1
|
McLeish M, Peláez A, Pagán I, Gavilán RG, Fraile A, García-Arenal F. Plant virus community structuring is shaped by habitat heterogeneity and traits for host plant resource utilisation. THE NEW PHYTOLOGIST 2024; 244:1585-1596. [PMID: 39327796 DOI: 10.1111/nph.20054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/12/2024] [Indexed: 09/28/2024]
Abstract
Host plants provide resources critical to viruses and the spatial structuring of plant communities affects the niches available for colonisation and disease emergence. However, large gaps remain in the understanding of mechanisms that govern plant-virus disease ecology across heterogeneous plant assemblages. We combine high-throughput sequencing, network, and metacommunity approaches to test whether habitat heterogeneity in plant community composition corresponded with virus resource utilisation traits of transmission mode and host range. A majority of viruses exhibited habitat specificity, with communities connected by key generalist viruses and potential host reservoirs. There was an association between habitat heterogeneity and virus community structuring, and between virus community structuring and resource utilisation traits of host range and transmission. The relationship between virus species distributions and virus trait responses to habitat heterogeneity was scale-dependent, being stronger at finer (site) than larger (habitat) spatial scales. Results indicate that habitat heterogeneity has a part in plant virus community assembly, and virus community structuring corresponds to virus trait responses that vary with the scale of observation. Distinctions in virus communities caused by plant resource compartmentalisation can be used to track trait responses of viruses to hosts important in forecasting disease emergence.
Collapse
Affiliation(s)
- Michael McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rosario G Gavilán
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Unidad de Botánica, Madrid, 28040, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
2
|
Bogoni JA, Peres CA, Navarro AB, Carvalho-Rocha V, Galetti M. Using historical habitat loss to predict contemporary mammal extirpations in Neotropical forests. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14245. [PMID: 38456548 DOI: 10.1111/cobi.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 03/09/2024]
Abstract
Understanding which species will be extirpated in the aftermath of large-scale human disturbance is critical to mitigating biodiversity loss, particularly in hyperdiverse tropical biomes. Deforestation is the strongest driver of contemporary local extinctions in tropical forests but may occur at different tempos. The 2 most extensive tropical forest biomes in South America-the Atlantic Forest and the Amazon-have experienced historically divergent pathways of habitat loss and biodiversity decay, providing a unique case study to investigate rates of local species persistence on a single continent. We quantified medium- to large-bodied mammal species persistence across these biomes to elucidate how landscape configuration affects their persistence and associated ecological functions. We collected occurrence data for 617 assemblages of medium- to large-bodied mammal species (>1 kg) in the Atlantic Forest and the Amazon. Analyzing natural habitat cover based on satellite data (1985-2022), we employed descriptive statistics and generalized linear models (GLMs) to investigate ecospecies occurrence patterns in relation to habitat cover across the landscapes. The subregional erosion of Amazonian mammal assemblage diversity since the 1970s mirrors that observed since the colonial conquest of the Atlantic Forest, given that 52.8% of all Amazonian mammals are now on a similar trajectory. Four out of 5 large mammals in the Atlantic Forest were prone to extirpation, whereas 53% of Amazonian mammals were vulnerable to extirpation. Greater natural habitat cover increased the persistence likelihood of ecospecies in both biomes. These trends reflected a median local species loss 63.9% higher in the Atlantic Forest than in the Amazon, which appears to be moving toward a turning point of forest habitat loss and degradation. The contrasting trajectories of species persistence in the Amazon and Atlantic Forest domains underscore the importance of considering historical habitat loss pathways and regional biodiversity erosion in conservation strategies. By focusing on landscape configuration and identifying essential ecological functions associated with large vertebrate species, conservation planning and management practices can be better informed.
Collapse
Affiliation(s)
- Juliano A Bogoni
- Departamento de Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
- Programa de Pós-Graduação em Ciências Ambientais, Centro de Pesquisa de Limnologia, Biodiversidade e Etnobiologia do Pantanal-CELBE, Laboratório de Mastozoologia, Universidade do Estado de Mato Grosso, Cáceres, Brazil
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich, UK
- Instituto Juruá, Manaus, Brazil
| | - Ana B Navarro
- Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil
| | - Vitor Carvalho-Rocha
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
- Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mauro Galetti
- Department of Biodiversity, Center for Research in Biodiversity Dynamics and Climate Change, São Paulo State University (UNESP), Rio Claro, Brazil
- Kimberly Green Latin American and Caribbean Center, Florida International University (FIU), Miami, Florida, USA
| |
Collapse
|
3
|
Bonfim FCG, Galetti M, Benchimol M, Morante-Filho JC, Magioli M, Cazetta E. Land-use homogenization reduces the occurrence and diversity of frugivorous birds in a tropical biodiversity hotspot. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2980. [PMID: 38725332 DOI: 10.1002/eap.2980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 06/04/2024]
Abstract
Understanding how human-modified landscapes maintain biodiversity and provide ecosystem services is crucial for establishing conservation practices. Given that responses to land-use are species-specific, it is crucial to understand how land-use changes may shape patterns of species diversity and persistence in human-modified landscapes. Here, we used a comprehensive data set on bird distribution from the Brazilian Atlantic Forest to understand how species richness and individual occurrences of frugivorous bird species responded to land-use spatial predictors and, subsequently, assess how ecological traits and phylogeny modulated these responses. Using Bayesian hierarchical modeling, we reveal that the richness of frugivorous birds was positively associated with the amount of native forest and negatively with both agriculture and pasture amount at the landscape scale. Conversely, the effect of these predictors on species occurrence and ecological traits was highly variable and presented a weak phylogenetic signal. Furthermore, land-use homogenization (i.e., the conversion of forest to pasture or agriculture) led to pervasive consequences for forest-dependent bird species, whereas several generalist species thrived in deforested areas, replacing those sensitive to habitat disturbances.
Collapse
Affiliation(s)
- Fernando César Gonçalves Bonfim
- Postgraduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Mauro Galetti
- Instituto de Biociências, Departamento de Biodiversidade, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Maíra Benchimol
- Postgraduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - José Carlos Morante-Filho
- Postgraduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Marcelo Magioli
- Instituto Pró-Carnívoros, Atibaia, Brazil
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros (CENAP), Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Atibaia, Brazil
- Laboratório de Ecologia e Conservação (LAEC), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eliana Cazetta
- Postgraduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
4
|
Lee SXT, Amir Z, Moore JH, Gaynor KM, Luskin MS. Effects of human disturbances on wildlife behaviour and consequences for predator-prey overlap in Southeast Asia. Nat Commun 2024; 15:1521. [PMID: 38374248 PMCID: PMC10876642 DOI: 10.1038/s41467-024-45905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Some animal species shift their activity towards increased nocturnality in disturbed habitats to avoid predominantly diurnal humans. This may alter diel overlap among species, a precondition to most predation and competition interactions that structure food webs. Here, using camera trap data from 10 tropical forest landscapes, we find that hyperdiverse Southeast Asian wildlife communities shift their peak activity from early mornings in intact habitats towards dawn and dusk in disturbed habitats (increased crepuscularity). Our results indicate that anthropogenic disturbances drive opposing behavioural adaptations based on rarity, size and feeding guild, with more nocturnality among the 59 rarer specialists' species, more diurnality for medium-sized generalists, and less diurnality for larger hunted species. Species turnover also played a role in underpinning community- and guild-level responses, with disturbances associated with markedly more detections of diurnal generalists and their medium-sized diurnal predators. However, overlap among predator-prey or competitor guilds does not vary with disturbance, suggesting that net species interactions may be conserved.
Collapse
Affiliation(s)
- Samuel Xin Tham Lee
- School of the Environment, University of Queensland, Brisbane, QLD, Australia
| | - Zachary Amir
- School of the Environment, University of Queensland, Brisbane, QLD, Australia
| | - Jonathan H Moore
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Kaitlyn M Gaynor
- Departments of Zoology and Botany, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Scott Luskin
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA.
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Auliz-Ortiz DM, Benítez-Malvido J, Arroyo-Rodríguez V, Dirzo R, Pérez-Farrera MÁ, Luna-Reyes R, Mendoza E, Álvarez-Añorve MY, Álvarez-Sánchez J, Arias-Ataide DM, Ávila-Cabadilla LD, Botello F, Braasch M, Casas A, Campos-Villanueva DÁ, Cedeño-Vázquez JR, Chávez-Tovar JC, Coates R, Dechnik-Vázquez Y, del Coro Arizmendi M, Dias PA, Dorado O, Enríquez P, Escalona-Segura G, Farías-González V, Favila ME, García A, García-Morales LJ, Gavito-Pérez F, Gómez-Domínguez H, González-García F, González-Zamora A, Cuevas-Guzmán R, Haro-Belchez E, Hernández-Huerta AH, Hernández-Ordoñez O, Horváth A, Ibarra-Manríquez G, Lavín-Murcio PA, Lira-Saade R, López-Díaz K, MacSwiney G. MC, Mandujano S, Martínez-Camilo R, Martínez-Ávalos JG, Martínez-Meléndez N, Monroy-Ojeda A, Mora F, Mora-Olivo A, Muench C, Peña-Mondragón JL, Percino-Daniel R, Ramírez-Marcial N, Reyna-Hurtado R, Rodríguez-Ruíz ER, Sánchez-Cordero V, Suazo-Ortuño I, Terán-Juárez SA, Valdivieso-Pérez IA, Valencia V, Valenzuela-Galván D, Vargas-Contreras JA, Vázquez-Pérez JR, Vega-Rivera JH, Venegas-Barrera CS, Martínez-Ramos M. Underlying and proximate drivers of biodiversity changes in Mesoamerican biosphere reserves. Proc Natl Acad Sci U S A 2024; 121:e2305944121. [PMID: 38252845 PMCID: PMC10861858 DOI: 10.1073/pnas.2305944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Protected areas are of paramount relevance to conserving wildlife and ecosystem contributions to people. Yet, their conservation success is increasingly threatened by human activities including habitat loss, climate change, pollution, and species overexploitation. Thus, understanding the underlying and proximate drivers of anthropogenic threats is urgently needed to improve protected areas' effectiveness, especially in the biodiversity-rich tropics. We addressed this issue by analyzing expert-provided data on long-term biodiversity change (last three decades) over 14 biosphere reserves from the Mesoamerican Biodiversity Hotspot. Using multivariate analyses and structural equation modeling, we tested the influence of major socioeconomic drivers (demographic, economic, and political factors), spatial indicators of human activities (agriculture expansion and road extension), and forest landscape modifications (forest loss and isolation) as drivers of biodiversity change. We uncovered a significant proliferation of disturbance-tolerant guilds and the loss or decline of disturbance-sensitive guilds within reserves causing a "winner and loser" species replacement over time. Guild change was directly related to forest spatial changes promoted by the expansion of agriculture and roads within reserves. High human population density and low nonfarming occupation were identified as the main underlying drivers of biodiversity change. Our findings suggest that to mitigate anthropogenic threats to biodiversity within biosphere reserves, fostering human population well-being via sustainable, nonfarming livelihood opportunities around reserves is imperative.
