1
|
Saito S, Miyagawa S, Kawamura T, Yoshioka D, Kawamura M, Kawamura A, Misumi Y, Taguchi T, Yamauchi T, Miyagawa S. How should cardiac xenotransplantation be initiated in Japan? Surg Today 2024; 54:829-838. [PMID: 38733536 PMCID: PMC11266268 DOI: 10.1007/s00595-024-02861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024]
Abstract
The world's first clinical cardiac xenotransplantation, using a genetically engineered pig heart with 10 gene modifications, prolonged the life of a 57-year-old man with no other life-saving options, by 60 days. It is foreseeable that xenotransplantation will be introduced in clinical practice in the United States. However, little clinical or regulatory progress has been made in the field of xenotransplantation in Japan in recent years. Japan seems to be heading toward a "device lag", and the over-importation of medical devices and technology in the medical field is becoming problematic. In this review, we discuss the concept of pig-heart xenotransplantation, including the pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental heart overgrowth, as well as genetic modification strategies in pigs to prevent or minimize these problems. Moreover, we summarize the necessity for and current status of xenotransplantation worldwide, and future prospects in Japan, with the aim of initiating xenotransplantation in Japan using genetically modified pigs without a global delay. It is imperative that this study prompts the initiation of preclinical xenotransplantation research using non-human primates and leads to clinical studies.
Collapse
Affiliation(s)
- Shunsuke Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Yoshioka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masashi Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Misumi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | - Takashi Yamauchi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Xian M, Wang Q, Xiao L, Zhong L, Xiong W, Ye L, Su P, Zhang C, Li Y, Orlowski RZ, Zhan F, Ganguly S, Zu Y, Qian J, Yi Q. Leukocyte immunoglobulin-like receptor B1 (LILRB1) protects human multiple myeloma cells from ferroptosis by maintaining cholesterol homeostasis. Nat Commun 2024; 15:5767. [PMID: 38982045 PMCID: PMC11233649 DOI: 10.1038/s41467-024-50073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by uncontrolled proliferation of plasma cells in the bone marrow. MM patients with aggressive progression have poor survival, emphasizing the urgent need for identifying new therapeutic targets. Here, we show that the leukocyte immunoglobulin-like receptor B1 (LILRB1), a transmembrane receptor conducting negative immune response, is a top-ranked gene associated with poor prognosis in MM patients. LILRB1 deficiency inhibits MM progression in vivo by enhancing the ferroptosis of MM cells. Mechanistic studies reveal that LILRB1 forms a complex with the low-density lipoprotein receptor (LDLR) and LDLR adapter protein 1 (LDLRAP1) to facilitate LDL/cholesterol uptake. Loss of LILRB1 impairs cholesterol uptake but activates the de novo cholesterol synthesis pathway to maintain cellular cholesterol homeostasis, leading to the decrease of anti-ferroptotic metabolite squalene. Our study uncovers the function of LILRB1 in regulating cholesterol metabolism and protecting MM cells from ferroptosis, implicating LILRB1 as a promising therapeutic target for MM patients.
Collapse
Affiliation(s)
- Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ling Zhong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Chuanchao Zhang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yabo Li
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Siddhartha Ganguly
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Iemitsu K, Sakai R, Maeda A, Gadomska K, Kogata S, Yasufuku D, Matsui J, Masahata K, Kamiyama M, Eguchi H, Matsumura S, Kakuta Y, Nagashima H, Okuyama H, Miyagawa S. The hybrid CL-SP-D molecule has the potential to regulate xenogeneic rejection by human neutrophils more efficiently than CD47. Transpl Immunol 2024; 84:102020. [PMID: 38452982 DOI: 10.1016/j.trim.2024.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Innate immunity plays a vital role in xenotransplantation. A CD47 molecule, binding to the SIRPα expressed on monocyte/macrophage cells, can suppress cytotoxicity. Particularly, the SIRPα contains ITIM, which delivers a negative signal. Our previous study demonstrated that the binding between CL-P1 and surfactant protein-D hybrid (CL-SP-D) with SIRPα regulates macrophages' phagocytic activity. In this study, we examined the effects of human CD47 and CL-SP-D expression on the inhibition of xenograft rejection by neutrophils in swine endothelial cells (SECs). METHODS We first examined SIRPα expression on HL-60 cells, a neutrophil-like cell line, and neutrophils isolated from peripheral blood. CD47-expressing SECs or CL-SP-D-expressing SECs were generated through plasmid transfection. Subsequently, these SECs were co-cultured with HL-60 cells or neutrophils. After co-culture, the degree of cytotoxicity was calculated using the WST-8 assay. The suppressive function of CL-SP-D on neutrophils was subsequently examined, and the results were compared with those of CD47 using naïve SECs as controls. Additionally, we assessed ROS production and neutrophil NETosis. RESULTS In initial experiments, the expression of SIRPα on HL-60 and neutrophils was confirmed. Exposure to CL-SP-D significantly suppressed the cytotoxicity in HL-60 (p = 0.0038) and neutrophils (p = 0.00003). Furthermore, engagement with CD47 showed a suppressive effect on neutrophils obtained from peripheral blood (p = 0.0236) but not on HL-60 (p = 0.4244). The results of the ROS assays also indicated a significant downregulation of SEC by CD47 (p = 0.0077) or CL-SP-D (p = 0.0018). Additionally, the suppression of NETosis was confirmed (p = 0.0125) in neutrophils co-cultured with S/CL-SP-D. CONCLUSION These results indicate that CL-SP-D is highly effective on neutrophils in xenogeneic rejection. Furthermore, CL-SP-D was more effective than CD47 at inhibiting neutrophil-mediated xenograft rejection.
Collapse
Affiliation(s)
- Keigo Iemitsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan
| | - Rieko Sakai
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katarzyna Gadomska
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daiki Yasufuku
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Matsui
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Soichi Matsumura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoichi Kakuta
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
4
|
Dellino M, Pinto G, D’Amato A, Barbara F, Di Gennaro F, Saracino A, Laganà AS, Vimercati A, Malvasi A, Malvasi VM, Cicinelli E, Vitagliano A, Cascardi E, Pinto V. Analogies between HPV Behavior in Oral and Vaginal Cavity: Narrative Review on the Current Evidence in the Literature. J Clin Med 2024; 13:1429. [PMID: 38592283 PMCID: PMC10932293 DOI: 10.3390/jcm13051429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Human genital papilloma virus infection is the most prevalent sexually transmitted infection in the world. It is estimated that more than 75% of sexually active women contract this infection in their lifetime. In 80% of young women, there is the clearance of the virus within 18-24 months. In developed countries, oral squamous cell carcinoma (OSCC) is now the most frequent human papilloma virus (HPV)-related cancer, having surpassed cervical cancer, and it is predicted that by 2030 most squamous cell carcinomas will be the HPV-related rather than non-HPV-related form. However, there are currently no screening programs for oral cavity infection. While the natural history of HPV infection in the cervix is well known, in the oropharynx, it is not entirely clear. Furthermore, the prevalence of HPV in the oropharynx is unknown. Published studies have found wide-ranging prevalence estimates of 2.6% to 50%. There are also conflicting results regarding the percentage of women presenting the same type of HPV at two mucosal sites, ranging from 0 to 60%. Additionally, the question arises as to whether oral infection can develop from genital HPV infection, through oral and genital contact or by self-inoculation, or whether it should be considered an independent event. However, there is still no consensus on these topics, nor on the relationship between genital and oral HPV infections. Therefore, this literature review aims to evaluate whether there is evidence of a connection between oral and cervical HPV, while also endorsing the usefulness of the screening of oral infection in patients with high-risk cervical HPV as a means of facilitating the diagnosis and early management of HPV-related oral lesions. Finally, this review emphasizes the recommendation for the use of the HPV vaccines in primary prevention in the male and female population as the most effective means of successfully counteracting the increasing incidence of OSCC to date.
