1
|
Shin JH, Kim MJ, Kim JY, Choi B, Kang Y, Kim SH, Lee HJ, Kwon D, Cho YB, Kim KK, Chun E, Lee KY. USP21-EGFR signaling axis is functionally implicated in metastatic colorectal cancer. Cell Death Discov 2024; 10:492. [PMID: 39695128 DOI: 10.1038/s41420-024-02255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
The emerging role of ubiquitin-specific peptidase 21 (USP21) in stabilizing Fra-1 (FOSL1) highlights its involvement in promoting colorectal cancer (CRC) metastasis. Additionally, a reciprocal link between EGFR signaling and Fra-1 activation has been identified, mediated through matrix metalloproteinases (MMPs). However, the functional implications of the USP21-EGFR signaling axis in metastatic CRC (mCRC) are not fully understood. To investigate the clinical correlation between USP21 and EGFR expression, RNA-Seq data from tumor tissues (n = 27) and matched normal tissues (n = 27) of 27 mCRC patients were analyzed. Functional studies were performed, including the use of CRISPR/Cas9 to generate USP21-knockout (USP21-KO) CRC cells, in vitro assays for cancer progression and tumor formation, in vivo xenograft assays in NSG mice. Additionally, the therapeutic effect of the USP21 inhibitor, BAY-805, was evaluated. We found that elevated levels of USP21 and EGFR expression in mCRC patients were associated with poorer survival outcomes. Mechanistically, USP21 was found to enhance EGFR stability by deubiquitinating EGFR, leading to reduced EGFR degradation. USP21-KO colon cancer cells exhibited significantly reduced proliferation, migration, colony formation, and 3D tumor spheroid formation in response to EGF. Furthermore, the tumorigenic activity in vivo was markedly diminished in NSG mice xenografted with USP21-KO colon cancer cells. Importantly, BAY-805 demonstrated a notable inhibitory effect on the formation of 3D tumor spheroids in colorectal cancer cells stimulated with EGF. These findings suggest that USP21 could be a valuable therapeutic target and predictive biomarker for managing mCRC driven by EGF.
Collapse
Affiliation(s)
- Ji Hye Shin
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Mi-Jeong Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Bongkum Choi
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Bioanalysis Center, GenNBio Inc., Seongnam, Republic of Korea
| | - Yeeun Kang
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seo Hyun Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ha-Jeong Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dohee Kwon
- Bioanalysis Center, GenNBio Inc., Seongnam, Republic of Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong Kyu Kim
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunyoung Chun
- Research and Development Center, CHA Vaccine Institute, Seongnam, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Bahriz HA, Abdelaziz RR, El-Kashef DH. Desloratadine mitigates hepatocellular carcinoma in rats: Possible contribution of TLR4/MYD88/NF-κB pathway. Toxicol Appl Pharmacol 2024; 495:117202. [PMID: 39672344 DOI: 10.1016/j.taap.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/03/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Chemotherapeutic medication-induced systemic toxicity makes cancer treatment less effective. Thus, the need for drug repurposing, which aids in the development of safe and efficient cancer therapies, is urgent. The primary goal of this research was to assess desloratadine hepatoprotective abilities and its capacity to attenuate TLR4/MyD88/NF-κB inflammatory pathway in hepatocellular carcinoma (HCC) induced by thioacetamide (TAA). Male Sprague Dawely rats received TAA injections (200 mg/kg, i.p., 2 times/week) for 16 weeks. To confirm the development of HCC, liver function biomarkers and histopathological analysis were evaluated. Desloratadine (5 mg/kg, p.o.) was administered to rats in 2 treatment groups; HCC + DES 1 group received desloratadine with TAA for 1 month from week 13-16, HCC + DES 2 group received desloratadine with TAA for 2 months from week 9-16. Chronic TAA administration resulted in considerable overexpression of the profibrogenic cytokine TGF-β and elevation in protein expression of NF-κB besides levels of TLR4, MyD88, TRAF6, TAK1 and IL-1β. Desloratadine administration showed a significant improvement in liver function tests, as well as an increase in tissue antioxidant enzymes and an improvement in the liver's histopathological features. Collectively, desloratadine through modulating TLR4/MyD88/TRAF6/TAK1/NF-κB and acting as an antioxidant, is a promising treatment for HCC induced by TAA.
