1
|
Liu X, Wang B, Luo H, Zou J, Yang BC, Hu B. Portable Miniature Mass Spectrometry for Enhanced On-Site Detection of Analytes in Complex Samples by Integrating Solid-Phase Microextraction and Nano-Electrospray Ionization. Anal Chem 2024; 96:17471-17475. [PMID: 39415685 DOI: 10.1021/acs.analchem.4c04224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
On-site mass spectrometry (MS) analysis plays a crucial role in timely understanding chemical compositions of field samples but presents a challenge to miniaturization, portability, and sensitivity. In this work, a portable MS approach was developed by integrating biocompatible solid-phase microextraction (SPME) and a nano-electrospray ionization (nESI) emitter into a kit to couple miniature MS (mMS). The SPME fiber was used for on-site extractive sampling of analytes from complex liquid samples and living organisms and was then inserted into an nESI emitter for on-site MS analysis via the facile kit. The limit of detection was found to be at the pg/mL level for various compounds tested. Acceptable relative standard deviation (RSD) values (5.5-7.6%, n = 6) were obtained for direct measurement of analytes in complex matrixes; acceptable linear responses (0.1-50 ng/mL) and matrix effects (76.0-82.6%) were also found. Enhanced detection of compounds of interest in various real samples, such as food samples, human fluids, environmental water, and living organisms, was unambiguously demonstrated. Our experimental data showed that SPME-nESI-mMS is a promising tool for on-site analysis of various complex samples in significant applications including but not limited to food safety, environmental monitoring, forensic investigation, and bioanalysis.
Collapse
Affiliation(s)
- Xuan Liu
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China
| | - Baixue Wang
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China
| | - Haiyan Luo
- Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Jun Zou
- Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Bi-Cheng Yang
- Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Bin Hu
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Wang A, Qi Z, Tian M, Huang J, Yang J, Yang L. In-line RNA-based microreactor direct mass spectrometry for ultrasensitive and rapid assay of terminal deoxynucleotidyl transferase activity. Talanta 2024; 279:126631. [PMID: 39094533 DOI: 10.1016/j.talanta.2024.126631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT), a unique template-independent DNA polymerase, plays a crucial role in the human adaptive immune system and is considered a promising biomarker for the diagnosis of various forms of acute or chronic leukemia. The accurate and sensitive detection of trace TdT is of pivotal importance to fulfill the significant medical interest in understanding its pathological functions and diagnosing TdT-related diseases. We hereby present an in-line RNA-based microreactor direct mass spectrometry (MS) method and its application for ultrasensitive, accurate, and rapid analysis of trace TdT activity in leukemic cell samples. A specially designed RNA-based microreactor is fabricated by immobilizing short RNA sequence via covalent Au-S bond on the inner surface of a capillary pre-modified with three-dimensional porous layer (PL) and Au nanoparticles (AuNPs). Utilizing this PL@Au@RNA microreactor, the signal of target TdT is conversed into reporter molecules (adenine), which exhibit a strong MS response. This conversion process enables efficient signal amplification and enhances detection sensitivity. The outlet end of the PL@Au@RNA microreactor is deliberately crafted into a porous tip, serving as an electrospray ionization (ESI) interface to directly couple to ESI-MS in-line. This design facilitates the direct transmission of the generated signaling molecules into the MS system, eliminating the need for laborious sample treatment procedures. By implementing this RNA-based microreactor in direct MS analysis, we have achieved remarkable sensitivity in detecting TdT activity with the limit-of-detection of 4 × 10-9 U, surpassing other reported methods in literature by three to four orders of magnitude. Furthermore, each assay requires a minimal sample volume of merely 10 nL. This method has successfully demonstrated its application in accurately and efficiently detecting TdT activity in leukemia cells, and its detection results are consistent with those obtained by ELISA kits.
Collapse
Affiliation(s)
- Anping Wang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Zihe Qi
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Miaomiao Tian
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, 130052, China
| | - Jing Huang
- Laboratory Department of the First Hospital of Jilin University, Changchun, Jilin Province, 130024, China
| | - Jinlan Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Li Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
3
|
Mathias S, Amerio-Cox M, Jackson T, Douce D, McCullough B, Sage A, Luke P, Crean C, Sears P. Performance Comparison of Ambient Ionization Techniques Using a Single Quadrupole Mass Spectrometer for the Analysis of Amino Acids, Drugs, and Explosives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2480-2489. [PMID: 39221767 PMCID: PMC11457451 DOI: 10.1021/jasms.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The utilization of ambient ionization (AI) techniques for mass spectrometry (MS) has significantly grown due to their ability to facilitate rapid and direct sample analysis with minimal sample preparation. This study investigates the performance of various AI techniques, including atmospheric solids analysis probe (ASAP), thermal desorption corona discharge (TDCD), direct analysis in real time (DART), and paper spray coupled to a Waters QDa mass spectrometer. The focus is on evaluating the linearity, repeatability, and limit of detection (LOD) of these techniques across a range of analytes, including amino acids, drugs, and explosives. The results show that each AI technique exhibits distinct advantages and limitations. ASAP and DART cover high concentration ranges, which may make them suitable for semiquantitative analysis. TDCD demonstrates exceptional linearity and repeatability for most analytes, while paper spray offers surprising LODs despite its complex setup (between 80 and 400 pg for most analytes). The comparison with electrospray ionization (ESI) as a standard method shows that ambient ionization techniques can achieve competitive LODs for various compounds such as PETN (80 pg ESI vs 100 pg ASAP), TNT (9 pg ESI vs 4 pg ASAP), and RDX (4 pg ESI vs 10 pg ASAP). This study underscores the importance of selecting the appropriate ambient ionization technique based on the specific analytical requirements. This comprehensive evaluation contributes valuable insights into the selection and optimization of AI techniques for diverse analytical applications.
