1
|
Lozupone M, Dibello V, Sardone R, Castellana F, Zupo R, Lampignano L, Bortone I, Stallone R, Altamura M, Bellomo A, Daniele A, Solfrizzi V, Panza F. Lessons learned from the failure of solanezumab as a prospective treatment strategy for Alzheimer's disease. Expert Opin Drug Discov 2024; 19:639-647. [PMID: 38685682 DOI: 10.1080/17460441.2024.2348142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION In the last decade, the efforts conducted for discovering Alzheimer's Disease (AD) treatments targeting the best-known pathogenic factors [amyloid-β (Aβ), tau protein, and neuroinflammation] were mostly unsuccessful. Given that a systemic failure of Aβ clearance was supposed to primarily contribute to AD development and progression, disease-modifying therapies with anti-Aβ monoclonal antibodies (e.g. solanezumab, bapineuzumab, gantenerumab, aducanumab, lecanemab and donanemab) are ongoing in randomized clinical trials (RCTs) with contrasting results. AREAS COVERED The present Drug Discovery Case History analyzes the failures of RCTs of solanezumab on AD. Furthermore, the authors review the pharmacokinetics, pharmacodynamics, and tolerability effect of solanezumab from preclinical studies with its analogous m266 in mice. Finally, they describe the RCTs with cognitive, cerebrospinal fluid and neuroimaging findings in mild-to-moderate AD (EXPEDITION studies) and in secondary prevention studies (A4 and DIAN-TU). EXPERT OPINION Solanezumab was one of the first anti-Aβ monoclonal antibodies to be tested in preclinical and clinical AD showing to reduce brain Aβ level by acting on soluble monomeric form of Aβ peptide without significant results on deposits. Unfortunately, this compound showed to accelerate cognitive decline in both asymptomatic and symptomatic trial participants, and this failure of solanezumab further questioned the Aβ cascade hypothesis of AD.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | - Vittorio Dibello
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, Taranto, Italy
| | - Fabio Castellana
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Roberta Zupo
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | | | - Ilaria Bortone
- Local Healthcare Authority of Bari, ASL Bari, Bari, Italy
| | - Roberta Stallone
- Neuroscience and Education, Human Resources Excellence in Research, University of Foggia, Foggia, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Teipel S, Grazia A, Dyrba M, Grothe MJ, Pomara N. Basal forebrain volume and metabolism in carriers of the Colombian mutation for autosomal dominant Alzheimer's disease. Sci Rep 2024; 14:11268. [PMID: 38760448 PMCID: PMC11101449 DOI: 10.1038/s41598-024-60799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
We aimed to study atrophy and glucose metabolism of the cholinergic basal forebrain in non-demented mutation carriers for autosomal dominant Alzheimer's disease (ADAD). We determined the level of evidence for or against atrophy and impaired metabolism of the basal forebrain in 167 non-demented carriers of the Colombian PSEN1 E280A mutation and 75 age- and sex-matched non-mutation carriers of the same kindred using a Bayesian analysis framework. We analyzed baseline MRI, amyloid PET, and FDG-PET scans of the Alzheimer's Prevention Initiative ADAD Colombia Trial. We found moderate evidence against an association of carrier status with basal forebrain volume (Bayes factor (BF10) = 0.182). We found moderate evidence against a difference of basal forebrain metabolism (BF10 = 0.167). There was only inconclusive evidence for an association between basal forebrain volume and delayed memory and attention (BF10 = 0.884 and 0.184, respectively), and between basal forebrain volume and global amyloid load (BF10 = 2.1). Our results distinguish PSEN1 E280A mutation carriers from sporadic AD cases in which cholinergic involvement of the basal forebrain is already detectable in the preclinical and prodromal stages. This indicates an important difference between ADAD and sporadic AD in terms of pathogenesis and potential treatment targets.
Collapse
Affiliation(s)
- Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Gehlsheimer Str. 20, 18147, Rostock, Germany.
- Department of Psychosomatic Medicine, University Medicine Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Alice Grazia
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Martin Dyrba
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Michel J Grothe
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Nunzio Pomara
- Geriatric Psychiatry Division, Nathan Kline Institute/Department of Psychiatry and Pathology, NYU Grossman School of Medicine, Orangeburg, NY, USA
| |
Collapse
|
3
|
Ahmad F, Karan A, Sharma R, Sharma NS, Sundar V, Jayaraj R, Mukherjee S, DeCoster MA. Evolving therapeutic interventions for the management and treatment of Alzheimer's disease. Ageing Res Rev 2024; 95:102229. [PMID: 38364913 DOI: 10.1016/j.arr.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Alzheimer's Disease (AD) patients experience diverse symptoms, including memory loss, cognitive impairment, behavioral abnormalities, mood changes, and mental issues. The fundamental objective of this review is to discuss novel therapeutic approaches, with special emphasis on recently approved marketed formulations for the treatment of AD, especially Aducanumab, the first FDA approved moiety that surpasses the blood-brain barrier (BBB) and reduces amyloid plaques in the brain, thereby reducing associated cognitive decline. However, it is still in the phase IV trial and is to be completed by 2030. Other drugs such as lecanemab are also under clinical trial and has recently been approved by the FDA and is also discussed here. In this review, we also focus on active and passive immunotherapy for AD as well as several vaccines, such as amyloid-beta epitope-based vaccines, amyloid-beta DNA vaccines, and stem cell therapy for AD, which are in clinical trials. Furthermore, ongoing pre-clinical trials associated with AD and other novel strategies such as curcumin-loaded nanoparticles, Crispr/ cas9, precision medicine, as well as some emerging therapies like anti-sense therapy are also highlighted. Additionally, we discuss some off-labeled drugs like non-steroidal anti-inflammatory drugs (NSAID), anti-diabetic drugs, and lithium, which can manage symptoms of AD and different non-pharmacological approaches are also covered which can help to manage AD. In summary, we have tried to cover all the therapeutic interventions which are available for the treatment and management of AD under sections approved, clinical phase, pre-clinical phase or futuristic interventions, off-labelled drugs, and non-pharmacological interventions for AD, offering positive findings and well as challenges that remain.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi, India
| | - Anik Karan
- Department of Mechanical and Bioengineering, University of Kansas, Lawrence, KS, USA.
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi, India
| | - Navatha Shree Sharma
- Department of Surgery Transplant, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Richard Jayaraj
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Sudip Mukherjee
- Biomedical Engineering, Indian Institute of Technology- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
4
|
Giraldo-Berrio D, Jimenez-Del-Rio M, Velez-Pardo C. Sildenafil Reverses the Neuropathological Alzheimer's Disease Phenotype in Cholinergic-Like Neurons Carrying the Presenilin 1 E280A Mutation. J Alzheimers Dis 2024; 99:639-656. [PMID: 38728184 DOI: 10.3233/jad-231169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Background Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-β (Aβ) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease. Objective To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation. Methods Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25μM) for 24 h. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy. Results We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aβ fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs. Conclusions Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.
Collapse
Affiliation(s)
- Daniela Giraldo-Berrio
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Medellín, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
5
|
Vashisth K, Sharma S, Ghosh S, Babu MA, Ghosh S, Iqbal D, Kamal M, Almutary AG, Jha SK, Ojha S, Bhaskar R, Jha NK, Sinha JK. Immunotherapy in Alzheimer's Disease: Current Status and Future Directions. J Alzheimers Dis 2024; 101:S23-S39. [PMID: 39422934 DOI: 10.3233/jad-230603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder characterized by memory loss, cognitive decline, and behavioral changes. Immunotherapy aims to harness the immune system to target the underlying pathology of AD and has shown promise as a disease-modifying treatment for AD. By focusing on the underlying disease pathogenesis and encouraging the removal of abnormal protein aggregates in the brain, immunotherapy shows promise as a potential treatment for AD. The development of immunotherapy for AD began with early attempts to use antibodies to target beta-amyloid. The amyloid hypothesis which suggests that the accumulation of beta-amyloid in the brain triggers the pathological cascade that leads to AD has been a driving force behind the development of immunotherapy for AD. However, recent clinical trials of monoclonal antibodies targeting amyloid-β have shown mixed results, highlighting the need for further research into alternative immunotherapy approaches. Additionally, the safety and efficacy of immunotherapy for AD remain an area of active investigation. Some immunotherapeutic approaches have shown promise, while others have been associated with significant side effects, including inflammation of the brain. Sleep has a significant impact on various physiological processes, including the immune system, and has been linked to the pathogenesis of AD. Thus, improving sleep quality and duration may benefit the immune system and potentially enhance the effectiveness of immunotherapeutic approaches for AD. In this review, we discussed the promises of immunotherapy as a disease-modifying treatment for AD as well as possible methods to improve the efficacy and safety of immunotherapy to achieve better therapeutic outcomes.
Collapse
Affiliation(s)
| | - Shivani Sharma
- Department of Pharmaceutics, R.K.S.D. College of Pharmacy, Kaithal, Haryana, India
| | - Shampa Ghosh
- GloNeuro, Noida, India
- ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Korea
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | |
Collapse
|
6
|
Scott MR, Edwards NC, Properzi MJ, Jacobs HIL, Price JC, Lois C, Farrell ME, Hanseeuw BJ, Thibault EG, Rentz DM, Johnson KA, Sperling RA, Schultz AP, Buckley RF. Contribution of extracerebral tracer retention and partial volume effects to sex differences in Flortaucipir-PET signal. J Cereb Blood Flow Metab 2024; 44:131-141. [PMID: 37728659 PMCID: PMC10905641 DOI: 10.1177/0271678x231196978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 09/21/2023]
Abstract
Clinically normal females exhibit higher 18F-flortaucipir (FTP)-PET signal than males across the cortex. However, these sex differences may be explained by neuroimaging idiosyncrasies such as off-target extracerebral tracer retention or partial volume effects (PVEs). 343 clinically normal participants (female = 58%; mean[SD]=73.8[8.5] years) and 55 patients with mild cognitive impairment (female = 38%; mean[SD] = 76.9[7.3] years) underwent cross-sectional FTP-PET. We parcellated extracerebral FreeSurfer areas based on proximity to cortical ROIs. Sex differences in cortical tau were then estimated after accounting for local extracerebral retention. We simulated PVE by convolving group-level standardized uptake value ratio means in each ROI with 6 mm Gaussian kernels and compared the sexes across ROIs post-smoothing. Widespread sex differences in extracerebral retention were observed. Although attenuating sex differences in cortical tau-PET signal, covarying for extracerebral retention did not impact the largest sex differences in tau-PET signal. Differences in PVE were observed in both female and male directions with no clear sex-specific bias. Our findings suggest that sex differences in FTP are not solely attributed to off-target extracerebral retention or PVE, consistent with the notion that sex differences in medial temporal and neocortical tau are biologically driven. Future work should investigate sex differences in regional cerebral blood flow kinetics and longitudinal tau-PET.
