1
|
Li G, Che X, Wang S, Liu D, Xie D, Jiang B, Zheng Z, Zheng X, Wu G. The role of cisplatin in modulating the tumor immune microenvironment and its combination therapy strategies: a new approach to enhance anti-tumor efficacy. Ann Med 2025; 57:2447403. [PMID: 39757995 PMCID: PMC11705547 DOI: 10.1080/07853890.2024.2447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025] Open
Abstract
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy. Therefore, various combination treatment strategies have been devised to enhance patient responsiveness to cisplatin therapy. Cisplatin can augment anti-tumor immune responses in combination with immune checkpoint blockers (such as PD-1/PD-L1 or CTLA4 inhibitors), lipid metabolism disruptors (like FASN inhibitors and SCD inhibitors) and nanoparticles (NPs), resulting in better outcomes. Exploring the interaction between cisplatin and the TIME will help identify potential therapeutic targets for improving the treatment outcomes in cancer patients.
Collapse
Affiliation(s)
- Guandu Li
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shijin Wang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deqian Xie
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Jiang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zunwen Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Mahadevan A, Yazdanpanah O, Patel V, Benjamin DJ, Kalebasty AR. Ophthalmologic toxicities of antineoplastic agents in genitourinary cancers: Mechanisms, management, and clinical implications. Curr Probl Cancer 2025; 54:101171. [PMID: 39708456 DOI: 10.1016/j.currproblcancer.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
Genitourinary cancers affect over 480,000 patients in the United States annually. While promising therapeutic modalities continue to emerge, notably immune checkpoint inhibitors, molecular targeted therapies, antibody-drug conjugates, and radioligand therapies, these treatments are associated with a spectrum of adverse side-effects, including ophthalmologic toxicities. In this review, we cover the most commonly used antineoplastic agents for the kidneys, bladder, urinary tracts, prostate, testis, and penis, detailing mechanism, indication, and recent trials supporting their use. For each category of antineoplastic therapy, we describe the epidemiology, management, and clinical presentation, of common ophthalmologic toxicities stemming from these agents. This review serves to augment awareness and recognition of possible ophthalmologic manifestations resulting from the use of antineoplastic agents in genitourinary malignancy. Early identification of these side effects can hasten ophthalmology referral and ultimately improve visual outcomes in patients experiencing medication-induced ocular toxicities.
Collapse
Affiliation(s)
- Aditya Mahadevan
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Omid Yazdanpanah
- Division of Hematology/Oncology, University of California Irvine Health, Orange, CA, USA.
| | - Vivek Patel
- Department of Ophthalmology, University of California Irvine Health, Orange, CA, USA.
| | | | | |
Collapse
|
3
|
Yan Y, Gong Y, Liang X, Xiong Q, Lin J, Wu Y, Zhang L, Chen H, Jin J, Luan X. Decoding β-catenin associated protein-protein interactions: Emerging cancer therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2025; 1880:189232. [PMID: 39643250 DOI: 10.1016/j.bbcan.2024.189232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The hyperactive Wnt/β-catenin signaling circuit has been proven to be closely related to the progression of various cancers, with β-catenin serving as a central regulator of pro-tumorigenic processes. Preclinical evidences strongly support β-catenin as a promising therapeutic target. However, it has long been considered "undruggable" due to challenges such as the lack of crystal structures for its N- and C-terminal domains, high mutation rates, and limited availability of inhibitors. Notably, the network of β-catenin-associated protein-protein interactions (PPIs) is vital in the progression of multiple diseases. These interactions form a cancer-specific network that participates in all phases of oncogenesis, from cell metastasis to immunosuppressive microenvironment formation. Thus, researches on these PPIs are essential for unraveling the molecular mechanisms behind tumors with aberrant β-catenin activation, as well as for developing new targeted therapies. In this review, we delve into how β-catenin's PPIs orchestrate cancer progression and highlight biological and clinical dilemmas, proposing frontier technologies and potential challenges in targeting β-catenin for cancer therapy.
Collapse
Affiliation(s)
- Yue Yan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiting Gong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaohui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Lin J, Li W, Zhang X, Zhou K, Yang Y, Cheng S, Sun R, Dang C, Diao D. Thromboembolic events associated with immune checkpoint inhibitors in cancer patients: A Bayesian network meta-analysis. Thromb Res 2025; 246:109243. [PMID: 39721224 DOI: 10.1016/j.thromres.2024.109243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), which offer previously unknown therapeutic advantages, have revolutionized cancer treatment. However, the risk of thromboembolic events (TEEs) associated with ICIs remains unclear. The aim of this network meta-analysis (NMA) was to evaluate the incidence of TEEs in cancer patients receiving different treatment regimens. METHODS We searched for randomized clinical trials (RCTs) between January 2021 and December 2023 without restricting the cancer type. The percentages of TEEs were systematically extracted. An NMA was performed comparing atezolizumab, cemiplimab, durvalumab, ipilimumab, nivolumab, pembrolizumab, conventional therapy (which consists mainly of chemotherapy, targeted therapy, placebo, and their combinations), two ICI drugs, one ICI drug combined with conventional therapy, and two ICI drugs combined with conventional therapy. Additionally, subgroup analysis was conducted based on cancer type. RESULTS Eighty-three RCTs involving 54,736 patients were included. Patients receiving ICIs demonstrated comparable risks of arterial thromboembolism (ATE), deep vein thrombosis (DVT), myocardial infarction (MI), and cerebrovascular accidents (CVAs). Nivolumab (OR 0.39, 95 % CI 0.19 to 0.80) and two ICI drugs (OR 0.52, 95 % CI 0.29 to 0.89) had the lowest risk of venous thromboembolism (VTE) compared to two ICI drugs with conventional therapy. The risk of pulmonary embolism (PE) was greater for ipilimumab (OR 4.09, 95 % CI 1.13 to 15.51) than for nivolumab. For melanoma in the subgroup analysis, nivolumab significantly reduced the risk of VTE (OR 0.07, 95 % CI 0.00 to 0.76) compared to two ICI drugs. Among the single-ICI regimens, durvalumab was associated with the highest incidence of ATE, MI, and CVAs; ipilimumab had the highest incidence of VTE and PE; and pembrolizumab had the highest incidence of DVT. The combination of one ICI drug with conventional therapy was associated with a significantly greater risk of TEEs (except for MI) than the combination of two ICI drugs. CONCLUSIONS Various ICI regimens in cancer patients exhibit clinically significant differences in the risks of TEEs. Nivolumab exhibited a favorable safety profile regarding VTE, while ipilimumab had the highest risk of both VTE and PE. Different ICI regimens require tailored risk management strategies to reduce TEEs.
Collapse
Affiliation(s)
- Jinhe Lin
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenxing Li
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Zhang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kai Zhou
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanqi Yang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shaoli Cheng
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chengxue Dang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Dongmei Diao
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
5
|
Zarker AW, Wang Y. Combination vedolizumab and ustekinumab for refractory Crohn's disease after immune checkpoint inhibitors. Eur J Gastroenterol Hepatol 2025; 37:240-241. [PMID: 39708337 DOI: 10.1097/meg.0000000000002886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Affiliation(s)
- Andrew W Zarker
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Bai Y, Wang X, Wang B. Pan-Cancer Analysis of the Prognostic and Immunotherapeutic Value of PDGFB. Immunotargets Ther 2025; 14:35-49. [PMID: 39872696 PMCID: PMC11771179 DOI: 10.2147/itt.s486609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Cancer is a widespread epidemic that affects millions of individuals across the world. Identifying novel cancer targets is crucial to developing more effective cancer treatments. Platelet-derived growth factor-B (PDGFB) plays a critical role in various tumor processes, including angiogenesis and lymphatic metastasis. However, there is a lack of research on the role of PDGFB in these processes. Methods To address this issue, we conducted a comprehensive analysis utilizing multiple online databases to investigate the expression, prognostic, tumor stemness, and immunological effect of PDGFB. In addition, clinical samples were validated using immunohistochemistry. Results Our findings revealed that PDGFB was highly expressed in a diverse range of cancer types, and its expression and genetic modifications were significantly associated with clinical outcomes in certain tumors. In general, high expression of PDGFB in tumors is associated with poor prognosis. Surprisingly, PDGFB was found to be highly expressed in renal clear cell carcinoma but was associated with good prognosis. In contrast, PDGFB was low expressed in lung carcinoma, but its expression was found to improve patient survival. These findings demonstrate the complex role of PDGFB in different cancer types. The study also demonstrated that PDGFB was linked to RNA and DNA stemness in 15 and 36 tumor types, respectively, and had a positive association with tumor lymphocyte infiltration. Notably, PDGFB was found to be associated with immune modulators. PDGFB, which is involved in various immune responses, influences the malignant characteristics of various cancer types and controls immune cell infiltration. We confirmed that PDGFB positively correlated with CD8 and PDL1 expression in lower grade glioma. Conclusion This study concludes that PDGFB may serve as a potential prognostic marker and a potential targetable pathway in cancer immunotherapy. Overall, the study sheds new light on the role of PDGFB in cancer and highlights its potential clinical significance.
Collapse
Affiliation(s)
- Yuwei Bai
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoyun Wang
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| | - Bei Wang
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
7
|
Dai Y, Dong C, Wang Z, Zhou Y, Wang Y, Hao Y, Chen P, Liang C, Li G. Infiltrating T lymphocytes and tumor microenvironment within cholangiocarcinoma: immune heterogeneity, intercellular communication, immune checkpoints. Front Immunol 2025; 15:1482291. [PMID: 39845973 PMCID: PMC11750830 DOI: 10.3389/fimmu.2024.1482291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cholangiocarcinoma is the second most common primary liver cancer, and its global incidence has increased in recent years. Radical surgical resection and systemic chemotherapy have traditionally been the standard treatment options. However, the complexity of cholangiocarcinoma subtypes often presents a challenge for early diagnosis. Additionally, high recurrence rates following radical treatment and resistance to late-stage chemotherapy limit the benefits for patients. Immunotherapy has emerged as an effective strategy for treating various types of cancer, and has shown efficacy when combined with chemotherapy for cholangiocarcinoma. Current immunotherapies targeting cholangiocarcinoma have predominantly focused on T lymphocytes within the tumor microenvironment, and new immunotherapies have yielded unsatisfactory results in clinical trials. Therefore, it is essential to achieve a comprehensive understanding of the unique tumor microenvironment of cholangiocarcinoma and the pivotal role of T lymphocytes within it. In this review, we describe the heterogeneous immune landscape and intercellular communication in cholangiocarcinoma and summarize the specific distribution of T lymphocytes. Finally, we review potential immune checkpoints in cholangiocarcinoma.