Collapse
Affiliation(s)
- Simone Mathias
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Marius Amerio-Cox
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Toni Jackson
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - David Douce
- Waters
Corporation, Stamford
Avenue, Wilmslow SK9 4AX, U.K.
| | | | - Ashley Sage
- Waters
Corporation, Stamford
Avenue, Wilmslow SK9 4AX, U.K.
| | - Peter Luke
- Mass
Spec Analytical, Future Space UWE North Gate, Bristol BS34 8RB, U.K.
| | - Carol Crean
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Patrick Sears
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
4
|
Ruan H, Song G, Fan Z, Hua L, Yang S, Kang J, Wang S, Wang W, Li H. Continuous atmospheric pressure interfaced ion trap mass spectrometry with thermal desorption for detection of nonvolatile drugs. Talanta 2024; 282:126975. [PMID: 39357409 DOI: 10.1016/j.talanta.2024.126975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
The escalating need for prompt and highly sensitive on-site detection of trace-level drugs is fueling the advancement of miniature, high-performance mass spectrometers and analytical methodologies. In this study, a miniature continuous atmospheric pressure interfaced ion trap mass spectrometer integrated with thermal desorption acetone-assisted photoionization (TD-CAPI-ITMS) was developed for highly sensitive detection of nonvolatile drugs in saliva and blood. By strategically extending the sampling time of the TD-CAPI-ITMS to cover the entire desorption process, a remarkable two-order-of-magnitude enhancement in the signal intensity of individual drugs was observed. Moreover, the simultaneous detection of drug mixtures with widely varying boiling points and saturation vapor pressures was accomplished. Optimization of the parameters yielded a limit of detection (LOD) for ketamine and 5F-EMB-PICA of 1 pg/μL accompanied by a robust stability, as evidenced by a relative standard deviation (RSD) of 5.30 %. Combined with straightforward liquid-liquid extraction, the sensitivity of drugs in saliva as low as 10 pg/μL was achieved, which met the requirements of Chinese national standard GA1333-2017. Owing to its exceptional sensitivity, the matrix effect present in blood samples was significantly alleviated through dilution, allowing for accurate monitoring of antibiotic concentrations. The results underscore the substantial potential of the TD-CAPI-ITMS for lab-free applications in drug-related forensic analysis, therapeutic drug monitoring, and pharmacokinetic studies.
Collapse
Affiliation(s)
- Huiwen Ruan
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, People's Republic of China
| | - Guiyun Song
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, People's Republic of China; Northeastern University, College of Sciences, Research Center for Analytical Sciences, Department of Chemistry, Box 332, Shenyang, 110819, People's Republic of China
| | - Zhigang Fan
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Lei Hua
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, People's Republic of China
| | - Suosuo Yang
- Emergency Department, The 1st Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
| | - Jian Kang
- Emergency Department, The 1st Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
| | - Shuang Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, People's Republic of China
| | - Weiguo Wang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, People's Republic of China; Jinkai Instrument (Dalian) Co., LTD, Dalian, 116023, Liaoning, People's Republic of China.
| | - Haiyang Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, People's Republic of China.
| |
Collapse
|
5
|
Guo ZS, Lu MM, Liu DW, Zhou CY, Liu ZS, Zhang Q. Identification of amino acids metabolomic profiling in human plasma distinguishes lupus nephritis from systemic lupus erythematosus. Amino Acids 2024; 56:56. [PMID: 39292313 PMCID: PMC11410987 DOI: 10.1007/s00726-024-03418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Lupus nephritis (LN) is an immunoinflammatory glomerulonephritis associated with renal involvement in systemic lupus erythematosus (SLE). Given the close relationship between plasma amino acids (AAs) and renal function, this study aimed to elucidate the plasma AA profiles in LN patients and identify key AAs and diagnostic patterns that distinguish LN patients from those with SLE and healthy controls. Participants were categorized into three groups: normal controls (NC), SLE, and LN. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to quantify AA levels in human plasma. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were utilized to identify key AAs. The diagnostic capacity of the models was assessed using receiver operating characteristic (ROC) curve analysis and area under the ROC curve (AUC) values. Significant alterations in plasma AA profiles were observed in LN patients compared to the SLE and NC groups. The OPLS-DA model effectively separated LN patients from the SLE and NC groups. A joint model using histidine (His), lysine (Lys), and tryptophan (Trp) demonstrated exceptional diagnostic performance, achieving an AUC of 1.0 with 100% sensitivity, specificity, and accuracy in predicting LN. Another joint model comprising arginine (Arg), valine (Val), and Trp also exhibited robust predictive performance, with an AUC of 0.998, sensitivity of 93.80%, specificity of 100%, and accuracy of 95.78% in distinguishing between SLE and LN. The joint forecasting models showed excellent predictive capabilities in identifying LN and categorizing lupus disease status. This approach provides a novel perspective for the early identification, prevention, treatment, and management of LN based on variations in plasma AA levels.
Collapse
Affiliation(s)
- Zui-Shuang Guo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China
| | - Man-Man Lu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China
| | - Chun-Yu Zhou
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China
- Blood Purification Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.