Collapse
Affiliation(s)
- Daniel Martín Auliz-Ortiz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Julieta Benítez-Malvido
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Víctor Arroyo-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida97357, Mexico
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Palo Alto, CA9430
- Department of Earth Systems Science, Stanford University, Palo Alto, CA9430
| | - Miguel Ángel Pérez-Farrera
- Herbario Eizi Matuda, Laboratorio de Ecología, Evolutiva, Instituto de Ciencias Biológicas Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez29039, Mexico
| | - Roberto Luna-Reyes
- Dirección de Áreas Naturales y Vida Silvestre, Secretaría de Medio Ambiente e Historia Natural, Tuxtla Gutiérrez29000, Mexico
| | - Eduardo Mendoza
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia58337, Mexico
| | | | - Javier Álvarez-Sánchez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Dulce María Arias-Ataide
- Centro de Investigación y Educación Ambiental Sierra de Huautla, Universidad Autónoma del Estado de Morelos, Cuernavaca62914, Mexico
| | - Luis Daniel Ávila-Cabadilla
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida97357, Mexico
| | - Francisco Botello
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Marco Braasch
- Faktorgruen, Landschaftsarchitekten bdla Beratende Ingenieure, Abteilung Landschaftsplanung, Rottweil, Baden-Württemberg78628, Germany
| | - Alejandro Casas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Delfino Álvaro Campos-Villanueva
- Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México, San Andrés Tuxtla, Veracruz95701, Mexico
| | - José Rogelio Cedeño-Vázquez
- Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Unidad Chetumal, Chetumal77014, Mexico
| | - José Cuauhtémoc Chávez-Tovar
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Estado de México52006, Mexico
| | - Rosamond Coates
- Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México, San Andrés Tuxtla, Veracruz95701, Mexico
| | - Yanus Dechnik-Vázquez
- Pre-Planning Center of the Gulf, Federal Electricity Comission, Boca del Río, Veracruz94295, Mexico
| | - María del Coro Arizmendi
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalneplantla54090, Mexico
| | - Pedro Américo Dias
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz91190, Mexico
| | - Oscar Dorado
- Centro de Investigación y Educación Ambiental Sierra de Huautla, Universidad Autónoma del Estado de Morelos, Cuernavaca62914, Mexico
| | - Paula Enríquez
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas29290, Mexico
| | - Griselda Escalona-Segura
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Campeche, Campeche24500, Mexico
| | - Verónica Farías-González
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalneplantla54090, Mexico
| | - Mario E. Favila
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa, Veracruz91070, Mexico
| | - Andrés García
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio48980, Mexico
| | - Leccinum Jesús García-Morales
- Departamento de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Ciudad Victoria, Tamaulipas87010, Mexico
| | - Fernando Gavito-Pérez
- Reserva de la Biosfera Sierra de Manantlán, Comisión Nacional de Áreas Naturales Protegidas, Autlán de Navarro48903, Mexico
| | - Héctor Gómez-Domínguez
- Herbario Eizi Matuda, Laboratorio de Ecología, Evolutiva, Instituto de Ciencias Biológicas Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez29039, Mexico
| | - Fernando González-García
- Red Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Xalapa, Veracruz91073, Mexico
| | - Arturo González-Zamora
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz911901, Mexico
| | - Ramón Cuevas-Guzmán
- Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Autlán de Navarro48900, Mexico
| | | | | | - Omar Hernández-Ordoñez
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Anna Horváth
- Quirón, Centro de Intervenciones Asistidas con Equinos y Formación para el Bienestar y Sustentabilidad, Asociación Civil, Comitán de Domínguez30039, Mexico
| | - Guillermo Ibarra-Manríquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Pablo Antonio Lavín-Murcio
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua32315, Mexico
| | - Rafael Lira-Saade
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalneplantla54090, Mexico
| | - Karime López-Díaz
- Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca62209, Mexico
| | | | - Salvador Mandujano
- Red Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Xalapa, Veracruz91073, Mexico
| | - Rubén Martínez-Camilo
- Unidad Villa Corzo, Facultad de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Villa de Corzo30520, Mexico
| | | | - Nayely Martínez-Meléndez
- Orquidario y Jardín Botánico "Comitán", Secretaría de Medio Ambiente e Historia Natural, Comitán de Domínguez30106, Mexico
| | | | - Francisco Mora
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Arturo Mora-Olivo
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas87019, Mexico
| | - Carlos Muench
- Coordinación Universitaria para la Sustentabilidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Juan L. Peña-Mondragón
- Consejo Nacional de Humanidades, Ciencia y Tecnología -Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Ruth Percino-Daniel
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Neptalí Ramírez-Marcial
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas29290, Mexico
| | - Rafael Reyna-Hurtado
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Campeche, Campeche24500, Mexico
| | - Erick Rubén Rodríguez-Ruíz
- Comisión de Parques y Biodiversidad de Tamaulipas, Gobierno del Estado de Tamaulipas, Ciudad Victoria, Tamaulipas87083, Mexico
| | - Víctor Sánchez-Cordero
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Ireri Suazo-Ortuño
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia58337, Mexico
| | - Sergio Alejandro Terán-Juárez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Campus Ciudad Victoria, Ciudad Victoria, Tamaulipas87010, Mexico
| | - Ingrid Abril Valdivieso-Pérez
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Conkal, Tecnológico Nacional de México, Conkal97345, Mexico
| | - Vivian Valencia
- Department of Environment, Agriculture and Geography, Bishop’s University, Sherbrooke, QCJ1M 1Z7, Canada
| | - David Valenzuela-Galván
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca62209, Mexico
| | | | - José Raúl Vázquez-Pérez
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas29290, Mexico
| | - Jorge Humberto Vega-Rivera
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio48980, Mexico
| | - Crystian Sadiel Venegas-Barrera
- Departamento de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Ciudad Victoria, Tamaulipas87010, Mexico
| | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| |
Collapse
|
6
|
Feitosa MLB, Barbosa‐da‐Silva HR, Salomão RP, Desouza AM, de Moura GJB, Lira AFDA. Effects of landscape metrics on scorpion (Arachnida: Scorpiones) assemblage in a tropical urban ecosystem. Ecol Evol 2024; 14:e11026. [PMID: 38371872 PMCID: PMC10870332 DOI: 10.1002/ece3.11026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Urban landscapes restrain the distribution of forest-dwelling species, which may be related to challenging conditions that impair body condition. The dynamics in urban areas lead to the simplification of communities that inhabit forest patches in cities with the turnover of sensitive species for opportunistic ones. In this study, we investigated the effect of urbanization on the body condition and diversity of scorpions at the landscape scale. Sampling was carried out in 10 forest patches in an urban matrix in Brazil, originally covered by a tropical rainforest. The surroundings of the landscape of each forest patch were characterized through the amount of forest, agriculture, and urban land cover. Individual body length, dry, lipid, and muscular masses were used as proxies of Tityus pusillus body condition. In total, 147 scorpions were collected, belonging to the species Ananteris mauryi, T. pusillus, T. stigmurus, and T. neglectus. Forest cover explained 28% of species variation. There was a positive relationship between forest cover and T. pusillus and A. mauryi abundances, while T. stigmurus was negatively affected by forest cover. Species richness and total scorpion abundance were not influenced by landscape metrics. In terms of body condition, only females of T. pusillus were affected by landscape variables, with individuals showing higher body mass with an increase in forest cover. Our results suggest that urban forests can support scorpion assemblages. However, there is a turnover in specialist forest species for opportunistic species. Forest cover is a crucial factor in maintaining healthy scorpion populations in urban areas.