Collapse
Affiliation(s)
- Miriam Dellino
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Grazia Pinto
- Dentistry Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, 70124 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Francesco Barbara
- Unit of Otolaryngology, Department of Ophtalmology and Otolaryngology, University of Bari, 70124 Bari, Italy;
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University Hospital Polyclinic, University of Bari, Piazza Giulio Cesare n. 11, 70124 Bari, Italy; (F.D.G.); (A.S.)
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University Hospital Polyclinic, University of Bari, Piazza Giulio Cesare n. 11, 70124 Bari, Italy; (F.D.G.); (A.S.)
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Antonella Vimercati
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Antonio Malvasi
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | | | - Ettore Cicinelli
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Amerigo Vitagliano
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Eliano Cascardi
- Pathology Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Piazza Giulio Cesare 11, 70121 Bari, Italy;
| | - Vincenzo Pinto
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| |
Collapse
|
5
|
Chornenkyy Y, Yamamoto T, Hara H, Stowell SR, Ghiran I, Robson SC, Cooper DKC. Future prospects for the clinical transfusion of pig red blood cells. Blood Rev 2023; 61:101113. [PMID: 37474379 PMCID: PMC10968389 DOI: 10.1016/j.blre.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Transfusion of allogeneic human red blood cell (hRBCs) is limited by supply and compatibility between individual donors and recipients. In situations where the blood supply is constrained or when no compatible RBCs are available, patients suffer. As a result, alternatives to hRBCs that complement existing RBC transfusion strategies are needed. Pig RBCs (pRBCs) could provide an alternative because of their abundant supply, and functional similarities to hRBCs. The ability to genetically modify pigs to limit pRBC immunogenicity and augment expression of human 'protective' proteins has provided major boosts to this research and opens up new therapeutic avenues. Although deletion of expression of xenoantigens has been achieved in genetically-engineered pigs, novel genetic methods are needed to introduce human 'protective' transgenes into pRBCs at the high levels required to prevent hemolysis and extend RBC survival in vivo. This review addresses recent progress and examines future prospects for clinical xenogeneic pRBC transfusion.
Collapse
Affiliation(s)
- Yevgen Chornenkyy
- Department of Pathology, McGaw Medical Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Takayuki Yamamoto
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Division of Transplantation, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ionita Ghiran
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - David K C Cooper
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
7
|
HLA-G in asthma and its potential as an effective therapeutic agent. Allergol Immunopathol (Madr) 2023; 51:22-29. [PMID: 36617818 DOI: 10.15586/aei.v51i1.650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Asthma is a heterogeneous disease. Severity of asthma and sensitivity to medications vary across asthma subtypes. Human leukocyte antigen (HLA)-G has a wide range of functions in normal and pathological physiology. Due to its powerful immune function, HLA-G participates in the pathogenesis of different asthma phenotypes by regulating the activity and function of various immune cells. The mechanism of HLA-G in asthma is not fully clear, and there is no consensus on its mechanism in asthma. Further studies are needed to explore the role of HLA-G in different phenotypes of human asthma. METHODS Observational study. RESULTS HLA-G is an important immunomodulatory factor in asthma. Studies have found different levels of HLA-G in patients with different asthma subtypes and healthy controls, but other studies have come to the opposite conclusion. CONCLUSION We speculate that further study on the mechanism of HLA-G in asthma pheno-types may explain some of the contradictions in current studies. Findings should provide information regarding the potential of HLA-G as a novel target for asthma diagnosis and treatment.
Collapse
|
8
|
Lei T, Chen L, Wang K, Du S, Gonelle-Gispert C, Wang Y, Buhler LH. Genetic engineering of pigs for xenotransplantation to overcome immune rejection and physiological incompatibilities: The first clinical steps. Front Immunol 2022; 13:1031185. [PMID: 36561750 PMCID: PMC9766364 DOI: 10.3389/fimmu.2022.1031185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Xenotransplantation has the potential to solve the shortfall of human organ donors. Genetically modified pigs have been considered as potential animal donors for human xenotransplantation and have been widely used in preclinical research. The genetic modifications aim to prevent the major species-specific barriers, which include humoral and cellular immune responses, and physiological incompatibilities such as complement and coagulation dysfunctions. Genetically modified pigs can be created by deleting several pig genes related to the synthesis of various pig specific antigens or by inserting human complement- and coagulation-regulatory transgenes. Finally, in order to reduce the risk of infection, genes related to porcine endogenous retroviruses can be knocked down. In this review, we focus on genetically modified pigs and comprehensively summarize the immunological mechanism of xenograft rejection and recent progress in preclinical and clinical studies. Overall, both genetically engineered pig-based xenografts and technological breakthroughs in the biomedical field provide a promising foundation for pig-to-human xenotransplantation in the future.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Kejing Wang
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | | | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo H. Buhler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Samiec M, Wiater J, Wartalski K, Skrzyszowska M, Trzcińska M, Lipiński D, Jura J, Smorąg Z, Słomski R, Duda M. The Relative Abundances of Human Leukocyte Antigen-E, α-Galactosidase A and α-Gal Antigenic Determinants Are Biased by Trichostatin A-Dependent Epigenetic Transformation of Triple-Transgenic Pig-Derived Dermal Fibroblast Cells. Int J Mol Sci 2022; 23:ijms231810296. [PMID: 36142211 PMCID: PMC9499218 DOI: 10.3390/ijms231810296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The present study sought to establish the mitotically stable adult cutaneous fibroblast cell (ACFC) lines stemming from hFUT2×hGLA×HLA-E triple-transgenic pigs followed by trichostatin A (TSA)-assisted epigenetically modulating the reprogrammability of the transgenes permanently incorporated into the host genome and subsequent comprehensive analysis of molecular signatures related to proteomically profiling the generated ACFC lines. The results of Western blot and immunofluorescence analyses have proved that the profiles of relative abundance (RA) noticed for both recombinant human α-galactosidase A (rhα-Gal A) and human leukocyte antigen-E (HLA-E) underwent significant upregulations in tri-transgenic (3×TG) ACFCs subjected to TSA-mediated epigenetic transformation as compared to not only their TSA-unexposed counterparts but also TSA-treated and untreated non-transgenic (nTG) cells. The RT-qPCR-based analysis of porcine tri-genetically engineered ACFCs revealed stable expression of mRNA fractions transcribed from hFUT2, hGLA and HLA-E transgenes as compared to a lack of such transcriptional activities in non-transgenic ACFC variants. Furthermore, although TSA-based epigenomic modulation has given rise to a remarkable increase in the expression levels of Galα1→3Gal (α-Gal) epitopes that have been determined by lectin blotting analysis, their semi-quantitative profiles have dwindled profoundly in both TSA-exposed and unexposed 3×TG ACFCs as compared to their nTG counterparts. In conclusion, thoroughly exploring proteomic signatures in such epigenetically modulated ex vivo models devised on hFUT2×hGLA×HLA-E triple-transgenic ACFCs that display augmented reprogrammability of translational activities of two mRNA transcripts coding for rhα-Gal A and HLA-E proteins might provide a completely novel and powerful research tool for the panel of further studies. The objective of these future studies should be to multiply the tri-transgenic pigs with the aid of somatic cell nuclear transfer (SCNT)-based cloning for the purposes of both xenografting the porcine cutaneous bioprostheses and dermoplasty-mediated surgical treatments in human patients.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
- Correspondence: (M.S.); (J.W.)
