1
|
Davis KM, Okoko OO, Oduola AO, Inyama PU, Uneke CJ, Ambrose K, Seyoum A, Uhomoibhi P, Rhoda DA, Clary CB, Millar J, Littrell M, Rogers JH, Yoshimizu M, Inyang U, Maire M, Burnett SM. An observational analysis of the impact of deltamethrin + piperonyl butoxide insecticide-treated nets on malaria case incidence and entomological indicators in Ebonyi State, Nigeria, 2017-2021. Malar J 2024; 23:317. [PMID: 39427181 PMCID: PMC11491013 DOI: 10.1186/s12936-024-05137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Intense pyrethroid resistance threatens the effectiveness of the primary vector control intervention, insecticide-treated nets (ITNs), in Nigeria, the country with the largest malaria burden globally. In this study, the epidemiological and entomological impact of a new type of ITN (piperonyl-butoxide [PBO] ITNs) distributed in Ebonyi State were evaluated. The epidemiological impact was also compared to the impact of standard pyrethroid-only ITNs in Cross River State. METHODS A controlled interrupted time series analysis was conducted on monthly malaria incidence data collected at the health facility level, using a multilevel mixed-effects negative binomial model. Data were analysed two years before and after the PBO ITN campaign in Ebonyi State (December 2017 to November 2021). A pre-post analysis, with no comparison group, was used to assess the impact of PBO ITNs on human biting rates and indoor resting density in Ebonyi during the high transmission season immediately before and after the PBO ITN campaign. RESULTS In Ebonyi, PBO ITNs were associated with a 46.7% decrease (95%CI: -51.5, -40.8%; p < 0.001) in malaria case incidence in the 2 years after the PBO ITN distribution compared to a modelled scenario of no ITNs distributed, with a significant decrease from 269.6 predicted cases per 1000 population to 143.6. In Cross River, there was a significant 28.6% increase (95%CI: -10.4, 49.1%; p < 0.001) in malaria case incidence following the standard ITN distribution, with an increase from 71.2 predicted cases per 1000 population to 91.6. In Ebonyi, the human biting rate was 72% lower (IRR: 0.28; 95%CI 0.21, 0.39; p < 0.001) and indoor resting density was 73% lower (IRR: 0.27; 95%CI 0.21, 0.35; p < 0.001) after the PBO ITNs were distributed. CONCLUSIONS The epidemiological and entomological impact of the PBO ITNs underscore the impact of these ITNs in areas with confirmed pyrethroid resistance. These findings contribute to ongoing research on the impact of new types of ITNs in Nigeria, providing critical evidence for the Nigeria National Malaria Elimination Programme and other countries for future ITN procurement decisions as part of mass ITN campaign planning and malaria programming.
Collapse
Affiliation(s)
- Kelly M Davis
- PMI VectorLink Project, PATH, 455 Massachusetts Ave NW, Suite 1000, Washington, DC, 20001, USA.
| | - Okefu O Okoko
- National Malaria Elimination Programme, Abuja, Nigeria
| | | | | | - Chigozi J Uneke
- Department of Medical Microbiology/Parasitology, Faculty of Basic Clinical Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Aklilu Seyoum
- Abt Global, PMI VectorLink Project, Rockville, MD, USA
| | | | | | | | | | | | - John H Rogers
- U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Abuja, Nigeria
| | - Melissa Yoshimizu
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Uwem Inyang
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Monrovia, Liberia
| | - Mark Maire
- U.S. President's Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Monrovia, Liberia
| | - Sarah M Burnett
- PMI VectorLink Project, PATH, 455 Massachusetts Ave NW, Suite 1000, Washington, DC, 20001, USA
| |
Collapse
|
2
|
Abbasi E, Daliri S. Knockdown resistance (kdr) associated organochlorine resistance in mosquito-borne diseases (Culex quinquefasciatus): Systematic study of reviews and meta-analysis. PLoS Negl Trop Dis 2024; 18:e0011991. [PMID: 39159258 PMCID: PMC11361747 DOI: 10.1371/journal.pntd.0011991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/29/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Culex quinquefasciatus is one of the most important carriers of human pathogens. Using the insecticides is one of the most important methods of combating this vector. But the genetic resistance created in Culex quinquefasciatus led to disruption in the fight against this pest. Consequently, it is necessary to know the level of resistance to fight this vector. Based on this, the present study was conducted to investigate the prevalence of kdr resistance in Culex quinquefasciatus against organochlorine insecticides in the world. METHODS This study was conducted by systematic review, and meta-analysis on the prevalence of kdr resistance and mortality rate in Culex quinquefasciatus against organochlorine insecticides in the world. All pertinent articles were extracted and analyzed in accordance with this information during an unrestricted search of the scientific databases Web of Science, PubMed, Scopus, biooan.org, Embase, ProQuest, and Google Scholar until the end of November 2023. Statistical analysis of data was done using fixed and random effects model in meta-analysis, I2 index, Cochran's test, and meta-regression by STATA version 17 software. RESULTS Seventy articles were included in the meta-analysis process. Based on the findings, the prevalence of Kdr in Culex quinquefasciatus against organochlorine insecticide was estimated at 63.1%. Moreover, the mortality rate against the insecticide deltamethrin was 46%, DDT 18.5%, permethrin 42.6%, malathion 54.4% and lambdacyhalothrin 53%. CONCLUSION More than half of Cx. quinquefasciatus had Kdr. This vector was relatively resistant to DDT and permethrin insecticides and sensitive to malathion, deltamethrin and lambdacyhalothrin. In order to prevent the development of resistance to alternative insecticides, it is consequently critical to combat this vector with efficacious insecticides.