Collapse
Affiliation(s)
- Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chenyang Dong
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Hao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Department of Nuclear Medicine, Nanyang First People’s Hospital, Nanyang, Henan, China
| | - Chaojie Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaopeng Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
8
|
Ji K, Jia H, Liu Z, Yu G, Wen R, Zhang T, Peng Z, Man W, Tian Y, Wang C, Ling Q, Zhang W, Zhou L, Liu M, Zhu B. New insight in immunotherapy and combine therapy in colorectal cancer. Front Cell Dev Biol 2025; 12:1453630. [PMID: 39839672 PMCID: PMC11747282 DOI: 10.3389/fcell.2024.1453630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) in colorectal cancer (CRC) treatment marks a major breakthrough. These therapies have proven safer and more effective than traditional radiotherapy and targeted treatments. Immunotherapies like pembrolizumab, nivolumab, and ipilimumab have pioneered new treatment avenues, potentially improving patient outcomes and quality of life. Additionally, advances in immunotherapy have prompted detailed research into CRC therapies, especially those integrating ICIs with conventional treatments, providing new hope for patients and shaping future research and practice. This review delves into the mechanisms of various ICIs and evaluates their therapeutic potential when combined with radiotherapy, chemotherapy, and targeted therapies in clinical settings. It also sheds light on the current application and research involving ICIs in CRC treatment.
Collapse
Affiliation(s)
- Kai Ji
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hang Jia
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zixuan Liu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rongbo Wen
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianshuai Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhiying Peng
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenjiang Man
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yucheng Tian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Can Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qianlong Ling
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Bing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
9
|
Yin G, Liu X, Yu X, Tan S, Liu F. Analysis of ICIs alone or in combination rechallenged outcomes after progression from first-line ICIs plus chemotherapy in patients with advanced non-small cell lung cancer. Sci Rep 2025; 15:30. [PMID: 39747923 PMCID: PMC11696066 DOI: 10.1038/s41598-024-83947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) plus chemotherapy have become the standard of care for first-line treatment of advanced non-small cell lung cancer (NSCLC) with EGFR/ALK negative. However, there is no clear second-line treatment option after first-line treatment failure. To investigate the efficacy and safety of ICIs alone or in combination rechallenge treatment after first-line ICIs plus chemotherapy progression in advanced NSCLC. We retrospectively analyzed the cases of patients who received ICIs alone or in combination rechallenge treatment after first-line ICIs plus chemotherapy progression in advanced NSCLC at Hunan Cancer Hospital between January 2020 and May 2024. We evaluated the effects of continued immunotherapy on patients' objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and adverse events after first-line treatment progression, and analyzed the relationship between outcomes and clinical characteristics. A total of 154 patients were included, with 146 patients developing resistance, 8 patients showing no progression. The ORR was 16.44%, the DCR was 68.49%, and the median PFS was 4.6 months. Patients treated with the new immune drug therapy had longer PFS than those treated with the original immunotherapy (5.0 months vs. 3.7 months, p = 0.0438). The PFS in patients receiving ICIs plus targeted therapy was significantly longer than that in patients who receiving ICIs alone, chemo-ICIs plus targeted therapy and ICIs plus chemotherapy (chemo-ICIs) (5.7 months vs. 3.6 months vs3.2 months vs. 2.9 months, p = 0.0086). Multivariate analysis showed that treatment regimen was a risk factor for immune rechallenge PFS, but there was no statistical correlation between gender, age, smoking history, pathological type, intermittent treatment or first-line drug resistance and immune rechallenge PFS. Our findings suggest that selecting ICIs plus targeted therapy may improve PFS in patients with advanced NSCLC after first-line chemo-ICIs progression. while replacement with new BSAb/PD-1 may be more beneficial to patients. However, there is a lack of large sample randomized controlled studies and evidence-based medical evidence, and more clinical studies are needed to further confirm.
Collapse
Affiliation(s)
- Guisen Yin
- Department of Pharmacy, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000, Shandong, China
| | - Xin Liu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000, Shandong, China
| | - Xiangtao Yu
- Department of Pharmacy, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000, Shandong, China
| | - Song Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000, Shandong, China
| | - Fen Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Tan K, Wang A, Zheng Y, Wang S, Wang C, Li J, Lu X, Dong H, Zheng J, Cui H. Safety and efficacy of restarting immune checkpoint inhibitors in non-small cell lung cancer patients following immune-related adverse events: a systematic review and meta-analysis. Clin Transl Oncol 2025; 27:196-203. [PMID: 38922538 DOI: 10.1007/s12094-024-03529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE This meta-analysis aims to evaluate the safety and efficacy of restarting immune checkpoint inhibitors (ICIs) in patients with non-small cell lung cancer (NSCLC) after experiencing immune-related adverse events (irAEs). METHODS A comprehensive search of PubMed, Web of Science, Embase, and the Cochrane Library was conducted to identify studies investigating the safety and efficacy of restarting ICIs in NSCLC patients after irAEs. Outcome measures, including objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) after ICI restarting, were extracted. Meta-analysis was performed using the R meta-package. RESULTS Four studies involving a total of 326 subjects were included, comprising 137 patients who restarted ICI treatment after irAEs and 189 patients who did not restart ICI treatment. The results revealed that ICI restarting was associated with an increased ORR (OR = 2.36, 95% CI 1.49-3.84), prolonged PFS (HR = 0.60, 95% CI 0.42-0.86), and prolonged OS (HR = 0.65, 95% CI 0.43-0.99) compared to non-restarting. The incidence of irAEs after ICI restarting was 45% (95% CI 0.27-0.63). CONCLUSION Restarting ICI treatment after discontinuation due to previous irAEs appears to be a reasonable option for NSCLC patients. However, a comprehensive assessment of the potential benefits and risks to individual patients is crucial, and close monitoring of irAEs is warranted.
Collapse
Affiliation(s)
- Kexin Tan
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aolin Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yumin Zheng
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuo Wang
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chao Wang
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingyu Lu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huijing Dong
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiabin Zheng
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Huijuan Cui
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
11
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406439. [PMID: 39444066 PMCID: PMC11707583 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
- Intervention DepartmentThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Dan Yao
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Mengsi Cai
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Fangfu Ye
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| |
Collapse
|
12
|
Isermann T, Sers C, Der CJ, Papke B. KRAS inhibitors: resistance drivers and combinatorial strategies. Trends Cancer 2024:S2405-8033(24)00275-9. [PMID: 39732595 DOI: 10.1016/j.trecan.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/30/2024]
Abstract
In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRASG12C inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively. However, rather than marking the end of a successful assault on the Mount Everest of cancer research, this landmark only revealed new challenges in RAS drug discovery. In this review, we highlight the progress on defining resistance mechanisms and developing combination treatment strategies to improve patient responses to KRAS therapies.
Collapse
Affiliation(s)
- Tamara Isermann
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Channing J Der
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bjoern Papke
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Zhang T, Lv H, Li J, Zhang S, Zhang J, Wang S, Wang Y, Guo Z. The impact of immune-related adverse events on the outcome of advanced gastric cancer patients with immune checkpoint inhibitor treatment. Front Immunol 2024; 15:1503316. [PMID: 39776906 PMCID: PMC11703953 DOI: 10.3389/fimmu.2024.1503316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background The occurrence of immune-related adverse events (irAEs) seemed to be associated with better outcomes in advanced gastric cancer (AGC) patients. However, research focusing on the impact of the single-organ irAE (uni-irAE) or multi-organ irAEs (multi-irAEs) on the AGC outcome is relatively limited. In this study, we investigated individually the impact of the different irAEs on AGC survival as well as the co-occurrence patterns of multi-irAEs. Methods The uni-irAE, multi-irAEs, and non-irAE were identified based on National Comprehensive Cancer Network (NCCN) guidelines. ICI efficacy for the disease control rate (DCR) and the objective response rate (ORR) was assessed based on the Response Evaluation Criteria in Solid Tumors (RECIST) Version 1.1. The association for the irAEs with progression-free survival (PFS) or overall survival (OS) was analyzed using the Kaplan-Meier method and Cox regression model. We also performed pairwise correlation analysis to identify co-occurrence patterns of multi-organ irAEs. Results A total of 288 patients including 175 non-irAE, 73 uni-irAE, and 40 multi-irAE patients were evaluated for their association with AGC outcome. The irAEs patients displayed higher DCR (78.8% vs. 67.4%, p=0.037) when compared with those of non-irAE patients, and both uni-irAE patients (82.2% vs. 67.4%, p=0.019) and multi-irAE patients (72.5% vs. 67.4%, p=0.534) showed higher DCR than that of non-irAE patients. The multivariate analyses revealed that multi-irAEs was an independent risk factor for PFS (hazard ratio [HR] of 0.63, 95% confidence interval [CI] 0.41~0.96, p=0.031) and OS (HR 0.47, 95% CI 0.29~0.76, p=0.002), whereas the survival association for uni-irAE was not obtained. The analysis of the co-occurrence patterns for multi-irAEs revealed that the thyroid, adrenal gland, heart, skin, and lung irAEs exhibited a high risk of co-occurrence of multi-irAEs. The multivariate Cox regression analysis for organ-specific irAEs revealed that patients experiencing thyroid, adrenal gland, and skin irAEs had favorable survival outcomes compared with those without these irAEs. Conclusion Multi-irAEs and some organ-specific irAEs can be used as predictive indicators for ICI treatment efficacy in AGC patients. The thyroid, adrenal gland, heart, skin, and lung irAEs are often accompanied by multi-irAE occurrence.