Collapse
Affiliation(s)
- Matthew R Scott
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Natalie C Edwards
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Heidi IL Jacobs
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Julie C Price
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Cristina Lois
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Michelle E Farrell
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Bernard J Hanseeuw
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurology, Cliniques Universitaires SaintLuc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Emma G Thibault
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA, USA
| | - Keith A Johnson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA, USA
- Melbourne School of Psychological Science, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Neuroprotective Effect of Combined Treatment with Epigallocatechin 3-Gallate and Melatonin on Familial Alzheimer's Disease PSEN1 E280A Cerebral Spheroids Derived from Menstrual Mesenchymal Stromal Cells. J Alzheimers Dis 2024; 99:S51-S66. [PMID: 36846998 DOI: 10.3233/jad-220903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Background Familial Alzheimer's disease (FAD) is caused by mutations in one or more of 3 genes known as AβPP, PSEN1, and PSEN2. There are currently no effective therapies for FAD. Hence, novel therapeutics are needed. Objective To analyze the effect of treatment with a combination of epigallocatechin-3-gallate (EGCG) and Melatonin (N-acetyl-5-methoxytryptamine, aMT) in a cerebral spheroid (CS) 3D in vitro model of PSEN 1 E280A FAD. Methods We developed a CS in vitro model based on menstrual stromal cells derived from wild-type (WT) and mutant PSEN1 E280A menstrual blood cultured in Fast-N-Spheres V2 medium. Results Beta-tubulin III, choline acetyltransferase, and GFAP in both WT and mutant CSs spontaneously expressed neuronal and astroglia markers when grown in Fast-N-Spheres V2 medium for 4 or 11 days. Mutant PSEN1 CSs had significantly increased levels of intracellular AβPP fragment peptides and concomitant appearance of oxidized DJ-1 as early as 4 days, and phosphorylated tau, decreased ΔΨm, and increased caspase-3 activity were observed on Day 11. Moreover, mutant CSs were unresponsive to acetylcholine. Treatment with a combination of EGCG and aMT decreased the levels of all typical pathological markers of FAD more efficiently than did EGCG or aMT alone, but aMT failed to restore Ca2+ influx in mutant CSs and decreased the beneficial effect of EGCG on Ca2+ influx in mutant CSs. Conclusion Treatment with a combination of EGCG and aMT can be of high therapeutic value due to the high antioxidant capacity and anti-amyloidogenic effect of both compounds.
Collapse
Affiliation(s)
- Viviana Soto-Mercado
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| |
Collapse
|
8
|
Noorda K, Noorda K, Sabbagh MN, Bertelson J, Singer J, Decourt B. Amyloid-Directed Antibodies: Past, Present, and Future. J Alzheimers Dis 2024; 101:S3-S22. [PMID: 39422953 DOI: 10.3233/jad-240189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Alzheimer's disease (AD) is the most common neurodegenerative disorder in patient demographics over 65 years old causing debilitating cognitive impairment. Most commonly, AD is diagnosed clinically as "probable AD", and definitive diagnosis is confirmed through postmortem brain autopsies to detect extracellular amyloid-β (Aβ) plaques and intraneuronal hyperphosphorylated tau tangles. The exact mechanism causing AD is still unknown, but treatments for AD have been actively investigated. Currently, immunotherapies have shown substantial promise in reducing the pathologic and clinical signs of AD. Objective This review aims to evaluate passive immunotherapies deemed to have promise for further development and use in the treatment of AD. Methods Immunotherapies were selected via a narrative review of medications that have potential clinical effectiveness with a status of FDA accepted, FDA fast-track, FDA status pending, or emerging therapies poised to pursue FDA approval. Results This review has yielded two anti-Aβ monoclonal antibodies (mAb) that are currently fully FDA approved, one mAb granted FDA fast-track status, two therapies on hold, three discontinued medications, and three promising emerging therapies. Conclusions We conclude that, in the near future, passive immunotherapies will be the preferred and evidence-based method of treatment for AD with the presence of brain Aβ deposits for both symptom management and potential slowing of disease progression. Specifically, lecanemab and donanemab will require further clinical studies to optimize patient selection based on safety profiles. Despite some key limitations, these two drugs are paving the way for disease-modifying treatments in patients displaying early signs of amyloid pathology.
Collapse
Affiliation(s)
- Keith Noorda
- School of Medicine, University of Nevada, Las Vegas, NV, USA
| | - Kevin Noorda
- School of Medicine, University of Nevada, Las Vegas, NV, USA
| | - Marwan N Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ, USA
| | - John Bertelson
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; and The University of Texas Health at Austin, Austin, TX, USA
| | - Jonathan Singer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Psychological Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Roseman University of Health Sciences, Las Vegas, NV, USA
| |
Collapse
|
9
|
Boxer AL, Sperling R. Accelerating Alzheimer's therapeutic development: The past and future of clinical trials. Cell 2023; 186:4757-4772. [PMID: 37848035 PMCID: PMC10625460 DOI: 10.1016/j.cell.2023.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/03/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Alzheimer's disease (AD) research has entered a new era with the recent positive phase 3 clinical trials of the anti-Aβ antibodies lecanemab and donanemab. Why did it take 30 years to achieve these successes? Developing potent therapies for reducing fibrillar amyloid was key, as was selection of patients at relatively early stages of disease. Biomarkers of the target pathologies, including amyloid and tau PET, and insights from past trials were also critical to the recent successes. Moving forward, the challenge will be to develop more efficacious therapies with greater efficiency. Novel trial designs, including combination therapies and umbrella and basket protocols, will accelerate clinical development. Better diversity and inclusivity of trial participants are needed, and blood-based biomarkers may help to improve access for medically underserved groups. Incentivizing innovation in both academia and industry through public-private partnerships, collaborative mechanisms, and the creation of new career paths will be critical to build momentum in these exciting times.
Collapse
Affiliation(s)
- Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute of Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, MassGeneral Brigham, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Fedele E. Anti-Amyloid Therapies for Alzheimer's Disease and the Amyloid Cascade Hypothesis. Int J Mol Sci 2023; 24:14499. [PMID: 37833948 PMCID: PMC10578107 DOI: 10.3390/ijms241914499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Over the past 30 years, the majority of (pre)clinical efforts to find an effective therapy for Alzheimer's disease (AD) focused on clearing the β-amyloid peptide (Aβ) from the brain since, according to the amyloid cascade hypothesis, the peptide was (and it is still considered by many) the pathogenic determinant of this neurodegenerative disorder. However, as reviewed in this article, results from the numerous clinical trials that have tested anti-Aβ therapies to date indicate that this peptide plays a minor role in the pathogenesis of AD. Indeed, even Aducanumab and Lecanemab, the two antibodies recently approved by the FDA for AD therapy, as well as Donanemab showed limited efficacy on cognitive parameters in phase III clinical trials, despite their capability of markedly lowering Aβ brain load. Furthermore, preclinical evidence demonstrates that Aβ possesses several physiological functions, including memory formation, suggesting that AD may in part be due to a loss of function of this peptide. Finally, it is generally accepted that AD could be the result of many molecular dysfunctions, and therefore, if we keep chasing only Aβ, it means that we cannot see the forest for the trees.
Collapse
Affiliation(s)
- Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
11
|
Mortberg MA, Gentile JE, Nadaf N, Vanderburg C, Simmons S, Dubinsky D, Slamin A, Maldonado S, Petersen C, Jones N, Kordasiewicz H, Zhao H, Vallabh S, Minikel E. A single-cell map of antisense oligonucleotide activity in the brain. Nucleic Acids Res 2023; 51:7109-7124. [PMID: 37188501 PMCID: PMC10415122 DOI: 10.1093/nar/gkad371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Antisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the central nervous system (CNS). By modulating RNA, they hold the promise of targeting root molecular causes of disease and hold potential to treat myriad CNS disorders. Realization of this potential requires that ASOs must be active in the disease-relevant cells, and ideally, that monitorable biomarkers also reflect ASO activity in these cells. The biodistribution and activity of such centrally delivered ASOs have been deeply characterized in rodent and non-human primate (NHP) models, but usually only in bulk tissue, limiting our understanding of the distribution of ASO activity across individual cells and across diverse CNS cell types. Moreover, in human clinical trials, target engagement is usually monitorable only in a single compartment, CSF. We sought a deeper understanding of how individual cells and cell types contribute to bulk tissue signal in the CNS, and how these are linked to CSF biomarker outcomes. We employed single nucleus transcriptomics on tissue from mice treated with RNase H1 ASOs against Prnp and Malat1 and NHPs treated with an ASO against PRNP. Pharmacologic activity was observed in every cell type, though sometimes with substantial differences in magnitude. Single cell RNA count distributions implied target RNA suppression in every single sequenced cell, rather than intense knockdown in only some cells. Duration of action up to 12 weeks post-dose differed across cell types, being shorter in microglia than in neurons. Suppression in neurons was generally similar to, or more robust than, the bulk tissue. In macaques, PrP in CSF was lowered 40% in conjunction with PRNP knockdown across all cell types including neurons, arguing that a CSF biomarker readout is likely to reflect ASO pharmacodynamic effect in disease-relevant cells in a neuronal disorder. Our results provide a reference dataset for ASO activity distribution in the CNS and establish single nucleus sequencing as a method for evaluating cell type specificity of oligonucleotide therapeutics and other modalities.
Collapse
Affiliation(s)
- Meredith A Mortberg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Juliana E Gentile
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Naeem M Nadaf
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sean Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dan Dubinsky
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Adam Slamin
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Salome Maldonado
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Caroline L Petersen
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Nichole Jones
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | | | - Hien T Zhao
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Sonia M Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA02115, USA
- Prion Alliance, Cambridge, MA 02139, USA
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA02115, USA
- Prion Alliance, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Gomez-Sequeda N, Mendivil-Perez M, Jimenez-Del-Rio M, Lopera F, Velez-Pardo C. Cholinergic-like neurons and cerebral spheroids bearing the PSEN1 p.Ile416Thr variant mirror Alzheimer's disease neuropathology. Sci Rep 2023; 13:12833. [PMID: 37553376 PMCID: PMC10409854 DOI: 10.1038/s41598-023-39630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Familial Alzheimer's disease (FAD) is a complex neurodegenerative disorder for which there are no therapeutics to date. Several mutations in presenilin 1 (PSEN 1), which is the catalytic component of γ-secretase complex, are causal of FAD. Recently, the p.Ile416Thr (I416T) PSEN 1 mutation has been reported in large kindred in Colombia. However, cell and molecular information from I416T mutation is scarce. Here, we demonstrate that menstrual stromal cells (MenSCs)-derived planar (2D) PSEN 1 I416T cholinergic-like cells (ChLNS) and (3D) cerebral spheroids (CSs) reproduce the typical neuropathological markers of FAD in 4 post-transdifferentiating or 11 days of transdifferentiating, respectively. The models produce intracellular aggregation of APPβ fragments (at day 4 and 11) and phosphorylated protein TAU at residue Ser202/Thr205 (at day 11) suggesting that iAPPβ fragments precede p-TAU. Mutant ChLNs and CSs displayed DJ-1 Cys106-SO3 (sulfonic acid), failure of mitochondria membrane potential (ΔΨm), and activation of transcription factor c-JUN and p53, expression of pro-apoptotic protein PUMA, and activation of executer protein caspase 3 (CASP3), all markers of cell death by apoptosis. Moreover, we found that both mutant ChLNs and CSs produced high amounts of extracellular eAβ42. The I416T ChLNs and CSs were irresponsive to acetylcholine induced Ca2+ influx compared to WT. The I416T PSEN 1 mutation might work as dominant-negative PSEN1 mutation. These findings might help to understanding the recurring failures of clinical trials of anti-eAβ42, and support the view that FAD is triggered by the accumulation of other intracellular AβPP metabolites, rather than eAβ42.