Collapse
Affiliation(s)
| | | | - Renato Portela Salomão
- Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazMexico
| | - Adriano Medeiros Desouza
- Centro de Ciências Biológicas e da SaúdeUniversidade Estadual da ParaíbaCampina GrandeParaíbaBrazil
| | - Geraldo Jorge Barbosa de Moura
- Laboratorio de Estudos Herpetológicos e Paleoherpetológicos, Departamento de BiologiaUniversidade Federal Rural de PernambucoRecifePernambucoBrazil
| | - André Felipe de Araujo Lira
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
7
|
Moura MR, Oliveira GA, Paglia AP, Pires MM, Santos BA. Climate change should drive mammal defaunation in tropical dry forests. GLOBAL CHANGE BIOLOGY 2023; 29:6931-6944. [PMID: 37846595 DOI: 10.1111/gcb.16979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Human-induced climate change has intensified negative impacts on socioeconomic factors, the environment, and biodiversity, including changes in rainfall patterns and an increase in global average temperatures. Drylands are particularly at risk, with projections suggesting they will become hotter, drier, and less suitable for a significant portion of their species, potentially leading to mammal defaunation. We use ecological niche modelling and community ecology biodiversity metrics to examine potential geographical range shifts of non-volant mammal species in the largest Neotropical dryland, the Caatinga, and evaluate impacts of climate change on mammal assemblages. According to projections, 85% of the mammal species will lose suitable habitats, with one quarter of species projected to completely lose suitable habitats by 2060. This will result in a decrease in species richness for more than 90% of assemblages and an increase in compositional similarity to nearby assemblages (i.e., reduction in spatial beta diversity) for 70% of the assemblages. Small-sized mammals will be the most impacted and lose most of their suitable habitats, especially in highlands. The scenario is even worse in the eastern half of Caatinga where habitat destruction already prevails, compounding the threats faced by species there. While species-specific responses can vary with respect to dispersal, behavior, and energy requirements, our findings indicate that climate change can drive mammal assemblages to biotic homogenization and species loss, with drastic changes in assemblage trophic structure. For successful long-term socioenvironmental policy and conservation planning, it is critical that findings from biodiversity forecasts are considered.
Collapse
Affiliation(s)
- Mario R Moura
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Ciências Biológicas, Universidade Federal da Paraíba, Areia, Brazil
| | - Gibran A Oliveira
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Adriano P Paglia
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mathias M Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Bráulio A Santos
- Departamento de Ciências Biológicas, Universidade Federal da Paraíba, Areia, Brazil
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
8
|
Moore JH, Gibson L, Amir Z, Chanthorn W, Ahmad AH, Jansen PA, Mendes CP, Onuma M, Peres CA, Luskin MS. The rise of hyperabundant native generalists threatens both humans and nature. Biol Rev Camb Philos Soc 2023; 98:1829-1844. [PMID: 37311559 DOI: 10.1111/brv.12985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
In many disturbed terrestrial landscapes, a subset of native generalist vertebrates thrives. The population trends of these disturbance-tolerant species may be driven by multiple factors, including habitat preferences, foraging opportunities (including crop raiding or human refuse), lower mortality when their predators are persecuted (the 'human shield' effect) and reduced competition due to declines of disturbance-sensitive species. A pronounced elevation in the abundance of disturbance-tolerant wildlife can drive numerous cascading impacts on food webs, biodiversity, vegetation structure and people in coupled human-natural systems. There is also concern for increased risk of zoonotic disease transfer to humans and domestic animals from wildlife species with high pathogen loads as their abundance and proximity to humans increases. Here we use field data from 58 landscapes to document a supra-regional phenomenon of the hyperabundance and community dominance of Southeast Asian wild pigs and macaques. These two groups were chosen as prime candidates capable of reaching hyperabundance as they are edge adapted, with gregarious social structure, omnivorous diets, rapid reproduction and high tolerance to human proximity. Compared to intact interior forests, population densities in degraded forests were 148% and 87% higher for wild boar and macaques, respectively. In landscapes with >60% oil palm coverage, wild boar and pig-tailed macaque estimated abundances were 337% and 447% higher than landscapes with <1% oil palm coverage, respectively, suggesting marked demographic benefits accrued by crop raiding on calorie-rich food subsidies. There was extreme community dominance in forest landscapes with >20% oil palm cover where two pig and two macaque species accounted for >80% of independent camera trap detections, leaving <20% for the other 85 mammal species >1 kg considered. Establishing the population trends of pigs and macaques is imperative since they are linked to cascading impacts on the fauna and flora of local forest ecosystems, disease and human health, and economics (i.e., crop losses). The severity of potential negative cascading effects may motivate control efforts to achieve ecosystem integrity, human health and conservation objectives. Our review concludes that the rise of native generalists can be mediated by specific types of degradation, which influences the ecology and conservation of natural areas, creating both positive and detrimental impacts on intact ecosystems and human society.
Collapse
Affiliation(s)
- Jonathan H Moore
- School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan, Shenzhen, China
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Luke Gibson
- School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan, Shenzhen, China
| | - Zachary Amir
- School of Biological Sciences, University of Queensland, Brisbane, St Lucia, Queensland, 4072, Australia
| | - Wirong Chanthorn
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, 50 Ngamwongwan Road, Jatujak District, Bangkok, 10900, Thailand
| | - Abdul Hamid Ahmad
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Malaysia
| | - Patrick A Jansen
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
| | - Calebe P Mendes
- School of Biological Sciences, University of Queensland, Brisbane, St Lucia, Queensland, 4072, Australia
| | - Manabu Onuma
- National Institute for Environmental Studies, 16-2 Onagava, Tsukuba-City, 305-8506, Japan
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Instituto Juruá, R. Ajuricaba, 359 - Aleixo, Manaus, 69083-020, Brazil
| | - Matthew Scott Luskin
- School of Biological Sciences, University of Queensland, Brisbane, St Lucia, Queensland, 4072, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
9
|
Vilà-Cabrera A, Astigarraga J, Jump AS, Zavala MA, Seijo F, Sperlich D, Ruiz-Benito P. Anthropogenic land-use legacies underpin climate change-related risks to forest ecosystems. TRENDS IN PLANT SCIENCE 2023; 28:1132-1143. [PMID: 37263916 DOI: 10.1016/j.tplants.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Forest ecosystems with long-lasting human imprints can emerge worldwide as outcomes of land-use cessation. However, the interaction of these anthropogenic legacies with climate change impacts on forests is not well understood. Here, we set out how anthropogenic land-use legacies that persist in forest properties, following alterations in forest distribution, structure, and composition, can interact with climate change stressors. We propose a risk-based framework to identify anthropogenic legacies of land uses in forest ecosystems and quantify the impact of their interaction with climate-related stress on forest responses. Considering anthropogenic land-use legacies alongside environmental drivers of forest ecosystem dynamics will improve our predictive capacity of climate-related risks to forests and our ability to promote ecosystem resilience to climate change.
Collapse
Affiliation(s)
- Albert Vilà-Cabrera
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK; Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain.
| | - Julen Astigarraga
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Alistair S Jump
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Miguel A Zavala
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Francisco Seijo
- Instituto de Empresa, School of Global and Public Affairs, Madrid, Spain
| | - Dominik Sperlich
- Department of Forestry Economics and Forest Planning, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Paloma Ruiz-Benito
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Grupo de Investigación en Teledetección Ambiental, Departamento de Geología, Geografía y Medio Ambiente, 28801 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
10
|
Rivera JD, de Los Monteros AE, Saldaña-Vázquez RA, Favila ME. Beyond species loss: How anthropogenic disturbances drive functional and phylogenetic homogenization of Neotropical dung beetles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161663. [PMID: 36682564 DOI: 10.1016/j.scitotenv.2023.161663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Anthropogenic activities drive tropical forest loss and biodiversity decay. However, few studies have addressed how the biodiversity response varies between disturbance-adapted species (i.e., winners) and those highly susceptible to disturbance (i.e., losers), or whether such responses differ between the taxonomic, functional, or phylogenetic dimensions of diversity. Understanding these dynamics can help prevent or buffer biotic homogenization processes. Using a meta-analytical approach with dung beetles as model organisms, we evaluated how anthropogenic habitat disturbances influence the multiple diversity dimensions of winner and loser species relative to conserved forest sites in the Neotropics. Habitats were organized according to a disturbance gradient ranging from second-growth forests, shaded agroforestry, lowly-shaded agroforestry, living fences, and pastures. Our database included 30 studies, from which we calculated nine metrics divided into three alfa diversity aspects: richness, evenness, and divergence. We also evaluated the beta-diversity response to disturbance and forest protection. All dimensions of dung beetle diversity decreased significantly with increasing disturbance levels, with phylogenetic diversity showing the highest losses, whereas evenness metrics increased in second-growth forests and agroforestry systems. Loser dung beetles showed high diversity loss as well as functional and phylogenetic clustering, reflecting a pervasive biotic homogenization in the most severely disturbed habitats, whereas winner species were insensitive to anthropogenic disturbances. Beta diversity increased significantly with disturbance and forest protection. Our study showed that heavy disturbances erode and homogenized all diversity dimensions of loser dung beetles. However, second-growth forests and agroforestry systems mitigated diversity loss and homogenization processes by favoring the coexistence between functional and phylogenetically distant species and maintaining assemblages compositionally similar to those in conserved forests, highlighting their importance for conservation. We encourage natural resource managers to consider protection of disturbed off-reserve forests in management schemes as these are essential for maintaining biodiversity in an increasingly anthropized world.
Collapse
Affiliation(s)
- Jose D Rivera
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa, Veracruz, México; Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, México.
| | | | - Romeo A Saldaña-Vázquez
- Instituto de Investigaciones en Medio Ambiente Xabier Gorostiaga S.J, Universidad Iberoamericana Puebla, Blvd. del Niño Poblano No. 2901, Colonia Reserva Territorial Atlixcáyotl, San Andrés Cholula, Pue C. P. 72820, Mexico
| | - Mario E Favila
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| |
Collapse
|
11
|
Frietsch M, Loos J, Löhr K, Sieber S, Fischer J. Future-proofing ecosystem restoration through enhancing adaptive capacity. Commun Biol 2023; 6:377. [PMID: 37029278 PMCID: PMC10082013 DOI: 10.1038/s42003-023-04736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Social-ecological ecosystem restoration involves interacting challenges, including climate change, resource overexploitation and political instability. To prepare for these and other emerging threats, we synthesized key restoration and social-ecological systems literature and derived three guiding themes that can help to enhance the adaptive capacity of restoration sites: (i) work with the existing system, (ii) create self-sustaining, adaptive systems, and (iii) foster diversity and participation. We propose a two-step approach and provide an example from Rwanda detailing the application of these principles. While site-specific activities have to be designed and implemented by local practitioners, our synthesis can guide forward-thinking restoration practice.