| | - Qing Zhang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
6
|
Son A, Kim W, Park J, Park Y, Lee W, Lee S, Kim H. Mass Spectrometry Advancements and Applications for Biomarker Discovery, Diagnostic Innovations, and Personalized Medicine. Int J Mol Sci 2024; 25:9880. [PMID: 39337367 PMCID: PMC11432749 DOI: 10.3390/ijms25189880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Mass spectrometry (MS) has revolutionized clinical chemistry, offering unparalleled capabilities for biomolecule analysis. This review explores the growing significance of mass spectrometry (MS), particularly when coupled with liquid chromatography (LC), in identifying disease biomarkers and quantifying biomolecules for diagnostic and prognostic purposes. The unique advantages of MS in accurately identifying and quantifying diverse molecules have positioned it as a cornerstone in personalized-medicine advancement. MS-based technologies have transformed precision medicine, enabling a comprehensive understanding of disease mechanisms and patient-specific treatment responses. LC-MS has shown exceptional utility in analyzing complex biological matrices, while high-resolution MS has expanded analytical capabilities, allowing the detection of low-abundance molecules and the elucidation of complex biological pathways. The integration of MS with other techniques, such as ion mobility spectrometry, has opened new avenues for biomarker discovery and validation. As we progress toward precision medicine, MS-based technologies will be crucial in addressing the challenges of individualized patient care, driving innovations in disease diagnosis, prognosis, and treatment strategies.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yongho Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sangwoon Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
Zhai Y, Fu X, Xu W. Miniature mass spectrometers and their potential for clinical point-of-care analysis. MASS SPECTROMETRY REVIEWS 2024; 43:1172-1191. [PMID: 37610153 DOI: 10.1002/mas.21867] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Mass spectrometry (MS) has become a powerful technique for clinical applications with high sensitivity and specificity. Different from conventional MS diagnosis in laboratory, point-of-care (POC) analyses in clinics require mass spectrometers and analytical procedures to be friendly for novice users and applicable for on-site clinical diagnosis. The recent decades have seen the progress in the development of miniature mass spectrometers, providing a promising solution for clinical POC applications. In this review, we report recent advances of miniature mass spectrometers and their exploration in clinical applications, mainly including the rapid analysis of illegal drugs, on-site monitoring of therapeutic drugs, and detection of biomarkers. With improved analytical performance, miniature mass spectrometers are also expected to apply to more and more clinical applications. Some promising POC analyses that can be performed by miniature mass spectrometers in the future are discussed. Lastly, we also provide our perspectives on the challenges in technical development of miniature mass spectrometers for clinical POC analysis.
Collapse
Affiliation(s)
- Yanbing Zhai
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Xinyan Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
8
|
Du A, Lu Z, Hua L. Decentralized food safety and authentication on cellulose paper-based analytical platform: A review. Compr Rev Food Sci Food Saf 2024; 23:e13421. [PMID: 39136976 DOI: 10.1111/1541-4337.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Food safety and authenticity analysis play a pivotal role in guaranteeing food quality, safeguarding public health, and upholding consumer trust. In recent years, significant social progress has presented fresh challenges in the realm of food analysis, underscoring the imperative requirement to devise innovative and expedient approaches for conducting on-site assessments. Consequently, cellulose paper-based devices (PADs) have come into the spotlight due to their characteristics of microchannels and inherent capillary action. This review summarizes the recent advances in cellulose PADs in various food products, comprising various fabrication strategies, detection methods such as mass spectrometry and multi-mode detection, sampling and processing considerations, as well as applications in screening food safety factors and assessing food authenticity developed in the past 3 years. According to the above studies, cellulose PADs face challenges such as limited sample processing, inadequate multiplexing capabilities, and the requirement for workflow integration, while emerging innovations, comprising the use of simplified sample pretreatment techniques, the integration of advanced nanomaterials, and advanced instruments such as portable mass spectrometer and the innovation of multimodal detection methods, offer potential solutions and are highlighted as promising directions. This review underscores the significant potential of cellulose PADs in facilitating decentralized, cost-effective, and simplified testing methodologies to maintain food safety standards. With the progression of interdisciplinary research, cellulose PADs are expected to become essential platforms for on-site food safety and authentication analysis, thereby significantly enhancing global food safety for consumers.
Collapse
Affiliation(s)
- An Du
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, P. R. China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, P. R. China
| | - Li Hua
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, P. R. China
| |
Collapse
|
9
|
Darie-Ion L, Petre BA. An update on multiplexed mass spectrometry-based lysosomal storage disease diagnosis. MASS SPECTROMETRY REVIEWS 2024; 43:1135-1149. [PMID: 37584312 DOI: 10.1002/mas.21864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Lysosomal storage disorders (LSDs) are a type of inherited metabolic disorders in which biomolecules, accumulate as a specific substrate in lysosomes due to specific individual enzyme deficiencies. Despite the fact that LSDs are incurable, various approaches, including enzyme replacement therapy, hematopoietic stem cell transplantation, or gene therapy are now available. Therefore, a timely diagnosis is a critical initial step in patient treatment. The-state-of-the-art in LSD diagnostic uses, in the first stage, enzymatic activity determination by fluorimetry or by mass spectrometry (MS) with the aid of dry blood spots, based on different enzymatic substrate structures. Due to its sensitivity, high precision, and ability to screen for an unprecedented number of diseases in a single assay, multiplexed tandem MS-based enzyme activity assays for the screening of LSDs in newborns have recently received a lot of attention. Here, (i) we review the current approaches used for simultaneous enzymatic activity determination of LSDs in dried blood spots using multiplex-LC-MS/MS; (ii) we explore the need for designing novel enzymatic substrates that generate different enzymatic products with distinct molecular masses in multiplexed-MS studies; and (iii) we give examples of the relevance of affinity-MS technique as a basis for reversing undesirable immune-reactivity in enzyme replacement therapy.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Group of Biochemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Iaşi, Romania
| | - Brînduşa Alina Petre
- Group of Biochemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Iaşi, Romania
- Laboratory of Proteomics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, Iaşi, Romania
| |
Collapse
|
10
|
Shafiee S, Dastmalchi S, Gharekhani A, Shayanfar A. Analysis of indoxyl sulfate in biological fluids with emphasis on sample preparation techniques: A comprehensive analytical review. Heliyon 2024; 10:e35032. [PMID: 39157307 PMCID: PMC11328088 DOI: 10.1016/j.heliyon.2024.e35032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The uremic toxin indoxyl sulfate (IS) has been related to the development of various medical conditions notably chronic kidney disease (CKD). Hence, quantification of this biomarker in biological fluids may be a diagnostic tool to evaluate renal system functionality. Numerous analytical methods including liquid chromatography, gas chromatography, spectroscopy, and electrochemical techniques have since been used to analyze IS in different biological fluids. The current review highlights the relevant studies that assessed IS with a special focus on sample preparation, which is essential to reduce or eliminate the effect of endogenous components from the matrix in bioanalysis.