| | - Jerzy Wiater
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Kraków, Poland
- Correspondence: (M.S.); (J.W.)
| | - Kamil Wartalski
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Kraków, Poland
| | - Maria Skrzyszowska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11 Street, 60-647 Poznań, Poland
| | - Jacek Jura
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Zdzisław Smorąg
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Ryszard Słomski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11 Street, 60-647 Poznań, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479 Poznań, Poland
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Kraków, Poland
| |
Collapse
|
10
|
Toyama C, Maeda A, Kogata S, Yamamoto R, Masahata K, Ueno T, Kamiyama M, Tazuke Y, Eguchi H, Okuyama H, Miyagawa S. Suppression of xenogeneic innate immune response by a membrane‑type human surfactant protein‑A. Exp Ther Med 2022; 24:590. [DOI: 10.3892/etm.2022.11527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Takehisa Ueno
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Yuko Tazuke
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| |
Collapse
|
11
|
Kogata S, Lo PC, Maeda A, Okamatsu C, Sato K, Yamamoto R, Haneda T, Yoneyama T, Toyama C, Eguchi H, Masahata K, Kamiyama M, Okuyama H, Miyagawa S. Suppression of macrophage-mediated xenogeneic rejection by the ectopic expression of human CD177. Transpl Immunol 2022; 74:101663. [PMID: 35835297 DOI: 10.1016/j.trim.2022.101663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Cellular xenogeneic rejection by the innate immune system is a major immunological obstruction that needs to be overcome for the successful clinical use of xenografts. Our focus has been on macrophage-mediated xenogeneic rejection, since suppressing macrophage function has considerable potential for practical applications in the area of xenotransplantation. We report herein on an investigation of the suppressive effect of human CD177 (hCD177) against macrophage-mediated xenogeneic rejection. Wild type swine aortic endothelial cell (SEC) and an SEC transfectant with hCD177 (SEC/hCD177) were co-cultured with macrophages, and the degree of cytotoxicity was evaluated by WST-8 assays, and phagocytosis was examined using Calcein-AM labeling methods. The expression of anti/pro-inflammatory cytokines was evaluated by RT-qPCR and the phosphorylation of SHP-1 on macrophages in co-culture was evaluated by Western blotting. The result of cytotoxicity assays indicated that hCD177 suppressed M1 macrophage-mediated xenogeneic rejection (vs. SEC, p < 0.0001). Similarly, the result of phagocytosis assays indicated that hCD177 suppressed it (vs. SEC, p < 0.05). In addition, hCD177 significantly suppressed the expression of IL-1β, a pro-inflammatory cytokine, in M1 macrophages (vs. SEC, p < 0.01). Luciferase assays using THP1-Lucia NF-kB also showed a significant difference in NF-kB activation (vs. SEC, p < 0.001). In addition, hCD177 was found to induce the phosphorylation of SHP-1 in M1 macrophages (vs. SEC, p < 0.05). These findings indicate that hCD177 suppresses M1 macrophage-mediated xenogeneic rejection, at least in part via in the phosphorylation of SHP-1.
Collapse
Affiliation(s)
- Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Division of Pediatric Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Pei-Chi Lo
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuki Sato
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Haneda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Yoneyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Meiji University International Institute for Bio-Resource Research, Kanagawa, Japan
| |
Collapse
|
12
|
Hu M, Hawthorne WJ, Yi S, O’Connell PJ. Cellular Immune Responses in Islet Xenograft Rejection. Front Immunol 2022; 13:893985. [PMID: 35874735 PMCID: PMC9300897 DOI: 10.3389/fimmu.2022.893985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Porcine islets surviving the acute injury caused by humoral rejection and IBMIR will be subjected to cellular xenograft rejection, which is predominately mediated by CD4+ T cells and is characterised by significant infiltration of macrophages, B cells and T cells (CD4+ and CD8+). Overall, the response is different compared to the alloimmune response and more difficult to suppress. Activation of CD4+ T cells is both by direct and indirect antigen presentation. After activation they recruit macrophages and direct B cell responses. Although they are less important than CD4+ T cells in islet xenograft rejection, macrophages are believed to be a major effector cell in this response. Rodent studies have shown that xenoantigen-primed and CD4+ T cell-activated macrophages were capable of recognition and rejection of pancreatic islet xenografts, and they destroyed a graft via the secretion of various proinflammatory mediators, including TNF-α, reactive oxygen and nitrogen species, and complement factors. B cells are an important mediator of islet xenograft rejection via xenoantigen presentation, priming effector T cells and producing xenospecific antibodies. Depletion and/or inhibition of B cells combined with suppressing T cells has been suggested as a promising strategy for induction of xeno-donor-specific T- and B-cell tolerance in islet xenotransplantation. Thus, strategies that expand the influence of regulatory T cells and inhibit and/or reduce macrophage and B cell responses are required for use in combination with clinical applicable immunosuppressive agents to achieve effective suppression of the T cell-initiated xenograft response.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wayne J. Hawthorne
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Shounan Yi
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Philip J. O’Connell
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Philip J. O’Connell,
| |
Collapse
|
13
|
Maeda A, Kogata S, Toyama C, Lo PC, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Okuyama H, Miyagawa S. The Innate Cellular Immune Response in Xenotransplantation. Front Immunol 2022; 13:858604. [PMID: 35418992 PMCID: PMC8995651 DOI: 10.3389/fimmu.2022.858604] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
Xenotransplantation is very attractive strategy for addressing the shortage of donors. While hyper acute rejection (HAR) caused by natural antibodies and complement has been well defined, this is not the case for innate cellular xenogeneic rejection. An increasing body of evidence suggests that innate cellular immune responses contribute to xenogeneic rejection. Various molecular incompatibilities between receptors and their ligands across different species typically have an impact on graft outcome. NK cells are activated by direct interaction as well as by antigen dependent cellular cytotoxicity (ADCC) mechanisms. Macrophages are activated through various mechanisms in xenogeneic conditions. Macrophages recognize CD47 as a "marker of self" through binding to SIRPα. A number of studies have shown that incompatibility of porcine CD47 against human SIRPα contributes to the rejection of xenogeneic target cells by macrophages. Neutrophils are an early responder cell that infiltrates xenogeneic grafts. It has also been reported that neutrophil extracellular traps (NETs) activate macrophages as damage-associated pattern molecules (DAMPs). In this review, we summarize recent insights into innate cellular xenogeneic rejection.