Collapse
Affiliation(s)
- Heba A Bahriz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Zhao H, Zheng D, Chang Q, Zhang H, Shao Y, Li J, Cui W, Jiang Y, Tang L, Li Y, Wang X. IPEC-J2 Autophagy Induced by TLR4 and NSP6 Interactions Facilitate Porcine Epidemic Diarrhea Virus Replication. Viruses 2024; 16:1787. [PMID: 39599901 PMCID: PMC11598845 DOI: 10.3390/v16111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Autophagy is an important cellular response against intracellular pathogens. However, some viruses have evolved mechanisms to hijack this defensive process to provide favorable conditions for virus replication in host cells. The porcine epidemic diarrhea virus (PEDV) has been shown to alter autophagy pathways; however, it is still unknown through which receptors PEDV induces autophagy in IPEC-J2 cells, whether autophagy facilitates PEDV replication, and which functional domains of PEDV proteins are primarily responsible for inducing autophagy. Here, we found that PEDV infection induces autophagy in host cells via distinct and uncoupled molecular pathways. RNA-seq technology was used to analyze the expression patterns of intracellular genes in PEDV-infected IPEC-J2 cells using transcriptomics. The results demonstrate that PEDV triggers autophagy via the cellular pathogen receptor TLR4 and the AKT-mTOR pathway. As evidenced by autophagosome detection, PEDV infection increases autophagosomes and light chain 3 (LC3)-II as well as downregulated AKT-mTOR phosphorylation. Our study revealed that the binding of the viral protein NSP61-2C (56-151aa) to TLR4 triggers autophagy and inactivates the AKT-mTOR pathway, both of which are critical for facilitating PEDV infection. Through screening and analysis, TLR4 was found to be a key gene involved in PEDV-induced autophagy. The screening of the key functional domains of NSP6 (56-151aa) for their ability to induce autophagy in IPEC-J2 cells provided a basis for the in-depth analysis of the pathogenic mechanism of PEDV infection-induced autophagy and promotion of self-replication and also provided an important target for the study of PEDV antiviral drugs. In conclusion, we elucidated that the PEDV infection of IPEC-J2 cells could induce autophagy and found that PEDV could use autophagy to promote its own replication.
Collapse
Affiliation(s)
- Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
| | - Dianzhong Zheng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Qinyuan Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
| | - Hailin Zhang
- Chongqing Academy of Animal Science, Chongqing 402460, China;
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (Q.C.); (Y.S.); (J.L.); (W.C.); (Y.J.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| |
Collapse
|
4
|
Chen Y, Wu Z, Cen K, Guo Y, Jiang J. Development and verification of a novel risk model related to ubiquitination linked with prognosis and therapeutic response in clear cell renal cell carcinoma. Sci Rep 2024; 14:25651. [PMID: 39463392 PMCID: PMC11514285 DOI: 10.1038/s41598-024-75948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Increasing evidence highlights the important role of ubiquitination in cancer. The objective of our study is to establish a reliable marker for predicting clinical outcomes and treatment responses in patients with clear cell renal cell carcinoma (ccRCC) using genes related to ubiquitination (URGs). The URGs subtypes were identified using consensus clustering based on TCGA-KIRC, and a signature containing the prognostic differentially expressed genes of the subtypes was determined using LASSO and Cox regression analysis. To demonstrate the strength of the signature, verification analyses were performed on both E-MTAB-1980 and TCGA-KIRC test datasets. We developed a nomogram to enhance the effectiveness of our predictive tool. Risk genes expression was determined through RT-qPCR. Six genes were combined to create the URGs signature, which had a highly correlated with patient prognosis in patients with ccRCC. A nomogram was developed based on the URGs signature and clinicopathological characteristics. We found that the predictive power was substantially greater than the other individual predictors. Moreover, the study on the immune microenvironment revealed significant variations in the levels of immune cells and the expression of immune checkpoint genes among the groups categorized as high-risk and low-risk. Furthermore, it was found that immunotherapy yielded better outcomes in cohorts with low risk. The URGs signature might serve as a novel and powerful prognosis biomarker and offer a momentous reference for individualized treatment for patients in ccRCC.