Collapse
Affiliation(s)
- Samira Shafiee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Gharekhani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Smith BJ, Guest PC, Martins-de-Souza D. Maximizing Analytical Performance in Biomolecular Discovery with LC-MS: Focus on Psychiatric Disorders. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:25-46. [PMID: 38424029 DOI: 10.1146/annurev-anchem-061522-041154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this review, we discuss the cutting-edge developments in mass spectrometry proteomics and metabolomics that have brought improvements for the identification of new disease-based biomarkers. A special focus is placed on psychiatric disorders, for example, schizophrenia, because they are considered to be not a single disease entity but rather a spectrum of disorders with many overlapping symptoms. This review includes descriptions of various types of commonly used mass spectrometry platforms for biomarker research, as well as complementary techniques to maximize data coverage, reduce sample heterogeneity, and work around potentially confounding factors. Finally, we summarize the different statistical methods that can be used for improving data quality to aid in reliability and interpretation of proteomics findings, as well as to enhance their translatability into clinical use and generalizability to new data sets.
Collapse
Affiliation(s)
- Bradley J Smith
- 1Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, São Paulo, Brazil;
| | - Paul C Guest
- 1Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, São Paulo, Brazil;
- 2Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- 3Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniel Martins-de-Souza
- 1Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, São Paulo, Brazil;
- 4Experimental Medicine Research Cluster, University of Campinas, São Paulo, Brazil
- 5National Institute of Biomarkers in Neuropsychiatry, National Council for Scientific and Technological Development, São Paulo, Brazil
- 6D'Or Institute for Research and Education, São Paulo, Brazil
- 7INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil
| |
Collapse
|
12
|
Tu M, Xu W, Zhai Y. A Miniature Orthogonal Injection Ion Funnel (MO-IF) Providing Enhanced Performance for the Miniature Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1363-1369. [PMID: 38683544 DOI: 10.1021/jasms.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The sensitivity of the miniature mass spectrometer (mini-MS) is largely restricted by the ion transmission in rough vacuum region. Even though various "in-line" ion transfer devices have improved mini-MS sensitivity, the severe dynamic gas is still weakening the efficiency of ion transmission in this region. Inspired by the "off-axis" ion funnel design in the lab-scale mass spectrometers, a miniature orthogonal injection ion funnel (MO-IF) was developed in this study for the mini-MS with a continuous atmospheric pressure interface. Capable of directing injected ions by 90° and then transport them forward to the downstream skimmer, the MO-IF enabled the separation of ions from the dynamic gas flow jetted out of the inlet capillary. The key factors were optimized for the MO-IF, including the effects of RF amplitude, DC electric fields, and the position of the repeller. Under optimized conditions, the MO-IF minimized the negative effects of dynamic gas and improved the ion transmission efficiency by ∼2-fold in comparison with the in-line injection ion funnel. As a result, a lower limit of detection of 0.5 ng/mL were obtained with good linearity for hypaconitine. Additionally, the MO-IF further decreased the buffer gas pressure in the second vacuum chamber and improved the mass resolution by 1.1-1.5 times at different scan rates.
Collapse
Affiliation(s)
- Min Tu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yanbing Zhai
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
13
|
Yang Y, Jiang J, Jiang Y, Ju Y, He J, Yu K, Kan G, Zhang H. Determination of amino acid metabolic diseases from dried blood spots with a rapid extraction method coupled with nanoelectrospray ionization mass spectrometry. Talanta 2024; 272:125768. [PMID: 38340394 DOI: 10.1016/j.talanta.2024.125768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
In this work, a rapid extraction method of methanol/water (95:5 v/v) with 0.1% formic acid was developed for extraction of amino acids from dried blood spots (DBS) for inherited metabolic diseases (IMDs). The combination of this extraction procedure with nanoelectrospray ionization mass spectrometry (nESI-MS) was used for the rapid analysis of amino acids. This approach with eliminating the chromatographic separation required only 2 min for the extraction of amino acids from DBS, which simplified the configuration and improved the timeliness. Dependence of the sensitivity on the operating parameters was systematically investigated. The LOD of 91.2-262.5 nmol/L and LOQ of 304-875 nmol/L which were lower than the cut-off values were obtained for amino acids within DBS. The accuracy was determined to be 93.82%-103.07% and the precision was determined to be less than 8.30%. The effectiveness of this method was also compared with the gold standard method (e.g., LC-MS/MS). The desalination mechanism was explored with interference mainly originated from the blood. These findings indicated that the rapid extraction procedure coupled with nESI-MS is capable of screening indicators for IMDs in complex biological samples.