Collapse
Affiliation(s)
- Marina Frietsch
- Leuphana University, Social-Ecological Systems Institute, Faculty of Sustainability, Universitätsallee 1, 21335, Lüneburg, Germany.
- University of Rwanda, Center of Excellence in Biodiversity and Natural Resource Management, KN 7 Ave, Kigali, Rwanda.
| | - Jacqueline Loos
- Leuphana University, Social-Ecological Systems Institute, Faculty of Sustainability, Universitätsallee 1, 21335, Lüneburg, Germany
- Leuphana University, Institute of Ecology, Faculty of Sustainability, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Katharina Löhr
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 85, 15374, Müncheberg, Germany
- Humboldt Universität zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences, Urban Plant Ecophysiology, Lentzeallee 55/57, 14195, Berlin, Germany
| | - Stefan Sieber
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 85, 15374, Müncheberg, Germany
- Humboldt Universität zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences, Resource Economics, Unter den Linden 6, 10099, Berlin, Germany
| | - Joern Fischer
- Leuphana University, Social-Ecological Systems Institute, Faculty of Sustainability, Universitätsallee 1, 21335, Lüneburg, Germany
| |
Collapse
|
12
|
Xu WB, Blowes SA, Brambilla V, Chow CFY, Fontrodona-Eslava A, Martins IS, McGlinn D, Moyes F, Sagouis A, Shimadzu H, van Klink R, Magurran AE, Gotelli NJ, McGill BJ, Dornelas M, Chase JM. Regional occupancy increases for widespread species but decreases for narrowly distributed species in metacommunity time series. Nat Commun 2023; 14:1463. [PMID: 36927847 PMCID: PMC10020147 DOI: 10.1038/s41467-023-37127-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
While human activities are known to elicit rapid turnover in species composition through time, the properties of the species that increase or decrease their spatial occupancy underlying this turnover are less clear. Here, we used an extensive dataset of 238 metacommunity time series of multiple taxa spread across the globe to evaluate whether species that are more widespread (large-ranged species) differed in how they changed their site occupancy over the 10-90 years the metacommunities were monitored relative to species that are more narrowly distributed (small-ranged species). We found that on average, large-ranged species tended to increase in occupancy through time, whereas small-ranged species tended to decrease. These relationships were stronger in marine than in terrestrial and freshwater realms. However, in terrestrial regions, the directional changes in occupancy were less extreme in protected areas. Our findings provide evidence for systematic decreases in occupancy of small-ranged species, and that habitat protection could mitigate these losses in the face of environmental change.
Collapse
Affiliation(s)
- Wu-Bing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Cher F Y Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Inês S Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Daniel McGlinn
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences, Loughborough University, Leicestershire, UK
- Graduate School of Public Health, Teikyo University, Tokyo, Japan
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | | | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais, Portugal
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
13
|
Levey DR, Patten MA, Estrada A. Bird species occupancy trends in Southeast Mexico over 1900-2020: Accounting for sighting record absences. J Anim Ecol 2023; 92:606-618. [PMID: 36520005 DOI: 10.1111/1365-2656.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Long-term land-use change impacts tropical bird communities through population-level and functional diversity effects from habitat loss, degradation and fragmentation, leading to land management and conservation challenges. Assessing the temporal impacts of land-use change on occupancy patterns, population change and functional traits of bird species in tropical areas is limited by the treatment of nondetections as true absences or artefacts of low sampling effort during and throughout years. With this in mind, we developed a novel Bayesian species occupancy framework to account for species absences to evaluate bird community changes in Palenque, Chiapas, Mexico, where there is opportunity for study given exceptional records of change across habitats from rainforest to urban centres. We created a novel dataset of population trends for 244 bird species over the years 1900 to 2020 from published short-term field studies, expert field notes and community science pages. Our results show that open area species had higher population increases than forest specialists over time, represented most evidently by the turnover of rainforest specialists for urban species. Modelled influence of functional traits displayed the importance of main habitat types, body mass and habitat and dietary breadth as factors that associated with bird population trends. On average, species with body masses <6.6 and > 948.4 g showed decreasing trends, while all other species showed increasing or stable trends. Our findings illuminate the value of accounting for species absences from several data sources to discover long-term species population trends and affiliated functional traits whose preservation requires conservation and land management action to protect bird ecosystem services. Primary forest conservation is key to maintaining populations of habitat and dietary specialists, such as small understorey insectivorous and large frugivorous species. Protecting rare natural savanna patches from conversion to cattle pasture is vital to prevent further extirpation of native granivores and to slow colonization by exotic and invasive species.
Collapse
Affiliation(s)
- Dallas R Levey
- Department of Biology, Stanford University, Stanford, California, USA.,Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Michael A Patten
- Ecology Research Group, Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Alejandro Estrada
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Kramer JMF, Zwiener VP, Müller SC. Biotic homogenization and differentiation of plant communities in tropical and subtropical forests. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14025. [PMID: 36285615 DOI: 10.1111/cobi.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic impacts on biodiversity can lead to biotic homogenization (BH) and biotic differentiation (BD). BH is a process of increasing similarity in community composition (including taxonomic, functional, and phylogenetic components), whereas BD is a process of decreasing similarity over space and time. Here, we conducted a systematic review of BH and BD in plant communities in tropical and subtropical forests to identify trends and knowledge gaps. Our bibliometric search in the Web of Science returned 1989 papers, of which 151 matched our criteria and were included in the analysis. The Neotropical region had the largest number of articles, and Brazil was the most represented country with 92 studies. Regarding the type of change, homogenization was more frequent than differentiation (noted in 69.6% of publications). The taxonomic diversity component was measured more often than functional and phylogenetic diversity components. Most studies (75.6%) assessed homogenization and differentiation based on a single observation in time; as opposed to few studies that monitored plant community over multiple years. Forest fragmentation was cited as the main determinant of homogenization and differentiation processes (57.2% of articles). Our results highlight the importance of evaluating community composition over time and more than taxonomic components (i.e., functional and phylogenetic) to advance understanding of homogenization and differentiation. Both processes were scale dependent and not mutually exclusive. As such, future research should consider differentiation as a potential transition phase to homogenization and that potential differences in both processes may depend on the spatial and temporal scale adopted. Understanding the complexity and causes of homogenization and differentiation is essential for biodiversity conservation in a world increasingly affected by anthropogenic disturbances.
Collapse
Affiliation(s)
- Jean M Freitag Kramer
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Ecologia e Biogeografia de Plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná (UFPR), Palotina, Brazil
| | - Victor P Zwiener
- Laboratório de Ecologia e Biogeografia de Plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná (UFPR), Palotina, Brazil
| | - Sandra Cristina Müller
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
15
|
Oliveira IF, Baccaro FB, Werneck FP, Haugaasen T. Seasonal flooding decreases fruit-feeding butterfly species dominance and increases spatial turnover in floodplain forests of central Amazonia. Ecol Evol 2023; 13:e9718. [PMID: 36620401 PMCID: PMC9817189 DOI: 10.1002/ece3.9718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
The seasonal flood pulse in Amazonia can be considered a primary driver of community structure in floodplain environments. Although this natural periodic disturbance is part of the landscape dynamics, the seasonal inundation presents a considerable challenge to organisms that inhabit floodplain forests. The present study investigated the effect of seasonal flooding on fruit-feeding butterfly assemblages in different forest types and strata in central Amazonia. We sampled fruit-feeding butterflies in the canopy and the understory using baited traps in adjacent upland (unflooded forests-terra firme), white and blackwater floodplain forests (várzea and igapó, respectively) during the low- and high-water seasons. Butterfly abundance decreased in the high-water season, especially of dominant species in várzea, but the number of species was similar between seasons in the three forest types. Species composition differed between strata in all forest types. However, the flood pulse only affected butterfly assemblages in várzea forest. The β-diversity components also differed only in várzea. Species replacement (turnover) dominated the spatial β-diversity in igapó and terra firme in both seasons and várzea in the high-water season. Nonetheless, nestedness was relatively higher in várzea forests during the low-water season, mainly due to the effect of dominant species. These results emphasize the importance of seasonal flooding to structure butterfly assemblages in floodplain forests and reveal the idiosyncrasy of butterfly community responses to flooding in different forest types. Our results also suggest that any major and rapid changes to the hydrological regime could severely affect floodplain communities adapted to this natural seasonal hydrological cycle, threatening the existence of these unique environments.