Collapse
Affiliation(s)
- Akira Maeda
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan.,Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Pei-Chi Lo
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan.,International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| |
Collapse
|
14
|
Miyagawa S, Maeda A, Toyama C, Kogata S, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Ikawa M, Matsunami K, Okuyama H. Aspects of the Complement System in New Era of Xenotransplantation. Front Immunol 2022; 13:860165. [PMID: 35493484 PMCID: PMC9046582 DOI: 10.3389/fimmu.2022.860165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no longer be a problem. However, the origin of xeno-rejection continues to be a controversial topic, including small amounts of antibodies and subsequent activation of the graft endothelium, the complement recognition system and the coagulation systems. The complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via the lectin pathway. The complement system therefore is still an important recognition and effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate complement activation in different manners. Therefore, to effectively protect xenografts against xeno-rejection, it would appear reasonable to employ not only one but several CRPs including anti-complement drugs. The further assessment of antigens continues to be an important issue in the area of clinical xenotransplantation. The above conclusions suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is necessary. Moreover, multilateral inhibition on local complement activation in the graft, together with the control of signals between macrophages and lymphocytes is required.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- *Correspondence: Shuji Miyagawa,
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
15
|
Lin A, Yan WH. Perspective of HLA-G Induced Immunosuppression in SARS-CoV-2 Infection. Front Immunol 2021; 12:788769. [PMID: 34938296 PMCID: PMC8685204 DOI: 10.3389/fimmu.2021.788769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has threatened public health worldwide. Host antiviral immune responses are essential for viral clearance and disease control, however, remarkably decreased immune cell numbers and exhaustion of host cellular immune responses are commonly observed in patients with COVID-19. This is of concern as it is closely associated with disease severity and poor outcomes. Human leukocyte antigen-G (HLA-G) is a ligand for multiple immune inhibitory receptors, whose expression can be upregulated by viral infections. HLA-G/receptor signalling, such as engagement with immunoglobulin-like transcript 2 (ILT-2) or ILT-4, not only inhibit T and natural killer (NK) cell immune responses, dendritic cell (DC) maturation, and B cell antibody production. It also induces regulatory cells such as myeloid-derived suppressive cells (MDSCs), or M2 type macrophages. Moreover, HLA-G interaction with CD8 and killer inhibitory receptor (KIR) 2DL4 can provoke T cell apoptosis and NK cell senescence. In this context, HLA-G can induce profound immune suppression, which favours the escape of SARS-CoV-2 from immune attack. Although detailed knowledge on the clinical relevance of HLA-G in SARS-CoV-2 infection is limited, we herein review the immunopathological aspects of HLA-G/receptor signalling in SARS-CoV-2 infection, which could provide a better understanding of COVID-19 disease progression and identify potential immunointerventions to counteract SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Wei-Hua Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China.,Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
16
|
Rao JS, Hosny N, Kumbha R, Naqvi RA, Singh A, Swanson Z, Levy H, Matson AW, Steinhoff M, Forneris N, Walters E, Hering BJ, Burlak C. HLA-G1 + Expression in GGTA1KO Pigs Suppresses Human and Monkey Anti-Pig T, B and NK Cell Responses. Front Immunol 2021; 12:730545. [PMID: 34566993 PMCID: PMC8459615 DOI: 10.3389/fimmu.2021.730545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
The human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1-/HLAG1+ pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system. GTKO/HLAG1+ pigs showing immune inhibitory functions were generated through somatic cell nuclear transfer (SCNT). The presence of HLA-G1 at the ROSA26 locus and the deletion of GGTA1 were confirmed by next generation sequencing (NGS) and Sanger's sequencing. Fibroblasts from piglets, biopsies from transplantable organs, and islets were positive for HLA-G1 expression by confocal microscopy, flow cytometry, or q-PCR. The expression of cell surface HLA-G1 molecule associated with endogenous β2-microglobulin (β2m) was confirmed by staining genetically engineered cells with fluorescently labeled recombinant ILT2 protein. Fibroblasts obtained from GTKO/HLAG1+ pigs were shown to modulate the immune response by lowering IFN-γ production by T cells and proliferation of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells, as well as by augmenting phosphorylation of Src homology region 2 domain-containing phosphatase-2 (SHP-2), which plays a central role in immune suppression. Islets isolated from GTKO/HLA-G1+ genetically engineered pigs and transplanted into streptozotocin-diabetic nude mice restored normoglycemia, suggesting that the expression of HLA-G1 did not interfere with their ability to reverse diabetes. The findings presented here suggest that the HLA-G1+ transgene can be stably expressed from the ROSA26 locus of non-fetal maternal tissue at the cell surface. By providing an immunomodulatory signal, expression of HLA-G1+ may extend survival of porcine pancreatic islet and organ xenografts.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Nora Hosny
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Medical Biochemistry and Molecular Biology Department, Suez Canal University, Faculty of Medicine, Ismailia, Egypt
| | - Ramesh Kumbha
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Raza Ali Naqvi
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Zachary Swanson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Heather Levy
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Anders W. Matson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Magie Steinhoff
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Nicole Forneris
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Eric Walters
- Independent Consultant, Centralia, MO, United States
| | - Bernhard J. Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Ishikawa M, Brooks AJ, Fernández-Rojo MA, Medina J, Chhabra Y, Minami S, Tunny KA, Parton RG, Vivian JP, Rossjohn J, Chikani V, Ramm GA, Ho KKY, Waters MJ. Growth Hormone Stops Excessive Inflammation After Partial Hepatectomy, Allowing Liver Regeneration and Survival Through Induction of H2-Bl/HLA-G. Hepatology 2021; 73:759-775. [PMID: 32342533 PMCID: PMC7894545 DOI: 10.1002/hep.31297] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Growth hormone (GH) is important for liver regeneration after partial hepatectomy (PHx). We investigated this process in C57BL/6 mice that express different forms of the GH receptor (GHR) with deletions in key signaling domains. APPROACH AND RESULTS PHx was performed on C57BL/6 mice lacking GHR (Ghr-/- ), disabled for all GH-dependent Janus kinase 2 signaling (Box1-/- ), or lacking only GH-dependent signal transducer and activator of transcription 5 (STAT5) signaling (Ghr391-/- ), and wild-type littermates. C57BL/6 Ghr-/- mice showed striking mortality within 48 hours after PHx, whereas Box1-/- or Ghr391-/- mice survived with normal liver regeneration. Ghr-/- mortality was associated with increased apoptosis and elevated natural killer/natural killer T cell and macrophage cell markers. We identified H2-Bl, a key immunotolerance protein, which is up-regulated by PHx through a GH-mediated, Janus kinase 2-independent, SRC family kinase-dependent pathway. GH treatment was confirmed to up-regulate expression of the human homolog of H2-Bl (human leukocyte antigen G [HLA-G]) in primary human hepatocytes and in the serum of GH-deficient patients. We find that injury-associated innate immune attack by natural killer/natural killer T cell and macrophage cells are instrumental in the failure of liver regeneration, and this can be overcome in Ghr-/- mice by adenoviral delivery of H2-Bl or by infusion of HLA-G protein. Further, H2-Bl knockdown in wild-type C57BL/6 mice showed elevated markers of inflammation after PHx, whereas Ghr-/- backcrossed on a strain with high endogenous H2-Bl expression showed a high rate of survival following PHx. CONCLUSIONS GH induction of H2-Bl expression is crucial for reducing innate immune-mediated apoptosis and promoting survival after PHx in C57BL/6 mice. Treatment with HLA-G may lead to improved clinical outcomes following liver surgery or transplantation.