Collapse
Affiliation(s)
- Nicolas Gomez-Sequeda
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Miguel Mendivil-Perez
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Carlos Velez-Pardo
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia.
| |
Collapse
|
13
|
Quan M, Cao S, Wang Q, Wang S, Jia J. Genetic Phenotypes of Alzheimer's Disease: Mechanisms and Potential Therapy. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:333-349. [PMID: 37589021 PMCID: PMC10425323 DOI: 10.1007/s43657-023-00098-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023]
Abstract
Years of intensive research has brought us extensive knowledge on the genetic and molecular factors involved in Alzheimer's disease (AD). In addition to the mutations in the three main causative genes of familial AD (FAD) including presenilins and amyloid precursor protein genes, studies have identified several genes as the most plausible genes for the onset and progression of FAD, such as triggering receptor expressed on myeloid cells 2, sortilin-related receptor 1, and adenosine triphosphate-binding cassette transporter subfamily A member 7. The apolipoprotein E ε4 allele is reported to be the strongest genetic risk factor for sporadic AD (SAD), and it also plays an important role in FAD. Here, we reviewed recent developments in genetic and molecular studies that contributed to the understanding of the genetic phenotypes of FAD and compared them with SAD. We further reviewed the advancements in AD gene therapy and discussed the future perspectives based on the genetic phenotypes.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shuman Cao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shiyuan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053 China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053 China
- Center of Alzheimer’s Disease, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100053 China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053 China
| |
Collapse
|
14
|
Salemme S, Ancidoni A, Locuratolo N, Piscopo P, Lacorte E, Canevelli M, Vanacore N. Advances in amyloid-targeting monoclonal antibodies for Alzheimer's disease: clinical and public health issues. Expert Rev Neurother 2023; 23:1113-1129. [PMID: 37975226 DOI: 10.1080/14737175.2023.2284305] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a major global public health challenge. To date, no treatments have been shown to stop the underlying pathological processes. The cerebral accumulation of amyloid-beta (Ab) is still considered as the primum movens of AD and disease-modifying treatments targeting Ab are reaching - or have already reached - clinical practice. AREAS COVERED The authors explore the main advancements from Aβ-targeting monoclonal antibodies (mAbs) for the treatment of AD. From a public health perspective, they address ethically relevant issues such as the benevolence and non-maleficence principles. They report on the potential biological and clinical benefits of these drugs, discussing minimal clinically important differences (MCID) and other relevant outcomes. They examine the short- and long-term effects of amyloid-related imaging abnormalities (ARIA), and explore the differences between eligibility criteria in clinical trials, appropriate use recommendations, and prescribing information content. In doing so, they contextualize the discussion on the disagreements among different regulatory authorities. EXPERT OPINION Although anti-β-amyloid monoclonal antibodies may be effective in selected scenarios, non-negligible knowledge gaps and implementation limits persist. Overcoming these gaps can no longer be postponed if we are to ensure the principles of Quality of Care for patients with cognitive impairment who would be eligible for this class of drugs.
Collapse
Affiliation(s)
- Simone Salemme
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Ancidoni
- National Centre for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Nicoletta Locuratolo
- National Centre for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Eleonora Lacorte
- National Centre for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Marco Canevelli
- National Centre for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
- Department of Human Neuroscience, "Sapienza" University, Rome, Italy
| | - Nicola Vanacore
- National Centre for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
15
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
16
|
Mendivil-Perez M, Velez-Pardo C, Lopera F, Kosik KS, Jimenez-Del-Rio M. PSEN1 E280A Cholinergic-like Neurons and Cerebral Spheroids Derived from Mesenchymal Stromal Cells and from Induced Pluripotent Stem Cells Are Neuropathologically Equivalent. Int J Mol Sci 2023; 24:8957. [PMID: 37240306 PMCID: PMC10218810 DOI: 10.3390/ijms24108957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurological condition characterized by the severe loss of cholinergic neurons. Currently, the incomplete understanding of the loss of neurons has prevented curative treatments for familial AD (FAD). Therefore, modeling FAD in vitro is essential for studying cholinergic vulnerability. Moreover, to expedite the discovery of disease-modifying therapies that delay the onset and slow the progression of AD, we depend on trustworthy disease models. Although highly informative, induced pluripotent stem cell (iPSCs)-derived cholinergic neurons (ChNs) are time-consuming, not cost-effective, and labor-intensive. Other sources for AD modeling are urgently needed. Wild-type and presenilin (PSEN)1 p.E280A fibroblast-derived iPSCs, menstrual blood-derived menstrual stromal cells (MenSCs), and umbilical cord-derived Wharton Jelly's mesenchymal stromal cells (WJ-MSCs) were cultured in Cholinergic-N-Run and Fast-N-Spheres V2 medium to obtain WT and PSEN 1 E280A cholinergic-like neurons (ChLNs, 2D) and cerebroid spheroids (CSs, 3D), respectively, and to evaluate whether ChLNs/CSs can reproduce FAD pathology. We found that irrespective of tissue source, ChLNs/CSs successfully recapitulated the AD phenotype. PSEN 1 E280A ChLNs/CSs show accumulation of iAPPβ fragments, produce eAβ42, present TAU phosphorylation, display OS markers (e.g., oxDJ-1, p-JUN), show loss of ΔΨm, exhibit cell death markers (e.g., TP53, PUMA, CASP3), and demonstrate dysfunctional Ca2+ influx response to ACh stimuli. However, PSEN 1 E280A 2D and 3D cells derived from MenSCs and WJ-MSCs can reproduce FAD neuropathology more efficiently and faster (11 days) than ChLNs derived from mutant iPSCs (35 days). Mechanistically, MenSCs and WJ-MSCs are equivalent cell types to iPSCs for reproducing FAD in vitro.
Collapse
Affiliation(s)
- Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, Calle 62#52-59, Building 1, Room 412, SIU, Medellin 050010, Colombia; (M.M.-P.); (C.V.-P.); (F.L.)
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, Calle 62#52-59, Building 1, Room 412, SIU, Medellin 050010, Colombia; (M.M.-P.); (C.V.-P.); (F.L.)
| | - Francisco Lopera
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, Calle 62#52-59, Building 1, Room 412, SIU, Medellin 050010, Colombia; (M.M.-P.); (C.V.-P.); (F.L.)
| | - Kenneth S. Kosik
- Neuroscience Research Institute, Department of Molecular Cellular Developmental Biology, University of California, Santa Barbara, CA 93106, USA;
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, Calle 62#52-59, Building 1, Room 412, SIU, Medellin 050010, Colombia; (M.M.-P.); (C.V.-P.); (F.L.)
| |
Collapse
|
17
|
Reitz C, Pericak-Vance MA, Foroud T, Mayeux R. A global view of the genetic basis of Alzheimer disease. Nat Rev Neurol 2023; 19:261-277. [PMID: 37024647 PMCID: PMC10686263 DOI: 10.1038/s41582-023-00789-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
The risk of Alzheimer disease (AD) increases with age, family history and informative genetic variants. Sadly, there is still no cure or means of prevention. As in other complex diseases, uncovering genetic causes of AD could identify underlying pathological mechanisms and lead to potential treatments. Rare, autosomal dominant forms of AD occur in middle age as a result of highly penetrant genetic mutations, but the most common form of AD occurs later in life. Large-scale, genome-wide analyses indicate that 70 or more genes or loci contribute to AD. One of the major factors limiting progress is that most genetic data have been obtained from non-Hispanic white individuals in Europe and North America, preventing the development of personalized approaches to AD in individuals of other ethnicities. Fortunately, emerging genetic data from other regions - including Africa, Asia, India and South America - are now providing information on the disease from a broader range of ethnicities. Here, we summarize the current knowledge on AD genetics in populations across the world. We predominantly focus on replicated genetic discoveries but also include studies in ethnic groups where replication might not be feasible. We attempt to identify gaps that need to be addressed to achieve a complete picture of the genetic and molecular factors that drive AD in individuals across the globe.
Collapse
Affiliation(s)
- Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Margaret A Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.
- Department of Neurology, Columbia University, New York, NY, USA.
- Department of Epidemiology, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Reiman EM, Pruzin JJ, Rios-Romenets S, Brown C, Giraldo M, Acosta-Baena N, Tobon C, Hu N, Chen Y, Ghisays V, Enos J, Goradia DD, Lee W, Luo J, Malek-Ahmadi M, Protas H, Thomas RG, Chen K, Su Y, Boker C, Mastroeni D, Alvarez S, Quiroz YT, Langbaum JB, Sink KM, Lopera F, Tariot PN. A public resource of baseline data from the Alzheimer's Prevention Initiative Autosomal-Dominant Alzheimer's Disease Trial. Alzheimers Dement 2023; 19:1938-1946. [PMID: 36373344 PMCID: PMC10262848 DOI: 10.1002/alz.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/01/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The Alzheimer's Prevention Initiative Autosomal-Dominant Alzheimer's Disease (API ADAD) Trial evaluated the anti-oligomeric amyloid beta (Aβ) antibody therapy crenezumab in cognitively unimpaired members of the Colombian presenilin 1 (PSEN1) E280A kindred. We report availability, methods employed to protect confidentiality and anonymity of participants, and process for requesting and accessing baseline data. METHODS We developed mechanisms to share baseline data from the API ADAD Trial in consultation with experts and other groups sharing data from Alzheimer's disease (AD) prevention trials, balancing the need to protect anonymity and trial integrity with making data broadly available to accelerate progress in the field. We pressure-tested deliberate and inadvertent potential threats under specific assumptions, employed a system to suppress or mask both direct and indirect identifying variables, limited and firewalled data managers, and put forth specific principles requisite to receive data. RESULTS Baseline demographic, PSEN1 E280A and apolipoprotein E genotypes, florbetapir and fluorodeoxyglucose positron emission tomography, magnetic resonance imaging, clinical, and cognitive data can now be requested by interested researchers. DISCUSSION Baseline data are publicly available; treatment data and biological samples, including baseline and treatment-related blood-based biomarker data will become available in accordance with our original trial agreement and subsequently developed Collaboration for Alzheimer's Prevention principles. Sharing of these data will allow exploration of important questions including the differential effects of initiating an investigational AD prevention therapy both before as well as after measurable Aβ plaque deposition.
Collapse
Affiliation(s)
- Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Jeremy J. Pruzin
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Chris Brown
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Margarita Giraldo
- Grupo de Neurociencias de la Universidad de Antioquia, Medellin, Colombia
| | | | - Carlos Tobon
- Grupo de Neurociencias de la Universidad de Antioquia, Medellin, Colombia
| | - Nan Hu
- Genentech Inc., South San Francisco, CA, USA
| | | | | | | | | | - Wendy Lee
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Ji Luo
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | | | | | | | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | | | - Diego Mastroeni
- ASU-Banner Neurodegenerative Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | - Yakeel T. Quiroz
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Jessica B. Langbaum
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Francisco Lopera
- Grupo de Neurociencias de la Universidad de Antioquia, Medellin, Colombia
| | - Pierre N. Tariot
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- University of Arizona College of Medicine, Phoenix, AZ, USA
| | | |
Collapse
|
19
|
Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders. Mol Neurobiol 2023; 60:1690-1720. [PMID: 36562884 DOI: 10.1007/s12035-022-03164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A few protein kinases and phosphatases regulate tau protein phosphorylation and an imbalance in their enzyme activity results in tau hyper-phosphorylation. Aberrant tau phosphorylation causes tau to dissociate from the microtubules and clump together in the cytosol to form neurofibrillary tangles (NFTs), which lead to the progression of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Hence, targeting hyperphosphorylated tau protein is a restorative approach for treating neurodegenerative tauopathies. The cyclin-dependent kinase (Cdk5) and the glycogen synthase kinase (GSK3β) have both been implicated in aberrant tau hyperphosphorylation. The limited transport of drugs through the blood-brain barrier (BBB) for reaching the central nervous system (CNS) thus represents a significant problem in the development of drugs. Drug delivery systems based on nanocarriers help solve this problem. In this review, we discuss the tau protein, regulation of tau phosphorylation and abnormal hyperphosphorylation, drugs in use or under clinical trials, and treatment strategies for tauopathies based on the critical role of tau hyperphosphorylation in the pathogenesis of the disease. Pathology of neurodegenerative disease due to hyperphosphorylation and various therapeutic approaches including nanotechnology for its treatment.