Collapse
Affiliation(s)
- Isabela Freitas Oliveira
- Programa de Pós‐Graduação em EcologiaInstituto Nacional de Pesquisas da Amazônia – INPAManausBrazil
- Ecosystem Modeling, Center for Computational and Theoretical Biology (CCTB)University of WürzburgWürzburgGermany
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life Sciences – NMBUÅsNorway
| | | | - Fernanda P. Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas BiológicasInstituto Nacional de Pesquisas da Amazônia – INPAManausBrazil
| | - Torbjørn Haugaasen
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life Sciences – NMBUÅsNorway
| |
Collapse
|
16
|
Bonfim FCG, Dodonov P, Guimarães PR, Cazetta E. Habitat loss shapes the structure and species roles in tropical plant–frugivore networks. OIKOS 2022. [DOI: 10.1111/oik.09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fernando César Gonçalves Bonfim
- Graduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Univ. Estadual de Santa Cruz Ilhéus Brazil
| | - Pavel Dodonov
- Graduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Univ. Estadual de Santa Cruz Ilhéus Brazil
- Spatial Ecology Lab, Inst. of Biology, Federal Univ. of Bahia Salvador Brazil
| | - Paulo R. Guimarães
- Depto de Ecologia, Inst. de Biociências, Univ. de São Paulo São Paulo Brazil
| | - Eliana Cazetta
- Graduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Univ. Estadual de Santa Cruz Ilhéus Brazil
| |
Collapse
|
17
|
Kapuka A, Dobor L, Hlásny T. Climate change threatens the distribution of major woody species and ecosystem services provision in southern Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158006. [PMID: 35970468 DOI: 10.1016/j.scitotenv.2022.158006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
In southern Africa, woody vegetation provides essential ecological, regulation, and cultural ecosystem services (ES), yet many species and ecosystems are increasingly threatened by climate change and land-use transformations. We investigated the effect of climate change on the distribution of eight species in 18 countries in southern Africa, covering 36% of the continent. We proposed a loser/winner ranking of the species based on the changes in land climatic suitability within their historical distribution and future gains and losses of suitable areas. We interpreted these findings in terms of changes in key ES (timber, food, and energy) provision and identified hotspots of ES provision decline. We used species presence data from the Global Biodiversity Information Facility, climatic data from the AfriClim dataset, and the MaxEnt algorithm to project the changes in species-specific land climatic suitability. Among the eight investigated species, the baseline suitability range of Mopane (Colophosperm mopane) was least affected by climate change. At the same time, the area of its future distribution was projected to double, rendering it a regional winner. Another two species, manketti (Schinziophyton rautanenii) and leadwood (Combretum imberbe) showed high future gains too; however, the impact on their baseline suitability range differed between the climatic scenarios. The baseline range of African rosewood (Guibourtia coleosperma) declined entirely, and the future gains were negligible, rendering the species a regional loser. The effect of climate change was particularly severe on timber-producing species (four out of eight species), while species providing food (four species) and energy (four species) were affected less. Our projections portrayed distinct hotspot and coldspot areas, where climatic suitability for multiple species was concurrently projected to decline or persist. This assessment can inform spatially targeted adaptation and conservation actions and strategies, which are currently lacking in many African regions.
Collapse
Affiliation(s)
- Alpo Kapuka
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Suchdol, 165 00 Prague 6, Czech Republic
| | - Laura Dobor
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Suchdol, 165 00 Prague 6, Czech Republic
| | - Tomáš Hlásny
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Suchdol, 165 00 Prague 6, Czech Republic.
| |
Collapse
|
18
|
Melo DHA, Freitas AVL, Tabarelli M, Filgueiras BKC, Leal IR. Aridity and chronic anthropogenic disturbance as organizing forces of fruit‐feeding butterfly assemblages in a Caatinga dry forest. Biotropica 2022. [DOI: 10.1111/btp.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Douglas H. A. Melo
- Programa de Pós‐Graduação em Biologia Animal Universidade Federal de Pernambuco Recife Brazil
| | - André V. L. Freitas
- Departamento de Biologia Animal and Museu de Zoologia Universidade Estadual de Campinas Campinas Brazil
| | - Marcelo Tabarelli
- Departamento de Botânica Universidade Federal de Pernambuco Recife Brazil
| | - Bruno K. C. Filgueiras
- Programa de Pós‐Graduação em Biologia Vegetal Universidade Federal de Pernambuco Recife Brazil
| | - Inara R. Leal
- Departamento de Botânica Universidade Federal de Pernambuco Recife Brazil
| |
Collapse
|
19
|
Dantas A, Dantas TAV, Ribeiro‐Neto JD. Pioneer palm tree as an ecosystem engineer: Effects on ant community structure. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anderson Dantas
- Programa de Pós‐Graduação em Biodiversidade, Centro de Ciências Agrárias Universidade Federal da Paraíba Areia, Paraíba Brazil
- Programa de Pós‐Graduação em Ecologia, Centro de Biociências Universidade Federal do Rio Grande do Norte Natal, RN Brazil
| | - Thais A. Vitoriano Dantas
- Programa de Pós‐Graduação em Biodiversidade, Centro de Ciências Agrárias Universidade Federal da Paraíba Areia, Paraíba Brazil
- Programa de Pós‐Graduação em Ecologia, Centro de Biociências Universidade Federal do Rio Grande do Norte Natal, RN Brazil
| | - José Domingos Ribeiro‐Neto
- Programa de Pós‐Graduação em Biodiversidade, Centro de Ciências Agrárias Universidade Federal da Paraíba Areia, Paraíba Brazil
- Laboratório de Ecologia Vegetal, Departamento de Fitotecnia e Ciências Ambientais, Centro de Ciências Agrarias Universidade Federal da Paraíba Areia, Paraíba Brazil
| |
Collapse
|
20
|
Wu D, Seibold S, Ellwood MDF, Chu C. Differential effects of vegetation and climate on termite diversity and damage. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Donghao Wu
- State Key Laboratory of Biocontrol School of Ecology Sun Yat‐sen University Guangzhou China
| | - Sebastian Seibold
- Ecosystem Dynamics and Forest Management Group, Department of Ecology and Ecosystem Management Technical University of Munich Freising Germany
- Berchtesgaden National Park, Berchtesgaden Germany
| | | | - Chengjin Chu
- State Key Laboratory of Biocontrol School of Ecology Sun Yat‐sen University Guangzhou China
| |
Collapse
|
21
|
Native or Exotic: A Bibliographical Review of the Debate on Ecological Science Methodologies: Valuable Lessons for Urban Green Space Design. LAND 2022. [DOI: 10.3390/land11081201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Knowledge from ecological sciences is an important reference for landscape design as Urban Green Spaces (UGS) play a critical role in the ecological protection of cities. There is an ongoing debate among ecologists on the value of exotic vegetation to ecosystem resilience and integrity, with authors arguing that in order for ecosystems to survive in future climates, exotic species with similar conditions in their current range must be considered. Others deem biodiversity vital for ecosystem functions and services, stating that most biodiversity losses are man-induced and should be addressed through the enhancement of native communities. Through a literature review, we confronted the arguments used in this debate, with the aim of conducting a comprehensive analysis of the potential of exotic and native vegetation in different aspects of the vegetation’s performance. The outcomes are important for the assessment of vegetation assemblages within UGS projects. Despite the strong arguments regarding their performative and adaptive capacity, we conclude that exotics pose significant ecological risks and have multiple negative impacts on ecosystem processes. Natives not only present high adaptive capacity, but also provide additional benefits for biodiversity, ecosystem integrity, and for people. In a broader framework, the literature demonstrates a preference for the use of native species in most situations.
Collapse
|
22
|
Jakovac CC, Meave JA, Bongers F, Letcher SG, Dupuy JM, Piotto D, Rozendaal DMA, Peña-Claros M, Craven D, Santos BA, Siminski A, Fantini AC, Rodrigues AC, Hernández-Jaramillo A, Idárraga A, Junqueira AB, Zambrano AMA, de Jong BHJ, Pinho BX, Finegan B, Castellano-Castro C, Zambiazi DC, Dent DH, García DH, Kennard D, Delgado D, Broadbent EN, Ortiz-Malavassi E, Pérez-García EA, Lebrija-Trejos E, Berenguer E, Marín-Spiotta E, Alvarez-Davila E, de Sá Sampaio EV, Melo F, Elias F, França F, Oberleitner F, Mora F, Williamson GB, Colletta GD, Cabral GAL, Derroire G, Fernandes GW, van der Wal H, Teixeira HM, Vester HFM, García H, Vieira ICG, Jiménez-Montoya J, de Almeida-Cortez JS, Hall JS, Chave J, Zimmerman JK, Nieto JE, Ferreira J, Rodríguez-Velázquez J, Ruíz J, Barlow J, Aguilar-Cano J, Hernández-Stefanoni JL, Engel J, Becknell JM, Zanini K, Lohbeck M, Tabarelli M, Romero-Romero MA, Uriarte M, Veloso MDM, Espírito-Santo MM, van der Sande MT, van Breugel M, Martínez-Ramos M, Schwartz NB, Norden N, Pérez-Cárdenas N, González-Valdivia N, Petronelli P, Balvanera P, Massoca P, Brancalion PHS, Villa PM, Hietz P, Ostertag R, López-Camacho R, César RG, Mesquita R, Chazdon RL, Muñoz R, DeWalt SJ, Müller SC, Durán SM, Martins SV, Ochoa-Gaona S, Rodríguez-Buritica S, Aide TM, Bentos TV, de S Moreno V, Granda V, Thomas W, Silver WL, Nunes YRF, Poorter L. Strong floristic distinctiveness across Neotropical successional forests. SCIENCE ADVANCES 2022; 8:eabn1767. [PMID: 35776785 PMCID: PMC10883372 DOI: 10.1126/sciadv.abn1767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained.