Collapse
Affiliation(s)
- Mayumi Ishikawa
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia.,Center for Endocrinology, Diabetes and ArteriosclerosisNippon Medical School Musashikosugi HospitalKawasakiJapan
| | - Andrew J Brooks
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia.,The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Manuel A Fernández-Rojo
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia.,The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia.,Hepatic Fibrosis GroupQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia.,School of MedicineThe University of QueenslandBrisbaneQLDAustralia.,Hepatic Regenerative Medicine LaboratoryMadrid Institute for Advanced Studies in FoodCEI UAM+CSICMadridSpain
| | - Johan Medina
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Yash Chhabra
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia.,The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Shiro Minami
- Center for Endocrinology, Diabetes and ArteriosclerosisNippon Medical School Musashikosugi HospitalKawasakiJapan
| | - Kathryn A Tunny
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia.,Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Julian P Vivian
- Department of Biochemistry and Molecular Biology School of Biomedical SciencesMonash UniversityClaytonVICAustralia.,Australian Research Council Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonVICAustralia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology School of Biomedical SciencesMonash UniversityClaytonVICAustralia.,Australian Research Council Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonVICAustralia.,Institute of Infection and ImmunityCardiff University School of MedicineHeath ParkCardiffUnited Kingdom
| | - Viral Chikani
- Princess Alexandra Hospital and Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Grant A Ramm
- Hepatic Fibrosis GroupQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia.,School of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Ken K Y Ho
- Princess Alexandra Hospital and Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Michael J Waters
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| |
Collapse
|
18
|
Xu HH, Yan WH, Lin A. The Role of HLA-G in Human Papillomavirus Infections and Cervical Carcinogenesis. Front Immunol 2020; 11:1349. [PMID: 32670296 PMCID: PMC7330167 DOI: 10.3389/fimmu.2020.01349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Human leukocyte antigen (HLA)-G, a non-classical HLA-class I molecule, has a low polymorphism frequency, restricted tissue distribution and immunoinhibitory property. HLA-G expression in tumor cells and cells chronically infected with virus may enable them to escape from host immune surveillance. It is well-known that the HLA-G molecule is a novel biomarker and potential therapeutic target that is relevant in various types of cancers, but its role in cervical cancer has not been fully explored. In this review, we aim to summarize and discuss the immunologic role of the HLA-G molecule in the context of HPV infections and the process of cervical cancer carcinogenesis. A better understanding of the potential impact of HLA-G on the clinical course of persistent HPV infections, cervical epithelial cell transformation, tumor growth, recurrence and metastasis is needed to identify a novel diagnostic/prognostic biomarker for cervical cancer, which is critical for cervical cancer risk screening. In addition, it is also necessary to identify HLA-G-driven immune mechanisms involved in the interactions between host and virus to explore novel immunotherapy strategies that target HLA-G/immunoglobulin-like transcript (ILT) immune checkpoints.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
19
|
Noguchi Y, Maeda A, Wang HT, Takakura C, Lo PC, Kodama T, Yoneyama T, Toyama C, Eguchi H, Okuyama H, Miyagawa S. Human CD31 on Swine Endothelial Cells Induces SHP-1 Phosphorylation in Macrophages. Transplant Proc 2020; 52:1913-1915. [PMID: 32402461 DOI: 10.1016/j.transproceed.2020.01.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/10/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Innate immunity by natural killer (NK) cells, macrophages, and neutrophils cause severe rejections in xenotransplantation. Therefore, the development of strategies for suppressing macrophages has considerable potential in practical applications of xenotransplantation. Recently, we found that human CD31 on swine endothelial cells (SECs) suppresses neutrophil-mediated xenogeneic rejection through homophilic binding. Since a significant amount of CD31 is expressed not only on neutrophils but also on macrophages, we studied the function of human CD31 in macrophage-mediated cytotoxicity. METHODS SECs and hCD31-transfected SECs (SEC/hCD31) were co-cultured with macrophages and cytotoxicity by macrophages was evaluated with water-soluble tetrazolium salt, or WST-8, assay. To confirm whether or not inhibitory signals are induced by hCD31 homophilic binding, the phosphorylation of the enzyme SHP-1 was investigated with Western blotting. RESULTS No suppression of cytotoxicity was induced in macrophages that had been co-cultured with SEC/CD31. However, phosphorylation of SHP-1 was induced in macrophages that had been co-cultured with SEC/hCD31. CONCLUSIONS Human CD31 on SEC may induce not only inhibitory signals but also activation signals via the binding to other receptors for hCD31.
Collapse
Affiliation(s)
- Yuki Noguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Han-Tang Wang
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chihiro Takakura
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Pei-Chi Lo
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tasuku Kodama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohisa Yoneyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
20
|
A Strategy for Suppressing Macrophage-mediated Rejection in Xenotransplantation. Transplantation 2020; 104:675-681. [DOI: 10.1097/tp.0000000000003024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Noguchi Y, Maeda A, Lo PC, Takakura C, Haneda T, Kodama T, Yoneyama T, Toyama C, Tazuke Y, Okuyama H, Miyagawa S. Human TIGIT on porcine aortic endothelial cells suppresses xenogeneic macrophage-mediated cytotoxicity. Immunobiology 2019; 224:605-613. [PMID: 31402149 DOI: 10.1016/j.imbio.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE The delayed rejection caused by strong cell-mediated innate and adaptive xenogeneic immune responses continues to be a major obstacle. Therefore, suppressing macrophage function could be effective in avoiding this type of rejection. In this study, the suppression of T-cell immunoglobulin and ITIM domain (TIGIT) function against macrophage-mediated xenogeneic rejection was investigated. MATERIAL AND METHODS Naïve porcine aortic endothelial cell (PAEC) and PAEC transfectant with TIGIT (PAEC/TIGIT) were co-cultured with M1 macrophages, and the degree of cytotoxicity was determined by a counting beads assay. The anti/pro-inflammatory gene expression was determined by RT-PCR and the phosphorylated SHP-1 in the macrophages after co-culturing with PAEC or PAEC/TIGIT was evaluated by western blotting. RESULTS CD155 was expressed at essentially equal levels on both M1 and M2 macrophages, whereas TIGIT was highly expressed on M2 macrophages but not in M1 macrophages. TIGIT on PAEC significantly reduced the cytotoxicity of M1 macrophages but no significant suppression of phagocytosis was detected. TIGIT also caused a decrease in the expression of pro-inflammatory cytokines, namely TNFα, IL-1β and IL-12 in M1 macrophages. Furthermore, PAEC/TIGIT caused a significant increase in phosphorylated SHP-1 in M1 macrophages compared to PAEC. CONCLUSION The findings of this study indicate that TIGIT suppresses xenogeneic M1 macrophage-induced cytotoxicity, probably at least in part, via the phosphorylation of SHP-1. In addition, the reduced expression of some pro-inflammatory cytokines, namely TNFα, IL-1β and IL-12, was observed in M1 macrophages that had been cultured with PAEC/TIGIT.