Collapse
Affiliation(s)
- Yingzhi Chen
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Zhixuan Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Kenan Cen
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Yangyang Guo
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Junhui Jiang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
5
|
Li Q, Wang Z, Wang J, Wang J, Zheng X, Li D, Wang Z, Li J, Li Y. Regulatory feedback loop between circ-EIF4A3 and EIF4A3 Enhances autophagy and growth in colorectal cancer cells. Transl Oncol 2024; 46:101996. [PMID: 38795560 PMCID: PMC11153236 DOI: 10.1016/j.tranon.2024.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
Recent studies indicate that circular RNAs (circRNAs) are crucial in the progression of colorectal cancer (CRC). Eukaryotic translation initiation factor 4A3 (EIF4A3) has been identified as a promoter of circRNA production. The biological roles and mechanisms of EIF4A3-derived circRNA (circEIF4A3) in CRC cell autophagy remain poorly understood. This study explores the effects of circEIF4A3 on CRC cell growth and autophagy, aiming to elucidate the underlying molecular mechanisms. We discovered that EIF4A3 and circEIF4A3 synergistically enhance CRC cell growth. CircEIF4A3 sequesters miR-3126-5p, consequently upregulating EIF4A3. Further, circEIF4A3 increases EIF4A3 expression, which promotes autophagy by stabilizing ATG5 mRNA and enhances ATG7 protein stability through the stabilization of USP14 mRNA, a deubiquitinating enzyme. Upregulation of ATG5 and ATG7 counteracts the growth-inhibitory effects of EIF4A3 knockdown on CRC cells. Moreover, our findings demonstrate that EIF4A3 induces the formation of circEIF4A3 in CRC cells. In conclusion, a positive feedback loop between circEIF4A3 and EIF4A3 supports CRC cell growth by facilitating autophagy.
Collapse
Affiliation(s)
- Qingke Li
- Department of Gastrointestinal Surgery, Tangshan People's Hospital, Tangshan 063000, Hebei, China
| | - Zhiwu Wang
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan 063000, Hebei, China
| | - Jian Wang
- Department of Gastrointestinal Surgery, Tangshan People's Hospital, Tangshan 063000, Hebei, China
| | - Jiangong Wang
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan 063000, Hebei, China
| | - Xuan Zheng
- Hebei Key Laboratory of Molecular Oncology, Tangshan 063001, Hebei, China; The Cancer Institute, Tangshan People's Hospital, Tangshan 063001, Hebei, China; Tangshan Key Laboratory of Cancer Prevention and Treatment, Tangshan 063001, Hebei, China
| | - Dan Li
- Hebei Key Laboratory of Molecular Oncology, Tangshan 063001, Hebei, China; The Cancer Institute, Tangshan People's Hospital, Tangshan 063001, Hebei, China; Tangshan Key Laboratory of Cancer Prevention and Treatment, Tangshan 063001, Hebei, China
| | - Zhuo Wang
- Hebei Key Laboratory of Molecular Oncology, Tangshan 063001, Hebei, China; The Cancer Institute, Tangshan People's Hospital, Tangshan 063001, Hebei, China; Tangshan Key Laboratory of Cancer Prevention and Treatment, Tangshan 063001, Hebei, China
| | - Jingwu Li
- Department of Gastrointestinal Surgery, Tangshan People's Hospital, Tangshan 063000, Hebei, China; Hebei Key Laboratory of Molecular Oncology, Tangshan 063001, Hebei, China; The Cancer Institute, Tangshan People's Hospital, Tangshan 063001, Hebei, China.