Collapse
Affiliation(s)
- Catarina C Jakovac
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, 88034-000 Florianópolis, Brazil
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, CP 04510, México
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - Susan G Letcher
- College of the Atlantic, 105 Eden St., Bar Harbor, ME 04609, USA
| | - Juan Manuel Dupuy
- Centro de Investigación Científica de Yucatán A.C., Unidad de Recursos Naturales, Calle 43 # 130 x 32 y 34, Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Daniel Piotto
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna-BA, 45613-204, Brazil
| | - Danaë M A Rozendaal
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, Netherlands
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Netherlands
| | - Marielos Peña-Claros
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - Dylan Craven
- Centro de Modelacion y Monitoreo de Ecosistemas, Universidad Mayor, Jose Toribio Medina 29, Santiago, Chile
| | | | - Alexandre Siminski
- Postgraduate Program in Agricultural and Natural Ecosystems-PPGEAN, Universidade Federal de Santa Catarina, Curitibanos-SC, Brazil
| | - Alfredo C Fantini
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, 88034-000 Florianópolis, Brazil
| | - Alice C Rodrigues
- Associação para a Conservação da Biodiversidade - PROBIODIVERSA-BRASIL, Viçosa, MG, Brazil
- Botany Graduate Program, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Brazil
| | | | - Alvaro Idárraga
- Fundación Jardín Botánico de Medellín, Herbario JAUM, Medellín, Colombia
| | - André B Junqueira
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | - Ben H J de Jong
- Department of Sustainability Science, El Colegio de la Frontera Sur, Av. Rancho Polígono 2-A, Ciudad Industrial, Lerma 24500, Campeche, Mexico
| | - Bruno Ximenes Pinho
- Departamento de Botânica, Universidade Federal de Pernambuco, Pernambuco, CEP 50670-901, Brazil
- AMAP, Univ Montpellier, INRAe, CIRAD, CNRS, IRD, Montpellier, France
| | - Bryan Finegan
- CATIE-Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
| | - Carolina Castellano-Castro
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 16-20 Avenida Circunvalar, Bogotá, Colombia
| | - Daisy Christiane Zambiazi
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, 88034-000 Florianópolis, Brazil
| | - Daisy H Dent
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
- Max Planck Institute for Animal Behavior, Konstanz, Germany
- Smithsonian Tropical Research Institute, Roosevelt Ave. 401 Balboa, Ancon, Panama
| | - Daniel Hernán García
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 16-20 Avenida Circunvalar, Bogotá, Colombia
| | - Deborah Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction, CO 81501, USA
| | - Diego Delgado
- CATIE-Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
| | - Eben N Broadbent
- Spatial Ecology and Conservation Lab, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Edgar Ortiz-Malavassi
- Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Forestal, Cartago, Costa Rica
| | - Eduardo A Pérez-García
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, CP 04510, México
| | - Edwin Lebrija-Trejos
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| | - Erika Berenguer
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, OX1 3QY Oxford, UK
- Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | - Erika Marín-Spiotta
- Department of Geography, University of Wisconsin-Madison, 550 North Park St, Madison, WI 53706, USA
| | | | - Everardo Valadares de Sá Sampaio
- Departamento de Energia Nuclear-CTG, Universidade Federal de Pernambuco, Av. Prof. Luis Freire 1000, 50740-540 Pernambuco, Brazil
| | - Felipe Melo
- Departamento de Botânica, Universidade Federal de Pernambuco, Pernambuco, CEP 50670-901, Brazil
| | - Fernando Elias
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ecologia, Pará, Brazil
| | - Filipe França
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Florian Oberleitner
- Department of Ecology, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Francisco Mora
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58089 Morelia, Michoacán, México
| | - G Bruce Williamson
- Biological Dynamics of Forest Fragments Project, Environmental Dynamics Research Coordination, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas CEP 69067-375, Brazil
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1705, USA
| | - Gabriel Dalla Colletta
- Institute of Biology, University of Campinas-UNICAMP, Cidade Universitária Zeferino, Vaz-Barão Geraldo, Campinas-SP 13083-970, Brazil
| | - George A L Cabral
- Departamento de Botânica, Universidade Federal de Pernambuco, Pernambuco, CEP 50670-901, Brazil
| | - Géraldine Derroire
- CIRAD, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Geraldo Wilson Fernandes
- Ecologia Evolutiva e Biodiversidade/DBG, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hans van der Wal
- Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur - Unidad Villahermosa, 86280 Centro, Tabasco, México
| | | | - Henricus F M Vester
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, Netherlands
| | - Hernando García
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 16-20 Avenida Circunvalar, Bogotá, Colombia
| | - Ima C G Vieira
- Museu Paraense Emilio Goeldi, C.P. 399, CEP 66040-170 Belém, Pará, Brazil
| | | | | | - Jefferson S Hall
- SI ForestGEO, Smithsonian Tropical Research Institute, Roosevelt Ave. 401 Balboa, Ancon, Panama
| | - Jerome Chave
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS/Université Paul Sabatier Bâtiment 4R1, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00936, USA
| | - Jhon Edison Nieto
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 16-20 Avenida Circunvalar, Bogotá, Colombia
| | - Joice Ferreira
- Embrapa Amazônia Oriental, Belém, Pará 66095-903, Brazil
| | - Jorge Rodríguez-Velázquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58089 Morelia, Michoacán, México
| | - Jorge Ruíz
- Programa de Estudios de Posgrado en Geografia, Convenio Universidad Pedagogica y Tecnológica de Colombia-Instituto Geografico Agustin Codazzi, Bogotá, Colombia
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | - José Aguilar-Cano
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 16-20 Avenida Circunvalar, Bogotá, Colombia
| | - José Luis Hernández-Stefanoni
- Centro de Investigación Científica de Yucatán A.C., Unidad de Recursos Naturales, Calle 43 # 130 x 32 y 34, Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Julien Engel
- AMAP, IRD, CIRAD, CNRS, Université de Montpellier, INRA, Boulevard de la Lironde, TA A-51/PS2, F-34398 Montpellier Cedex 5, France
| | - Justin M Becknell
- Environmental Studies Program, Colby College, 4000 Mayflower Hill, Waterville, ME 04901, USA
| | - Kátia Zanini
- Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil
| | - Madelon Lohbeck
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
- Centre for International Forestry Research and World Agroforestry (CIFOR-ICRAF), United Nations Avenue, Gigiri, Nairobi, Kenya
| | - Marcelo Tabarelli
- Departamento de Botânica, Universidade Federal de Pernambuco, Pernambuco, CEP 50670-901, Brazil
| | - Marco Antonio Romero-Romero
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, CP 04510, México
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Maria D M Veloso
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais CEP 39401-089, Brazil
| | - Mário M Espírito-Santo
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais CEP 39401-089, Brazil
| | - Masha T van der Sande
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - Michiel van Breugel
- Smithsonian Tropical Research Institute, Roosevelt Ave. 401 Balboa, Ancon, Panama
- Yale-NUS College, 16 College Avenue West, Singapore 138610, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58089 Morelia, Michoacán, México
| | - Naomi B Schwartz
- Department of Geography, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 16-20 Avenida Circunvalar, Bogotá, Colombia
| | - Nathalia Pérez-Cárdenas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58089 Morelia, Michoacán, México
- University of Zürich, Department of Geography, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Noel González-Valdivia
- Departamento de Ingenierías, Instituto Tecnológico de Chiná, Tecnológico Nacional de México, Calle 11 s/n entre 22 y 28, Chiná, 24520 Campeche, México
| | - Pascal Petronelli
- CIRAD, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Patricia Balvanera
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58089 Morelia, Michoacán, México
| | - Paulo Massoca
- Biological Dynamics of Forest Fragments Project, Environmental Dynamics Research Coordination, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas CEP 69067-375, Brazil
| | - Pedro H S Brancalion
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, São Paulo, Brazil
| | - Pedro M Villa
- Botany Graduate Program, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Brazil
- Fundación para la Conservación de la Biodiversidad (PROBIODIVERSA), CP 5101 Mérida, Mérida, Venezuela
| | - Peter Hietz
- Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rebecca Ostertag
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - René López-Camacho
- Universidad Distrital Francisco José de Caldas, Facultad de Medio Ambiente y Recursos Naturales, Carrera 5 este # 15-82, Bogotá, Colombia
| | - Ricardo G César
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, São Paulo, Brazil
| | - Rita Mesquita
- Biological Dynamics of Forest Fragments Project, Environmental Dynamics Research Coordination, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas CEP 69067-375, Brazil
| | - Robin L Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, U-43, 75 North Eagleville Road, Storrs, CT 06269, USA
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Rodrigo Muñoz
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, CP 04510, México
| | - Saara J DeWalt
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Sandra C Müller
- Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil
| | - Sandra M Durán
- Department of Ecology and Evolutionary Biology, University of Minnesota, St. Paul, MN 55455, USA
- Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, AB T6G 2EG, Canada
| | - Sebastião Venâncio Martins
- Laboratório de Restauração Florestal, Departamento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Susana Ochoa-Gaona
- Department of Sustainability Science, El Colegio de la Frontera Sur, Av. Rancho Polígono 2-A, Ciudad Industrial, Lerma 24500, Campeche, Mexico
| | - Susana Rodríguez-Buritica
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 16-20 Avenida Circunvalar, Bogotá, Colombia
| | - T Mitchell Aide
- Department of Biology, University of Puerto Rico, P.O. Box 23360, San Juan, PR 00931-3360, USA
| | - Tony Vizcarra Bentos
- Biological Dynamics of Forest Fragments Project, Environmental Dynamics Research Coordination, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas CEP 69067-375, Brazil
| | - Vanessa de S Moreno
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, São Paulo, Brazil
| | - Vanessa Granda
- CATIE-Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
| | - Wayt Thomas
- Institute of Systematic Botany, The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458-5126, USA
| | - Whendee L Silver
- Ecosystem Science Division, Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94707, USA
| | - Yule R F Nunes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais CEP 39401-089, Brazil
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| |
Collapse
|
23
|
Invasive rat drives complete collapse of native small mammal communities in insular forest fragments. Curr Biol 2022; 32:2997-3004.e2. [PMID: 35709755 DOI: 10.1016/j.cub.2022.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
As tropical forests are becoming increasingly fragmented, understanding the magnitude and time frame of biodiversity declines is vital for 21st century sustainability goals. Over three decades, we monitored post-isolation changes in small mammal species richness and abundance within a forest landscape fragmented by the construction of a dam in Thailand.1,2 We observed the near-complete collapse of species richness within 33 years, with no evidence of a recolonization effect across repeatedly sampled islands. Our results further revealed a decline in species richness as island size decreased and isolation time increased, accelerated by the increasing dominance of the ubiquitous Malayan field rat, Rattus tiomanicus. This species was already hyper-abundant on smaller islands in the initial surveys (1992-1994, 66% of individuals) but became monodominant on all islands, regardless of island size, by the most recent survey (2020, 97%). Our results suggest that insular forest fragments are highly susceptible to rapid species loss, particularly due to the competitive nature of Rattus accelerating the rate at which extinction debts are paid. To mitigate these impacts, reducing the extent of habitat degradation, as triggered by fragmentation and exacerbated by isolation time, can help to sustain native biodiversity while averting Rattus hyper-abundance.