Collapse
Affiliation(s)
- Tianhang Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haitao Lv
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiasong Li
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shasha Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingjing Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Siqi Wang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingnan Wang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhanjun Guo
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Maldonado-García JL, Fragozo A, Pavón L. Cytokine release syndrome induced by anti-programmed death-1 treatment in a psoriasis patient: A dark side of immune checkpoint inhibitors. World J Clin Cases 2024; 12:6782-6790. [PMID: 39687650 PMCID: PMC11525914 DOI: 10.12998/wjcc.v12.i35.6782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/24/2024] Open
Abstract
In recent years, cancer immunotherapy has introduced novel treatments, such as monoclonal antibodies, which have facilitated targeted therapies against tumor cells. Programmed death-1 (PD-1) is an immune checkpoint expressed in T cells that regulates the immune system's activity to prevent over-activation and tissue damage caused by inflammation. However, PD-1 is also expressed in tumor cells and functions as an immune evasion mechanism, making it a therapeutic target to enhance the immune response and eliminate tumor cells. Consequently, immune checkpoint inhibitors (ICIs) have emerged as an option for certain tumor types. Nevertheless, blocking immune checkpoints can lead to immune-related adverse events (irAEs), such as psoriasis and cytokine release syndrome (CRS), as exemplified in the clinical case presented by Zhou et al involving a patient with advanced gastric cancer who received sintilimab, a monoclonal antibody targeting PD-1. Subsequently, the patient experienced exacerbation of psoriasis and CRS. The objective of this editorial article is to elucidate potential immunologic mechanisms that may contribute to the development of CRS and psoriasis in patients receiving ICIs. It is crucial to acknowledge that while ICIs offer superior safety and efficacy compared to conventional therapies, they can also manifest irAEs affecting the skin, gastrointestinal tract, or respiratory system. In severe cases, these irAEs can lead to life-threatening complications such as circulatory shock or multiorgan failure. Consequently, it is recommended that patients receiving ICIs undergo regular monitoring to identify and manage these adverse events effectively.
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Mexico City 1134, Ciudad de México, Mexico
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioterapéuticos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 11340, Mexico
| |
Collapse
|
15
|
Maccio U, Wicki A, Ruschitzka F, Beuschlein F, Wolleb S, Varga Z, Moch H. Frequency and Consequences of Immune Checkpoint Inhibitor-Associated Inflammatory Changes in Different Organs: An Autopsy Study Over 13 -Years. Mod Pathol 2024; 38:100683. [PMID: 39675428 DOI: 10.1016/j.modpat.2024.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized modern oncology, they are also associated with immune-related adverse events (irAEs). Previous histopathologic descriptions of organ-related inflammatory changes do not consider systemic effects of ICIs, because of the absence of comprehensive autopsy studies. We performed a retrospective study on 42 whole-body autopsies of patients treated with ICIs from January 2011 to March 2024 to determine the frequency, organ distribution, and morphology of ICI-associated inflammatory changes as well as their clinical relevance. Twenty-three of 42 (54.8%) patients presented irAEs with inflammatory changes in at least one organ. Most frequent irAEs were ICI-related hypophysitis (N = 12; 28.6%), myocarditis (N = 8; 19.0%), pneumonitis (N = 5; 11.9%), hepatitis (N = 6; 14.3%), and adrenalitis (N = 5; 11.9%). ICI-related inflammation was mainly characterized by lymphohistiocytic and macrophage-rich tissue infiltrates, whereas a granulomatous "sarcoid-like" reaction was observed in 1 patient. Cause of death was attributable to ICI therapy in 7 (16.7%) patients, with ICI-associated myocarditis as the most common cause of death (N = 5; 71.4%). Clinically, irAEs were unsuspected in 5 of 7 ICI-related deaths (71.4%). Among irAEs, myocarditis has been clinically undiagnosed in 5 out of 8 cases (62.5%). Encephalitis was identified only at autopsy in all cases (N = 2). Hypophysitis was clinically unsuspected in 8 of 12 (66.7%) cases. Patients who died from irAEs developed more frequently a complete tumor regression than patients who died from other causes (P = .018). Of note, ICI-related myocarditis and pneumonitis were both associated with a systemic occurrence irAEs. Our study demonstrates that some irAEs, especially myocarditis, hypophysitis, and encephalitis, are clinically underdiagnosed. Autopsy remains a valuable tool to monitor diagnostic accuracy and therapeutic side effects in patients who died under ICI therapy.
Collapse
Affiliation(s)
- Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, Zurich, Switzerland.
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, University Hospital of Zurich and University of Zurich, Zurich, Switzerland; Department of Cardiology, Center for Translational and Experimental Cardiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Felix Beuschlein
- University of Zurich, Zurich, Switzerland; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Zurich, Switzerland; The LOOP Zurich-Medical Research Center, Zurich, Switzerland
| | - Sibylle Wolleb
- Division of Medical Oncology, Hospital of Uster, Uster, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Triantafyllou E, Gudd CLC, Possamai LA. Immune-mediated liver injury from checkpoint inhibitors: mechanisms, clinical characteristics and management. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01019-7. [PMID: 39663461 DOI: 10.1038/s41575-024-01019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Immunotherapy has changed the treatment landscape for patients with cancer in the past decade. Immune checkpoint inhibitor (ICI)-based therapies have proven effective in a range of malignancies, including liver and gastrointestinal cancers, but they can cause diverse off-target organ toxicities. With the increasingly wider application of these drugs, immune-mediated liver injury from ICIs has become a commonly encountered challenge in clinical hepatology and gastroenterology. In this Review, we discuss the evidence from human and animal studies on the immunological mechanisms of immune-mediated liver injury from ICIs and summarize its clinical features and practical considerations for its management.
Collapse
Affiliation(s)
- Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| | - Cathrin L C Gudd
- Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lucia A Possamai
- Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
- Liver and Antiviral Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
17
|
Zhang D, Zhao J, Zhang Y, Jiang H, Liu D. Revisiting immune checkpoint inhibitors: new strategies to enhance efficacy and reduce toxicity. Front Immunol 2024; 15:1490129. [PMID: 39720720 PMCID: PMC11666542 DOI: 10.3389/fimmu.2024.1490129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Affiliation(s)
- Dianying Zhang
- Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China
| | - Jingjing Zhao
- Sleep Medicine Center, Huai’an No.3 People’s Hospital, Huai’an, China
- Huaian Second Clinical College of Xuzhou Medical University, Huaian, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Dan Liu
- Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China
| |
Collapse
|
18
|
Molnár AÁ, Birgés K, Surman A, Merkely B. The Complex Connection Between Myocardial Dysfunction and Cancer Beyond Cardiotoxicity: Shared Risk Factors and Common Molecular Pathways. Int J Mol Sci 2024; 25:13185. [PMID: 39684895 DOI: 10.3390/ijms252313185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular diseases and cancer represent the largest disease burden worldwide. Previously, these two conditions were considered independent, except in terms of cardiotoxicity, which links cancer treatment to subsequent cardiovascular issues. However, recent studies suggest that there are further connections between cancer and heart disease beyond cardiotoxicity. It has been revealed that myocardial dysfunction may promote carcinogenesis, indicating that additional common pathophysiological mechanisms might be involved in the relationship between cardiology and oncology, rather than simply a connection through cardiotoxic effects. These mechanisms may include shared risk factors and common molecular pathways, such as persistent inflammation and neurohormonal activation. This review explores the connection between myocardial dysfunction and cancer, emphasizing their shared risk factors, similar biological mechanisms, and causative factors like cardiotoxicity, along with their clinical implications.
Collapse
Affiliation(s)
| | - Kristóf Birgés
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Adrienn Surman
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
19
|
Deng N, Yan Z, Wang S, Song M, Hu H. Utilization of Immune Checkpoint Inhibitors in Human Epidermal Growth Factor Receptor 2-Negative, Advanced Metastatic, or Unresectable Gastric Cancer Under All Combined Positive Score Grading: Evaluation of Efficacy Based on Individual Patient Data Reconstruction and Secondary Analyses. Clin Ther 2024:S0149-2918(24)00359-X. [PMID: 39643452 DOI: 10.1016/j.clinthera.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
PURPOSE The efficacy of several novel combinations of anti-programmed cell death protein 1 or its ligand antibodies with chemotherapy, which have become the new standard first-line combination therapy with favorable outcomes, was still not certain in patients with different combined positive score (CPS) grades. This research aimed to evaluate the efficacy of immune checkpoint inhibitor immunotherapy or immunochemotherapy at different CPS grades, compared with chemotherapy. METHODS Kaplan-Meier (KM) curve reconstruction was employed to assess the overall survival (OS) and progression-free survival (PFS) of patients with gastric cancer. The graphical reconstruction algorithm was used to estimate the time-to-event outcomes from Kaplan-Meier curves of the overall cohort or reported subgroups (depending on CPS). KMSubtraction was used to derive the unreported survival data by matching participants in the overall cohort and known subgroups. FINDINGS This analysis included 5072 patients in 5 trials (CheckMate 649, KEYNOTE-859, ORIENT-16, KEYNOTE-062, and JAVELIN Gastric 100). Immunochemotherapy exhibited more effectiveness than chemotherapy in most cases. For the overall cohort, sintilimab + chemotherapy exhibited the best effect in OS (hazard ratio [HR], 0.65; 95% CI, 0.55-0.76). Nivolumab + chemotherapy (HR, 0.75; 95% CI, 0.67-0.84), sintilimab + chemotherapy (HR, 0.52; 95% CI, 0.41-0.65), and pembrolizumab + chemotherapy (HR, 0.68; 95% CI, 0.58-0.81) exhibited favorable outcomes in OS in patients with a CPS ≥1, 5, and 10, respectively, and similarly in PFS. Avelumab + chemotherapy performed similarly to chemotherapy in OS but had poor PFS in the reported subgroup. IMPLICATIONS Finding suggests that immune checkpoint inhibitors combined with chemotherapy could enrich patients with benefits regardless of CPS grades, though subtle efficacy in low CPS subgroups. This study compared the efficacy of different immunotherapies combined with chemotherapy in patients with gastric cancer, but we acknowledge some differences between reconstructed and original data. Hopefully there will be more research investigating comparisons between current therapies rather than with chemotherapy only in the future.