Collapse
Affiliation(s)
- Yali Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Yun Ju
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| |
Collapse
|
14
|
Zhang M, Shang R, Hong Z, Zhang H, Yu K, Kan G, Xiong H, Song D, Jiang Y, Jiang J. One-step online analysis of antibiotics in highly saline seawater by nano-based slug-flow microextraction. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134039. [PMID: 38492401 DOI: 10.1016/j.jhazmat.2024.134039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The transition to mass spectrometry (MS) in the analysis of antibiotics in the marine environment is highly desirable, particularly in the enhancement of sensitivity for high-salinity (3.5 wt%) seawater samples. However, the persistence of complex operational procedures poses substantial challenges to this transition. In this study, a rapid method for the online analysis of antibiotics in seawater samples via nano-electrospray ionization (nESI) MS based on slug-flow microextraction (SFME) has been proposed. Comparisons with other methods, complex laboratory setups for sample processing are now seamlessly integrated into a single online step, completing the entire process, including desalination and detection, SFME-nESI-MS provides faster results in less than 2 min while maintaining sensitivity comparable to that of other detection methods. Using SFME-nESI, six antibiotics in high-salinity (3.5 wt%) seawater samples have been determined in both positive and negative ion modes. The proposed method successfully detected clarithromycin, ofloxacin, and sulfadimidine in seawater within a linear range of 1-1000 ng mL-1 and limit of detection (LOD) of 0.23, 0.06, and 0.28 ng mL-1, respectively. The method recovery was from 92.8% to 107.3%, and the relative standard deviation was less than 7.5%. In addition, the response intensity of SFME-nESI-treated high-salinity (3.5 wt%) samples surpassed that of untreated medium-salinity (0.35 wt%) samples by two to five orders of magnitude. This advancement provides an exceptionally simplified protocol for the online rapid, highly sensitive, and quantitative determination of antibiotics in high-salinity (3.5 wt%) seawater.
Collapse
Affiliation(s)
- Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ruonan Shang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Ziying Hong
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Huixia Xiong
- Shanxi Provincial Center for Disease Control and Prevention, Xiaonan Guan Street 8, Taiyuan 030001, China
| | - Daqian Song
- College of Chemistry, Jilin University, Jilin, Changchun 130012, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China.
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
15
|
Chen S, Pu K, Wang Y, Su Y, Qiu J, Wang X, Guo K, Hu J, Wei H, Wang H, Wei X, Chen Y, Lin W, Ni W, Lin Y, Chen J, Lai SKM, Ng KM. Hierarchical superstructure aerogels for in situ biofluid metabolomics. NANOSCALE 2024; 16:8607-8617. [PMID: 38602354 DOI: 10.1039/d3nr05895f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
High-throughput biofluid metabolomics analysis for screening life-threatening diseases is urgently needed. However, the high salt content of biofluid samples, which introduces severe interference, can greatly limit the analysis throughput. Here, a new 3-D interconnected hierarchical superstructure, namely a "plasmonic gold-on-silica (Au/SiO2) double-layered aerogel", integrating distinctive features of an upper plasmonic gold aerogel with a lower inert silica aerogel was successfully developed to achieve in situ separation and storage of inorganic salts in the silica aerogel, parallel enrichment of metabolites on the surface of the functionalized gold aerogel, and direct desorption/ionization of enriched metabolites by the photo-excited gold aerogel for rapid, sensitive, and comprehensive metabolomics analysis of human serum/urine samples. By integrating all these unique advantages into the hierarchical aerogel, multifunctional properties were introduced in the SALDI substrate to enable its effective utilization in clinical metabolomics for the discovery of reliable metabolic biomarkers to achieve unambiguous differentiation of early and advanced-stage lung cancer patients from healthy individuals. This study provides insight into the design and application of superstructured nanomaterials for in situ separation, storage, and photoexcitation of multi-components in complex biofluid samples for sensitive analysis.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Keyuan Pu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Yue Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Yang Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Jiamin Qiu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Xin Wang
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Kunbin Guo
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Jun Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Huiwen Wei
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
| | - Hongbiao Wang
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Xiaolong Wei
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Yuping Chen
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Wen Lin
- The Cancer Hospital of Shantou University Medical College, Guangdong, 515031, China.
| | - Wenxiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Guangdong, 515041, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
| | - Yan Lin
- The Second Affiliated Hospital of Shantou University Medical College, Guangdong, 515041, China
| | - Jiayang Chen
- Instrumental Analysis & Testing Centre, Shantou University, Guangdong, 515063, China
| | - Samuel Kin-Man Lai
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, China
| | - Kwan-Ming Ng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, China
| |
Collapse
|
16
|
Gu H, Li J, Liang Q, Xu W. Solid phase microextraction device coupled with miniature mass spectrometry and mathematical model of its ion chronogram. Talanta 2024; 271:125651. [PMID: 38262130 DOI: 10.1016/j.talanta.2024.125651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
Modern solid phase microextraction (SPME) device linked with mass spectrometry (SPME-MS) has evolved from producing ion chronogram as flat noisy signal to as unimodal-like signal. We designed a SPME device, which is closer in morphology to LC column, linked it with a miniature mass spectrometer (SPME-Mini MS), and proposed a mathematical model that elution of compound from the SPME device is equivalent to overlay of elution of the compound from the infinite LC columns with the lengths between 0 and the length of the device and it can generate an ion chronogram as right-skew unimodal signal. Rhodamine B as analyte was used for experimental verification and its unimodal signal was used to fit the parameters of a computer simulation program based on the model. The experimental results and simulations empirically cross-confirmed that SPME-Mini MS can generate ion chronogram as clean right-skew unimodal signal. Furthermore, the SPME-Mini MS system was used for quantitative analysis of psychotropic drugs (i.e. risperidone and aripiprazole) in artificial urine. The results preliminarily demonstrated that the system can utilize area under unimodal signal for quantitative analysis and has potential to be applied for on-site, fast and accurate quantification of drugs and other compounds.