Collapse
|
20
|
Jutten RJ, Papp KV, Hendrix S, Ellison N, Langbaum JB, Donohue MC, Hassenstab J, Maruff P, Rentz DM, Harrison J, Cummings J, Scheltens P, Sikkes SAM. Why a clinical trial is as good as its outcome measure: A framework for the selection and use of cognitive outcome measures for clinical trials of Alzheimer's disease. Alzheimers Dement 2023; 19:708-720. [PMID: 36086926 PMCID: PMC9931632 DOI: 10.1002/alz.12773] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022]
Abstract
A crucial aspect of any clinical trial is using the right outcome measure to assess treatment efficacy. Compared to the rapidly evolved understanding and measurement of pathophysiology in preclinical and early symptomatic stages of Alzheimer's disease (AD), relatively less progress has been made in the evolution of clinical outcome assessments (COAs) for those stages. The current paper aims to provide a benchmark for the design and evaluation of COAs for use in early AD trials. We discuss lessons learned on capturing cognitive changes in predementia stages of AD, including challenges when validating novel COAs for those early stages and necessary evidence for their implementation in clinical trials. Moving forward, we propose a multi-step framework to advance the use of more effective COAs to assess clinically meaningful changes in early AD, which will hopefully contribute to the much-needed consensus around more appropriate outcome measures to assess clinical efficacy of putative treatments. HIGHLIGHTS: We discuss lessons learned on capturing cognitive changes in predementia stages of AD. We propose a framework for the design and evaluation of performance based cognitive tests for use in early AD trials. We provide recommendations to facilitate the implementation of more effective cognitive outcome measures in AD trials.
Collapse
Affiliation(s)
- Roos J. Jutten
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn V. Papp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Michael C. Donohue
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
| | - Jason Hassenstab
- Knight Alzheimer Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Paul Maruff
- Cogstate Ltd., Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Dorene M. Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Harrison
- Metis Cognition Ltd., Kilmington, UK
- Department of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, location VUmc, VU University, Amsterdam, The Netherlands
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, location VUmc, VU University, Amsterdam, The Netherlands
| | - Sietske A. M. Sikkes
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, location VUmc, VU University, Amsterdam, The Netherlands
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Movement and Behavioral Sciences, VU University, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Ramos C, Madrigal C, Aguirre – Acevedo DC, Giraldo-Chica M, Acosta-Baena N, Aponte C, Aguillón D, Gómez M, Espinosa A, Madrigal L, Uribe C, Saldarriaga A, Alzate D, Ruiz A, Andrade A, Lopez H, Langbaum JB, Sink KM, Reiman EM, Tariot PN, Ríos-Romenets S, Lopera F. Psychological Status of the Participants in Alzheimer's Prevention Initiative Autosomal Dominant Alzheimer's Disease Colombia. J Alzheimers Dis 2023; 95:1091-1106. [PMID: 37638430 PMCID: PMC10715735 DOI: 10.3233/jad-220941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND The SARS-CoV2 global pandemic impacted participants in the Alzheimer's Prevention Initiative (API) Autosomal Dominant Alzheimer's Disease (ADAD) clinical trial, who faced three stressors: 1) fear of developing dementia; 2) concerns about missing treatment; and 3) risk of SARS-CoV2 infection. OBJECTIVE To describe the frequency of psychological disorders among the participants of the API ADAD Colombia clinical study, treated by a holistic mental health team during the COVID-19 pandemic. The extent of use of mental health team services was explored considering different risk factors, and users and non-users of these services were compared. METHODS Participants had free and optional access to psychology and psychiatry services, outside of the study protocol. Descriptive statistics was used to analyze the frequency of the mental health difficulties. A multivariable logistic regression model has been used to assess associations with using this program. RESULTS 66 participants were treated by the Mental Health Team from March 1, 2020, to December 31, 2020. Before and after the start of the pandemic, the most common psychological problems were anxiety (36.4% before, 63.6% after) and depression (34.8% before, 37.9% after). 70% of users assisted by psychology and 81.6% of those assisted by psychiatry felt that the services were useful for them. Female sex, depression, and anxiety before the pandemic were positively associated with being assisted by either psychology or psychiatry, while the association with hyperlipidemia was negative. CONCLUSIONS A holistic mental health program, carried out in the context of a study, could mitigate psychopathology during pandemics such as COVID-19.
Collapse
Affiliation(s)
- Claudia Ramos
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
- University of Antioquia, Medellin, CO
| | - Claudia Madrigal
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
| | | | | | | | - Claudia Aponte
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
| | - David Aguillón
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
- University of Antioquia, Medellin, CO
| | - Manuela Gómez
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
| | | | - Lucia Madrigal
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
| | - Claramonika Uribe
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
| | | | - Diana Alzate
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
| | - Alejandra Ruiz
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
| | - Angela Andrade
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
| | - Hugo Lopez
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
| | | | | | | | | | | | - Francisco Lopera
- Neuroscience Group of Antioquia, University of Antioquia, Medellin, CO
- University of Antioquia, Medellin, CO
| |
Collapse
|
22
|
Levin J, Vöglein J, Quiroz YT, Bateman RJ, Ghisays V, Lopera F, McDade E, Reiman E, Tariot PN, Morris JC. Testing the amyloid cascade hypothesis: Prevention trials in autosomal dominant Alzheimer disease. Alzheimers Dement 2022; 18:2687-2698. [PMID: 35212149 PMCID: PMC9399299 DOI: 10.1002/alz.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The amyloid cascade hypothesis of Alzheimer disease (AD) has been increasingly challenged. Here, we aim to refocus the amyloid cascade hypothesis on its original premise that the accumulation of amyloid beta (Aβ) peptide is the primary and earliest event in AD pathogenesis as based on current evidence, initiating several pathological events and ultimately leading to AD dementia. BACKGROUND An ongoing debate about the validity of the amyloid cascade hypothesis for AD has been triggered by clinical trials with investigational disease-modifying drugs targeting Aβ that have not demonstrated consistent clinically meaningful benefits. UPDATED HYPOTHESIS It is an open question if monotherapy targeting Aβ pathology could be markedly beneficial at a stage when the brain has been irreversibly damaged by a cascade of pathological changes. Interventions in cognitively unimpaired individuals at risk for dementia, during amyloid-only and pre-amyloid stages, are more appropriate for proving or refuting the amyloid hypothesis. Our updated hypothesis states that anti-Aβ investigational therapies are likely to be most efficacious when initiated in the preclinical (asymptomatic) stages of AD and specifically when the disease is driven primarily by amyloid pathology. Given the young age at symptom onset and the deterministic nature of the mutations, autosomal dominant AD (ADAD) mutation carriers represent the ideal population to evaluate the efficacy of putative disease-modifying Aβ therapies. MAJOR CHALLENGES FOR THE HYPOTHESIS Key challenges of the amyloid hypothesis include the recognition that disrupted Aβ homeostasis alone is insufficient to produce the AD pathophysiologic process, poor correlation of Aβ with cognitive impairment, and inconclusive data regarding clinical efficacy of therapies targeting Aβ. Challenges of conducting ADAD research include the rarity of the disease and uncertainty of the generalizability of ADAD findings for the far more common "sporadic" late-onset AD. LINKAGE TO OTHER MAJOR THEORIES The amyloid cascade hypothesis, modified here to pertain to the preclinical stage of AD, still needs to be integrated with the development and effects of tauopathy and other co-pathologies, including neuroinflammation, vascular insults, synucleinopathy, and many others.
Collapse
Affiliation(s)
- Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jonathan Vöglein
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Yakeel T. Quiroz
- Harvard Medical School and Massachusetts General Hospital, 39 1 Avenue, Suite 101, Charlestown, MA 02129, USA
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Randall J. Bateman
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Valentina Ghisays
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Eric McDade
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Eric Reiman
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Pierre N. Tariot
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - John C. Morris
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| |
Collapse
|
23
|
Vila-Castelar C, Tariot PN, Sink KM, Clayton D, Langbaum JB, Thomas RG, Chen Y, Su Y, Chen K, Hu N, Giraldo-Chica M, Tobón C, Acosta-Baena N, Luna E, Londoño M, Ospina P, Tirado V, Muñoz C, Henao E, Bocanegra Y, Alvarez S, Rios-Romenets S, Ghisays V, Goradia D, Lee W, Luo J, Malek-Ahmadi MH, Protas HD, Lopera F, Reiman EM, Quiroz YT. Sex differences in cognitive resilience in preclinical autosomal-dominant Alzheimer's disease carriers and non-carriers: Baseline findings from the API ADAD Colombia Trial. Alzheimers Dement 2022; 18:2272-2282. [PMID: 35103388 PMCID: PMC9339586 DOI: 10.1002/alz.12552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Females may have greater susceptibility to Alzheimer's disease (AD)-pathology. We examined the effect of sex on pathology, neurodegeneration, and memory in cognitively-unimpaired Presenilin-1 (PSEN1) E280A mutation carriers and non-carriers. METHODS We analyzed baseline data from 167 mutation carriers and 75 non-carriers (ages 30 to 53) from the Alzheimer's Prevention Initiative Autosomal Dominant AD Trial, including florbetapir- and fludeoxyglucose-PET, MRI based hippocampal volume and cognitive testing. RESULTS Females exhibited better delayed recall than males, controlling for age, precuneus glucose metabolism, and mutation status, although the effect was not significant among PSEN1 mutation carriers only. APOE ε4 did not modify the effect of sex on AD biomarkers and memory. DISCUSSION Our findings suggest that, among cognitively-unimpaired individuals at genetic risk for autosomal-dominant AD, females may have greater cognitive resilience to AD pathology and neurodegeneration than males. Further investigation of sex-specific differences in autosomal-dominant AD is key to elucidating mechanisms of AD risk and resilience.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Nan Hu
- Genentech Inc., South San Francisco, CA, USA
| | | | - Carlos Tobón
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, CO
| | | | - Ernesto Luna
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, CO
| | - Marisol Londoño
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, CO
| | - Paula Ospina
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, CO
| | - Victoria Tirado
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, CO
| | - Claudia Muñoz
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, CO
| | - Eliana Henao
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, CO
| | - Yamile Bocanegra
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, CO
| | | | | | | | | | - Wendy Lee
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Ji Luo
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | | | | | - Francisco Lopera
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, CO
| | | | - Yakeel T. Quiroz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | | |
Collapse
|
24
|
Assunção SS, Sperling RA, Ritchie C, Kerwin DR, Aisen PS, Lansdall C, Atri A, Cummings J. Meaningful benefits: a framework to assess disease-modifying therapies in preclinical and early Alzheimer's disease. Alzheimers Res Ther 2022; 14:54. [PMID: 35440022 PMCID: PMC9017027 DOI: 10.1186/s13195-022-00984-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/05/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The need for preventive therapies that interrupt the progression of Alzheimer's disease (AD) before the onset of symptoms or when symptoms are emerging is urgent and has spurred the ongoing development of disease-modifying therapies (DMTs) in preclinical and early AD (mild cognitive impairment [MCI] to mild dementia). Assessing the meaningfulness of what are likely small initial treatment effects in these earlier stages of the AD patho-clinical disease continuum is a major challenge and warrants further consideration. BODY: To accommodate a shift towards earlier intervention in AD, we propose meaningful benefits as a new umbrella concept that encapsulates the spectrum of potentially desirable outcomes that may be demonstrated in clinical trials and other studies across the AD continuum, with an emphasis on preclinical AD and early AD (i.e., MCI due to AD and mild AD dementia). The meaningful benefits framework applies to data collection, assessment, and communication across three dimensions: (1) multidimensional clinical outcome assessments (COAs) including not only core disease outcomes related to cognition and function but also patient- and caregiver-reported outcomes, health and economic outcomes, and neuropsychiatric symptoms; (2) complementary analyses that help contextualize and expand the understanding of COA-based assessments, such as number-needed-to-treat or time-to-event analyses; and (3) assessment of both cumulative benefit and predictive benefit, where early changes on cognitive, functional, or biomarker assessments predict longer-term clinical benefit. CONCLUSION The concept of meaningful benefits emphasizes the importance of multidimensional reporting of clinical trial data while, conceptually, it advances our understanding of treatment effects in preclinical AD and mild cognitive impairment due to AD. We propose that such an approach will help bridge the gap between the emergence of DMTs and their clinical use, particularly now that a DMT is available for patients diagnosed with MCI due to AD and mild AD dementia.