| | - Yufeng Li
- Hebei Key Laboratory of Molecular Oncology, Tangshan 063001, Hebei, China; The Cancer Institute, Tangshan People's Hospital, Tangshan 063001, Hebei, China; Tangshan Key Laboratory of Cancer Prevention and Treatment, Tangshan 063001, Hebei, China.
| |
Collapse
|
6
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
7
|
Kim JY, Shin JH, Kim MJ, Choi B, Kang Y, Choi J, Kim SH, Kwan D, Kim DH, Chun E, Lee KY. PTK2 is a potential biomarker and therapeutic target for EGFR- or TLRs-induced lung cancer progression via the regulation of the cross-talk between EGFR- and TLRs-mediated signals. Biomark Res 2024; 12:52. [PMID: 38816856 PMCID: PMC11141017 DOI: 10.1186/s40364-024-00604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Protein tyrosine kinase 2 (PTK2), epidermal growth factor receptor (EGFR), and toll-like receptor (TLRs) are amplified in non-small cell lung cancer (NSCLC). However, the functional and clinical associations between them have not been elucidated yet in NSCLC. By using microarray data of non-small cell lung cancer (NSCLC) tumor tissues and matched normal tissues of 42 NSCLC patients, the genetic and clinical associations between PTK2, EGFR, and TLRs were analyzed in NSCLC patients. To verify the functional association, we generated PTK2-knockout (PTK2-KO) lung cancer cells by using CRISPR-Cas9 gene editing method, and performed in vitro cancer progression assay, including 3D tumor spheroid assay, and in vivo xenografted NSG (NOD/SCID/IL-2Rγnull) mouse assay. Finally, therapeutic effects targeted to PTK2 in lung cancer in response to EGF and TLR agonists were verified by using its inhibitor (Defactinib). In summary, we identified that up-regulated PTK2 might be a reliable marker for EGFR- or TLRs-induced lung cancer progression in NSCLC patients via the regulation of the cross-talk between EGFR- and TLRs-mediated signaling. This study provides a theoretical basis for the therapeutic intervention of PTK2 targeting EGFR- or TLRs-induced lung cancer progression.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ji Hye Shin
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Mi-Jeong Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Bongkum Choi
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Bioanalysis Center, GenNBio Inc., Seongnam, Republic of Korea
| | - Yeeun Kang
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jimin Choi
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seo Hyun Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Dohee Kwan
- Bioanalysis Center, GenNBio Inc., Seongnam, Republic of Korea
| | - Duk-Hwan Kim
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eunyoung Chun
- Research and Development Center, CHA Vaccine Institute, 560 Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13230, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Health Science and Technology, Samsung Medical Center, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
9
|
Li Y, Zhu J, Yu Z, Zhai F, Li H, Jin X. Regulation of apoptosis by ubiquitination in liver cancer. Am J Cancer Res 2023; 13:4832-4871. [PMID: 37970337 PMCID: PMC10636691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Apoptosis is a programmed cell death process critical to cell development and tissue homeostasis in multicellular organisms. Defective apoptosis is a crucial step in the malignant transformation of cells, including hepatocellular carcinoma (HCC), where the apoptosis rate is higher than in normal liver tissues. Ubiquitination, a post-translational modification process, plays a precise role in regulating the formation and function of different death-signaling complexes, including those involved in apoptosis. Aberrant expression of E3 ubiquitin ligases (E3s) in liver cancer (LC), such as cellular inhibitors of apoptosis proteins (cIAPs), X chromosome-linked IAP (XIAP), and linear ubiquitin chain assembly complex (LUBAC), can contribute to HCC development by promoting cell survival and inhibiting apoptosis. Therefore, the review introduces the main apoptosis pathways and the regulation of proteins in these pathways by E3s and deubiquitinating enzymes (DUBs). It summarizes the abnormal expression of these regulators in HCC and their effects on cancer inhibition or promotion. Understanding the role of ubiquitination in apoptosis and LC can provide insights into potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
10
|