Collapse
Affiliation(s)
- Ebrahim Abbasi
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salman Daliri
- Health Deputy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Kambou SS, Valente A, Agnew P, Hien DFDS, Yerbanga RS, Moiroux N, Dabire KR, Pennetier C, Cohuet A, Carrasco D. Non-contact detection of pyrethroids widely used in vector control by Anopheles mosquitoes. PLoS One 2024; 19:e0298512. [PMID: 38995958 PMCID: PMC11244766 DOI: 10.1371/journal.pone.0298512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Pyrethroids are the most widely used insecticides to control vector borne diseases including malaria. Physiological resistance mechanisms to these insecticides have been well described, whereas those for behavioral resistance remain overlooked. Field data suggest the presence of spatial sensory detection by Anopheles mosquitoes of the pyrethroid molecules used in insecticide-based control tools, such as long-lasting insecticide nets or insecticide residual spraying. This opens the way to the emergence of a wide range of behavioral adaptations among malaria vectors. However, the spatial sensory detection of these molecules is controversial and needs to be demonstrated. The goal of this study was to behaviorally characterize the non-contact detection of three of the most common pyrethroids used for malaria vector control: permethrin, deltamethrin an ⍺-cypermethrin. To reach this goal, we recorded the behavior (takeoff response) of Anopheles gambiae pyrethroid-sensitive and resistant laboratory strains, as well as field collected mosquitoes from the Gambiae Complex, when exposed to the headspace of bottles containing different doses of the insecticides at 25 and 35°C, in order to represent a range of laboratory and field temperatures. We found the proportion of laboratory susceptible and resistant female mosquitoes that took off was, in all treatments, dose and the temperature dependent. Sensitive mosquitoes were significantly more prone to take off only in the presence of ⍺-cypermethrin, whereas sensitive and resistant mosquitoes showed similar responses to permethrin and deltamethrin. Field-collected mosquitoes of the Gambiae Complex were also responsive to permethrin, independently of the species identity (An. gambiae, An. coluzzii and An. arabiensis) or their genotypes for the kdr mutation, known to confer resistance to pyrethroids. The observed ability of Anopheles spp. mosquitoes to detect insecticides without contact could favor the evolution of behavioral modifications that may allow them to avoid or reduce the adverse effect of insecticides and thus, the development of behavioral resistance.