Collapse
Affiliation(s)
- Hao Gu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Jiwen Li
- Hanbot Institute, Yovole Networks Inc, Shanghai, 200433, China.
| | - Qiong Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Pekov SI, Bormotov DS, Bocharova SI, Sorokin AA, Derkach MM, Popov IA. Mass spectrometry for neurosurgery: Intraoperative support in decision-making. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38571445 DOI: 10.1002/mas.21883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Ambient ionization mass spectrometry was proved to be a powerful tool for oncological surgery. Still, it remains a translational technique on the way from laboratory to clinic. Brain surgery is the most sensitive to resection accuracy field since the balance between completeness of resection and minimization of nerve fiber damage determines patient outcome and quality of life. In this review, we summarize efforts made to develop various intraoperative support techniques for oncological neurosurgery and discuss difficulties arising on the way to clinical implementation of mass spectrometry-guided brain surgery.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| | - Denis S Bormotov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | | | - Anatoly A Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Maria M Derkach
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
18
|
Shafiee S, Dastmalchi S, Gharekhani A, Shayanfar A. Determination of indoxyl sulfate by spectrofluorimetric method in human plasma through extraction with deep eutectic solvent. BMC Chem 2024; 18:61. [PMID: 38555438 PMCID: PMC10981813 DOI: 10.1186/s13065-024-01172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
A rapid and efficient analytical method was established to quantify indoxyl sulfate (IS) in plasma through extraction technique with a deep eutectic solvent (DES) and spectrofluorimetric method. DES (choline chloride: urea) was mixed with plasma samples for the extraction of IS, followed by the addition of dipotassium hydrogen phosphate (K2HPO4) solution to form an aqueous two-phase system. The fluorescence intensity of IS which was first extracted to the DES-rich-phase and then back-extracted into the salt-rich-phase, was measured by spectrofluorimetric method. Some key factors such as pH, centrifugation speed and time, the volume ratio of DES/salt, and salt concentration were optimized. Under the optimized conditions, the suggested method had a dynamic range between 20 and 160 µg/mL with a coefficient of determination (R2) of 0.99. Precision (relative standard deviation) was less than 15% and accuracy (% relative recovery) was ± 15% at the nominal concentration level. In addition, results showed that IS levels in real samples were higher than 40 µg/mL which was compatible with reported IS levels in end-stage renal disease (ESRD) patients. Overall, all the results reflect the fact that the presented analytical method can potentially be used for the determination of IS in real plasma samples.
Collapse
Affiliation(s)
- Samira Shafiee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, Mersin 10, Nicosia, POBOX: 99138, North Cyprus, Turkey
| | - Afshin Gharekhani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Sun J, Song JH, Danielson MK, Colley ND, Thomas A, Hambly D, Barnes JC, Gross ML. Development of a High-Throughput Mass Spectrometry-Based SARS-CoV-2 Immunoassay. Anal Chem 2024; 96:12-17. [PMID: 38109790 PMCID: PMC10909588 DOI: 10.1021/acs.analchem.3c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The serious impact of the Covid-19 pandemic underscores the need for rapid, reliable, and high-throughput diagnosis methods for infection. Current analytical methods, either point-of-care or centralized detection, are not able to satisfy the requirements of patient-friendly testing, high demand, and reliability of results. Here, we propose a two-point separation on-demand diagnostic strategy that uses laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) and adopts a stable yet cleavable ionic probe as a mass reporter. The use of this reporter enables ultrasensitive, interruptible, storable, restorable, and high-throughput on-demand detection. We describe a demonstration of the concept whereby we (i) design and synthesize a laser-cleavable reporter (DTPA), (ii) conjugate the reporter onto an antibody and verify the function of the conjugate, (iii) detect with good turnaround and high sensitivity the conjugated reporter, (iv) analyze quantitatively by using a laser-cleavable internal standard, and (v) identify negative and positive samples containing the spike protein. The protocol has excellent sensitivity (amol for the SARS-CoV-2 Spike S1 subunit antibody) without any amplification. This strategy is also applicable for the detection of other disease antigens besides SARS-CoV-2.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jong Hee Song
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Mary K. Danielson
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nathan D. Colley
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Alia Thomas
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David Hambly
- Advanced Therapy Product Consulting, Inc., Oak Park, CA, 91377, USA
| | - Jonathan C. Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
20
|
Zhang J, Huang W, Wu R, Yan Z, Tan G, Zhu C, Gao W, Hu B. Real-Time and Online Monitoring of Hazardous Volatile Organic Compounds in Environmental Water by an Unmanned Shipborne Mass Spectrometer System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20864-20870. [PMID: 38032854 DOI: 10.1021/acs.est.3c07193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Hazardous volatile organic compounds (VOCs) are one of the critical concerns in environmental water due to their toxicity to aquatic organisms and drinking water. Therefore, rapid detection of hazardous VOCs in environmental water is highly needed as many analytical methods are limited to on-site monitoring. In this work, we designed a novel unmanned shipborne mass spectrometer (US-MS) system for the real-time and online monitoring of hazardous VOCs in environmental water. The US-MS system consists of a miniaturized mass spectrometer, an automatic sampling device, a robust unmanned ship, and other monitoring and control devices. Along with the navigation route of the US-MS system, environmental water was continuously introduced into the MS system for the online and real-time detection of hazardous VOCs via a liquid/gas exchange membrane. Analytical performances of the US-MS system were investigated by a mixture of 10 VOCs showing low limits of detection (LODs: 0.31-1.26 ng/mL), good reproducibility (RSDs: 2.93-11.03%, n = 7), and excellent quantitative ability (R2 > 0.99). Furthermore, on-site detection and online monitoring of hazardous volatile contaminants such as benzene, chloroprene, and toluene in different aquatic environments such as rivers and lakes were successfully demonstrated, showing excellent field applicability of the US-MS system. Overall, the newly developed US-MS system could perform on-site, online, and real-time monitoring of complex VOCs in environmental water, showing good performances and versatile applications in water analysis.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Wenjie Huang
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou 510530, China
| | - Riwei Wu
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou 510530, China
| | - Zhiqi Yan
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou 510530, China
| | - Guobin Tan
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou 510530, China
| | - Chenghui Zhu
- Tianjin Microdroplet Innovative Technology Co., Ltd., Tianjin 300192, China
| | - Wei Gao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Djambazova KV, van Ardenne JM, Spraggins JM. Advances in Imaging Mass Spectrometry for Biomedical and Clinical Research. Trends Analyt Chem 2023; 169:117344. [PMID: 38045023 PMCID: PMC10688507 DOI: 10.1016/j.trac.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Imaging mass spectrometry (IMS) allows for the untargeted mapping of biomolecules directly from tissue sections. This technology is increasingly integrated into biomedical and clinical research environments to supplement traditional microscopy and provide molecular context for tissue imaging. IMS has widespread clinical applicability in the fields of oncology, dermatology, microbiology, and others. This review summarizes the two most widely employed IMS technologies, matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI), and covers technological advancements, including efforts to increase spatial resolution, specificity, and throughput. We also highlight recent biomedical applications of IMS, primarily focusing on disease diagnosis, classification, and subtyping.