Collapse
Affiliation(s)
- Sheila Seleri Assunção
- US Medical Affairs - Neuroscience, Genentech, A Member of the Roche Group, South San Francisco, CA, USA.
| | - Reisa A Sperling
- Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Scotland, UK
| | - Diana R Kerwin
- Kerwin Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul S Aisen
- University of Southern California Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, USA
| |
Collapse
|
25
|
Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, Ross CA, Rosen H, Arias JJ, Fradette S, McDermott MP, Shefner J, Stanislaw C, Abrahams S, Cosentino S, Andersen PM, Finkel RS, Granit V, Grignon AL, Rohrer JD, McMillan CT, Grossman M, Al-Chalabi A, Turner MR. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 2022; 145:27-44. [PMID: 34677606 PMCID: PMC8967095 DOI: 10.1093/brain/awab404] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | - Jalayne J Arias
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | | | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Richard S Finkel
- Department of Pediatric Medicine, Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Restifo LL. Unraveling the Gordian knot: genetics and the troubled road to effective therapeutics for Alzheimer's disease. Genetics 2022; 220:iyab185. [PMID: 34718566 PMCID: PMC8733445 DOI: 10.1093/genetics/iyab185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
In the late 20th century, identification of the major protein components of amyloid plaques and neurofibrillary tangles provided a window into the molecular pathology of Alzheimer's disease, ushering in an era of optimism that targeted therapeutics would soon follow. The amyloid-cascade hypothesis took hold very early, supported by discoveries that dominant mutations in APP, PSEN1, and PSEN2 cause the very rare, early-onset, familial forms of the disease. However, in the past decade, a stunning series of failed Phase-3 clinical trials, testing anti-amyloid antibodies or processing-enzyme inhibitors, prompts the question, What went wrong? The FDA's recent controversial approval of aducanumab, despite widespread concerns about efficacy and safety, only amplifies the question. The assumption that common, late-onset Alzheimer's is a milder form of familial disease was not adequately questioned. The differential timing of discoveries, including blood-brain-barrier-penetrant tracers for imaging of plaques and tangles, made it easy to focus on amyloid. Furthermore, the neuropathology community initially implemented Alzheimer's diagnostic criteria based on plaques only. The discovery that MAPT mutations cause frontotemporal dementia with tauopathy made it even easier to overlook the tangles in Alzheimer's. Many important findings were simply ignored. The accepted mouse models did not predict the human clinical trials data. Given this lack of pharmacological validity, input from geneticists in collaboration with neuroscientists is needed to establish criteria for valid models of Alzheimer's disease. More generally, scientists using genetic model organisms as whole-animal bioassays can contribute to building the pathogenesis network map of Alzheimer's disease.
Collapse
Affiliation(s)
- Linda L Restifo
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ 85724, USA
- Department of Neuroscience and Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ 85721, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, AZ 85719, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
27
|
Gomez LR, Albers MW, Baena A, Vila-Castelar C, Fox-Fuller JT, Sanchez J, Jain F, Albers AD, Lopera F, Quiroz YT. Olfactory Function and Markers of Brain Pathology in Non-Demented Individuals with Autosomal Dominant Alzheimer's Disease. J Alzheimers Dis 2022; 88:721-729. [PMID: 35694921 PMCID: PMC9851278 DOI: 10.3233/jad-220075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Olfactory dysfunction is one of the earliest signs of Alzheimer's disease (AD), highlighting its potential use as a biomarker for early detection. It has also been linked to progression from mild cognitive impairment (MCI) to dementia. OBJECTIVE To study olfactory function and its associations with markers of AD brain pathology in non-demented mutation carriers of an autosomal dominant AD (ADAD) mutation and non-carrier family members. METHODS We analyzed cross-sectional data from 16 non-demented carriers of the Presenilin1 E280A ADAD mutation (mean age [SD]: 40.1 [5.3], and 19 non-carrier family members (mean age [SD]: 36.0 [5.5]) from Colombia, who completed olfactory and cognitive testing and underwent amyloid and tau positron emission tomography (PET) imaging. RESULTS Worse olfactory identification performance was associated with greater age in mutation carriers (r = -0.52 p = 0.037). In carriers, worse olfactory identification performance was related to worse MMSE scores (r = 0.55, p = 0.024) and CERAD delayed recall (r = 0.63, p = 0.007) and greater cortical amyloid-β (r = -0.53, p = 0.042) and tau pathology burden (entorhinal: r = -0.59, p = 0.016; inferior temporal: r = -0.52, p = 0.038). CONCLUSION Worse performance on olfactory identification tasks was associated with greater age, a proxy for disease progression in this genetically vulnerable ADAD cohort. In addition, this is the first study to report olfactory dysfunction in ADAD mutation carriers with diagnosis of MCI and its correlation with abnormal accumulation of tau pathology in the entorhinal region. Taken together, our findings suggest that olfactory dysfunction has promise as an early marker of brain pathology and future risk for dementia.
Collapse
Affiliation(s)
- Liliana Ramirez Gomez
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W. Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Baena
- Grupo de Neurociencias, Universidad de Antioquia, Medellin, Colombia
| | - Clara Vila-Castelar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua T. Fox-Fuller
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Justin Sanchez
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felipe Jain
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alefiya D. Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Medellin, Colombia
| | - Yakeel T. Quiroz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Grupo de Neurociencias, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
28
|
Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. (-)-Epigallocatechin-3-Gallate Diminishes Intra-and Extracellular Amyloid-Induced Cytotoxic Effects on Cholinergic-like Neurons from Familial Alzheimer's Disease PSEN1 E280A. Biomolecules 2021; 11:biom11121845. [PMID: 34944489 PMCID: PMC8699501 DOI: 10.3390/biom11121845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disease characterized by functional disruption, death of cholinergic neurons (ChNs) because of intracellular and extracellular Aβ aggregates, and hyperphosphorylation of protein TAU (p-TAU). To date, there are no efficient therapies against AD. Therefore, new therapies for its treatment are in need. The goal of this investigation was to evaluate the effect of the polyphenol epigallocatechin-3-gallate (EGCG) on cholinergic-like neurons (ChLNs) bearing the mutation E280A in PRESENILIN 1 (PSEN1 E280A). To this aim, wild-type (WT) and PSEN1 E280A ChLNs were exposed to EGCG (5–50 μM) for 4 days. Untreated or treated neurons were assessed for biochemical and functional analysis. We found that EGCG (50 μM) significantly inhibited the aggregation of (i)sAPPβf, blocked p-TAU, increased ∆Ψm, decreased oxidation of DJ-1 at residue Cys106-SH, and inhibited the activation of transcription factor c-JUN and P53, PUMA, and CASPASE-3 in mutant ChLNs compared to WT. Although EGCG did not reduce (e)Aβ42, the polyphenol reversed Ca2+ influx dysregulation as a response to acetylcholine (ACh) stimuli in PSEN1 E280A ChLNs, inhibited the activation of transcription factor NF-κB, and reduced the secretion of pro-inflammatory IL-6 in wild-type astrocyte-like cells (ALCs) when exposed to mutant ChLNs culture supernatant. Taken together, our findings suggest that the EGCG might be a promising therapeutic approach for the treatment of FAD.
Collapse
|
29
|
Nimmo JT, Kelly L, Verma A, Carare RO, Nicoll JAR, Dodart JC. Amyloid-β and α-Synuclein Immunotherapy: From Experimental Studies to Clinical Trials. Front Neurosci 2021; 15:733857. [PMID: 34539340 PMCID: PMC8441015 DOI: 10.3389/fnins.2021.733857] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease and Lewy body diseases are the most common causes of neurodegeneration and dementia. Amyloid-beta (Aβ) and alpha-synuclein (αSyn) are two key proteins involved in the pathogenesis of these neurodegenerative diseases. Immunotherapy aims to reduce the harmful effects of protein accumulation by neutralising toxic species and facilitating their removal. The results of the first immunisation trial against Aβ led to a small percentage of meningoencephalitis cases which revolutionised vaccine design, causing a shift in the field of immunotherapy from active to passive immunisation. While the vast majority of immunotherapies have been developed for Aβ and tested in Alzheimer’s disease, the field has progressed to targeting other proteins including αSyn. Despite showing some remarkable results in animal models, immunotherapies have largely failed final stages of clinical trials to date, with the exception of Aducanumab recently licenced in the US by the FDA. Neuropathological findings translate quite effectively from animal models to human trials, however, cognitive and functional outcome measures do not. The apparent lack of translation of experimental studies to clinical trials suggests that we are not obtaining a full representation of the effects of immunotherapies from animal studies. Here we provide a background understanding to the key concepts and challenges involved in therapeutic design. This review further provides a comprehensive comparison between experimental and clinical studies in Aβ and αSyn immunotherapy and aims to determine the possible reasons for the disconnection in their outcomes.
Collapse
Affiliation(s)
- Jacqui Taryn Nimmo
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Louise Kelly
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ajay Verma
- Yumanity Therapeutics, Boston, MA, United States
| | - Roxana O Carare
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
30
|
Bassil R, Shields K, Granger K, Zein I, Ng S, Chih B. Improved modeling of human AD with an automated culturing platform for iPSC neurons, astrocytes and microglia. Nat Commun 2021; 12:5220. [PMID: 34471104 PMCID: PMC8410795 DOI: 10.1038/s41467-021-25344-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Advancement in human induced pluripotent stem cell (iPSC) neuron and microglial differentiation protocols allow for disease modeling using physiologically relevant cells. However, iPSC differentiation and culturing protocols have posed challenges to maintaining consistency. Here, we generated an automated, consistent, and long-term culturing platform of human iPSC neurons, astrocytes, and microglia. Using this platform we generated a iPSC AD model using human derived cells, which showed signs of Aβ plaques, dystrophic neurites around plaques, synapse loss, dendrite retraction, axon fragmentation, phospho-Tau induction, and neuronal cell death in one model. We showed that the human iPSC microglia internalized and compacted Aβ to generate and surround the plaques, thereby conferring some neuroprotection. We investigated the mechanism of action of anti-Aβ antibodies protection and found that they protected neurons from these pathologies and were most effective before pTau induction. Taken together, these results suggest that this model can facilitate target discovery and drug development efforts. Human induced pluripotent stem cell (iPSC) cells have been used to model disease in specific cell types. Here, the authors develop an automated long-term culturing platform of human iPSC neurons, astrocytes, and microglia and use it to model some cellular aspects of Alzheimer’s disease.
Collapse
Affiliation(s)
- Reina Bassil
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA.,Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, USA
| | - Kenneth Shields
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Kevin Granger
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Ivan Zein
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Shirley Ng
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA. .,Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
31
|
Are Parkinson's Disease Patients the Ideal Preclinical Population for Alzheimer's Disease Therapeutics? J Pers Med 2021; 11:jpm11090834. [PMID: 34575610 PMCID: PMC8472048 DOI: 10.3390/jpm11090834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Concomitant neuropathological hallmarks of Alzheimer's Disease (AD) are common in the brains of people with Parkinson's disease (PD). Furthermore, AD biomarkers are associated with cognitive decline and dementia in PD patients during life. Here, we highlight the considerable overlap between AD and PD, emphasizing neuropathological, biomarker, and mechanistic studies. We suggest that precision medicine approaches may successfully identify PD patients most likely to develop concomitant AD. The ability to identify PD patients at high risk for future concomitant AD in turn provides an ideal cohort for trials of AD-directed therapies in PD patients, aimed at delaying or preventing cognitive symptoms.