Collapse
Affiliation(s)
- Sassan Simplice Kambou
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | - Adeline Valente
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Philip Agnew
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Domonbabele François de Sales Hien
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé Serge Yerbanga
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
- Institut des Sciences et Techniques (InSTech), Bobo-Dioulasso, Burkina Faso
| | - Nicolas Moiroux
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Kounbobr Roch Dabire
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - David Carrasco
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
4
|
Summer M, Tahir HM, Ali S, Nawaz S, Abaidullah R, Mumtaz S, Ali A, Gormani AH. Nanobiopesticides as an Alternative and Sustainable Solution to Tackle Pest Outbreaks. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 2024; 96. [DOI: 10.2317/0022-8567-96.4.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Saira Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
5
|
Odjo EM, Tognidro M, Govoetchan R, Missihoun AA, Padonou GG, Ahouandjinou JM, Akinro B, Koukpo ZC, Tokponnon FT, Djenontin A, Agbangla C, Akogbeto MC. Malaria transmission potential of Anopheles gambiae s.l. in indoor residual spraying areas with clothianidin 50 WG in northern Benin. Trop Med Health 2024; 52:18. [PMID: 38336760 PMCID: PMC10854093 DOI: 10.1186/s41182-024-00582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The study objective was to assess the frequency of the kdr-L995F and ace-1 G280S genetic mutations in Anopheles gambiae s.l. mosquitoes and examine their ability to transmit Plasmodium falciparum in areas where indoor residual spraying (IRS) was implemented with Clothianidin 50 WG. The study was conducted in six communes in the Alibori and Donga departments of which four were IRS-treated and two were untreated and served as control. Post-IRS monthly samples of adult mosquitoes were collected in study communes using human landing catches (HLC). An. gambiae s.l. specimens were processed to detect kdr-L995F and ace-1 G280S mutations via PCR as well as Plasmodium falciparum infectivity through CSP ELISA. Our data revealed a high and similar allelic frequency for the kdr-L995F mutation in both treated and control communes (79% vs. 77%, p = 0.14) whilst allelic frequency of the ace-1 G280S mutation was lower across the study area (2-3%, p = 0.58). The sporozoite rate was 2.6% and 2.4% respectively in treated and untreated communes (p = 0.751). No association was found between Plasmodium falciparum infection in Anopheles gambiae s.l. vectors and carriage of kdr-L995F and ace-1 G280S mutations regardless of genotypes. The study findings underline the need for an integrated approach to malaria control, combining different control methods to effectively target transmission. Regular monitoring of insecticide resistance and genetic mutations is essential to guide control strategies.
Collapse
Affiliation(s)
- Esdras Mahoutin Odjo
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin.
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin.
| | - Mathilde Tognidro
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Renaud Govoetchan
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Université de Parakou, Parakou, Benin
| | - Antoine Abel Missihoun
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Gil Germain Padonou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Juvenal Minassou Ahouandjinou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | | | - Filémon T Tokponnon
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Ecole polytechnique d'Abomey Calavi, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Armel Djenontin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Clement Agbangla
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Direction Générale de la Recherche Scientifique, Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Cotonou, Benin
| | | |
Collapse
|
6
|
Wang HL, Rao Q, Chen ZZ. Identifying potential insecticide resistance markers through genomic-level comparison of Bemisia tabaci (Gennadius) lines. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22034. [PMID: 37434515 DOI: 10.1002/arch.22034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
The invasive whitefly (Bemisia tabaci) MED is one of the most economically damaging plant pests. The extensive use of insecticide over decades has led to that the invasive B. tabaci MED has developed resistance to a wide range of insecticide classes, but little is known about the genetic background associated with resistance. To this end, we conducted a comparative genome-wide analysis of single-base nucleotide polymorphisms between MED whitefly lines collected from fields that were recently infested and an insecticide-susceptible MED whitefly line collected in 1976. First, low-coverage genome sequencings were conducted on DNA isolated from individual whiteflies. The sequencing results were evaluated using an available B. tabaci MED genome as a reference. Significant genetic differences were discovered between MED whitefly lines collected from fields that were recently infested and an insecticide-susceptible MED whitefly line based on the principal component analyses. Top GO categories and KEGG pathways that might be involved in insecticide resistance development were identified, and several of them have not been previously associated with resistance. Additionally, we identified several genetic loci with novel variations including Cytochrome P450 monooxygenases (P450s), UDP-glucuronosyltransferases (UGTs), Glutathione S-transferases (GSTs), esterase, carboxyl-esterases (COE), ABC transporters, fatty acyl-CoA reductase, voltage-gated sodium channels, GABA receptor, and cuticle proteins (CPs) that were previously reported to have close associations with pesticide resistance in well-studied insect groups that provide an essential resource for the design of insecticide resistance-linked loci arrays insecticide. Our results was obtained solely on resequencing genome data sets, more pesticide bio-assays combined with omics datasets should be further used to verify the markers identified here.