Collapse
Affiliation(s)
- Katerina V. Djambazova
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacqueline M. van Ardenne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
22
|
Zhang H, Yang Y, Jiang Y, Zhang M, Xu Z, Wang X, Jiang J. Mass Spectrometry Analysis for Clinical Applications: A Review. Crit Rev Anal Chem 2023:1-20. [PMID: 37910438 DOI: 10.1080/10408347.2023.2274039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Mass spectrometry (MS) has become an attractive analytical method in clinical analysis due to its comprehensive advantages of high sensitivity, high specificity and high throughput. Separation techniques coupled MS detection (e.g., LC-MS/MS) have shown unique advantages over immunoassay and have developed as golden criterion for many clinical applications. This review summarizes the characteristics and applications of MS, and emphasizes the high efficiency of MS in clinical research. In addition, this review also put forward further prospects for the future of mass spectrometry technology, including the introduction of miniature MS instruments, point-of-care detection and high-throughput analysis, to achieve better development of MS technology in various fields of clinical application. Moreover, as ambient ionization mass spectrometry (AIMS) requires little or no sample pretreatment and improves the flux of MS, this review also summarizes its potential applications in clinic.
Collapse
Affiliation(s)
- Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Yali Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Zhilong Xu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| |
Collapse
|
23
|
Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteomics 2023; 20:32. [PMID: 37633929 PMCID: PMC10464495 DOI: 10.1186/s12014-023-09424-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and affordable will have the greatest healthcare benefit.This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, remarkable analytical specificity and sensitivity and low turnaround time.Despite the achievements in the development and adoption of a number of MS-based clinical proteomics practices, more are expected to undergo transition from bench to bedside in the near future. The review provides insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the application of proteomics in clinical laboratories.
Collapse
|
24
|
Zhou W, Nazdrajić E, Pawliszyn J. High-Throughput and Rapid Screening of Drugs of Abuse in Saliva by Multi-Segment Injection Using Solid-Phase Microextraction-Automated Microfluidic Open Interface-Mass Spectrometry. Anal Chem 2023; 95:6367-6373. [PMID: 37021600 PMCID: PMC10848236 DOI: 10.1021/acs.analchem.2c05782] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
There is great demand for analytical methods capable of providing high-throughput and rapid screening, especially for anti-doping and clinical point-of-care applications. In this work, automated microfluidic open interface-mass spectrometry (MOI-MS) was used for coupling with high-throughput, automated solid-phase microextraction (SPME) to achieve this objective. The design of the MOI-MS interface provides a continuous and stable electrospray fluid flow to the MS without introducing any bubble, a feature that we exploit to introduce the concept of multi-segment injection for the determination of multiple samples in a single MS run. By eliminating the need to start a new MS run between sample assays, the developed approach provides significantly simplified protocols controlled by programmed software and increased reproducibility. Furthermore, the biocompatible SPME device, which utilizes coating consisting of hydrophilic-lipophilic balanced particles embedded in a polyacrylonitrile (PAN) binder, can be directly used for biological sample analysis, as the PAN acts as both a binder and a matrix-compatible barrier, thus enabling the enrichment of small molecules while eliminating interferences associated with the presence of interfering macromolecules. The above design was employed to develop a fast, quantitative method capable of analyzing drugs of abuse in saliva samples in as little as 75 s per sample. The findings indicate that the developed method provides good analytical performance, with limits of detection ranging between 0.05 and 5 ng/mL for analysis of 16 drugs of abuse, good calibration linear correlation coefficients (R2 ≥ 0.9957), accuracy between 81 and 120%, and excellent precision (RSD% < 13%). Finally, a proof-of-concept experiment was performed to demonstrate the method's suitability for real-time analysis in anti-doping applications.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Emir Nazdrajić
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
25
|
Development and application of a miniature mass spectrometer with continuous sub-atmospheric pressure interface and integrated ionization source. Talanta 2023; 253:123994. [PMID: 36228556 DOI: 10.1016/j.talanta.2022.123994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022]
Abstract
For the miniature mass spectrometer (MS) with a continuous atmospheric pressure interface (CAPI), the gas in the multi-stage chambers directly affects the performance of the instrument. In this study, a sealed ionization chamber is designed to couple with a conventional mini CAPI-MS. In this configuration, the gas environment in the first ionization chamber can be flexibly changed to regulate the gas conditions throughout the entire instrument. By studying the effect of gas pressure on the performance of the instrument, we found that the instrument shows some unique advantages when the first ionization chamber is under sub-atmospheric pressure (SAP) conditions, such as reducing the load of the vacuum pump by 40%, achieving pump-free injection for gas and liquid samples, and improving the resolution by a factor of 2 without loss of detection sensitivity. Therefore, we propose a new integrated interface called continuous sub-atmospheric pressure interface (CSAPI) for building a miniature ion trap mass spectrometer. The CSAPI specially integrates sample introduction, gas/ions interface, and ionizations, including electrospray ionization (ESI) and secondary electrospray ionization (SESI), making this system more convenient for non-professional handlers to rapidly identify or monitor target analytes in gaseous- and solution-phase samples. We also use this system to study gas composition to further improve performance, being able to achieve a 5-fold sensitivity and 2-fold resolution improvement. At last, some custom applications of the current CSAPI-MS platform are explored and demonstrated, including real-time monitoring of chemical reactions in solution and long-distance sampling and analysis of dried Chinese herbs. In conclusion, this study provides a new approach to constructing a complete, versatile and practical miniature MS instrument.