Collapse
|
32
|
Ibanez L, Cruchaga C, Fernández MV. Advances in Genetic and Molecular Understanding of Alzheimer's Disease. Genes (Basel) 2021; 12:1247. [PMID: 34440421 PMCID: PMC8394321 DOI: 10.3390/genes12081247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) has become a common disease of the elderly for which no cure currently exists. After over 30 years of intensive research, we have gained extensive knowledge of the genetic and molecular factors involved and their interplay in disease. These findings suggest that different subgroups of AD may exist. Not only are we starting to treat autosomal dominant cases differently from sporadic cases, but we could be observing different underlying pathological mechanisms related to the amyloid cascade hypothesis, immune dysfunction, and a tau-dependent pathology. Genetic, molecular, and, more recently, multi-omic evidence support each of these scenarios, which are highly interconnected but can also point to the different subgroups of AD. The identification of the pathologic triggers and order of events in the disease processes are key to the design of treatments and therapies. Prevention and treatment of AD cannot be attempted using a single approach; different therapeutic strategies at specific disease stages may be appropriate. For successful prevention and treatment, biomarker assays must be designed so that patients can be more accurately monitored at specific points during the course of the disease and potential treatment. In addition, to advance the development of therapeutic drugs, models that better mimic the complexity of the human brain are needed; there have been several advances in this arena. Here, we review significant, recent developments in genetics, omics, and molecular studies that have contributed to the understanding of this disease. We also discuss the implications that these contributions have on medicine.
Collapse
Affiliation(s)
- Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| |
Collapse
|
33
|
Cacciamani F, Houot M, Gagliardi G, Dubois B, Sikkes S, Sánchez-Benavides G, Denicolò E, Molinuevo JL, Vannini P, Epelbaum S. Awareness of Cognitive Decline in Patients With Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2021; 13:697234. [PMID: 34413767 PMCID: PMC8370471 DOI: 10.3389/fnagi.2021.697234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Identifying a poor degree of awareness of cognitive decline (ACD) could represent an early indicator of Alzheimer's disease (AD). Objectives: (1) to understand whether there is evidence of poor ACD in the pre-dementia stages of AD; (2) to summarize the main findings obtained investigating ACD in AD; (3) to propose a conceptual framework. Data Sources: We searched Scopus, Pubmed, and the reference lists for studies published up to August 2020. Original research articles must report a measure of ACD and included individuals with AD dementia, or prodromal AD (or MCI), or being at risk for AD. Data Synthesis: All studies covering preclinical, prodromal, and AD dementia were systematically reviewed. We intended to perform a meta-analysis of empirical studies on preclinical AD or prodromal AD (or MCI), to compare ACD between clinical groups. Due to the paucity of literature on preclinical AD, meta-analysis was only possible for prodromal AD (or MCI) studies. Results: We systematically reviewed 283 articles, and conducted a meta-analysis of 18 articles on prodromal AD (or MCI), showing that ACD was not significantly different between patients with amnestic and non-amnestic MCI (SMD = 0.09, p = 0.574); ACD was significantly poorer in amnestic MCI (SMD = -0.56, p = 0.001) and mild AD (SMD = -1.39, p < 0.001) than in controls; ACD was also significantly poorer in mild AD than in amnestic MCI (SMD = -0.75, p < 0.001), as well as poorer than in non-amnestic MCI (SMD = -1.00, p < 0.001). We also discuss key findings on ACD in AD, such as its neural and cognitive correlates. Conclusions and Implications: We propose that patients may be complaining of their initial subtle cognitive changes, but ACD would soon start to decrease. The individual would show mild anosognosia in the MCI stage, and severe anosognosia in dementia. The evaluation of ACD (comparing self-report to cognitive scores or to informant-report) could be useful to guide the clinician toward a timely diagnosis, and in trials targeting early-stage AD.
Collapse
Affiliation(s)
- Federica Cacciamani
- Institut du Cerveau, ICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- Inserm, U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Sorbonne Université, Paris, France
- Inria, ARAMIS-Project Team, Paris, France
| | - Marion Houot
- Institut du Cerveau, ICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Centre of Excellence of Neurodegenerative Disease (CoEN), ICM, CIC Neurosciences, AP-HP, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Geoffroy Gagliardi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Bruno Dubois
- Institut du Cerveau, ICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- Inserm, U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Sorbonne Université, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Centre of Excellence of Neurodegenerative Disease (CoEN), ICM, CIC Neurosciences, AP-HP, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Sietske Sikkes
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gonzalo Sánchez-Benavides
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Elena Denicolò
- Department of Biomedical Science and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - José Luis Molinuevo
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Patrizia Vannini
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Stéphane Epelbaum
- Institut du Cerveau, ICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- Inserm, U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Sorbonne Université, Paris, France
- Inria, ARAMIS-Project Team, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Centre of Excellence of Neurodegenerative Disease (CoEN), ICM, CIC Neurosciences, AP-HP, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Sorbonne University, Paris, France
| |
Collapse
|
34
|
Burns DK, Alexander RC, Welsh-Bohmer KA, Culp M, Chiang C, O'Neil J, Evans RM, Harrigan P, Plassman BL, Burke JR, Wu J, Lutz MW, Haneline S, Schwarz AJ, Schneider LS, Yaffe K, Saunders AM, Ratti E. Safety and efficacy of pioglitazone for the delay of cognitive impairment in people at risk of Alzheimer's disease (TOMMORROW): a prognostic biomarker study and a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2021; 20:537-547. [PMID: 34146512 DOI: 10.1016/s1474-4422(21)00043-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND The identification of people at risk of cognitive impairment is essential for improving recruitment in secondary prevention trials of Alzheimer's disease. We aimed to test and qualify a biomarker risk assignment algorithm (BRAA) to identify participants at risk of developing mild cognitive impairment due to Alzheimer's disease within 5 years, and to evaluate the safety and efficacy of low-dose pioglitazone to delay onset of mild cognitive impairment in these at-risk participants. METHODS In this phase 3, multicentre, randomised, double-blind, placebo-controlled, parallel-group study, we enrolled cognitively healthy, community living participants aged 65-83 years from 57 academic affiliated and private research clinics in Australia, Germany, Switzerland, the UK, and the USA. By use of the BRAA, participants were grouped as high risk or low risk. Participants at high risk were randomly assigned 1:1 to receive oral pioglitazone (0·8 mg/day sustained release) or placebo, and all low-risk participants received placebo. Study investigators, site staff, sponsor personnel, and study participants were masked to genotype, risk assignment, and treatment assignment. The planned study duration was the time to accumulate 202 events of mild cognitive impairment due to Alzheimer's disease in White participants who were at high risk (the population on whom the genetic analyses that informed the BRAA development was done). Primary endpoints were time-to-event comparisons between participants at high risk and low risk given placebo (for the BRAA objective), and between participants at high risk given pioglitazone or placebo (for the efficacy objective). The primary analysis included all participants who were randomly assigned, received at least one dose of study drug, and had at least one valid post-baseline visit, with significance set at p=0·01. The safety analysis included all participants who were randomly assigned and received at least one dose of study medication. An efficacy futility analysis was planned for when approximately 33% of the anticipated events occurred in the high-risk, White, non-Hispanic or Latino group. This trial is registered with ClinicalTrials.gov, NCT01931566. FINDINGS Between Aug 28, 2013, and Dec 21, 2015, we enrolled 3494 participants (3061 at high risk and 433 at low risk). Of those participants, 1545 were randomly assigned to pioglitazone and 1516 to placebo. 1104 participants discontinued treatment (464 assigned to the pioglitazone group, 501 in the placebo high risk group, and 139 in the placebo low risk group). 3399 participants had at least one dose of study drug or placebo and at least one post-baseline follow-up visit, and were included in the efficacy analysis. 3465 participants were included in the safety analysis (1531 assigned to the pioglitazone group, 1507 in the placebo high risk group, and 427 in the placebo low risk group). In the full analysis set, 46 (3·3%) of 1406 participants at high risk given placebo had mild cognitive impairment due to Alzheimer's disease, versus four (1·0%) of 402 participants at low risk given placebo (hazard ratio 3·26, 99% CI 0·85-12·45; p=0·023). 39 (2·7%) of 1430 participants at high risk given pioglitazone had mild cognitive impairment, versus 46 (3·3%) of 1406 participants at high risk given placebo (hazard ratio 0·80, 99% CI 0·45-1·40; p=0·307). In the safety analysis set, seven (0·5%) of 1531 participants at high risk given pioglitazone died versus 21 (1·4%) of 1507 participants at high risk given placebo. There were no other notable differences in adverse events between groups. The study was terminated in January, 2018, after failing to meet the non-futility threshold. INTERPRETATION Pioglitazone did not delay the onset of mild cognitive impairment. The biomarker algorithm demonstrated a 3 times enrichment of events in the high risk placebo group compared with the low risk placebo group, but did not reach the pre-specified significance threshold. Because we did not complete the study as planned, findings can only be considered exploratory. The conduct of this study could prove useful to future clinical development strategies for Alzheimer's disease prevention studies. FUNDING Takeda and Zinfandel.
Collapse
Affiliation(s)
| | | | - Kathleen A Welsh-Bohmer
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, USA
| | - Meredith Culp
- Takeda Development Center Americas, Cambridge, MA, USA
| | | | - Janet O'Neil
- Takeda Development Center Americas, Deerfield, IL, USA
| | | | | | - Brenda L Plassman
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, USA
| | - James R Burke
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, USA; Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Jingtao Wu
- Takeda Development Center Americas, Cambridge, MA, USA
| | - Michael W Lutz
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, USA; Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Lon S Schneider
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kristine Yaffe
- University of California at San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
35
|
Stoiljkovic M, Horvath TL, Hajós M. Therapy for Alzheimer's disease: Missing targets and functional markers? Ageing Res Rev 2021; 68:101318. [PMID: 33711510 PMCID: PMC8131215 DOI: 10.1016/j.arr.2021.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The development of the next generation therapy for Alzheimer's disease (AD) presents a huge challenge given the number of promising treatment candidates that failed in trials, despite recent advancements in understanding of genetic, pathophysiologic and clinical characteristics of the disease. This review reflects some of the most current concepts and controversies in developing disease-modifying and new symptomatic treatments. It elaborates on recent changes in the AD research strategy for broadening drug targets, and potentials of emerging non-pharmacological treatment interventions. Established and novel biomarkers are discussed, including emerging cerebrospinal fluid and plasma biomarkers reflecting tau pathology, neuroinflammation and neurodegeneration. These fluid biomarkers together with neuroimaging findings can provide innovative objective assessments of subtle changes in brain reflecting disease progression. A particular emphasis is given to neurophysiological biomarkers which are well-suited for evaluating the brain overall neural network integrity and function. Combination of multiple biomarkers, including target engagement and outcome biomarkers will empower translational studies and facilitate successful development of effective therapies.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Pharmacology, University of Nis School of Medicine, Nis, Serbia.
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Cognito Therapeutics, Cambridge, MA, 02138, USA
| |
Collapse
|
36
|
Mortada I, Farah R, Nabha S, Ojcius DM, Fares Y, Almawi WY, Sadier NS. Immunotherapies for Neurodegenerative Diseases. Front Neurol 2021; 12:654739. [PMID: 34163421 PMCID: PMC8215715 DOI: 10.3389/fneur.2021.654739] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The current treatments for neurodegenerative diseases are mostly symptomatic without affecting the underlying cause of disease. Emerging evidence supports a potential role for immunotherapy in the management of disease progression. Numerous reports raise the exciting prospect that either the immune system or its derivative components could be harnessed to fight the misfolded and aggregated proteins that accumulate in several neurodegenerative diseases. Passive and active vaccinations using monoclonal antibodies and specific antigens that induce adaptive immune responses are currently under evaluation for their potential use in the development of immunotherapies. In this review, we aim to shed light on prominent immunotherapeutic strategies being developed to fight neuroinflammation-induced neurodegeneration, with a focus on innovative immunotherapies such as vaccination therapy.