Kim JY, Shin JH, Kim MJ, Kang Y, Lee JS, Son J, Jeong SK, Kim D, Kim DH, Chun E, Lee KY. β-arrestin 2 negatively regulates lung cancer progression by inhibiting the TRAF6 signaling axis for NF-κB activation and autophagy induced by TLR3 and TLR4. Cell Death Dis 2023; 14:422. [PMID: 37443143 PMCID: PMC10344878 DOI: 10.1038/s41419-023-05945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
β-arrestin 2 (ARRB2) is functionally implicated in cancer progression via various signaling pathways. However, its role in lung cancer remains unclear. To obtain clinical insight on its function in lung cancer, microarray data from lung tumor tissues (LTTs) and matched lung normal tissues (mLNTs) of primary non-small cell lung cancer (NSCLC) patients (n = 37) were utilized. ARRB2 expression levels were markedly decreased in all 37 LTTs compared to those in matched LNTs of NSCLC patients. They were significantly co-related to enrichment gene sets associated with oncogenic and cancer genes. Importantly, Gene Set Enrichment Analysis (GSEA) between three LTTs with highly down-regulated ARRB2 and three LTTs with lowly down-regulated ARRB2 revealed significant enrichments related to toll-like receptor (TLR) signaling and autophagy genes in three LTTs with highly down-regulated ARRB2, suggesting that ARRB2 was negatively involved in TLR-mediated signals for autophagy induction in lung cancer. Biochemical studies for elucidating the molecular mechanism revealed that ARRB2 interacted with TNF receptor-associated factor 6 (TRAF6) and Beclin 1 (BECN1), thereby inhibiting the ubiquitination of TRAF6-TAB2 to activate NF-κB and TRAF6-BECN1 for autophagy stimulated by TLR3 and TLR4, suggesting that ARRB2 could inhibit the TRAF6-TAB2 signaling axis for NF-κB activation and TRAF6-BECN1 signaling axis for autophagy in response to TLR3 and TLR4. Notably, ARRB2-knockout (ARRB2KO) lung cancer cells exhibited marked enhancements of cancer migration, invasion, colony formation, and proliferation in response to TLR3 and TLR4 stimulation. Altogether, our current data suggest that ARRB2 can negatively regulate lung cancer progression by inhibiting TLR3- and TLR4-induced autophagy.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Hye Shin
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Mi-Jeong Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yeeun Kang
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Su Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Juhee Son
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Soo-Kyung Jeong
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Eunyoung Chun
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
11
|
Kim MJ, Kim JY, Shin JH, Kang Y, Lee JS, Son J, Jeong SK, Kim D, Kim DH, Chun E, Lee KY. FFAR2 antagonizes TLR2- and TLR3-induced lung cancer progression via the inhibition of AMPK-TAK1 signaling axis for the activation of NF-κB. Cell Biosci 2023; 13:102. [PMID: 37287005 DOI: 10.1186/s13578-023-01038-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Free fatty acid receptors (FFARs) and toll-like receptors (TLRs) recognize microbial metabolites and conserved microbial products, respectively, and are functionally implicated in inflammation and cancer. However, whether the crosstalk between FFARs and TLRs affects lung cancer progression has never been addressed. METHODS We analyzed the association between FFARs and TLRs using The Cancer Genome Atlas (TCGA) lung cancer data and our cohort of non-small cell lung cancer (NSCLC) patient data (n = 42), and gene set enrichment analysis (GSEA) was performed. For the functional analysis, we generated FFAR2-knockout (FFAR2KO) A549 and FFAR2KO H1299 human lung cancer cells and performed biochemical mechanistic studies and cancer progression assays, including migration, invasion, and colony-formation assays, in response to TLR stimulation. RESULTS The clinical TCGA data showed a significant down-regulation of FFAR2, but not FFAR1, FFAR3, and FFAR4, in lung cancer, and a negative correlation with TLR2 and TLR3. Notably, GSEA showed significant enrichment in gene sets related to the cancer module, the innate signaling pathway, and the cytokine-chemokine signaling pathway in FFAR2DownTLR2UpTLR3Up lung tumor tissues (LTTs) vs. FFAR2upTLR2DownTLR3Down LTTs. Functionally, treatment with propionate (an agonist of FFAR2) significantly inhibited human A549 or H1299 lung cancer migration, invasion, and colony formation induced by TLR2 or TLR3 through the attenuation of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB. Moreover, FFAR2KO A549 and FFAR2KO H1299 human lung cancer cells showed marked increases in cell migration, invasion, and colony formation in response to TLR2 or TLR3 stimulation, accompanied by elevations in NF-κB activation, cAMP levels, and the production of C-C motif chemokine ligand (CCL)2, interleukin (IL)-6, and matrix metalloproteinase (MMP) 2 cytokines. CONCLUSION Our results suggest that FFAR2 signaling antagonized TLR2- and TLR3-induced lung cancer progression via the suppression of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB, and its agonist might be a potential therapeutic agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Young Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Hye Shin
