: A Predictive Experimental-Computational Chemistry Investigation. Biomedicines 2022; 10:biomedicines10092070. [PMID: 36140171 PMCID: PMC9495980 DOI: 10.3390/biomedicines10092070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
The recent advances in nanotechnology are revolutionizing preventive and therapeutic approaches to treating cardiovascular diseases. Controlling the extracellular matrix metalloproteinase (MMP) activation and expression in the failing human left ventricular myocardium represents a significant therapeutic target for heart disease. In this study, we used molecularly imprinting polymers (MIPs) to restore the correct balance between MMPs and their tissue inhibitors (TIMPs), and explored the potential of this technique exhaustively through chemical synthesis, physicochemical and biological characterizations, and computational chemistry methods. By molecular dynamics simulations based on classical force fields, we simulated the early stages of the imprinting process in solution disclosing the pivotal interaction established between the monomers and the MMP9 protein template. The average interaction energies of methacrylic acid (MAA) and poly (ethylene glycol) ethyl ether methacrylate (PEG) units were in the ranges 17–22 and 30–37 kcal/mol, respectively. At low coverage, the PEG monomers seemed firmly anchored to the protein surface and were not displaced by water, while only about 20% of MAA was replaced by water. The synthesis of MIPs was successfully with a monomer conversion higher than 99% and the production of spherical particles with average diameter of 344 ± 33 nm. HPLC analysis showed a specific recognition factor of MMP9 on MIPs of about 1.3. FT-IR Chemical Imaging confirmed the mechanisms necessary to generate a “selective memory” of the MIPs towards the enzyme. HPLC results indicated that the rebound amount of both TIMP1 and MMP2 to MIPs is lower than that of the template, showing a selectivity factor of 2.1 and 2.3, respectively. Preliminary tests on the effect of MIPs on H9C2 cells revealed that this treatment has no cytotoxic effects.
Collapse
|
34
|
A bifunctional electrochemical sensor for simultaneous determination of electroactive and non-electroactive analytes: A universal yet very effective platform serving therapeutic drug monitoring. Biosens Bioelectron 2022; 208:114233. [DOI: 10.1016/j.bios.2022.114233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
|
35
|
Cheng S, Tang D, Zhang Y, Xu L, Liu K, Huang K, Yin Z. Specific and Sensitive Detection of Tartrazine on the Electrochemical Interface of a Molecularly Imprinted Polydopamine-Coated PtCo Nanoalloy on Graphene Oxide. BIOSENSORS 2022; 12:326. [PMID: 35624626 PMCID: PMC9138349 DOI: 10.3390/bios12050326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
A novel electrochemical sensor designed to recognize and detect tartrazine (TZ) was constructed based on a molecularly imprinted polydopamine (MIPDA)-coated nanocomposite of platinum cobalt (PtCo) nanoalloy-functionalized graphene oxide (GO). The nanocomposites were characterized and the TZ electrochemical detection performance of the sensor and various reference electrodes was investigated. Interestingly, the synergistic effect of the strong electrocatalytic activity of the PtCo nanoalloy-decorated GO and the high TZ recognition ability of the imprinted cavities of the MIPDA coating resulted in a large and specific response to TZ. Under the optimized conditions, the sensor displayed linear response ranges of 0.003-0.180 and 0.180-3.950 µM, and its detection limit was 1.1 nM (S/N = 3). The electrochemical sensor displayed high anti-interference ability, good stability, and adequate reproducibility, and was successfully used to detect TZ in spiked food samples. Comparison of important indexes of this sensor with those of previous electrochemical sensors for TZ revealed that this sensor showed improved performance. This surface-imprinted sensor provides an ultrasensitive, highly specific, effective, and low-cost method for TZ determination in foodstuffs.
Collapse
Affiliation(s)
- Shuwen Cheng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; (S.C.); (D.T.); (Y.Z.); (L.X.)
| | - Danyao Tang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; (S.C.); (D.T.); (Y.Z.); (L.X.)
| | - Yi Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; (S.C.); (D.T.); (Y.Z.); (L.X.)