Collapse
Affiliation(s)
- Ibrahim Mortada
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Wassim Y Almawi
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
37
|
Cummings J, Bauzon J, Lee G. Who funds Alzheimer's disease drug development? ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12185. [PMID: 34095442 PMCID: PMC8145442 DOI: 10.1002/trc2.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Despite the increase in Alzheimer's disease (AD) cases in the United States, no new treatments have been approved in the United States since 2003. The costs associated with drug development programs are high and serve as a significant deterrent to AD therapeutic investigations. In this study, we analyze the sponsorship data for AD clinical trials conducted since 2016 to assess the fiscal support for AD clinical trials. METHODS We analyzed the funding sources of all AD trials over the past 5 years as reported on ClinicalTrials.gov. RESULTS There were 136 trials being conducted for treatments in the US AD therapeutic pipeline on the index date of this study. Among non-prevention trials, disease-modifying therapies (DMT) in Phase 3 were almost entirely sponsored by the biopharmaceutical industry; Phase 2 DMT trials were split between the biopharmaceutical industry and funding from the National Institutes of Health (NIH) to academic medical centers (AMCs). The majority of prevention trials received sponsorship from public-private partnerships (PPP). Trials of symptomatic agents are equally likely to have biopharmaceutical or NIH/AMC sponsorship. Most trials with repurposed agents had NIH/AMC funding (89%). Since 2016, there has been consistent growth in the number of trials sponsored both in part and fully by NIH/AMC sources and in PPP, and there has been a reduction in biopharmaceutical company-sponsored trials. DISCUSSION The number of trials supported by the biopharmaceutical industry has decreased over the past 5 years; trials supported from federal sources and PPP have increased. Repurposed compounds are mostly in Phase 2 trials and provide critical mechanistic information.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of NevadaLas Vegas (UNLV)Las VegasNevadaUSA
| | - Justin Bauzon
- University of NevadaLas Vegas (UNLV)School of MedicineLas VegasNevadaUSA
| | - Garam Lee
- Biogen, Medical AffairsWestonMassachusettsUSA
| |
Collapse
|
38
|
Llibre-Guerra JJ, Li Y, Allegri RF, Mendez PC, Surace EI, Llibre-Rodriguez JJ, Sosa AL, Aláez-Verson C, Longoria EM, Tellez A, Carrillo-Sánchez K, Flores-Lagunes LL, Sánchez V, Takada LT, Nitrini R, Ferreira-Frota NA, Benevides-Lima J, Lopera F, Ramírez L, Jiménez-Velázquez I, Schenk C, Acosta D, Behrens MI, Doering M, Ziegemeier E, Morris JC, McDade E, Bateman RJ. Dominantly inherited Alzheimer's disease in Latin America: Genetic heterogeneity and clinical phenotypes. Alzheimers Dement 2021; 17:653-664. [PMID: 33226734 PMCID: PMC8140610 DOI: 10.1002/alz.12227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION A growing number of dominantly inherited Alzheimer's disease (DIAD) cases have become known in Latin American (LatAm) in recent years. However, questions regarding mutation distribution and frequency by country remain open. METHODS A literature review was completed aimed to provide estimates for DIAD pathogenic variants in the LatAm population. The search strategies were established using a combination of standardized terms for DIAD and LatAm. RESULTS Twenty-four DIAD pathogenic variants have been reported in LatAm countries. Our combined dataset included 3583 individuals at risk; countries with highest DIAD frequencies were Colombia (n = 1905), Puerto Rico (n = 672), and Mexico (n = 463), usually attributable to founder effects. We found relatively few reports with extensive documentation on biomarker profiles and disease progression. DISCUSSION Future DIAD studies will be required in LatAm, albeit with a more systematic approach to include fluid biomarker and imaging studies. Regional efforts are under way to extend the DIAD observational studies and clinical trials to Latin America.
Collapse
Affiliation(s)
- Jorge J Llibre-Guerra
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yan Li
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Patricio Chrem Mendez
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Ezequiel I Surace
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | | | - Ana Luisa Sosa
- Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico, Mexico City, Mexico
| | - Carmen Aláez-Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | - Alberto Tellez
- Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico, Mexico City, Mexico
| | - Karol Carrillo-Sánchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | - Victor Sánchez
- Department of Neurology, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | - Francisco Lopera
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico, USA
| | - Laura Ramírez
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico, USA
| | | | - Christian Schenk
- Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, Republica Dominicana
| | - Daisy Acosta
- Departamento de Neurología y Neurocirugía Hospital Clínico, Departamento de Neurociencias, Centro de Investigación Clínica Avanzada (CICA), Universidad de Chile & Clínica Alemana, Santiago, Chile
| | - María Isabel Behrens
- Becker Medical Library, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michelle Doering
- Department of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ellen Ziegemeier
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Reiss AB, Montufar N, DeLeon J, Pinkhasov A, Gomolin IH, Glass AD, Arain HA, Stecker MM. Alzheimer Disease Clinical Trials Targeting Amyloid: Lessons Learned From Success in Mice and Failure in Humans. Neurologist 2021; 26:52-61. [PMID: 33646990 DOI: 10.1097/nrl.0000000000000320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of slowing or halting the development of Alzheimer disease (AD) has resulted in the huge allocation of resources by academic institutions and pharmaceutical companies to the development of new treatments. The etiology of AD is elusive, but the aggregation of amyloid-β and tau peptide and oxidative processes are considered critical pathologic mechanisms. The failure of drugs with multiple mechanisms to meet efficacy outcomes has caused several companies to decide not to pursue further AD studies and has left the field essentially where it has been for the past 15 years. Efforts are underway to develop biomarkers for detection and monitoring of AD using genetic, imaging, and biochemical technology, but this is of minimal use if no intervention can be offered. REVIEW SUMMARY In this review, we consider the natural progression of AD and how it continues despite present attempts to modify the amyloid-related machinery to alter the disease trajectory. We describe the mechanisms and approaches to AD treatment targeting amyloid, including both passive and active immunotherapy as well as inhibitors of enzymes in the amyloidogenic pathway. CONCLUSION Lessons learned from clinical trials of amyloid reduction strategies may prove crucial for the leap forward toward novel therapeutic targets to treat AD.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Natalie Montufar
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Joshua DeLeon
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Aaron Pinkhasov
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Irving H Gomolin
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Amy D Glass
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Hirra A Arain
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Mark M Stecker
- Fresno Center for Medical Education and Research, Department of Medicine, University of California-San Francisco, Fresno, CA
| |
Collapse
|
40
|
Hu N, Mackey H, Thomas R. Power and sample size for random coefficient regression models in randomized experiments with monotone missing data. Biom J 2021; 63:806-824. [PMID: 33586212 DOI: 10.1002/bimj.202000184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 11/06/2022]
Abstract
Random coefficient regression (also known as random effects, mixed effects, growth curve, variance component, multilevel, or hierarchical linear modeling) can be a natural and useful approach for characterizing and testing hypotheses in data that are correlated within experimental units. Existing power and sample size software for such data are based on two variance component models or those using a two-stage formulation. These approaches may be markedly inaccurate in settings where more variance components (i.e., intercept, rate of change, and residual error) are warranted. We present variance, power, sample size formulae, and software (R Shiny app) for use with random coefficient regression models with possible missing data and variable follow-up. We illustrate sample size and study design planning using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We additionally examine the drivers of variability to better inform study design.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biostatistics, Genentech Inc., San Francisco, CA, USA
| | - Howard Mackey
- Department of Biostatistics, Genentech Inc., San Francisco, CA, USA
| | - Ronald Thomas
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
41
|
Advances in Drug Therapy for Alzheimer's Disease. Curr Med Sci 2021; 40:999-1008. [PMID: 33428127 DOI: 10.1007/s11596-020-2281-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/03/2020] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that mainly causes dementia. It is a serious threat to the health of the global elderly population. Considerable money and effort has been invested in the development of drug therapy for AD worldwide. Many drug therapies are currently under development or in clinical trials, based on two known mechanisms of AD, namely, Aβ toxicity and the abnormal Tau hyperphosphorylation. Numerous drugs are also being developed for other AD associated mechanisms such as neuroinflammation, neurotransmitter imbalance, oxidative damage and mitochondrial dysfunction, neuron loss and degeneration. Even so, the number of drugs that can successfully improve symptoms or delay the progression of the disease remains very limited. However, multi-drug combinations may provide a new avenue for drug therapy for AD. In addition, early diagnosis of AD and timely initiation of treatment may allow drugs that act on the early pathological processes of AD to help improve the symptoms and prevent the progression of the condition.
Collapse
|
42
|
Bocanegra Y, Fox-Fuller JT, Baena A, Guzmán-Vélez E, Vila-Castelar C, Martínez J, Torrico-Teave H, Lopera F, Quiroz YT. Association Between Visual Memory and In Vivo Amyloid and Tau Pathology in Preclinical Autosomal Dominant Alzheimer's Disease. J Int Neuropsychol Soc 2021; 27:47-55. [PMID: 32762790 PMCID: PMC8101259 DOI: 10.1017/s1355617720000673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Visual memory (ViM) declines early in Alzheimer's disease (AD). However, it is unclear whether ViM impairment is evident in the preclinical stage and relates to markers of AD pathology. We examined the relationship between ViM performance and in vivo markers of brain pathology in individuals with autosomal dominant AD (ADAD). METHODS Forty-five cognitively unimpaired individuals from a Colombian kindred with the Presenilin 1 (PSEN1) E280A ADAD mutation (19 carriers and 26 noncarriers) completed the Rey-Osterrieth Complex Figure immediate recall test, a measure of ViM. Cortical amyloid burden and regional tau deposition in the entorhinal cortex (EC) and inferior temporal cortex (IT) were measured using 11C-Pittsburgh compound B positron emission tomography (PET) and 11F-flortaucipir PET, respectively. RESULTS Cognitively unimpaired carriers and noncarriers did not differ on ViM performance. Compared to noncarriers, carriers had higher levels of cortical amyloid and regional tau in both the EC and IT. In cognitively unimpaired carriers, greater cortical amyloid burden, higher levels of regional tau, and greater age were associated with worse ViM performance. Only a moderate correlation between regional tau and ViM performance remained after adjusting for verbal memory scores. None of these correlations were observed in noncarriers. CONCLUSIONS Results suggest that AD pathology and greater age are associated with worse ViM performance in ADAD before the onset of clinical symptoms. Further investigation with larger samples and longitudinal follow-up is needed to examine the utility of ViM measures for identifying individuals at high risk of developing dementia later in life.