Collapse
Affiliation(s)
- Ning Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhijing Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Menghuan Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macau, China.
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
20
|
Lau G, Obi S, Zhou J, Tateishi R, Qin S, Zhao H, Otsuka M, Ogasawara S, George J, Chow PKH, Cai J, Shiina S, Kato N, Yokosuka O, Oura K, Yau T, Chan SL, Kuang M, Ueno Y, Chen M, Cheng AL, Cheng G, Chuang WL, Baatarkhuu O, Bi F, Dan YY, Gani RA, Tanaka A, Jafri W, Jia JD, Kao JH, Hasegawa K, Lau P, Lee JM, Liang J, Liu Z, Lu Y, Pan H, Payawal DA, Rahman S, Seong J, Shen F, Shiha G, Song T, Sun HC, Masaki T, Sirachainan E, Wei L, Yang JM, Sallano JD, Zhang Y, Tanwandee T, Dokmeci AK, Zheng SS, Fan J, Fan ST, Sarin SK, Omata M. APASL clinical practice guidelines on systemic therapy for hepatocellular carcinoma-2024. Hepatol Int 2024; 18:1661-1683. [PMID: 39570557 DOI: 10.1007/s12072-024-10732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024]
Abstract
In Asia-Pacific region, hepatocellular carcinoma is a serious health threat attributing to over 600,000 deaths each year and account for over 70% of global cases. Clinically, the major unmet needs are recurrence after curative-intent surgery, liver transplantation or local ablation and disease progression in those with hepatocellular carcinoma not eligible for resection or failed locoregional therapy. In the recent few years, new targeted therapy and immune-checkpoint inhibitors have been registered as systemic therapy to address these issues. Notably, new forms of systemic therapy, either as first-line or second-line therapy for unresectable hepatocellular or those not eligible for locoregional therapy, are now available. New data is also emerging with the use of systemic therapy to prevent hepatocellular carcinoma recurrence after curative-intent resection or local ablation therapy and to retard disease progression after locoregional therapy. In the future, further implementation of immune-checkpoint inhibitors and other forms of immunotherapy are expected to bring a new paradigm to the management of hepatocellular carcinoma. New insight related to immune-related adverse events with the use of immunotherapy has allso enabled optimization of the therapeutic approach to patients with hepatocellular carcinoma. The purpose of this clinical practice guideline is to provide an up-to-date recommendation based on clinical evidence and experience from expert Asia-Pacific key opinion leaders in the field of hepatocellular carcinoma. Three key questions will be addressed, namely: (1) Which patients with hepatocellular carcinoma should be considered for systemic therapy? (2) Which systemic therapy should be used? (3) How should a patient planned for immune checkpoint-based systemic therapy be managed and monitored?
Collapse
Affiliation(s)
- George Lau
- Humanity and Health Clinical Trial Center, Humanity and Health Medical Group, Zhongshan Hospital, Fudan University, Hong Kong SAR, Shanghai, China.
| | - Shuntaro Obi
- Department of Internal Medicine, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai Key Laboratory of Organ Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shukui Qin
- Cancer Centre of Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| | - Pierce K H Chow
- Department of HPB Surgery and Transplantation, Duke-NUS Medical School, National Cancer Center Singapore and Singapore General Hospital, Surgery Academic Clinical Program, Singapore, Singapore
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Naoya Kato
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Kita, Miki, Kagawa, 761-0793, Japan
| | - Thomas Yau
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephen L Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yoshiyuki Ueno
- Faculty of Medicine, Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Minshan Chen
- Department of Liver Surgery, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ann-Lii Cheng
- Department of OncologyDepartment of Medical OncologyGraduate Institute of OncologyDepartment of Internal Medicine, National Taiwan University Cancer CenterNational Taiwan University HospitalNational Taiwan University College of Medicine, Taipei, Taiwan
| | - Gregory Cheng
- Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong SAR, China
- Faculty of Health Science, Macau University, Macau SAR, China
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, and Hepatitis Center, Center for Infectious Disease and Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Oidov Baatarkhuu
- School of Medicine, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Feng Bi
- Department of Medical Oncology, Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Rino A Gani
- Hepatobiliary Division, Staff Medic Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Wasim Jafri
- The Aga Khan University Hospital, Karachi, Pakistan
| | - Ji-Dong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia-Horng Kao
- Department of Internal Medicine Division of Gastroenterology and Hepatology, Department of Internal MedicineHepatitis Research Center, Graduate Institute of Clinical Medicine, National Taiwan University Hospital Bei-Hu BranchNational Taiwan University HospitalNational Taiwan University College of Medicine, Taipei, Taiwan
| | - Kiyoshi Hasegawa
- Department of Surgery, Graduate School of Medicine, Hepato-Biliary-Pancreatic Surgery Division, The University of Tokyo, Tokyo, Japan
| | - Patrick Lau
- Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong SAR, China
| | - Jeong Min Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Liang
- Department of Medical Oncology, Peking University International Hospital, Beijing, China
| | - Zhenwen Liu
- Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation, Army General Hospital, Beijing, China
| | - Yinying Lu
- Department of Comprehensive Liver Cancer Center, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Hongming Pan
- Department of Medical Oncology, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Diana A Payawal
- Department of Medicine, Fatima University Medical Center, Manila, Philippines
| | - Salimur Rahman
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, 1000, Bangladesh
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Gamal Shiha
- European Liver Patients' Association (ELPA), Brussels, Belgium
- World Hepatitis Alliance, London, UK
- African Liver Patient Association (ALPA), Cairo, Egypt
- The Association of Liver Patients Care (ALPC), Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Tianqiang Song
- Department of Hepatobiliary, HCC Research Center for Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Kita, Miki, Kagawa, 761-0793, Japan
| | - Ekaphop Sirachainan
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jin Mo Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jose D Sallano
- Section of Gastroenterology, University of Santo Tomas, Manila, Philippines
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Institute of Prevention and Treatment of Cancer of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - AKadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheung-Tat Fan
- Liver Surgery and Transplant Centre, Hong Kong Sanatorium and Hospital, Hong Kong, Japan
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Prefectural Center Hospital, Kofu-City, Yamanashi, Japan
| |
Collapse
|
21
|
Wang Q, Zhong W, Xiao Y, Lin G, Lu J, Xu L, Zhang G, Liu A, Du J, Wu B. Pan-immune-inflammation value predicts immunotherapy response and reflects local antitumor immune response in rectal cancer. Cancer Sci 2024. [PMID: 39601159 DOI: 10.1111/cas.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The pan-immune-inflammation value reflects the systemic inflammatory response, and tumor-infiltrating lymphocytes indicate a local immune response in rectal cancer. However, the association between systemic inflammatory response, as indicated by the pan-immune-inflammation value, and local immune responses in rectal cancer remains unclear. This study analyzed 915 treatment-naïve rectal cancer patients from the Peking Union Medical College Hospital and PLA General Hospital (PLAGH) cohorts who underwent radical surgery to investigate the relationship between the pan-immune-inflammation value and immune responses. Lower pan-immune-inflammation value was significantly associated with improved disease-free survival and cancer-specific survival. Multivariate Cox regression models identified the pan-immune-inflammation value as an independent prognostic factor. In the PLAGH cohort, patients with low pan-immune-inflammation values had higher immune cell levels, activated immune pathways, and increased expression of immune checkpoint genes according to RNA sequencing. Hematoxylin and eosin staining and immunohistochemical analysis revealed that lower pan-immune-inflammation value was associated with higher tumor-infiltrating lymphocyte density, more mature tertiary lymphoid structures, increased CD8+ T cells, and elevated human lymphocyte antigen class I expression. Conversely, patients with high pan-immune-inflammation values exhibited pathways linked to tumor progression, such as angiogenesis, epithelial-mesenchymal transition, hypoxia, KRAS signaling, and TGF-ß signaling. Among patients receiving anti-PD-1 therapy, responders had low pre- and post-treatment pan-immune-inflammation values. The pan-immune-inflammation value is a reliable marker associated with distinct immune microenvironment characteristics and can effectively predict disease-free survival, cancer-specific survival, and response to immunotherapy.