Collapse
|
26
|
Wang J, Pursell ME, DeVor A, Awoyemi O, Valentine SJ, Li P. Portable mass spectrometry system: instrumentation, applications, and path to 'omics analysis. Proteomics 2022; 22:e2200112. [PMID: 36349734 PMCID: PMC10278091 DOI: 10.1002/pmic.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Mass spectrometry (MS) is an information rich analytical technique and plays a key role in various 'omics studies. Standard mass spectrometers are bulky and operate at high vacuum, which hinder their adoption by the broader community and utility in field applications. Developing portable mass spectrometers can significantly expand the application scope and user groups of MS analysis. This review discusses the basics and recent advancements in the development of key components of portable mass spectrometers including ionization source, mass analyzer, detector, and vacuum system. Further, major areas where portable mass spectrometers are applied are also discussed. Finally, a perspective on the further development of portable mass spectrometers including the potential benefits for 'omics analysis is provided.
Collapse
Affiliation(s)
- Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Madison E. Pursell
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Olanrewaju Awoyemi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
27
|
Teng K, Shi J, Zhu Y, Yu Q. Micro-tapered aperture nebulization ionization for versatile mass spectrometry analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4886-4892. [PMID: 36420596 DOI: 10.1039/d2ay01657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The bloom of new ionization sources is promoting the prosperity and application of mass spectrometry analysis. In this study, we introduced a new (high) voltage-free ionization method termed micro-tapered aperture nebulization ionization (MANI), which only requires the use of a common micro-tapered aperture atomizer to operate. It is found that liquid nebulization on this type of atomizer can induce ionization of the dissolved analytes in the droplets without the assistance of additional voltage and gas. By assembling the commercially available atomizer module into a 3D-printed chamber, a compact MANI source was constructed and then characterized. This source has a high ion yield and satisfactory quantitative performance, and it is preferably used to analyze aqueous solutions. Furthermore, it exhibits broad applicability and can be easily extended to multiple applications, including liquid extraction surface analysis of solid samples and direct analysis of gaseous analytes via secondary spray ionization. In short, the MANI source is a simple, safe, green, and versatile tool that can assist mass spectrometers to perform routine and diverse analysis.
Collapse
Affiliation(s)
- Keguo Teng
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Jianbo Shi
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanping Zhu
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Quan Yu
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Salvador AF, Shyu CR, Parks EJ. Measurement of lipid flux to advance translational research: evolution of classic methods to the future of precision health. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1348-1353. [PMID: 36075949 PMCID: PMC9534914 DOI: 10.1038/s12276-022-00838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past 70 years, the study of lipid metabolism has led to important discoveries in identifying the underlying mechanisms of chronic diseases. Advances in the use of stable isotopes and mass spectrometry in humans have expanded our knowledge of target molecules that contribute to pathologies and lipid metabolic pathways. These advances have been leveraged within two research paths, leading to the ability (1) to quantitate lipid flux to understand the fundamentals of human physiology and pathology and (2) to perform untargeted analyses of human blood and tissues derived from a single timepoint to identify lipidomic patterns that predict disease. This review describes the physiological and analytical parameters that influence these measurements and how these issues will propel the coming together of the two fields of metabolic tracing and lipidomics. The potential of data science to advance these fields is also discussed. Future developments are needed to increase the precision of lipid measurements in human samples, leading to discoveries in how individuals vary in their production, storage, and use of lipids. New techniques are critical to support clinical strategies to prevent disease and to identify mechanisms by which treatments confer health benefits with the overall goal of reducing the burden of human disease. Personalized tracking of how lipid (fat) metabolism changes over time could lead to improvements in the diagnosis and treatment of several diseases. Elizabeth Parks and colleagues from the University of Missouri, Columbia, USA, discuss the ways in which researchers use stable isotope labeling to monitor the kinetics of fatty acids and other lipids in the body. Usually, lipid quantities are measured only at a single timepoint, however the tracking of lipid turnover over time provides further diagnostic information. Aided by new techniques such as high-throughput mass spectrometry and machine learning, researchers are now able to continuously map total lipid contents in individual patients. The transition of measurements of lipid flux from the research laboratory to the doctor’s office will likely play a role in a new era of precision medicine.
Collapse
Affiliation(s)
- Amadeo F Salvador
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.,Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Chi-Ren Shyu
- Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA. .,Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
29
|
Zhao C, Dong J, Deng L, Tan Y, Jiang W, Cai Z. Molecular network strategy in multi-omics and mass spectrometry imaging. Curr Opin Chem Biol 2022; 70:102199. [PMID: 36027696 DOI: 10.1016/j.cbpa.2022.102199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Human physiological activities and pathological changes arise from the coordinated interactions of multiple molecules. Mass spectrometry (MS)-based multi-omics and MS imaging (MSI)-based spatial omics are powerful methods used to investigate molecular information related to the phenotype of interest from homogenated or sliced samples, including the qualitative, relative quantitative and spatial distributions. Molecular network strategy provides efficient methods to help us understand and mine the biological patterns behind the phenotypic data. It illustrates and combines various relationships between molecules, and further performs the molecule identification and biological interpretation. Here, we describe the recent advances of network-based analysis and its applications for different biological processes, such as, obesity, central nervous system diseases, and environmental toxicology.
Collapse
Affiliation(s)
- Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiyang Dong
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Lingli Deng
- Department of Information Engineering, East China University of Technology, China
| | - Yawen Tan
- Department of Breast and Thyroid Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei Jiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|