Collapse
Affiliation(s)
- Yamile Bocanegra
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Joshua T. Fox-Fuller
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Boston University, Boston, MA, USA
| | - Ana Baena
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Edmarie Guzmán-Vélez
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clara Vila-Castelar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jairo Martínez
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heirangi Torrico-Teave
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Yakeel T. Quiroz
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
[The future of dementia prevention and treatment strategies]. Nihon Ronen Igakkai Zasshi 2020; 57:374-396. [PMID: 33268621 DOI: 10.3143/geriatrics.57.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Vannini P, Hanseeuw BJ, Gatchel JR, Sikkes SAM, Alzate D, Zuluaga Y, Moreno S, Mendez L, Baena A, Ospina-Lopera P, Tirado V, Henao E, Acosta-Baena N, Giraldo M, Lopera F, Quiroz YT. Trajectory of Unawareness of Memory Decline in Individuals With Autosomal Dominant Alzheimer Disease. JAMA Netw Open 2020; 3:e2027472. [PMID: 33263761 PMCID: PMC7711319 DOI: 10.1001/jamanetworkopen.2020.27472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE Recent studies have suggested that unawareness, or anosognosia, of memory decline is present in predementia stages of Alzheimer disease (AD) and may serve as an early symptomatic indicator of AD. OBJECTIVE To investigate the evolution of anosognosia of memory decline in individuals who carry the PSEN1 E280A variant for autosomal dominant AD compared with family members who do not carry the variant. DESIGN, SETTING, AND PARTICIPANTS This cohort study investigated a total of 2379 members of a Colombian kindred with autosomal dominant AD who were part of the Alzheimer's Prevention Initiative Registry. Assessments were completed at the University of Antioquia, Colombia, with data collected between January 1, 2000, and July 31, 2019. MAIN OUTCOMES AND MEASURES Awareness of memory function was operationalized using the discrepancy between self-report and study partner report on a memory complaint scale. Linear mixed effects models were used to assess memory self-awareness over age separately in variant carriers and noncarriers. RESULTS This study included 396 variant carriers (mean [SD] age, 32.7 [11.9] years; 200 [50.5%] female), of whom 59 (14.9%) were cognitively impaired, and 1983 cognitively unimpaired noncarriers (mean [SD] age, 33.5 [12.5] years; 1129 [56.9%] female). The variant carriers demonstrated increased awareness until the mean (SD) age of 35.0 (2.0) years and had anosognosia at approximately 43 years of age, approximately 6 years before their estimated median age of dementia onset (49 years; 95% CI, 49-51 years). Cognitively unimpaired noncarriers reported more complaints than their study partners aged 20 and 60 years (10.1 points, P < .001). On the awareness index, a decrease with age (mean [SE] estimate, -0.04 [0.02] discrepant-points per years; t = -2.2; P = .03) in the noncarriers and in the variant carriers (mean [SE] estimate, -0.21 [0.04] discrepant-points per years; t = -5.1; P < .001) was observed. CONCLUSIONS AND RELEVANCE In this cohort study, increased participant complaints were observed in both groups, suggesting that increased awareness of memory function was common and nonspecific to AD in this cohort. In variant carriers, awareness of memory function decreased in the predementia stages, reaching anosognosia close to the age of mild cognitive impairment onset, providing support for the usefulness of awareness of memory decline.
Collapse
Affiliation(s)
- Patrizia Vannini
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
- Department of Neurology, Massachusetts General Hospital, Boston
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Bernard J. Hanseeuw
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
- Neurology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Jennifer R. Gatchel
- Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Boston
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts
| | - Sietske A. M. Sikkes
- Amsterdam University Medical Centers, Alzheimer Center Amsterdam, Amsterdam, the Netherlands
| | - Diana Alzate
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Yesica Zuluaga
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Sonia Moreno
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Luis Mendez
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Ana Baena
- Department of Psychiatry, Massachusetts General Hospital, Boston
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Paula Ospina-Lopera
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Victoria Tirado
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Eliana Henao
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
- Department of Radiology, Hospital Pablo Tobón, Uribe, Medellin, Colombia
| | - Natalia Acosta-Baena
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Margarita Giraldo
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Yakeel T. Quiroz
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
- Department of Neurology, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Boston
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
45
|
Bruni AC, Bernardi L, Gabelli C. From beta amyloid to altered proteostasis in Alzheimer's disease. Ageing Res Rev 2020; 64:101126. [PMID: 32683041 DOI: 10.1016/j.arr.2020.101126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age related neurodegenerative disorder causing severe disability and important socio-economic burden, but with no cure available to date. To disentangle this puzzling disease genetic studies represented an important way for the comprehension of pathogenic mechanisms. Abnormal processing and accumulation of amyloid-β peptide (Aβ) has been considered the main cause and trigger factor of the disease. The amyloid cascade theory has fallen into crisis because the failure of several anti-amyloid drugs trials and because of the simple equation AD = abnormal Aβ deposition is not always the case. We now know that multiple neurodegenerative diseases share common pathogenic mechanisms leading to accumulation of misfolded protein species. Genome Wide Association studies (GWAS) led to the identification of large numbers of DNA common variants (SNPs) distributed on different chromosomes and modulating the Alzheimer's risk. GWAS genes fall into several common pathways such as immune system and neuroinflammation, lipid metabolism, synaptic dysfunction and endocytosis, all of them addressing to novel routes for different pathogenic mechanisms. Other hints could be derived from epidemiological and experimental studies showing some lifestyles may have a major role in the pathogenesis of many age-associated diseases by modifying cell metabolism, proteostasis and microglia mediated neuroinflammation.
Collapse
Affiliation(s)
- Amalia C Bruni
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy.
| | - Livia Bernardi
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Carlo Gabelli
- Regional Brain Aging Centre, Azienda Ospedale Università Di Padova, Padova Italy
| |
Collapse
|
46
|
Soto-Mercado V, Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C. Multi-Target Effects of the Cannabinoid CP55940 on Familial Alzheimer's Disease PSEN1 E280A Cholinergic-Like Neurons: Role of CB1 Receptor. J Alzheimers Dis 2020; 82:S359-S378. [PMID: 33252082 PMCID: PMC8293648 DOI: 10.3233/jad-201045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by structural damage, death, and functional disruption of cholinergic neurons (ChNs) as a result of intracellular amyloid-β (Aβ) aggregation, extracellular neuritic plaques, and hyperphosphorylation of protein tau (p-Tau) overtime. OBJECTIVE To evaluate the effect of the synthetic cannabinoid CP55940 (CP) on PSEN1 E280A cholinergic-like nerve cells (PSEN1 ChLNs)-a natural model of familial AD. METHODS Wild type (WT) and PSEN1 ChLNs were exposed to CP (1μM) only or in the presence of the CB1 and CB2 receptors (CB1Rs, CB2Rs) inverse agonist SR141716 (1μM) and SR144528 (1μM) respectively, for 24 h. Untreated or treated neurons were assessed for biochemical and functional analysis. RESULTS CP in the presence of both inverse agonists (hereafter SR) almost completely inhibits the aggregation of intracellular sAβPPβf and p-Tau, increases ΔΨm, decreases oxidation of DJ-1Cys106-SH residue, and blocks the activation of c-Jun, p53, PUMA, and caspase-3 independently of CB1Rs signaling in mutant ChLNs. CP also inhibits the generation of reactive oxygen species partially dependent on CB1Rs. Although CP reduced extracellular Aβ42, it was unable to reverse the Ca2+ influx dysregulation as a response to acetylcholine stimuli in mutant ChLNs. Exposure to anti-Aβ antibody 6E10 (1:300) in the absence or presence of SR plus CP completely recovered transient [Ca2+]i signal as a response to acetylcholine in mutant ChLNs. CONCLUSION Taken together our findings suggest that the combination of cannabinoids, CB1Rs inverse agonists, and anti-Aβ antibodies might be a promising therapeutic approach for the treatment of familial AD.
Collapse
Affiliation(s)
- Viviana Soto-Mercado
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| |
Collapse
|
47
|
Smart treatment strategies for alleviating tauopathy and neuroinflammation to improve clinical outcome in Alzheimer's disease. Drug Discov Today 2020; 25:2110-2129. [PMID: 33011341 DOI: 10.1016/j.drudis.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease leading to progressive loss of memory that mainly affects people above 60 years of age. It is one of the leading causes of deaths in the USA. Given its inherent heterogeneity and a still-incomplete understanding of its pathology, biomarkers, and targets available for therapy, it is a challenge to design an effective therapeutic strategy. Several hypotheses have been proposed to understand the disease and to identify reliable markers and targets for treatments. However, none have resulted in strong support from clinical trials. In this review, we objectively discuss the various therapeutic strategies and mechanistic approaches to improve the current clinical outcome of AD therapy.
Collapse
|
48
|
Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiol Dis 2020; 144:105010. [PMID: 32682954 PMCID: PMC7365083 DOI: 10.1016/j.nbd.2020.105010] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) and tau proteins currently represent the two most promising targets to treat Alzheimer's disease. The most extensively developed method to treat the pathologic forms of these proteins is through the administration of exogenous antibodies, or passive immunotherapy. In this review, we discuss the molecular-level strategies that researchers are using to design an effective therapeutic antibody, given the challenges in treating this disease. These challenges include selectively targeting a protein that has misfolded or is pathological rather than the more abundant, healthy protein, designing strategic constructs for immunizing an animal to raise an antibody that has the appropriate conformational selectivity to achieve this end, and clearing the pathological protein species before prion-like cell-to-cell spread of misfolded protein has irreparably damaged neurons, without invoking damaging inflammatory responses in the brain that naturally arise when the innate immune system is clearing foreign agents. The various solutions to these problems in current clinical trials will be discussed.
Collapse
Affiliation(s)
- Steven S Plotkin
- University of British Columbia, Department of Physics and Astronomy and Genome Sciences and Technology Program, Vancouver, BC V6T 1Z1, Canada.
| | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
49
|
Pinheiro L, Faustino C. Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:418-452. [PMID: 30907320 DOI: 10.2174/1567205016666190321163438] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/16/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder linked to protein misfolding and aggregation. AD is pathologically characterized by senile plaques formed by extracellular Amyloid-β (Aβ) peptide and Intracellular Neurofibrillary Tangles (NFT) formed by hyperphosphorylated tau protein. Extensive synaptic loss and neuronal degeneration are responsible for memory impairment, cognitive decline and behavioral dysfunctions typical of AD. Amyloidosis has been implicated in the depression of acetylcholine synthesis and release, overactivation of N-methyl-D-aspartate (NMDA) receptors and increased intracellular calcium levels that result in excitotoxic neuronal degeneration. Current drugs used in AD treatment are either cholinesterase inhibitors or NMDA receptor antagonists; however, they provide only symptomatic relief and do not alter the progression of the disease. Aβ is the product of Amyloid Precursor Protein (APP) processing after successive cleavage by β- and γ-secretases while APP proteolysis by α-secretase results in non-amyloidogenic products. According to the amyloid cascade hypothesis, Aβ dyshomeostasis results in the accumulation and aggregation of Aβ into soluble oligomers and insoluble fibrils. The former are synaptotoxic and can induce tau hyperphosphorylation while the latter deposit in senile plaques and elicit proinflammatory responses, contributing to oxidative stress, neuronal degeneration and neuroinflammation. Aβ-protein-targeted therapeutic strategies are thus a promising disease-modifying approach for the treatment and prevention of AD. This review summarizes recent findings on Aβ-protein targeted AD drugs, including β-secretase inhibitors, γ-secretase inhibitors and modulators, α-secretase activators, direct inhibitors of Aβ aggregation and immunotherapy targeting Aβ, focusing mainly on those currently under clinical trials.
Collapse
Affiliation(s)
- Lídia Pinheiro
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Célia Faustino
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| |
Collapse
|
50
|
McDade E, Bednar MM, Brashear HR, Miller DS, Maruff P, Randolph C, Ismail Z, Carrillo MC, Weber CJ, Bain LJ, Hake AM. The pathway to secondary prevention of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12069. [PMID: 32885024 PMCID: PMC7453146 DOI: 10.1002/trc2.12069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is a continuum consisting of a preclinical stage that occurs decades before symptoms appear. As researchers make advances in investigating the continuum, the importance of developing drugs for secondary prevention is garnering increased discussion. For efficacious drug development for secondary prevention it is important to define what are the earliest biological stages of AD. The Alzheimer's Association Research Roundtable convened November 27 to 28, 2018 to focus on pre-clinical AD. This review will address the biological approach to defining pre-clinical AD, detection, identification of at-risk individuals, and lessons learned from trials such as A4 and TOMMORROW.
Collapse
Affiliation(s)
- Eric McDade
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Martin M. Bednar
- Takeda Pharmaceuticals International Co.Americas, Inc.CambridgeMassachusettsUSA
| | | | | | | | - Christopher Randolph
- MedAvante‐ProPhaseHamiltonNew JerseyUSA
- Department of NeurologyLoyola University Medical CenterMaywoodIllinoisUSA
| | - Zahinoor Ismail
- Cumming School of MedicineThe University of CalgaryCalgaryCanada
| | | | | | - Lisa J. Bain
- Independent Science WriterElversonPennsylvaniaUSA
| | - Ann Marie Hake
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|