Collapse
Affiliation(s)
- Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Qiong Rao
- School of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
| | - Zhen-Zhu Chen
- College of Forestry, Hebei Agricultural University, Hebei, China
| |
Collapse
|
7
|
Tang PA, Hu HY, Du WW, Jian FJ, Chen EH. Identification of cuticular protein genes and analysis of their roles in phosphine resistance of the rusty grain beetle Cryptolestes ferrugineus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105491. [PMID: 37532352 DOI: 10.1016/j.pestbp.2023.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023]
Abstract
The rusty grain beetle, Cryptolestes ferrugineus (Stephens) is one of the most economically important stored grain pests, and it has evolved the high resistance to phosphine. Cuticular proteins (CPs) are the major structural components of insect cuticle, and previous studies have confirmed that CPs were involved in insecticide resistance. However, the CPs of C. ferrugineus are still poorly characterized, and thus we conducted transcriptome-wide identification of CP genes and analyze their possible relationships with phosphine resistance in this pest. In this study, a total of 122 putative CPs were annotated in the C. ferrugineus transcriptome data by blasting with the known CPs of Tribolium castaneum. The analysis of conserved motifs revealed these CPs of C. ferrugineus belonging to 9 different families, including 87 CPR, 13 CPAP1, 7 CPAP3, 3 Tweedle, 1 CPLCA, 1 CPLCG, 5 CPLCP, 2 CPCFC, and 3 CPFL proteins. The further phylogenetic analysis showed the different evolutionary patterns of CPs. Namely, we found some CPs (CPR family) formed species-specific protein clusters, indicating these CPs might occur independently among insect taxa, and while some other CPs (CPAP1 and CPAP3 family) shared a closer correlation based on the architecture of protein domains. Subsequently, the previous RNA-seq data were applied to establish the expression profiles of CPs in a phosphine susceptible and resistant populations of C. ferrugineus, and a large amount of CP genes were found to be over-expressed in resistant insects. Lastly, an up-regulated CP gene (CPR family) was selected for the further functional analysis, and after this gene was silenced via RNA interference (RNAi), the sensitivity to phosphine was significantly enhanced in C. ferrugineus. In conclusion, the present results provided us an overview of C. ferrugineus CPs, and which suggested that the CPs might play the critical roles in phosphine resistance.
Collapse
Affiliation(s)
- Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| | - Huai-Yue Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Wen-Wei Du
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Fu-Ji Jian
- Department of Biosystems Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
8
|
He MJ, Zuo DP, Zhang ZY, Wang Y, Han CG. Transcriptomic and Proteomic Analyses of Myzus persicae Carrying Brassica Yellows Virus. BIOLOGY 2023; 12:908. [PMID: 37508340 PMCID: PMC10376434 DOI: 10.3390/biology12070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Viruses in the genus Polerovirus infect a wide range of crop plants and cause severe economic crop losses. BrYV belongs to the genus Polerovirus and is transmitted by Myzus persicae. However, the changes in transcriptome and proteome profiles of M. persicae during viral infection are unclear. Here, RNA-Seq and TMT-based quantitative proteomic analysis were performed to compare the differences between viruliferous and nonviruliferous aphids. In total, 1266 DEGs were identified at the level of transcription with 980 DEGs being upregulated and 286 downregulated in viruliferous aphids. At the protein level, among the 18 DEPs identified, the number of upregulated proteins in viruliferous aphids was twice that of the downregulated DEPs. Enrichment analysis indicated that these DEGs and DEPs were mainly involved in epidermal protein synthesis, phosphorylation, and various metabolic processes. Interestingly, the expressions of a number of cuticle proteins and tubulins were upregulated in viruliferous aphids. Taken together, our study revealed the complex regulatory network between BrYV and its vector M. persicae from the perspective of omics. These findings should be of great benefit to screening key factors involved in the process of virus circulation in aphids and provide new insights for BrYV prevention via vector control in the field.
Collapse
Affiliation(s)
- Meng-Jun He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Deng-Pan Zuo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
He C, Liang J, Yang J, Xue H, Huang M, Fu B, Wei X, Liu S, Du T, Ji Y, Yin C, Gong P, Hu J, Du H, Zhang R, Xie W, Wang S, Wu Q, Zhou X, Yang X, Zhang Y. Over-expression of CP9 and CP83 increases whitefly cell cuticle thickness leading to imidacloprid resistance. Int J Biol Macromol 2023; 233:123647. [PMID: 36780959 DOI: 10.1016/j.ijbiomac.2023.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Cuticular proteins (CPs) play an important role in protecting insects from adverse environmental conditions, like neonicotinoid insecticides, which are heavily used for numerous pests and caused environmental problems and public health concerns worldwide. However, the relationship between CPs and insecticides resistance in Bemisia tabaci, a serious and developed high insecticide resistance, is lacking. In this study, 125 CPs genes were identified in B. tabaci. Further phylogenetic tree showed the RR-2-type genes formed large gene groups in B. tabaci. Transcriptional expression levels of CPs genes at different developmental stages revealed that some CPs genes may play a specific role in insect development. The TEM results indicated that the cuticle thickness of susceptible strain was thinner than imidacloprid-resistance strain. Furthermore, 16 CPs genes (5 in RR-1 subfamily, 7 in RR-2 subfamily, 3 in CPAP3 subfamily and 1 in CPCFC subfamily) were activated in response to imidacloprid. And RNAi results indicated that CP9 and CP83 involved in imidacloprid resistance. In conclusion, this study was the first time to establish a basic information framework and evolutionary relationship between CPs and imidacloprid resistance in B. tabaci, which provides a basis for proposing integrated pest management strategies.