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yeeun Kang
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Su Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Juhee Son
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Soo-Kyung Jeong
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Eunyoung Chun
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
12
|
Zhang Q, Dan J, Meng S, Li Y, Li J. TLR4 inhibited autophagy by modulating PI3K/AKT/mTOR signaling pathway in Gastric cancer cell lines. Gene 2023:147520. [PMID: 37257791 DOI: 10.1016/j.gene.2023.147520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors found on both immune and cancerous cells. Gastric cancer (GC) cells/tissues have been shown to exhibit elevated levels of TLR4. Here, we examined the role of TLR4 on autophagy and proliferation in GC cells. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) were used to determine TLR4 levels at different stages of GC cells/tissues as well as the levels of autophagy-related proteins (ARPs) and determine the underlying signaling mechanism. Proliferation was assessed via the CCK-8 assay. The protein and mRNA levels of ARPs were elucidated, followed by estimating the involved signaling pathways. Our results demonstrated that the modulation of the PI3K/AKT/mTOR pathway resulted from autophagy inhibition/induction, which was induced by the overexpression and knockdown of TLR4. Thus, TLR4 played a vital role in GC progression.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Jun Dan
- Department of Geriatric, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Shuang Meng
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Yingjie Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Jing Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China.
| |
Collapse
|
13
|
Mauri S, Bernardo G, Martinez A, Favaro M, Trevisan M, Cobraiville G, Fillet M, Caicci F, Whitworth AJ, Ziviani E. USP8 Down-Regulation Promotes Parkin-Independent Mitophagy in the Drosophila Brain and in Human Neurons. Cells 2023; 12:cells12081143. [PMID: 37190052 DOI: 10.3390/cells12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Stress-induced mitophagy, a tightly regulated process that targets dysfunctional mitochondria for autophagy-dependent degradation, mainly relies on two proteins, PINK1 and Parkin, which genes are mutated in some forms of familiar Parkinson's Disease (PD). Upon mitochondrial damage, the protein kinase PINK1 accumulates on the organelle surface where it controls the recruitment of the E3-ubiquitin ligase Parkin. On mitochondria, Parkin ubiquitinates a subset of mitochondrial-resident proteins located on the outer mitochondrial membrane, leading to the recruitment of downstream cytosolic autophagic adaptors and subsequent autophagosome formation. Importantly, PINK1/Parkin-independent mitophagy pathways also exist that can be counteracted by specific deubiquitinating enzymes (DUBs). Down-regulation of these specific DUBs can presumably enhance basal mitophagy and be beneficial in models in which the accumulation of defective mitochondria is implicated. Among these DUBs, USP8 is an interesting target because of its role in the endosomal pathway and autophagy and its beneficial effects, when inhibited, in models of neurodegeneration. Based on this, we evaluated autophagy and mitophagy levels when USP8 activity is altered. We used genetic approaches in D. melanogaster to measure autophagy and mitophagy in vivo and complementary in vitro approaches to investigate the molecular pathway that regulates mitophagy via USP8. We found an inverse correlation between basal mitophagy and USP8 levels, in that down-regulation of USP8 correlates with increased Parkin-independent mitophagy. These results suggest the existence of a yet uncharacterized mitophagic pathway that is inhibited by USP8.