Collapse
Affiliation(s)
- Yuki Noguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Pei-Chi Lo
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chihiro Takakura
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Haneda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tasuku Kodama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Yoneyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuko Tazuke
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Meiji University International Institute for Bio-Resource Research, Kanagawa, Japan
| |
Collapse
|
22
|
Li X, Meng Q, Zhang L. Overcoming Immunobiological Barriers Against Porcine Islet Xenografts: What Should Be Done? Pancreas 2019; 48:299-308. [PMID: 30855426 DOI: 10.1097/mpa.0000000000001259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Porcine islets might represent an ideal solution to the severe shortage of living donor islets available for transplantation and thus have great potential for the treatment of diabetes. Although tremendous progress has been achieved through recent experiments, the immune response remains a major obstacle. This review first describes the 3 major pathways of rejection: hyperacute rejection mediated by preformed natural antibodies and complement, instant blood-mediated inflammatory reactions, and acute cell-mediated rejection. Furthermore, this review examines immune-related strategies, including major advances, which have been shown to extend the life and/or function of porcine islets in vitro and in vivo: (1) genetic modification to make porcine islets more compatible with the recipient, (2) optimization of the newly defined biological agents that have been shown to promote long-term survival of xenografts in nonhuman primates, and (3) development of novel immunoisolation technologies that maintain the long-term survival of islet xenografts without the use of systemic immunosuppressive drugs. Finally, the clinical application of porcine islet transplantation is presented. Even though less clinical information is available, experimental data indicate that porcine islet xenografts are likely to become a standard treatment for patients with type 1 diabetes in the future.
Collapse
Affiliation(s)
- Xinyu Li
- From the Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | |
Collapse
|
23
|
Smood B, Hara H, Schoel LJ, Cooper DKC. Genetically-engineered pigs as sources for clinical red blood cell transfusion: What pathobiological barriers need to be overcome? Blood Rev 2019; 35:7-17. [PMID: 30711308 DOI: 10.1016/j.blre.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
An alternative to human red blood cells (RBCs) for clinical transfusion would be advantageous, particularly in situations of massive acute blood loss (where availability and compatibility are limited) or chronic hematologic diseases requiring frequent transfusions (resulting in alloimmunization). Ideally, any alternative must be neither immunogenic nor pathogenic, but readily available, inexpensive, and physiologically effective. Pig RBCs (pRBCs) provide a promising alternative due to their several similarities with human RBCs, and our increasing ability to genetically-modify pigs to reduce cellular immunogenicity. We briefly summarize the history of xenotransfusion, the progress that has been made in recent years, and the remaining barriers. These barriers include prevention of (i) human natural antibody binding to pRBCs, (ii) their phagocytosis by macrophages, and (iii) the T cell adaptive immune response (in the absence of exogenous immunosuppressive therapy). Although techniques of genetic engineering have advanced in recent years, novel methods to introduce human transgenes into pRBCs (which do not have nuclei) will need to be developed before clinical trials can be initiated.
Collapse
Affiliation(s)
- Benjamin Smood
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah J Schoel
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Wang HT, Maeda A, Sakai R, Lo PC, Takakura C, Jiaravuthisan P, Mod Shabri A, Matsuura R, Kodama T, Hiwatashi S, Eguchi H, Okuyama H, Miyagawa S. Human CD31 on porcine cells suppress xenogeneic neutrophil-mediated cytotoxicity via the inhibition of NETosis. Xenotransplantation 2018; 25:e12396. [PMID: 29635708 DOI: 10.1111/xen.12396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Xenotransplantation is one of the promising strategies for overcoming the shortage of organs available for transplant. However, many immunological obstructions need to be overcome for practical use. Increasing evidence suggests that neutrophils contribute to xenogeneic cellular rejection. Neutrophils are regulated by activation and inhibitory signals to induce appropriate immune reactions and to avoid unnecessary immune reactivity. Therefore, we hypothesized that the development of neutrophil-targeted therapies may have the potential for increased graft survival in xenotransplantation. METHODS A plasmid containing a cDNA insert encoding the human CD31 gene was transfected into swine endothelial cells (SEC). HL-60 cells were differentiated into neutrophil-like cells by culturing them in the presence of 1.3% dimethyl sulfoxide for 48 hours. The cytotoxicity of the differentiated HL-60 cells (dHL-60) and peripheral blood-derived neutrophils was evaluated by WST-8 assays. To investigate the mechanism responsible for hCD31-induced immunosuppression, citrullinated histone 3 (cit-H3) and phosphorylation of SHP-1 were detected by a cit-H3 enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. RESULTS A significant decrease in dHL-60 and neutrophil-mediated cytotoxicity in SEC/hCD31 compared with SEC was seen, as evidenced by a cytotoxicity assay. Furthermore, the suppression of NETosis and the induction of SHP-1 phosphorylation in neutrophils that had been co-cultured with SEC/CD31 were confirmed by cit-H3 ELISA and Western blotting with an anti-phosphorylated SHP-1. CONCLUSION These data suggest that human CD31 suppresses neutrophil-mediated xenogenic cytotoxicity via the inhibition of NETosis. As CD31 is widely expressed in a variety of inflammatory cells, human CD31-induced suppression may cover the entire xenogeneic cellular rejection, thus making the generation of human CD31 transgenic pigs very attractive for use in xenografts.
Collapse
Affiliation(s)
- Han-Tang Wang
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Maeda
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rieko Sakai
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Pei-Chi Lo
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chihiro Takakura
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Afifah Mod Shabri
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rei Matsuura
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tasuku Kodama
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shohei Hiwatashi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Eguchi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroomi Okuyama
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shuji Miyagawa
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
25
|
Jiaravuthisan P, Maeda A, Takakura C, Wang HT, Sakai R, Shabri AM, Lo PC, Matsuura R, Kodama T, Eguchi H, Okuyama H, Miyagawa S. A membrane-type surfactant protein D (SP-D) suppresses macrophage-mediated cytotoxicity in swine endothelial cells. Transpl Immunol 2018; 47:44-48. [PMID: 29425774 DOI: 10.1016/j.trim.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Surfactant protein D (SP-D), which is secreted mainly in the lung, is an oligometric C type lectin that promotes phagocytosis by binding to carbohydrates on microbial surfaces. SP-D can also bind SIRPα, leading to a decrease in cytokine production by monocytes/macrophages. In the present study, we examined the possibility that SP-D suppresses macrophage-mediated xenogeneic cytotoxicity, by creating a membrane-type SP-D. METHODS The cDNA for the carbohydrate recognition domain (CRD) of human SP-D was switched to that of a membrane-type protein, collectin placenta 1 (CL-P1), with a Flag-tag. The cDNA of CD47 was prepared as a control. The suppressive function of the membrane-type protein of the hybrid molecule, CL-SP-D, to monocytes/macrophages was then studied and the results compared with that for CD47. RESULTS The expression of Flag-tagged CL-SP-D on the transfected SECs and the SIRPα on monocyte-like cells, THP-1 cells, was confirmed by FACS using anti-Flag Ab and anti-CD172a, respectively. The molecular size of the hybrid protein was next assessed by western blot. While significant cytotoxicity against SEC was induced in differentiated THP-1 cells, CL-SP-D significantly reduced THP-1-mediated cytotoxicity. In addition, phosphorylated SHP-1 was clearly detected in SEC/CL-SP-D in western blots. Moreover, IL-10 production was upregulated and IL-1β production was suppressed in the case of THP-1 and SEC/CL-SP-D, compared with naïve SEC. Next, the cytotoxicity caused by the in vitro generated macrophage was assessed under the same conditions as were used for THP-1. CL-SP-D also showed the significant down-regulation on the macrophage. In addition, changes in IL-10 production by the macrophage confirmed the results. CONCLUSIONS These findings indicate that the membrane-type SP-D serve as an effective therapeutic strategy for inhibiting macrophage-mediated xenograft rejection in xenotransplantation.