Collapse
Affiliation(s)
- Qianyu Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wentao Zhong
- Medical Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guole Lin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyang Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lai Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guannan Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aijun Liu
- Department of Pathology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Wu KY, Yakobi Y, Gueorguieva DD, Mazerolle É. Emerging Ocular Side Effects of Immune Checkpoint Inhibitors: A Comprehensive Review. Biomedicines 2024; 12:2547. [PMID: 39595113 PMCID: PMC11592388 DOI: 10.3390/biomedicines12112547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, offering significant improvements in patient survival across various malignancies. However, their use is associated with a broad spectrum of immune-related adverse events (irAEs), including those affecting the eye and its surrounding structures, collectively termed ocular irAEs (OirAEs). Although rare, OirAEs (e.g., keratitis, uveitis, retinal vasculitis, etc.) can significantly impact a patient's quality of life, leading to ocular complications if left untreated. This review provides a comprehensive overview of OirAEs associated with ICIs, including their clinical manifestations, underlying mechanisms, and current management strategies. We delve into the anterior and posterior segment adverse events, highlighting conditions such as dry eye, uveitis, and retinal disorders, as well as neuro-ophthalmic and orbital complications. Furthermore, we discuss the challenges in diagnosing and treating these conditions, particularly given the overlap with other autoimmune and paraneoplastic syndromes. Finally, we identify key knowledge gaps and suggest future research directions aimed at optimizing the management of OirAEs while maintaining the efficacy of cancer therapy. This review underscores the need for increased awareness among clinicians to prevent irreversible ocular damage and enhance patient outcomes.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Yoel Yakobi
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Éric Mazerolle
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
23
|
Li X, Song Z, Chen Y, Wu J, Jiang D, Zhang Z, Wang Z, Zhao R. Immune checkpoint inhibitors-related thyroid dysfunction: influencing factor analysis, prediction model development, and management strategy proposal. Cancer Immunol Immunother 2024; 74:2. [PMID: 39487885 PMCID: PMC11531454 DOI: 10.1007/s00262-024-03816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND With the extensive utilization of immune checkpoint inhibitors (ICIs) across various cancers, ICIs-related thyroid dysfunction (ICI-TD) has become a growing concern in clinical practice. This study aimed to devise an individualized management strategy for ICI-TD to enhance the early identification and proactive management in cancer patients. METHODS We designed and conducted a three-phase study. Initially, we analyzed the influencing factors through a systematic review and meta-analysis, which adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Moreover, the study protocol was registered with PROSPERO (CRD42019131133). Subsequently, prediction models for ICI-TD were developed utilizing 11 algorithms based on the real-world cohort data from July 20, 2018 (the approval date of the first ICIs, Pembrolizumab in China), to October 31, 2022. Considering discrimination, calibration, and clinical utility, we selected the model with the best performance for web calculator development. Finally, individualized management strategies for ICI-TD were proposed by combining evidence-based analysis with practical considerations. RESULTS The systematic review encompassed 21 observational studies involving 4,145 patients, revealing associations between ICI-TD and factors such as female gender, age, receipt of Pembrolizumab (versus other ICIs), and baseline levels of thyroid-stimulating hormone, free thyroxine, and antithyroid antibodies. In the prediction model development phase, 621 participants were enrolled, with 36 patients developing ICI-TD. The model based on the LightGBM algorithm demonstrated superior performance, leading to the development of a web calculator. Based on these findings and existing guidelines, individualized monitoring and treatment pathways for pharmacists were devised. CONCLUSION This study offers comprehensive insights into managing ICI-TD, potentially enhancing tailored cancer immunotherapy management.
Collapse
Affiliation(s)
- Xinya Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, 100191, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zaiwei Song
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, 100191, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China
| | - Yixuan Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, 100191, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jingjing Wu
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, 100191, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Dan Jiang
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, 100191, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | | | - Zeyuan Wang
- Sentum Health, Beijing, 100163, China.
- The University of Sydney, Sydney, Australia.
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, 100191, China.
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
24
|
Kim CW, Kim HJ, Lee HK. Microbiome dynamics in immune checkpoint blockade. Trends Endocrinol Metab 2024; 35:996-1005. [PMID: 38705760 DOI: 10.1016/j.tem.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Immune checkpoint blockade (ICB) is one of the leading immunotherapies, although a variable extent of resistance has been observed among patients and across cancer types. Among the efforts underway to overcome this challenge, the microbiome has emerged as a factor affecting the responsiveness and efficacy of ICB. Active research, facilitated by advances in sequencing techniques, is assessing the predominant influence of the intestinal microbiome, as well as the effects of the presence of an intratumoral microbiome. In this review, we describe recent findings from clinical trials, observational studies of human patients, and animal studies on the impact of the microbiome on the efficacy of ICB, highlighting the role of the intestinal and tumor microbiomes and the contribution of methodological advances in their study.
Collapse
Affiliation(s)
- Chae Won Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Life Science Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun-Jin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Life Science Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Heung Kyu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
25
|
Jia Y, Wu Q, Yang Z, Sun R, Zhang K, Guo X, Xu R, Guo Y. Mechanisms of myocardial toxicity of antitumor drugs and potential therapeutic strategies: A review of the literature. Curr Probl Cardiol 2024; 49:102782. [PMID: 39134104 DOI: 10.1016/j.cpcardiol.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
With the successive development of chemotherapy drugs, good results have been achieved in clinical application. However, myocardial toxicity is the biggest challenge. Anthracyclines, immune checkpoint inhibitors, and platinum drugs are widely used. Targeted drug delivery, nanomaterials and dynamic imaging evaluation are all emerging research directions. This article reviews the recent literature on the use of targeted nanodrug delivery and imaging techniques to evaluate the myocardial toxicity of antineoplastic drugs, and discusses the potential mechanisms.
Collapse
Affiliation(s)
- Yang Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Qihong Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhigang Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu 610041, China
| | - Ran Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Kun Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Xia Guo
- Department of Hematology, West China Second University Hospital, Sichuan University; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Rong Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
26
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Yang H, Huang R, Zhang P, Liu Y, Liu Z, He J, Peng X. Association between statin use and immune-related adverse events in patients treated with immune checkpoint inhibitors: analysis of the FAERS database. Front Immunol 2024; 15:1439231. [PMID: 39439792 PMCID: PMC11493589 DOI: 10.3389/fimmu.2024.1439231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Background Understanding the risk relationship between statin use and immune-related adverse events (irAEs) in patients undergoing immune checkpoint inhibitors (ICIs) therapy is crucial for optimizing oncological management. Objective This study aimed to investigate whether the use of statins increases the risk of irAEs in patients receiving ICI therapy. Methods This study primarily utilized data from FAERS database. Multivariable logistic regression was the principal method of analysis, and the Benjamini-Hochberg procedure was employed to adjust for multiple hypothesis testing. Results In a group of 145,214 patients undergoing ICI therapy, 9,339 reported using statin medications. Multivariable analysis indicated an increased risk of irAEs among statin users (OR 1.199, 95% CI: 1.141-1.261; FDR p < 0.001) in comparison to those not using statins. Notably, increased risks were observed particularly in patients diagnosed with lung, pancreatic, and renal cancers. The link between statin usage and increased irAEs risk remained consistent across various ICIs treatments. Conclusions Statin medication usage is linked to an elevated probability of experiencing irAEs in patients enrolled in ICI therapy. In cancer patients receiving immune checkpoint inhibitors, careful consideration of statin use is essential to avoid potentially increased irAEs risk. These findings provide critical guidance for clinicians in developing treatment strategies that balance therapeutic efficacy and safety in oncological management.
Collapse
Affiliation(s)
- Huaju Yang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rendong Huang
- Hangzhou Linan Guorui Health Industry Investment Co., Ltd, Hangzhou, Zhejiang, China
| | - Ping Zhang
- Department of Oncology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu First People’s Hospital, Chengdu, Sichuan, China
| | - Yingtong Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiagang He
- Department of Medical Education, Kweichow Moutai Hospital, Zunyi, Guizhou, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
29
|
Armstrong A, Tang Y, Mukherjee N, Zhang N, Huang G. Into the storm: the imbalance in the yin-yang immune response as the commonality of cytokine storm syndromes. Front Immunol 2024; 15:1448201. [PMID: 39318634 PMCID: PMC11420043 DOI: 10.3389/fimmu.2024.1448201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
There is a continuous cycle of activation and contraction in the immune response against pathogens and other threats to human health in life. This intrinsic yin-yang of the immune response ensures that inflammatory processes can be appropriately controlled once that threat has been resolved, preventing unnecessary tissue and organ damage. Various factors may contribute to a state of perpetual immune activation, leading to a failure to undergo immune contraction and development of cytokine storm syndromes. A literature review was performed to consider how the trajectory of the immune response in certain individuals leads to cytokine storm, hyperinflammation, and multiorgan damage seen in cytokine storm syndromes. The goal of this review is to evaluate how underlying factors contribute to cytokine storm syndromes, as well as the symptomatology, pathology, and long-term implications of these conditions. Although the recognition of cytokine storm syndromes allows for universal treatment with steroids, this therapy shows limitations for symptom resolution and survival. By identifying cytokine storm syndromes as a continuum of disease, this will allow for a thorough evaluation of disease pathogenesis, consideration of targeted therapies, and eventual restoration of the balance in the yin-yang immune response.