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Libin Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; (S.C.); (D.T.); (Y.Z.); (L.X.)
| | - Kunping Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China;
| | - Kejing Huang
- China Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Zhengzhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; (S.C.); (D.T.); (Y.Z.); (L.X.)
| |
Collapse
|
36
|
He Y, Lin Z. Recent advances in protein-imprinted polymers: synthesis, applications and challenges. J Mater Chem B 2022; 10:6571-6589. [PMID: 35507351 DOI: 10.1039/d2tb00273f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The molecular imprinting technique (MIT), also described as the "lock to key" method, has been demonstrated as an effective tool for the creation of synthetic polymers with antibody-like sites to specifically recognize target molecules. To date, most successful molecular imprinting researches were limited to small molecules (<1500 Da); biomacromolecule (especially protein) imprinting remains a serious challenge due to their large size, chemical and structural complexity, and environmental instability. Nevertheless, protein imprinting has achieved some significant breakthroughs in imprinting methods and applications over the past decade. Some special protein-imprinted materials with outstanding properties have been developed and exhibited excellent potential in several advanced fields such as separation and purification, proteomics, biomarker detection, bioimaging and therapy. In this review, we critically and comprehensively surveyed the recent advances in protein imprinting, particularly emphasizing the significant progress in imprinting methods and highlighted applications. Finally, we summarize the major challenges remaining in protein imprinting and propose its development direction in the near future.
Collapse
Affiliation(s)
- Yanting He
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233000, China.,Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
37
|
Nechvátalová M, Urban J. Current trends in the development of polymer-based monolithic stationary phases. ANALYTICAL SCIENCE ADVANCES 2022; 3:154-164. [PMID: 38715639 PMCID: PMC10989626 DOI: 10.1002/ansa.202100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2024]
Abstract
This review focuses on the development and applications of organic polymer monoliths, with special attention to the literature published in 2021. The latest protocols in the preparation of polymer monoliths are discussed. In particular, tailored surface modification using nanomaterials, the development of chiral stationary phases and development of stationary phases for capillary electrochromatography are reviewed. Furthermore, the optimization of pore forming solvents composition is also discussed. Finally, the use of monolithic stationary phases in sample treatment using solid-phase extraction and enrichment methods, molecularly imprinted polymers and enzymatic reactors is mentioned.
Collapse
Affiliation(s)
| | - Jiří Urban
- Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
38
|
Çorman M, Ozcelikay G, Cetinkaya A, Kaya S, Armutcu C, Özgür E, Uzun L, Ozkan S. Metal-Organic Frameworks as an Alternative Smart Sensing Platform for Designing Molecularly Imprinted Electrochemical Sensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Point-of-care detection assay based on biomarker-imprinted polymer for different cancers: a state-of-the-art review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Zidarič T, Finšgar M, Maver U, Maver T. Artificial Biomimetic Electrochemical Assemblies. BIOSENSORS 2022; 12:44. [PMID: 35049673 PMCID: PMC8773559 DOI: 10.3390/bios12010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
Abstract
Rapid, selective, and cost-effective detection and determination of clinically relevant biomolecule analytes for a better understanding of biological and physiological functions are becoming increasingly prominent. In this regard, biosensors represent a powerful tool to meet these requirements. Recent decades have seen biosensors gaining popularity due to their ability to design sensor platforms that are selective to determine target analytes. Naturally generated receptor units have a high affinity for their targets, which provides the selectivity of a device. However, such receptors are subject to instability under harsh environmental conditions and have consequently low durability. By applying principles of supramolecular chemistry, molecularly imprinted polymers (MIPs) can successfully replace natural receptors to circumvent these shortcomings. This review summarizes the recent achievements and analytical applications of electrosynthesized MIPs, in particular, for the detection of protein-based biomarkers. The scope of this review also includes the background behind electrochemical readouts and the origin of the gate effect in MIP-based biosensors.
Collapse
Affiliation(s)
- Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|