Collapse
|
24
|
Estupiñan-Mojica A, Portela-Salomão R, Liberal CN, Santos BA, Machado CC, de Araujo HF, Von Thaden J, Alvarado F. Landscape attributes shape dung beetle diversity at multiple spatial scales in agricultural drylands. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Holl KD, Luong JC, Brancalion PHS. Overcoming biotic homogenization in ecological restoration. Trends Ecol Evol 2022; 37:777-788. [PMID: 35660115 DOI: 10.1016/j.tree.2022.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
Extensive evidence shows that regional (gamma) diversity is often lower across restored landscapes than in reference landscapes, in part due to common restoration practices that favor widespread species through selection of easily-grown species with high survival and propagation practices that reduce genetic diversity. We discuss approaches to counteract biotic homogenization, such as reintroducing species that are adapted to localized habitat conditions and are unlikely to colonize naturally; periodically reintroducing propagules from remnant populations to increase genetic diversity; and reintroducing higher trophic level fauna to restore interaction networks and processes that promote habitat heterogeneity. Several policy changes would also increase regional diversity; these include regional coordination amongst restoration groups, financial incentives to organizations producing conservation-valued species, and experimental designations for rare species introductions.
Collapse
Affiliation(s)
- Karen D Holl
- Environmental Studies Department, University of California, Santa Cruz, CA, 95064, USA.
| | - Justin C Luong
- Environmental Studies Department, University of California, Santa Cruz, CA, 95064, USA
| | - Pedro H S Brancalion
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
26
|
Arasa‐Gisbert R, Arroyo‐Rodríguez V, Meave JA, Martínez‐Ramos M, Lohbeck M. Forest loss and treeless matrices cause the functional impoverishment of sapling communities in old‐growth forest patches across tropical regions. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricard Arasa‐Gisbert
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México Morelia Michoacán Mexico
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Víctor Arroyo‐Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México Morelia Michoacán Mexico
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México Mérida Yucatán Mexico
| | - Jorge A. Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Miguel Martínez‐Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México Morelia Michoacán Mexico
| | - Madelon Lohbeck
- Forest Ecology and Forest Management Group Wageningen University Wageningen The Netherlands
| |
Collapse
|
27
|
Dunn A, Amir Z, Decoeur H, Dehaudt B, Nursamsi I, Mendes C, Moore JH, Negret PJ, Sovie A, Luskin MS. The ecology of the banded civet (
Hemigalus derbyanus
) in Southeast Asia with implications for mesopredator release, zoonotic diseases, and conservation. Ecol Evol 2022; 12:e8852. [PMID: 35505997 PMCID: PMC9047978 DOI: 10.1002/ece3.8852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Habitat loss and degradation threaten forest specialist wildlife species, but some generalist mesopredators exploit disturbed areas and human‐derived food, which brings them into closer contact with humans. Mesopredator release is also important for human health for known zoonotic disease reservoirs, such as Asian civets (Viverridae family), since this group includes the intermediator species for the SARS‐CoV‐1 outbreak. Here we use camera trapping to evaluate the habitat associations of the widespread banded civet (Hemigalus derbyanus) across its range in Southeast Asia. At the regional scale, banded civet detections among published studies were positively associated with forest cover and negatively associated with human population. At the local scale (within a landscape), hierarchical modeling of new camera trapping showed that abundance was negatively associated with forest loss and positively associated with distance to rivers. These results do not support mesopredator release and suggest a low likelihood overlap with humans in degraded habitats and, therefore, a low risk of zoonotic disease transmission from this species in the wild. We also estimate that banded civet distribution has contracted to under 21% of its currently recognized IUCN Red List range, only 12% of which falls within protected areas, and a precipitous recent decline in population size. Accordingly, we suggest the banded civet's Red List status should be re‐evaluated in light of our findings.
Collapse
Affiliation(s)
- Ashlea Dunn
- School of Biological Sciences University of Queensland Brisbane Queensland Australia
| | - Zachary Amir
- School of Biological Sciences University of Queensland Brisbane Queensland Australia
| | - Henri Decoeur
- School of Biological Sciences University of Queensland Brisbane Queensland Australia
| | - Bastien Dehaudt
- School of Biological Sciences University of Queensland Brisbane Queensland Australia
| | - Ilyas Nursamsi
- School of Biological Sciences University of Queensland Brisbane Queensland Australia
| | - Calebe Mendes
- School of Biological Sciences University of Queensland Brisbane Queensland Australia
| | - Jonathan H. Moore
- School of Environmental Sciences University of East Anglia Norwich UK
- School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China
| | - Pablo Jose Negret
- School of Biological Sciences University of Queensland Brisbane Queensland Australia
- Centre for Biodiversity and Conservation Science University of Queensland St. Lucia Queensland Australia
| | - Adia Sovie
- School of Biological Sciences University of Queensland Brisbane Queensland Australia
| | - Matthew Scott Luskin
- School of Biological Sciences University of Queensland Brisbane Queensland Australia
- Centre for Biodiversity and Conservation Science University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
28
|
Rahman IU, Hart RE, Ijaz F, Afzal A, Iqbal Z, Calixto ES, Abd_Allah EF, Alqarawi AA, Hashem A, Al-Arjani ABF, Kausar R, Haq SM. Environmental variables drive plant species composition and distribution in the moist temperate forests of Northwestern Himalaya, Pakistan. PLoS One 2022; 17:e0260687. [PMID: 35202409 PMCID: PMC8870539 DOI: 10.1371/journal.pone.0260687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
By assessing plant species composition and distribution in biodiversity hotspots influenced by environmental gradients, we greatly advance our understanding of the local plant community and how environmental factors are affecting these communities. This is a proxy for determining how climate change influences plant communities in mountainous regions ("space-for-time" substitution). We evaluated plant species composition and distribution, and how and which environmental variables drive the plant communities in moist temperate zone of Manoor valley of Northwestern Himalaya, Pakistan. During four consecutive years (2015-2018), we sampled 30 sampling sites, measuring 21 environmental variables, and recording all plant species present in an altitudinal variable range of 1932-3168 m.a.s.l. We used different multivariate analyses to identify potential plant communities, and to evaluate the relative importance of each environmental variable in the species composition and distribution. Finally, we also evaluated diversity patterns, by comparing diversity indices and beta diversity processes. We found that (i) the moist temperate zone in this region can be divided in four different major plant communities; (ii) each plant community has a specific set of environmental drivers; (iii) there is a significant variation in plant species composition between communities, in which six species contributed most to the plant composition dissimilarity; (iv) there is a significant difference of the four diversity indices between communities; and (v) community structure is twice more influenced by the spatial turnover of species than by the species loss. Overall, we showed that altitudinal gradients offer an important range of different environmental variables, highlighting the existence of micro-climates that drive the structure and composition of plant species in each micro-region. Each plant community along the altitudinal gradient is influenced by a set of environmental variables, which lead to the presence of indicator species in each micro-region.
Collapse
Affiliation(s)
- Inayat Ur Rahman
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
- William L. Brown Center, Missouri Botanical Garden, St. Louis, MO, United States of America
- * E-mail: (IUR); (REH)
| | - Robbie E. Hart
- William L. Brown Center, Missouri Botanical Garden, St. Louis, MO, United States of America
- * E-mail: (IUR); (REH)
| | - Farhana Ijaz
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Zafar Iqbal
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Eduardo S. Calixto
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
- Department of Biology, University of Missouri St. Louis (UMSL), Saint Louis, MO, United States of America
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alqarawi
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Rukhsana Kausar
- Department of Environmental Sciences, International Islamic University, Islamabad, Pakistan
| | - Shiekh Marifatul Haq
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
29
|
Costa MMSD, Schmidt FA. Gamma, alpha, and beta diversity of ant assemblages response to a gradient of forest cover in human‐modified landscape in Brazilian Amazon. Biotropica 2022. [DOI: 10.1111/btp.13073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marília Maria Silva da Costa
- Programa de Pós‐graduação em Ecologia e Manejo de Recursos Naturais Universidade Federal do Acre (UFAC) Rio Branco Brazil
- Programa de Pós‐Graduação em Ecologia Aplicada Departamento de Ecologia e Conservação Universidade Federal de Lavras Lavras Brazil
| | - Fernando Augusto Schmidt
- Programa de Pós‐graduação em Ecologia e Manejo de Recursos Naturais Universidade Federal do Acre (UFAC) Rio Branco Brazil
- Centro de Ciências Biológicas e da Natureza UFAC Rio Branco Brazil
| |
Collapse
|
30
|
Martins IS, Ortega JCG, Guerra V, da Costa MMS, Martello F, Schmidt FA. Ant taxonomic and functional beta-diversity respond differently to changes in forest cover and spatial distance. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
31
|
Dehaudt B, Amir Z, Decoeur H, Gibson L, Mendes C, Moore JH, Nursamsi I, Sovie A, Luskin MS. Common palm civets (Paradoxurus hermaphroditus) are positively associated with humans and forest degradation with implications for seed dispersal and zoonotic diseases. J Anim Ecol 2022; 91:794-804. [PMID: 35038361 DOI: 10.1111/1365-2656.13663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
1. Habitat loss and degradation can undermine wildlife communities and ecosystem functioning. However, certain generalist wildlife species like mesopredators and omnivores can exploit these disturbed habitats, sometimes leading to population increases (e.g., "mesopredator release" in degraded areas). Although mesopredator release may cause negative effects on food webs and zoonotic disease management, some disturbance-tolerant species may help perpetuate important ecological interactions, such as seed dispersal. 2. We evaluated the habitat associations of common palm civets (Paradoxurus hermaphroditus), which are widespread generalist mesopredators in Southeast Asia. Common palm civets are also high-quality seed dispersers, and potential zoonotic disease hosts. 3. We used published and new camera trapping data to map their probability of presence across Southeast Asia and evaluate regional-scale associations between capture rates and habitat variables such as elevation, ecoregion intactness, and Human Footprint Index, among others. We also assessed the influence of habitat variables on their relative abundance at the local scale. 4. At the regional scale, we found that common palm civets showed significant positive associations with landscapes characterized by lower ecoregion intactness, higher Human Footprint Index, and lower elevations. At the local scale, their relative abundance showed a significant positive association with higher Human Footprint Index, but only to a certain point, after which it started decreasing. They also favored lower elevations at the local scale. 5. These multi-scale results indicate that common palm civets' abundance can increase under certain levels of human disturbances, consistent with the "mesopredator release" hypothesis. This suggests they may be crucial seed dispersers in degraded forest landscapes, especially where more sensitive seed dispersers have disappeared. Our results are also consistent with previous studies reporting that habitat degradation increases populations of potential zoonotic disease hosts, and thus risks of transmission to humans.