Collapse
Affiliation(s)
- Amy Armstrong
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yuting Tang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Neelam Mukherjee
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Urology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Pathology & Laboratory Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
30
|
Liu Y, Yang R, Zhang M, Yang B, Du Y, Feng H, Wang W, Xue B, Niu F, He P. Multi-omics landscape of Interferon-stimulated gene OASL reveals a potential biomarker in pan-cancer: from prognosis to tumor microenvironment. Front Immunol 2024; 15:1402951. [PMID: 39286258 PMCID: PMC11402691 DOI: 10.3389/fimmu.2024.1402951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Background OASL (Oligoadenylate Synthetase-Like), an interferon-induced protein in the OAS family, plays a significant role in anti-viral response. Studies have demonstrated its association with prognosis of certain tumors. However, the mechanism through which OASL affects tumors is unclear. A systemic pan-cancer study of OASL needs to be illustrated. Methods Analysis of OASL expression across 33 tumors was conducted utilizing TCGA, GTEx and CPTAC databases. COX and Log-Rank regressions were employed to calculate the prognosis. We validated the impact of OASL on apoptosis, migration, and invasion in pancreatic cancer cell lines. Moreover, we employed seven algorithms in bulk data to investigate the association of OASL expression and immune cell infiltration within tumor immune microenvironment (TIME) and ultimately validated at single-cell transcriptome level. Results We discovered elevated expression of OASL and its genetic heterogeneity in certain tumors, which link closely to prognosis. Validation experiments were conducted in PAAD and confirmed these findings. Additionally, OASL regulates immune checkpoint ligand such as programmed death ligand 1 (PD-L1), through IFN-γ/STAT1 and IL-6/JAK/STAT3 pathways in tumor cells. Meanwhile, OASL affects macrophages infiltration in TIME. By these mechanisms OASL could cause dysfunction of cytotoxic T lymphocytes (CTLs) in tumors. Discussion Multi-omics analysis reveals OASL as a prognostic and immunological biomarker in pan-cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Runyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengyao Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bingyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Du
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenjuan Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Busheng Xue
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Nealy ES, Reed SJ, Adelmund SM, Badeau BA, Shadish JA, Girard EJ, Brasel K, Pakiam FJ, Mhyre AJ, Price JP, Sarkar S, Kalia V, DeForest CA, Olson JM. Versatile tissue-injectable hydrogels capable of the extended hydrolytic release of bioactive protein therapeutics. Bioeng Transl Med 2024; 9:e10668. [PMID: 39553428 PMCID: PMC11561820 DOI: 10.1002/btm2.10668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 11/19/2024] Open
Abstract
Hydrogels are extensively employed in healthcare due to their adaptable structures, high water content, and biocompatibility, with FDA-approved applications ranging from spinal cord regeneration to local therapeutic delivery. However, clinical hydrogels encounter challenges related to inconsistent therapeutic exposure, unmodifiable release windows, and difficulties in subsurface polymer insertion. Addressing these issues, we engineered injectable, biocompatible hydrogels as a local therapeutic depot, utilizing poly(ethylene glycol) (PEG)-based hydrogels functionalized with bioorthogonal SPAAC handles for network polymerization and functionalization. Our hydrogel solutions polymerize in situ in a temperature-sensitive manner, persist in tissue, and facilitate the delivery of bioactive therapeutics in subsurface locations. Demonstrating the efficacy of our approach, recombinant anti-CD47 monoclonal antibodies, when incorporated into subsurface-injected hydrogel solutions, exhibited cytotoxic activity against infiltrative high-grade glioma xenografts in the rodent brain. To enhance the gel's versatility, recombinant protein cargos can undergo site-specific modification with hydrolysable "azidoester" adapters, allowing for user-defined release profiles from the hydrogel. Hydrogel-generated gradients of murine CXCL10, linked to intratumorally injected hydrogel solutions via azidoester linkers, resulted in significant recruitment of CD8+ T-cells and the attenuation of tumor growth in a "cold" syngeneic melanoma model. This study highlights a highly customizable, hydrogel-based delivery system for local protein therapeutic administration to meet diverse clinical needs.
Collapse
Affiliation(s)
- Eric S. Nealy
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Steven J. Reed
- Seattle Children's Research InstituteSeattleWashingtonUSA
| | - Steven M. Adelmund
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Barry A. Badeau
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Jared A. Shadish
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Emily J. Girard
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Kenneth Brasel
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | | | - Andrew J. Mhyre
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Jason P. Price
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Surojit Sarkar
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Department of PathologyUniversity of WashingtonSeattleWashingtonUSA
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| | - Vandana Kalia
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| | - Cole A. DeForest
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
- Institute for Protein Design, University of WashingtonSeattleWashingtonUSA
| | - James M. Olson
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
- Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
32
|
Simões JLB, Braga GDC, Coiado JV, Scaramussa AB, Rodrigues APB, Bagatini MD. Takotsubo syndrome as an outcome of the use of checkpoint inhibitor therapy in patients with COVID-19. Biochem Pharmacol 2024; 226:116388. [PMID: 38914315 DOI: 10.1016/j.bcp.2024.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Takotsubo Syndrome (TS) is a heart disease caused by extreme exposure of the body to physical or psychological stress. In the context of COVID-19, the virus can be a significant source of stress, with particular attention being paid to the cytokine storm as a cause of damage to the body. New research shows that the production of specific cytokines is linked to the activation of immune checkpoint proteins such as PD-1, PD-L1, and CTLA-4 on T cells. Although initially beneficial in combating infections, it can suppress defense and aid in disease progression. Therefore, checkpoint inhibitor therapy has been highlighted beyond oncological therapies, given its effectiveness in strengthening the immune system. However, this treatment can lead to excessive immune responses, inflammation, and stress on the heart, which can cause Takotsubo Syndrome in patients. Several studies investigate the direct link between this therapy and cardiac injuries in these patients, which can trigger TS. From this perspective, we must delve deeper into this treatment and consider its effects on the prognosis against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - João Victor Coiado
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | | | | |
Collapse
|
33
|
Lin L, Chen Q. Yadanziolide A Inhibits Proliferation and Induces Apoptosis of Hepatocellular Carcinoma via JAK-STAT Pathway: A Preclinical Study. BIOLOGY 2024; 13:528. [PMID: 39056720 PMCID: PMC11274273 DOI: 10.3390/biology13070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Liver cancer is a significant global health concern, prompting the search for innovative therapeutic solutions. Yadanziolide A (Y-A), a natural derivative of Brucea javanica, has emerged as a promising candidate for cancer treatment; however, its efficacy and underlying mechanisms in liver cancer remain incompletely understood. In this study, we conducted a comprehensive evaluation of Y-A's effects on liver cancer cells using a range of in vitro assays and an orthotopic liver cancer mouse model. Our findings reveal that Y-A exerts dose-dependent cytotoxic effects on liver cancer cells, significantly inhibiting proliferation, migration, and invasion at concentrations ≥ 0.1 μM. Furthermore, Y-A induces apoptosis, as evidenced by increased apoptotic cell populations and apoptosome formation. In vivo studies confirm that Y-A inhibits tumor growth and reduces liver damage in mouse models. Mechanistically, Y-A targets the TNF-α/STAT3 pathway, inhibiting STAT3 and JAK2 phosphorylation, thereby activating apoptotic pathways and suppressing tumor cell growth. These results suggest that Y-A has promising anticancer activity and potential utility in liver cancer therapy.
Collapse
Affiliation(s)
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China;
| |
Collapse
|
34
|
Fletcher K, Johnson DB. Chronic immune-related adverse events arising from immune checkpoint inhibitors: an update. J Immunother Cancer 2024; 12:e008591. [PMID: 38964785 PMCID: PMC11227828 DOI: 10.1136/jitc-2023-008591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, improving outcomes for many patients. However, toxicities termed immune-related adverse events (irAEs) are limitations of these revolutionary treatments. These irAEs may resolve with treatment or ICI cessation (acute) or persist many months beyond therapy cessation (chronic). Acute irAEs were the first to be recognized and are thus more well studied. However, chronic irAEs have been highlighted in recent years and are becoming a topic of more intensive investigation. These chronic irAEs have been noted to affect many different organ systems, including endocrine, rheumatologic, gastrointestinal, dermatologic, neurologic, and cardiovascular systems. In this review, we discuss current knowledge surrounding the frequency, time course, and risk factors associated with chronic irAEs affecting various organ systems, treatment approaches, and future directions.
Collapse
Affiliation(s)
- Kylie Fletcher
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
35
|
He S, Zuo J, Lin Z. Mitigating gut immune adverse effects in CTLA-4 blockade for antitumor efficacy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1539-1541. [PMID: 38578517 DOI: 10.1007/s11427-024-2550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zemin Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Park M, Kim JW. Updates on the mechanisms of toxicities associated with monoclonal antibodies targeting growth factor signaling and immune cells in cancer. Toxicol Res 2024; 40:335-348. [PMID: 38911540 PMCID: PMC11187026 DOI: 10.1007/s43188-024-00233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 06/25/2024] Open
Abstract
Monoclonal antibody (mAb)-based immunotherapy currently is considered to be an optimal therapeutic approach to cancer treatment, either in combination with surgery, radiation, and/or chemotherapy or alone. Various solid tumors and hematological malignancies have been characterized by distinct molecular targets, which could be utilized as innovative anticancer agents. Notably, receptor tyrosine kinases, including HER2, EGFR, VEGFR, and PDGFR, which act as receptors for growth factors, serve as crucial target proteins, expanding their role in the cancer therapeutic market. In contrast to conventional anticancer agents that directly target cancer cells, the advent of immunotherapy introduces novel approaches, such as immune checkpoint blockers (ICBs) and mAbs targeting surface antigens on immune cells in hematological malignancies and lymphomas. While these immunotherapies have mitigated the acquired resistance observed in traditional targeted therapies, they also exhibit diverse toxicities. Herein, this review focuses on describing the well-established toxicities and newly proposed mechanisms of monoclonal antibody toxicity in recent studies. Understanding these molecular mechanisms is indispensable to overcoming the limitations of mAbs-based therapies, facilitating the development of innovative anticancer agents, and uncovering novel indications for cancer treatment in the future.
Collapse
Affiliation(s)
- Miso Park
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do Republic of Korea
| | - Ji Won Kim
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju-do, Republic of Korea
| |
Collapse
|
37
|
Henise J, Hangasky JA, Charych D, Carreras CW, Ashley GW, Santi DV. A platform technology for ultra-long acting intratumoral therapy. Sci Rep 2024; 14:14000. [PMID: 38890412 PMCID: PMC11189489 DOI: 10.1038/s41598-024-64261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Intratumoral (IT) therapy is a powerful method of controlling tumor growth, but a major unsolved problem is the rapidity that injected drugs exit tumors, limiting on-target exposure and efficacy. We have developed a generic long acting IT delivery system in which a drug is covalently tethered to hydrogel microspheres (MS) by a cleavable linker; upon injection the conjugate forms a depot that slowly releases the drug and "bathes" the tumor for long periods. We established technology to measure tissue pharmacokinetics and studied MSs attached to SN-38, a topoisomerase 1 inhibitor. When MS ~ SN-38 was injected locally, tissues showed high levels of SN-38 with a long half-life of ~ 1 week. IT MS ~ SN-38 was ~ tenfold more efficacious as an anti-tumor agent than systemic SN-38. We also propose and provide an example that long-acting IT therapy might enable safe use of two drugs with overlapping toxicities. Here, long-acting IT MS ~ SN-38 is delivered with concurrent systemic PARP inhibitor. The tumor is exposed to both drugs whereas other tissues are exposed only to the systemic drug; synergistic anti-tumor activity supported the validity of this approach. We propose use of this approach to increase efficacy and reduce toxicities of combinations of immune checkpoint inhibitors such as αCTLA-4 and αPD-1.