Collapse
Affiliation(s)
- Patmika Jiaravuthisan
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akira Maeda
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chihiro Takakura
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Han-Tang Wang
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rieko Sakai
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Afifah Mohd Shabri
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Pei-Chi Lo
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rei Matsuura
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tasuku Kodama
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroomi Okuyama
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuji Miyagawa
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
26
|
|
27
|
Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, Cooper DKC, Cai Z, Mou L. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transplant 2017; 26:925-947. [PMID: 28155815 PMCID: PMC5657750 DOI: 10.3727/096368917x694859] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
Abstract
Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs combined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotransplantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human recipient's immune response. Clinical trials using this approach are currently underway. This review focuses on the major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Zhengzhao Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Wenbao Hu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Tian He
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hidetaka Hara
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - David K. C. Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
28
|
Sakai R, Maeda A, Choi TV, Lo PC, Jiaravuthisan P, Shabri AM, Wang HT, Matsuura R, Kodama T, Eguchi H, Okuyama H, Miyagawa S. Human CD200 suppresses macrophage-mediated xenogeneic cytotoxicity and phagocytosis. Surg Today 2017; 48:119-126. [PMID: 28573328 DOI: 10.1007/s00595-017-1546-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE Various strategies, such as the generation of alpha-1,3-galactosyltransferase knocked-out pigs and CD55 transgenic pigs, have been investigated to inhibit pig to human xenogeneic rejection. Our aim is to develop strategies to overcome the hurdle of not only hyper acute rejection, but also that of cellular xenogeneic rejection (CXR). Although macrophages have been well known to play a critical role in CXR, monocyte/macrophage-mediated xenogeneic rejection has not been well studied. In this study, we evaluated the effect of CD200 in xenogeneic rejection by macrophages. METHODS Naïve swine endothelial cells (SEC) and SEC/CD200 were co-cultured with M0 macrophages and the cytotoxicity was measured by a WST-8 assay. The phagocytosis of SEC and SEC/CD200 by macrophages was analyzed by flow cytometry. RESULTS While CD200 failed to suppress a significant amount of cytotoxicity against SEC by monocytes, M0 macrophage-mediated cytotoxicity was significantly suppressed by human CD200. The phagocytosis by M0 macrophages was also tested. The phagocytosis assay revealed that human CD200 suppresses M0 macrophage-mediated phagocytosis. CONCLUSIONS Our findings indicate that human CD200 suppresses the xenogeneic rejection by CD200R+ macrophages and that the generation of hCD200 transgenic pigs for use in xenografts is very attractive for preventing the macrophage-mediated rejection.
Collapse
Affiliation(s)
- Rieko Sakai
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akira Maeda
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Thuy-Vy Choi
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Pei-Chi Lo
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Patmika Jiaravuthisan
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Afifah Mod Shabri
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Han-Tang Wang
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Rei Matsuura
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tasuku Kodama
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Eguchi
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroomi Okuyama
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuji Miyagawa
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
29
|
Kang HJ, Lee H, Park EM, Kim JM, Min BH, Park CG. D-dimer level, in association with humoral responses, negatively correlates with survival of porcine islet grafts in non-human primates with immunosuppression. Xenotransplantation 2017; 24. [DOI: 10.1111/xen.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Hee Jung Kang
- Department of Laboratory Medicine; Hallym University College of Medicine; Anyang-si Korea
| | - Haneulnari Lee
- Department of Laboratory Medicine; Hallym University College of Medicine; Anyang-si Korea
| | - Eun Mi Park
- Department of Laboratory Medicine; Hallym University College of Medicine; Anyang-si Korea
| | - Jong-Min Kim
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
- Department of Microbiology and Immunology; Department of Biomedical Sciences; Cancer Research Institute; Institute of Endemic Diseases; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
30
|
Sakai R, Kitano E, Maeda A, Lo PC, Eguchi H, Watanabe M, Nagashima H, Okuyama H, Miyagawa S. Studies of innate immune systems against human cells. Transpl Immunol 2017; 40:66-71. [DOI: 10.1016/j.trim.2016.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 11/29/2022]
|
31
|
Iwase H, Liu H, Schmelzer E, Ezzelarab M, Wijkstrom M, Hara H, Lee W, Singh J, Long C, Lagasse E, Gerlach JC, Cooper DKC, Gridelli B. Transplantation of hepatocytes from genetically engineered pigs into baboons. Xenotransplantation 2017; 24. [PMID: 28130881 DOI: 10.1111/xen.12289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/23/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Some patients with acute or acute-on-chronic hepatic failure die before a suitable human liver allograft becomes available. Encouraging results have been achieved in such patients by the transplantation of human hepatocyte progenitor cells from fetal liver tissue. The aim of the study was to explore survival of hepatocytes from genetically engineered pigs after direct injection into the spleen and other selected sites in immunosuppressed baboons to monitor the immune response and the metabolic function and survival of the transplanted hepatocytes. METHODS Baboons (n=3) were recipients of GTKO/hCD46 pig hepatocytes. All three baboons received anti-thymocyte globulin (ATG) induction and tapering methylprednisolone. Baboon 1 received maintenance immunosuppressive therapy with tacrolimus and rapamycin. Baboons 2 and 3 received an anti-CD40mAb/rapamycin-based regimen that prevents sensitization to pig solid organ grafts. The baboons were euthanized 4 or 5 weeks after hepatocyte transplantation. The baboon immune response was monitored by the measurement of anti-non-Gal IgM and IgG antibodies (by flow cytometry) and CFSE-mixed lymphocyte reaction. Monitoring for hepatocyte survival and function was by (i) real-time PCR detection of porcine DNA, (ii) real-time PCR for porcine gene expression, and (iii) pig serum albumin levels (by ELISA). The sites of hepatocyte injection were examined microscopically. RESULTS Detection of porcine DNA and porcine gene expression was minimal at all sites of hepatocyte injection. Serum levels of porcine albumen were very low-500-1000-fold lower than in baboons with orthotopic pig liver grafts, and approximately 5000-fold lower than in healthy pigs. No hepatocytes or infiltrating immune cells were seen at any of the injection sites. Two baboons (Baboons 1 and 3) demonstrated a significant increase in anti-pig IgM and an even greater increase in IgG, indicating sensitization to pig antigens. DISCUSSION AND CONCLUSIONS As a result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient's intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Eva Schmelzer
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jagjit Singh
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Lagasse
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jörg C Gerlach
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruno Gridelli
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| |
Collapse
|
32
|
Eguchi H, Maeda A, Lo PC, Matsuura R, Esquivel EL, Asada M, Sakai R, Nakahata K, Yamamichi T, Umeda S, Deguchi K, Ueno T, Okuyama H, Miyagawa S. HLA-G1, but Not HLA-G3, Suppresses Human Monocyte/Macrophage-mediated Swine Endothelial Cell Lysis. Transplant Proc 2017; 48:1285-7. [PMID: 27320605 DOI: 10.1016/j.transproceed.2015.10.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/03/2015] [Indexed: 11/16/2022]
Abstract
The inhibitory function of HLA-G1, a class Ib molecule, on monocyte/macrophage-mediated cytotoxicity was examined. The expression of inhibitory receptors that interact with HLA-G, immunoglobulin-like transcript 2 (ILT2), ILT4, and KIR2DL4 (CD158d) on in vitro-generated macrophages obtained from peripheral blood mononuclear cells and the phorbol 12-myristate 13-acetate (PMA)-activated THP-1 cells were examined by flow cytometry. cDNAs of HLA-G1, HLA-G3, HLA-E, and human β2-microglobulin were prepared, transfected into pig endothelial cells (PECs), and macrophage- and the THP-1 cell-mediated PEC cytolysis was then assessed. In vitro-generated macrophages expressed not only ILT2 and ILT4 but CD158d as well. The transgenic HLA-G1 on PEC indicated a significant suppression in macrophage-mediated cytotoxicity, which was equivalent to that of transgenic HLA-E. HLA-G1 was clearly expressed on the cell surface of PEC, whereas the levels of HLA-G3 were much lower and remained in the intracellular space. On the other hand, the PMA-activated THP-1 cell was less expressed these inhibitory molecules than in vitro-generated macrophages. Therefore, the HLA-G1 on PECs showed a significant but relatively smaller suppression to THP-1 cell-mediated cytotoxicity compared to in vitro-generated macrophages. These results indicate that by generating HLA-G1, but not HLA-G3, transgenic pigs can protect porcine grafts from monocyte/macrophage-mediated cytotoxicity.