Collapse
Affiliation(s)
- Bastien Dehaudt
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Zachary Amir
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Henri Decoeur
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Luke Gibson
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Calebe Mendes
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Jonathan H Moore
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Ilyas Nursamsi
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Adia Sovie
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Matthew Scott Luskin
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
32
|
García-Peña GE, Rubio AV, Mendoza H, Fernández M, Milholland MT, Aguirre AA, Suzán G, Zambrana-Torrelio C. Land-use change and rodent-borne diseases: hazards on the shared socioeconomic pathways. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200362. [PMID: 34538146 PMCID: PMC8450622 DOI: 10.1098/rstb.2020.0362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Land-use change has a direct impact on species survival and reproduction, altering their spatio-temporal distributions. It acts as a selective force that favours the abundance and diversity of reservoir hosts and affects host-pathogen dynamics and prevalence. This has led to land-use change being a significant driver of infectious diseases emergence. Here, we predict the presence of rodent taxa and map the zoonotic hazard (potential sources of harm) from rodent-borne diseases in the short and long term (2025 and 2050). The study considers three different land-use scenarios based on the shared socioeconomic pathways narratives (SSPs): sustainable (SSP1-Representative Concentration Pathway (RCP) 2.6), fossil-fuelled development (SSP5-RCP 8.5) and deepening inequality (SSP4-RCP 6.0). We found that cropland expansion into forest and pasture may increase zoonotic hazards in areas with high rodent-species diversity. Nevertheless, a future sustainable scenario may not always reduce hazards. All scenarios presented high heterogeneity in zoonotic hazard, with high-income countries having the lowest hazard range. The SSPs narratives suggest that opening borders and reducing cropland expansion are critical to mitigate current and future zoonotic hazards globally, particularly in middle- and low-income economies. Our study advances previous efforts to anticipate the emergence of zoonotic diseases by integrating past, present and future information to guide surveillance and mitigation of zoonotic hazards at the regional and local scale. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Gabriel E. García-Peña
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - André V. Rubio
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Hugo Mendoza
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miguel Fernández
- NatureServe, Arlington, VA, USA
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Matthew T. Milholland
- University of Maryland, AGNR-Environmental Science and Technology, College Park, MD, USA
| | - A. Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Gerardo Suzán
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | |
Collapse
|
33
|
Stauffer S, Jucker M, Keggin T, Marques V, Andrello M, Bessudo S, Cheutin M, Borrero‐Pérez GH, Richards E, Dejean T, Hocdé R, Juhel J, Ladino F, Letessier TB, Loiseau N, Maire E, Mouillot D, Mutis Martinezguerra M, Manel S, Polanco Fernández A, Valentini A, Velez L, Albouy C, Pellissier L, Waldock C. How many replicates to accurately estimate fish biodiversity using environmental DNA on coral reefs? Ecol Evol 2021; 11:14630-14643. [PMID: 34765130 PMCID: PMC8571620 DOI: 10.1002/ece3.8150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
Quantifying fish species diversity in rich tropical marine environments remains challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face this challenge through the filtering, amplification, and sequencing of DNA traces from water samples. However, because eDNA concentration is low in marine environments, the reliability of eDNA to detect species diversity can be limited. Using an eDNA metabarcoding approach to identify fish Molecular Taxonomic Units (MOTUs) with a single 12S marker, we aimed to assess how the number of sampling replicates and filtered water volume affect biodiversity estimates. We used a paired sampling design of 30 L per replicate on 68 reef transects from 8 sites in 3 tropical regions. We quantified local and regional sampling variability by comparing MOTU richness, compositional turnover, and compositional nestedness. We found strong turnover of MOTUs between replicated pairs of samples undertaken in the same location, time, and conditions. Paired samples contained non-overlapping assemblages rather than subsets of one another. As a result, non-saturated localized diversity accumulation curves suggest that even 6 replicates (180 L) in the same location can underestimate local diversity (for an area <1 km). However, sampling regional diversity using ~25 replicates in variable locations (often covering 10 s of km) often saturated biodiversity accumulation curves. Our results demonstrate variability of diversity estimates possibly arising from heterogeneous distribution of eDNA in seawater, highly skewed frequencies of eDNA traces per MOTU, in addition to variability in eDNA processing. This high compositional variability has consequences for using eDNA to monitor temporal and spatial biodiversity changes in local assemblages. Avoiding false-negative detections in future biomonitoring efforts requires increasing replicates or sampled water volume to better inform management of marine biodiversity using eDNA.
Collapse
Affiliation(s)
- Salomé Stauffer
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Meret Jucker
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Thomas Keggin
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Virginie Marques
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
- CEFEUniv. MontpellierCNRSEPHE‐PSL UniversityIRDUniv. Paul Valéry Montpellier 3MontpellierFrance
| | - Marco Andrello
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine EnvironmentNational Research CouncilRomeItaly
| | - Sandra Bessudo
- Fundación Malpelo y otros ecosistemas marinosBogotáColombia
| | | | - Giomar Helena Borrero‐Pérez
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | - Eilísh Richards
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | | | - Régis Hocdé
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
| | | | - Felipe Ladino
- Fundación Malpelo y otros ecosistemas marinosBogotáColombia
| | - Tom B. Letessier
- Institute of ZoologyZoological Society of LondonLondonUK
- Marine Futures LabUniversity of Western AustraliaCrawleyWAAustralia
| | | | - Eva Maire
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | | | - Maria Mutis Martinezguerra
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | - Stéphanie Manel
- CEFEUniv. MontpellierCNRSEPHE‐PSL UniversityIRDUniv. Paul Valéry Montpellier 3MontpellierFrance
| | - Andrea Polanco Fernández
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | | | - Laure Velez
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
| | - Camille Albouy
- IFREMERunité Écologie et Modèles pour l’HalieutiqueNantesFrance
| | - Loïc Pellissier
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Conor Waldock
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
34
|
Henriques LMP, Dantas S, Santos LB, Bueno AS, Peres CA. Avian extinctions induced by the oldest Amazonian hydropower mega dam: evidence from museum collections and sighting data spanning 172 years. PeerJ 2021; 9:e11979. [PMID: 34466289 PMCID: PMC8380028 DOI: 10.7717/peerj.11979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022] Open
Abstract
Hydroelectric dams represent an emergent threat to lowland tropical forest biodiversity. Despite the large number of operational, under-construction, and planned hydroelectric dams, their long-term effects on biodiversity loss are still poorly documented. Here, we investigate avian extinctions resulting from the Tucuruí Hydroelectric Reservoir (THR), the oldest Amazonian mega dam, which impounded the Tocantins River in 1984. Our avian inventory-based on several sampling methods (mist-netting, point-counts, boat census and qualitative surveys) during 280 days of fieldwork from 2005 to 2007-was combined with an exhaustive search of museum vouchers and digital online databases of citizen science from the lower Tocantins River to identify long-term trends in species persistence and extinction in the THR influence area. The regional avifauna was comprised of 479 species, 404 of which were recorded during our fieldwork. Based on recent and historical records spanning 172 years, we found evidence for likely extinctions at THR influence area for 53 (11.06%) species that have remained entirely unreported since 1984. We were further able to estimate extinction probabilities for 20 species; 15 species were considered to be extinct, including Psophia interjecta and Pyrilia vulturina that are red-listed by IUCN. Our study serves as a baseline for avifaunal monitoring in the THR influence area and shows that degree of habitat specialization is a key factor in determining species extinctions caused by nonrandom habitat loss from either inundation or deforestation. Avian species extinctions will most likely continue across the area affected by the reservoir as a direct impact of alluvial forest loss and ongoing habitat degradation of upland forests.
Collapse
Affiliation(s)
| | - Sidnei Dantas
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, PA, Brazil
| | - Lucyana Barros Santos
- Coordenação Espacial da Amazônia, Instituto Nacional de Pesquisas Espaciais, Belém, PA, Brazil
| | - Anderson S Bueno
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Júlio de Castilhos, RS, Brazil
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|