Collapse
Affiliation(s)
- Jeff Henise
- ProLynx, 135 Mississippi Street, San Francisco, CA, 94107, USA
| | - John A Hangasky
- ProLynx, 135 Mississippi Street, San Francisco, CA, 94107, USA
| | - Deborah Charych
- Nektar, 455 Mission Bay Blvd. South, San Francisco, CA, USA
- ShynianBio Inc., 1001 17th St., San Francisco, CA, 94107, USA
| | | | - Gary W Ashley
- ProLynx, 135 Mississippi Street, San Francisco, CA, 94107, USA
| | - Daniel V Santi
- ProLynx, 135 Mississippi Street, San Francisco, CA, 94107, USA.
| |
Collapse
|
38
|
Hua Y, Shen Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. NANOSCALE ADVANCES 2024; 6:2993-3008. [PMID: 38868817 PMCID: PMC11166105 DOI: 10.1039/d4na00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Peptides are a class of active substances composed of a variety of amino acids with special physiological functions. The rational design of peptide sequences at the molecular level enables their folding into diverse secondary structures. This property has garnered significant attention in the biomedical sphere owing to their favorable biocompatibility, adaptable mechanical traits, and exceptional loading capabilities. Concurrently with advancements in modern medicine, the diagnosis and treatment of tumors have increasingly embraced targeted and personalized approaches. This review explores recent applications of self-assembled peptides derived from natural amino acids in chemical therapy, immunotherapy, and other adjunctive treatments. We highlighted the utilization of peptide hydrogels as delivery systems for chemotherapeutic drugs and other bioactive molecules and then discussed the challenges and prospects for their future application.
Collapse
Affiliation(s)
- Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
39
|
Zhang ML, Algarrahi K, DiCarlo J, Elvin-Ivey A, Dougan M, Mino-Kenudson M. Histopathologic Features of Unmasked Inflammatory Bowel Disease Following Immune Checkpoint Inhibitor Therapy in Colon Biopsies. GASTRO HEP ADVANCES 2024; 3:986-994. [PMID: 39296871 PMCID: PMC11407958 DOI: 10.1016/j.gastha.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/30/2024] [Indexed: 09/21/2024]
Abstract
Background and Aims Typical immune checkpoint inhibitor-induced colitis (T-ICI) has significant histomorphologic overlap with inflammatory bowel disease (IBD), a distinction further complicated in ICI-treated patients with pre-existing inflammatory bowel disease (P-IBD) and those with potentially "unmasked" inflammatory bowel disease (U-IBD) after ICI therapy. This study describes histopathologic findings seen in U-IBD colonic biopsies and assesses for distinguishing features from T-ICI and P-IBD biopsies. Methods Initial colon biopsies after symptom onset from 34 patients on ICI therapy were reviewed, and histopathologic features were tabulated. U-IBD patients were identified clinically based on rapid toxicity development post-ICI treatment with multiple recurrences after immune suppression, frequently with regional colitis (versus pancolitis). Results The study cohort was classified into T-ICI (n = 20), P-IBD (n = 9), and U-IBD (n = 5) groups. The predominant histological patterns were diffuse active colitis (35%) in the T-ICI, and chronic active colitis in both the P-IBD (67%) and U-IBD (60%) groups (overall P = .003, P > .05 between the two IBD groups). None of the T-ICI biopsies demonstrated chronicity features (ie, architectural distortion score 2, basal lymphoplasmacytosis, or Paneth cell metaplasia). Only U-IBD biopsies demonstrated basal lymphoplasmacytosis (60% vs 0% in T-ICI/P-IBD, P = .002). Among available follow-up biopsies, chronicity features were present in all (4/4) U-IBD patients, including those without chronicity seen in the initial biopsy, but none (0/7) of T-ICI patients. Conclusion These early results show that no definite features of chronicity were seen in colon biopsies from T-ICI patients, suggesting that the presence of those features may be a clue to U-IBD in patients without a known IBD diagnosis. Frequent basal lymphoplasmacytosis seen in U-IBD may support a recent onset of mucosal injury and early architectural remodeling.
Collapse
Affiliation(s)
- M Lisa Zhang
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Khalid Algarrahi
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jamie DiCarlo
- Department of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Abigail Elvin-Ivey
- Department of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael Dougan
- Harvard Medical School, Boston, Massachusetts
- Department of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Chen J, Yang L, Ma Y, Zhang Y. Recent advances in understanding the immune microenvironment in ovarian cancer. Front Immunol 2024; 15:1412328. [PMID: 38903506 PMCID: PMC11188340 DOI: 10.3389/fimmu.2024.1412328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
The occurrence of ovarian cancer (OC) is a major factor in women's mortality rates. Despite progress in medical treatments, like new drugs targeting homologous recombination deficiency, survival rates for OC patients are still not ideal. The tumor microenvironment (TME) includes cancer cells, fibroblasts linked to cancer (CAFs), immune-inflammatory cells, and the substances these cells secrete, along with non-cellular components in the extracellular matrix (ECM). First, the TME mainly plays a role in inhibiting tumor growth and protecting normal cell survival. As tumors progress, the TME gradually becomes a place to promote tumor cell progression. Immune cells in the TME have attracted much attention as targets for immunotherapy. Immune checkpoint inhibitor (ICI) therapy has the potential to regulate the TME, suppressing factors that facilitate tumor advancement, reactivating immune cells, managing tumor growth, and extending the survival of patients with advanced cancer. This review presents an outline of current studies on the distinct cellular elements within the OC TME, detailing their main functions and possible signaling pathways. Additionally, we examine immunotherapy rechallenge in OC, with a specific emphasis on the biological reasons behind resistance to ICIs.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yiming Ma
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
41
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
42
|
Wu Y, Wang L, Li Y, Cao Y, Wang M, Deng Z, Kang H. Immunotherapy in the context of sepsis-induced immunological dysregulation. Front Immunol 2024; 15:1391395. [PMID: 38835773 PMCID: PMC11148279 DOI: 10.3389/fimmu.2024.1391395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Cao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
43
|
Link-Rachner CS, Göbel A, Jaschke NP, Rachner TD. Endocrine health in survivors of adult-onset cancer. Lancet Diabetes Endocrinol 2024; 12:350-364. [PMID: 38604215 DOI: 10.1016/s2213-8587(24)00088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Long-term survivors of cancer (ie, the patient who is considered cured or for whom the disease is under long-term control and unlikely to recur) are at an increased risk of developing endocrine complications such as hypothalamic-pituitary dysfunctions, hypogonadisms, osteoporosis, or metabolic disorders, particularly when intensive tumour-directed therapies are applied. Symptom severity associated with these conditions ranges from mild and subclinical to highly detrimental, affecting individual health and quality of life. Although they are usually manageable, many of these endocrine pathologies remain underdiagnosed and untreated for years. To address this challenge, a higher degree of awareness, standardised screening tools, comprehensible treatment algorithms, and a close collaborative effort between endocrinologists and oncologists are essential to early identify patients who are at risk, and to implement appropriate treatment protocols. This Review highlights common symptoms and conditions related to endocrine disorders among survivors of adult-onset cancer, provides a summary of the currently available practice guidelines, and proposes a practical approach to diagnose affected patients among this group.
Collapse
Affiliation(s)
- Cornelia S Link-Rachner
- Division of Haematology and Oncology, Department of Medicine I, Technische Universität Dresden, Dresden, Germany
| | - Andy Göbel
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolai P Jaschke
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
44
|
Winidmanokul P, Panya A, Okada S. Tri-specific killer engager: unleashing multi-synergic power against cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:432-448. [PMID: 38745768 PMCID: PMC11090690 DOI: 10.37349/etat.2024.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/13/2023] [Indexed: 05/16/2024] Open
Abstract
Cancer continues to be a global health concern, necessitating innovative solutions for treatment. Tri-specific killer engagers (TriKEs) have emerged as a promising class of immunotherapeutic agents, offering a multifaceted approach to cancer treatment. TriKEs simultaneously engage and activate natural killer (NK) cells while specifically targeting cancer cells, representing an outstanding advancement in immunotherapy. This review explores the generation and mechanisms of TriKEs, highlighting their advantages over other immunotherapies and discussing their potential impact on clinical trials and cancer treatment. TriKEs are composed of three distinct domains, primarily antibody-derived building blocks, linked together by short amino acid sequences. They incorporate critical elements, anti-cluster of differentiation 16 (CD16) and interleukin-15 (IL-15), which activate and enhance NK cell function, together with specific antibody to target each cancer. TriKEs exhibit remarkable potential in preclinical and early clinical studies across various cancer types, making them a versatile tool in cancer immunotherapy. Comparative analyses with other immunotherapies, such as chimeric antigen receptor-T (CAR-T) cell therapy, immune checkpoint inhibitors (ICIs), cytokine therapies, and monoclonal antibodies (mAbs), reveal the unique advantages of TriKEs. They offer a safer pathway for immunotherapy by targeting cancer cells without hyperactivating T cells, reducing off-target effects and complications. The future of TriKEs involves addressing challenges related to dosing, tumor-associated antigen (TAA) expression, and NK cell suppression. Researchers are exploring innovative dosing strategies, enhancing specificity through tumor-specific antigens (TSAs), and combining TriKEs with other therapies for increased efficacy.