Collapse
Affiliation(s)
- H Eguchi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - A Maeda
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - P C Lo
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - R Matsuura
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - E L Esquivel
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - M Asada
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - R Sakai
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - K Nakahata
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - T Yamamichi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - S Umeda
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - K Deguchi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - T Ueno
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - H Okuyama
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - S Miyagawa
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
33
|
|
34
|
Matsuura R, Maeda A, Sakai R, Eguchi H, Lo PC, Hasuwa H, Ikawa M, Nakahata K, Zenitani M, Yamamichi T, Umeda S, Deguchi K, Okuyama H, Miyagawa S. Human HLA-Ev (147) Expression in Transgenic Animals. Transplant Proc 2016; 48:1323-5. [PMID: 27320614 DOI: 10.1016/j.transproceed.2015.10.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/03/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND In our previous study, we reported on the development of substituting S147C for HLA-E as a useful gene tool for xenotransplantation. In this study we exchanged the codon of HLA-Ev (147), checked its function, and established a line of transgenic mice. METHODS A new construct, a codon exchanging human HLA-Ev (147) + IRES + human beta 2-microgloblin, was established. The construct was subcloned into pCXN2 (the chick beta-actin promoter and cytomegalovirus enhancer) vector. Natural killer cell- and macrophage-mediated cytotoxicities were performed using the established the pig endothelial cell (PEC) line with the new gene. Transgenic mice with it were next produced using a micro-injection method. RESULTS The expression of the molecule on PECs was confirmed by the transfection of the plasmid. The established molecules on PECs functioned well in regulating natural killer cell-mediated cytotoxicity and macrophage-mediated cytotoxicity. We have also successfully generated several lines of transgenic mice with this plasmid. The expression of HLA-Ev (147) in each mouse organ was confirmed by assessing the mRNA. The chick beta-actin promoter and cytomegalovirus enhancer resulted in a relatively broad expression of the gene in each organ, and a strong expression in the cases of the heart and lung. CONCLUSION A synthetic HLA-Ev (147) gene with a codon usage optimized to a mammalian system represents a critical factor in the development of transgenic animals for xenotransplantation.
Collapse
Affiliation(s)
- R Matsuura
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| | - A Maeda
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - R Sakai
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - H Eguchi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - P-C Lo
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - H Hasuwa
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - M Ikawa
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - K Nakahata
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - M Zenitani
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - T Yamamichi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - S Umeda
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - K Deguchi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - H Okuyama
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - S Miyagawa
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
35
|
The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res 2016; 25:361-74. [PMID: 26820415 DOI: 10.1007/s11248-016-9934-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022]
Abstract
The domestic pig shares many genetic, anatomical and physiological similarities to humans and is thus considered to be a suitable organ donor for xenotransplantation. However, prior to clinical application of porcine xenografts, three major hurdles have to be overcome: (1) various immunological rejection responses, (2) physiological incompatibilities between the porcine organ and the human recipient and (3) the risk of transmitting zoonotic pathogens from pig to humans. With the introduction of genetically engineered pigs expressing high levels of human complement regulatory proteins or lacking expression of α-Gal epitopes, the HAR can be consistently overcome. However, none of the transgenic porcine organs available to date was fully protected against the binding of anti-non-Gal xenoreactive natural antibodies. The present view is that long-term survival of xenografts after transplantation into primates requires additional modifications of the porcine genome and a specifically tailored immunosuppression regimen compliant with current clinical standards. This requires the production and characterization of multi-transgenic pigs to control HAR, AVR and DXR. The recent emergence of new sophisticated molecular tools such as Zinc-Finger nucleases, Transcription-activator like endonucleases, and the CRISPR/Cas9 system has significantly increased efficiency and precision of the production of genetically modified pigs for xenotransplantation. Several candidate genes, incl. hTM, hHO-1, hA20, CTLA4Ig, have been explored in their ability to improve long-term survival of porcine xenografts after transplantation into non-human primates. This review provides an update on the current status in the production of multi-transgenic pigs for xenotransplantation which could bring porcine xenografts closer to clinical application.
Collapse
|
36
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D. The role of genetically engineered pigs in xenotransplantation research. J Pathol 2016; 238:288-99. [PMID: 26365762 PMCID: PMC4689670 DOI: 10.1002/path.4635] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/22/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022]
Abstract
There is a critical shortage in the number of deceased human organs that become available for the purposes of clinical transplantation. This problem might be resolved by the transplantation of organs from pigs genetically engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in non-human primates (NHPs) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified, as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing five or six manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart and islet transplantation will become feasible in the near future.
Collapse
Affiliation(s)
- David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | |
Collapse
|
38
|
Cooper DKC, Bottino R. Recent advances in understanding xenotransplantation: implications for the clinic. Expert Rev Clin Immunol 2015; 11:1379-90. [PMID: 26548357 PMCID: PMC4879962 DOI: 10.1586/1744666x.2015.1083861] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The results of organ and cell allotransplantation continue to improve, but the field remains limited by a lack of deceased donor organs. Xenotransplantation, for example, between pig and human, offers unlimited organs and cells for clinical transplantation. The immune barriers include a strong innate immune response in addition to the adaptive T-cell response. The innate response has largely been overcome by the transplantation of organs from pigs with genetic modifications that protect their tissues from this response. T-cell-mediated rejection can be controlled by immunosuppressive agents that inhibit costimulation. Coagulation dysfunction between the pig and primate remains problematic but is being overcome by the transplantation of organs from pigs that express human coagulation-regulatory proteins. The remaining barriers will be resolved by the introduction of novel genetically-engineered pigs. Limited clinical trials of pig islet and corneal transplantation are already underway.
Collapse
Affiliation(s)
- David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA
| |
Collapse
|