Collapse
Affiliation(s)
- Sofia Mauri
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Greta Bernardo
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Aitor Martinez
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Marta Trevisan
- Department of Molecular Medicine (DMM), University of Padova, 35121 Padova, Italy
| | - Gael Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Quartier Hopital, University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Quartier Hopital, University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Federico Caicci
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
| | - Elena Ziviani
- Department of Biology, University of Padova, 35121 Padova, Italy
| |
Collapse
|
14
|
Seydi H, Nouri K, Rezaei N, Tamimi A, Hassan M, Mirzaei H, Vosough M. Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother 2023; 161:114487. [PMID: 36963361 DOI: 10.1016/j.biopha.2023.114487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
Treatment resistance is one of the major barriers for therapeutic strategies in hepatocellular carcinoma (HCC). Many studies have indicated that chemotherapy and radiotherapy induce autophagy machinery (cell protective autophagy) in HCC cells. In addition, many experiments report a remarkable crosstalk between treatment resistance and autophagy pathways. Thus, autophagy could be one of the key factors enabling tumor cells to hinder induced cell death after medical interventions. Therefore, extensive research on the molecular pathways involved in resistance induction and autophagy have been conducted to achieve the desired therapeutic response. The key molecular pathways related to the therapy resistance are TGF-β, MAPK, NRF2, NF-κB, and non-coding RNAs. In addition, EMT, drug transports, apoptosis evasion, DNA repair, cancer stem cells, and hypoxia could have considerable impact on the hepatoma cell's response to therapies. These mechanisms protect tumor cells against various treatments and many studies have shown that each of them is connected to the molecular pathways of autophagy induction in HCC. Hence, autophagy inhibition may be an effective strategy to improve therapeutic outcome in HCC patients. In this review, we further highlight how autophagy leads to poor response during treatment through a complex molecular network and how it enhances resistance in primary liver cancer. We propose that combinational regimens of approved HCC therapeutic protocols plus autophagy inhibitors may overcome drug resistance in HCC therapy.
Collapse
Affiliation(s)
- Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Kosar Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Islamic Republic of Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
15
|
Autophagy/Mitophagy Regulated by Ubiquitination: A Promising Pathway in Cancer Therapeutics. Cancers (Basel) 2023; 15:cancers15041112. [PMID: 36831455 PMCID: PMC9954143 DOI: 10.3390/cancers15041112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Autophagy is essential for organismal development, maintenance of energy homeostasis, and quality control of organelles and proteins. As a selective form of autophagy, mitophagy is necessary for effectively eliminating dysfunctional mitochondria. Both autophagy and mitophagy are linked with tumor progression and inhibition. The regulation of mitophagy and autophagy depend upon tumor type and stage. In tumors, mitophagy has dual roles: it removes damaged mitochondria to maintain healthy mitochondria and energy production, which are necessary for tumor growth. In contrast, mitophagy has been shown to inhibit tumor growth by mitigating excessive ROS production, thus preventing mutation and chromosomal instability. Ubiquitination and deubiquitination are important modifications that regulate autophagy. Multiple E3 ubiquitin ligases and DUBs modulate the activity of the autophagy and mitophagy machinery, thereby influencing cancer progression. In this review, we summarize the mechanistic association between cancer development and autophagy/mitophagy activities regulated by the ubiquitin modification of autophagic proteins. In addition, we discuss the function of multiple proteins involved in autophagy/mitophagy in tumors that may represent potential therapeutic targets.