Collapse
Affiliation(s)
- Peeranut Winidmanokul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Cell Engineering for Cancer Therapy Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
45
|
Wang Y, Wang J, Jiang J, Zhang W, Sun L, Ge Q, Li C, Li X, Li X, Shi S. Identification of cuproptosis-related miRNAs in triple-negative breast cancer and analysis of the miRNA-mRNA regulatory network. Heliyon 2024; 10:e28242. [PMID: 38601669 PMCID: PMC11004712 DOI: 10.1016/j.heliyon.2024.e28242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The close association between cuproptosis and tumor immunity in triple-negative breast cancer (TNBC) allows its monitoring for predicting the prognosis of patients with TNBC. Nevertheless, the biological function and prognostic value of cuproptosis-related miRNAs and their target genes have not been reported. Purpose To construct the miRNA and mRNA-based risk models associated with cuproptosis for patients with TNBC. Methods Comparison of expression levels for genes associated with cuproptosis was executed between patients in the normal individuals and the TCGA-TNBC cohort. Conducting differential analysis resulted in the identification of differentially expressed miRNA (DE-miRNAs) and differentially expressed genes (DEGs) between the TNBC and Control samples. Screening for prognostic miRNAs and biomarkers involved employing univariate Cox analysis and least absolute shrinkage and selection operator regression analyses. These methods were utilized to construct risk models aimed at predicting the survival of patients with TNBC. Based on the median value of risk scores, patients were then stratified into low- and high-risk groups. Functional enrichment analysis was employed to explore the potential function and pathways of prognostic genes. Additionally, independent prognostic analysis was performed through univariate and multivariate Cox regression. Immune infiltration analysis was performed to examine disparities in the infiltration of immune cells between the two risk groups. Finally, the prognostic gene expression was mined in key cell types of TNBC. Results We obtained 5213 DEGs and 204 DE-miRNAs related to cuproptosis between TNBC and Control samples. Five prognostic miRNAs (miR-203a-3p, miR-1277-3p, miR-135b-5p, miR-200c-3p, and miR-592) and three biomarkers (DENND5B, IGF1R, and MEF2C) were closely associated with TNBC. Significant differences in the functions of prognostic genes between the two risk groups were observed, encompassing adipogenesis, inflammatory response, and hormone metabolic process. The prognostic gene regulatory network revealed that miR200C-3p regulated ZFPM2 and CFL2, and miR-1277-3p regulated BMP2 and RORA. A nomogram was created based on riskScore, cancer status, and pathologic stage to predict 1/3/5-year survival of patients with TNBC. Immune infiltration analysis indicated that the immune microenvironment may be associated with the progression of TNBC. Interestingly, prognostic genes exhibited higher expression levels in T cells, fibroblasts, endothelial cells, and monocytes compared to other cells. Conclusions Five prognostic miRNA (miR-203a-3p, miR-1277-3p, miR-135b-5p, miR-200c-3p, and miR-592) and three biomarkers (DENND5B, IGF1R, and MEF2C) were significantly associated with TNBC, it provides new therapeutic targets for the treatment and prognosis of TNBC.
Collapse
Affiliation(s)
- Yitao Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jundan Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jing Jiang
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Wei Zhang
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Long Sun
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Qidong Ge
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Chao Li
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Xinlin Li
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Xujun Li
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Shenghong Shi
- Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, Ningbo No.2 Hospital, Ningbo, 315010, China
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| |
Collapse
|
46
|
Wang Z, Sun W, Hua R, Wang Y, Li Y, Zhang H. Promising dawn in tumor microenvironment therapy: engineering oral bacteria. Int J Oral Sci 2024; 16:24. [PMID: 38472176 DOI: 10.1038/s41368-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024] Open
Abstract
Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Hua
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China.
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.
| |
Collapse
|
47
|
Liu B, Liu Z, Jiang T, Gu X, Yin X, Cai Z, Zou X, Dai L, Zhang B. Univariable and multivariable Mendelian randomization study identified the key role of gut microbiota in immunotherapeutic toxicity. Eur J Med Res 2024; 29:161. [PMID: 38475836 DOI: 10.1186/s40001-024-01741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND In cancer patients receiving immune checkpoint inhibitors (ICIs), there is emerging evidence suggesting a correlation between gut microbiota and immune-related adverse events (irAEs). However, the exact roles of gut microbiota and the causal associations are yet to be clarified. METHODS To investigate this, we first conducted a univariable bi-directional two-sample Mendelian randomization (MR) analysis. Instrumental variables (IVs) for gut microbiota were retrieved from the MiBioGen consortium (18,340 participants). GWAS summary data for irAEs were gathered from an ICIs-treated cohort with 1,751 cancer patients. Various MR analysis methods, including inverse variance weighted (IVW), MR PRESSO, maximum likelihood (ML), weighted median, weighted mode, and cML-MA-BIC, were used. Furthermore, multivariable MR (MVMR) analysis was performed to account for possible influencing instrumental variables. RESULTS Our analysis identified fourteen gut bacterial taxa that were causally associated with irAEs. Notably, Lachnospiraceae was strongly associated with an increased risk of both high-grade and all-grade irAEs, even after accounting for the effect of BMI in the MVMR analysis. Akkermansia, Verrucomicrobiaceae, and Anaerostipes were found to exert protective roles in high-grade irAEs. However, Ruminiclostridium6, Coprococcus3, Collinsella, and Eubacterium (fissicatena group) were associated with a higher risk of developing high-grade irAEs. RuminococcaceaeUCG004, and DefluviitaleaceaeUCG011 were protective against all-grade irAEs, whereas Porphyromonadaceae, Roseburia, Eubacterium (brachy group), and Peptococcus were associated with an increased risk of all-grade irAEs. CONCLUSIONS Our analysis highlights a strong causal association between Lachnospiraceae and irAEs, along with some other gut microbial taxa. These findings provide potential modifiable targets for managing irAEs and warrant further investigation.
Collapse
Affiliation(s)
- Baike Liu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianxiang Jiang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiangshuai Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaonan Yin
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhaolun Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaoqiao Zou
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Bo Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
48
|
Molina-Arcas M, Downward J. Exploiting the therapeutic implications of KRAS inhibition on tumor immunity. Cancer Cell 2024; 42:338-357. [PMID: 38471457 DOI: 10.1016/j.ccell.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Over the past decade, RAS oncogenic proteins have transitioned from being deemed undruggable to having two clinically approved drugs, with several more in advanced stages of development. Despite the initial benefit of KRAS-G12C inhibitors for patients with tumors harboring this mutation, the rapid emergence of drug resistance underscores the urgent need to synergize these inhibitors with other therapeutic approaches to improve outcomes. RAS mutant tumor cells can create an immunosuppressive tumor microenvironment (TME), suggesting an increased susceptibility to immunotherapies following RAS inhibition. This provides a rationale for combining RAS inhibitory drugs with immune checkpoint blockade (ICB). However, achieving this synergy in the clinical setting has proven challenging. Here, we explore how understanding the impact of RAS mutant tumor cells on the TME can guide innovative approaches to combining RAS inhibition with immunotherapies, review progress in both pre-clinical and clinical stages, and discuss challenges and future directions.
Collapse
Affiliation(s)
| | - Julian Downward
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
49
|
Pophali P, Varela JC, Rosenblatt J. Immune checkpoint blockade in hematological malignancies: current state and future potential. Front Oncol 2024; 14:1323914. [PMID: 38322418 PMCID: PMC10844552 DOI: 10.3389/fonc.2024.1323914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Malignant cells are known to evade immune surveillance by engaging immune checkpoints which are negative regulators of the immune system. By restoring the T-lymphocyte mediated anti-tumor effect, immune checkpoint inhibitors (ICI) have revolutionized the treatment of solid tumors but have met rather modest success in hematological malignancies. Currently, the only FDA approved indications for ICI therapy are in classic hodgkin lymphoma and primary mediastinal B cell lymphoma. Multiple clinical trials have assessed ICI therapy alone and in combination with standard of care treatments in other lymphomas, plasma cell neoplasms and myeloid neoplasms but were noted to have limited efficacy. These trials mostly focused on PD-1/PDL-1 and CTLA-4 inhibitors. Recently, there has been an effort to target other T-lymphocyte checkpoints like LAG-3, TIM-3, TIGIT along with improving strategies of PD-1/PDL-1 and CTLA-4 inhibition. Drugs targeting the macrophage checkpoint, CD47, are also being tested. Long term safety and efficacy data from these ongoing studies are eagerly awaited. In this comprehensive review, we discuss the mechanism of immune checkpoint inhibitors, the key takeaways from the reported results of completed and ongoing studies of these therapies in the context of hematological malignancies.
Collapse
Affiliation(s)
- Prateek Pophali
- Division of Hematology and Hematological Malignancies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Juan Carlos Varela
- Division of Hematology and Oncology, Orlando Health Regional Medical Center, Orlando, FL, United States
| | - Jacalyn Rosenblatt
- Division of Hematology and Hematological Malignancies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
50
|
Li Y, Pond G, McWhirter E. Multisystem Immune-Related Adverse Events from Dual-Agent Immunotherapy Use. Curr Oncol 2024; 31:425-435. [PMID: 38248113 PMCID: PMC10813982 DOI: 10.3390/curroncol31010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND little is known about the incidence and characteristics of multisystem immune-related adverse events (irAEs) associated with dual-agent ipilimumab and nivolumab use. METHODS A retrospective cohort review was completed that included cancer patients seen at the Juravinski Cancer Centre who received at least one dose of ipilimumab and nivolumab from 2018 to 2022. Patient characteristics, cancer types, and irAEs were recorded. Multivariate logistic and cox regressions were completed, comparing those who developed multisystem irAEs, single irAE, and no irAE. RESULTS A total of 123 patients were included in this study. Out of 123 patients, 72 (59%) had melanoma, 50/123 (41%) had renal cell carcinoma (RCC), and 1/123 (1%) had breast cancer. Multisystem irAEs were seen in 40% of the overall cohort. The most common irAE type was dermatitis (22%), followed by colitis (19%) and hepatitis (17%). CONCLUSIONS Our study demonstrated that multisystem irAEs are prevalent amongst patients receiving ipilimumab and nivolumab. It is important for both physician education and the counseling and consent of patients to monitor the potential for multiple irAEs.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Gregory Pond
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Elaine McWhirter
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| |
Collapse
|