Collapse
|
16
|
Yang H, Zhang X, Lao M, Sun K, He L, Xu J, Duan Y, Chen Y, Ying H, Li M, Guo C, Lu Q, Wang S, Su W, Liang T, Bai X. Targeting ubiquitin-specific protease 8 sensitizes anti-programmed death-ligand 1 immunotherapy of pancreatic cancer. Cell Death Differ 2023; 30:560-575. [PMID: 36539510 PMCID: PMC9950432 DOI: 10.1038/s41418-022-01102-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Programmed death-1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1) help tumor cells evade immune surveillance, and are regarded as important targets of anti-tumor immunotherapy. Post-translational modification of PD-L1 has potential value in immunosuppression. Here, we identified that ubiquitin-specific protease 8 (USP8) deubiquitinates PD-L1. Pancreatic cancer tissues exhibited significantly increased USP8 levels compared with those in normal tissues. Clinically, the expression of USP8 showed a significant association with the tumor-node-metastasis stage in multiple patient-derived cohorts of pancreatic cancer. Meanwhile, USP8 deficiency could reduce tumor invasion and migration and tumor size in an immunity-dependent manner, and improve anti-tumor immunogenicity. USP8 inhibitor pretreatment led to reduced tumorigenesis and immunocompetent mice with Usp8 knockdown tumors exhibited extended survival. Moreover, USP8 interacted positively with PD-L1 and upregulated its expression by inhibiting the ubiquitination-regulated proteasome degradation pathway in pancreatic cancer. Combination therapy with a USP8 inhibitor and anti-PD-L1 effectively suppressed pancreatic tumor growth by activation of cytotoxic T-cells and the anti-tumor immunity was mainly dependent on the PD-L1 pathway and CD8 + T cells. Our findings highlight the importance of targeting USP8, which can sensitize PD-L1-targeted pancreatic cancer to immunotherapy and might represent a novel therapeutic strategy to treat patients with pancreatic tumors in the future.
Collapse
Affiliation(s)
- Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Qingsong Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Sicheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Aryapour E, Kietzmann T. Mitochondria, mitophagy, and the role of deubiquitinases as novel therapeutic targets in liver pathology. J Cell Biochem 2022; 123:1634-1646. [PMID: 35924961 PMCID: PMC9804494 DOI: 10.1002/jcb.30312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023]
Abstract
Liver diseases such as nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC) have increased over the past few decades due to the absence or ineffective therapeutics. Recently, it has been shown that inappropriate regulation of hepatic mitophagy is linked to the pathogenesis of the above-mentioned liver diseases. As mitophagy maintains cellular homeostasis by removing damaged and nonfunctional mitochondria from the cell, the proper function of the molecules involved are of utmost importance. Thereby, mitochondrial E3 ubiquitin ligases as well as several deubiquitinases (DUBs) appear to play a unique role for the degradation of mitochondrial proteins and for proper execution of the mitophagy process by either adding or removing ubiquitin chains from target proteins. Therefore, these enzymes could be considered as valuable liver disease biomarkers and also as novel targets for therapy. In this review, we focus on the role of different DUBs on mitophagy and their contribution to NAFLD, NASH, alcohol-related liver disease, and especially HCC.
Collapse
Affiliation(s)
- Elham Aryapour
- Faculty of Biochemistry and Molecular Medicine, and Biocenter OuluUniversity of OuluOuluFinland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|