Collapse
Affiliation(s)
- Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546-0091, USA.
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Perugini E, Guelbeogo WM, Guglielmo F, Poggi C, Gabrieli E, Ranson H, Della Torre A, Pombi M. The interplay between malaria vectors and human activity accounts for high residual malaria transmission in a Burkina Faso village with universal ITN coverage. Parasit Vectors 2023; 16:101. [PMID: 36922855 PMCID: PMC10015820 DOI: 10.1186/s13071-023-05710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Mosquito and human behaviour interaction is a key determinant of the maximum level of protection against malaria that can be provided by insecticide-treated nets (ITNs). Nevertheless, scant literature focuses on this interaction, overlooking a fundamental factor for efficient malaria control. This study aims to estimate malaria transmission risk in a Burkina Faso village by integrating vector biting rhythms with some key information about human habits. METHODS Indoor/outdoor human landing catches were conducted for 16 h (16:00-08:00) during 8 nights (September 2020) in Goden village. A survey about net usage and sleeping patterns was submitted to half the households (October-December 2020). A subsample of collected specimens of Anopheles gambiae sensu lato was molecularly processed for species identification, Plasmodium detection from heads-thoraxes and L1014F pyrethroid-resistance allele genotyping. Hourly mosquito abundance was statistically assessed by GLM/GAM, and the entomological inoculation rate (EIR) was corrected for the actual ITN usage retrieved from the questionnaire. RESULTS Malaria transmission was mainly driven by Anopheles coluzzii (68.7%) followed by A. arabiensis (26.2%). The overall sporozoite rate was 2% with L1014F estimated frequency of 0.68 (N = 1070 out of 15,201 A. gambiae s.l. collected). No major shift in mosquito biting rhythms in response to ITN or differences between indoor and outdoor catches were detected. Impressive high biting pressure (mean 30.3 mosquitoes/person/hour) was exerted from 20:00 to 06:00 with a peak at 4:00. Human survey revealed that nearly all inhabitants were awake before 20:00 and after 7:00 and at least 8.7% had no access to bednets. Adjusting for anthropological data, the EIR dropped from 6.7 to 1.2 infective bites/person/16 h. In a scenario of full net coverage and accounting only for the human sleeping patterns, the daily malaria transmission risk not targetable by ITNs was 0.69 infective bites. CONCLUSIONS The high mosquito densities and interplay between human/vector activities means that an estimated 10% of residual malaria transmission cannot be prevented by ITNs in the village. Locally tailored studies, like the current one, are essential to explore the heterogeneity of human exposure to infective bites and, consequently, to instruct the adoption of new vector control tools strengthening individual and community protection.
Collapse
Affiliation(s)
- Eleonora Perugini
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Federica Guglielmo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Cristiana Poggi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Eugenio Gabrieli
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Marco Pombi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.
| |
Collapse
|
11
|
Tan S, Li G, Guo H, Li H, Tian M, Liu Q, Wang Y, Xu B, Guo X. Identification of the cuticle protein AccCPR2 gene in Apis cerana cerana and its response to environmental stress. INSECT MOLECULAR BIOLOGY 2022; 31:634-646. [PMID: 35619242 DOI: 10.1111/imb.12792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Cuticular proteins (CPs) are known to play important roles in insect development and defence responses. The loss of CP genes can lead to changes in insect morphology and sensitivity to the external environment. In this study, we identified the AccCPR2 gene, which belongs to the CPR family (including the R&R consensus motif) of CPs, and explored its function in the response of Apis cerana cerana to adverse external stresses. Our results demonstrated that AccCPR2 was highly expressed in the late pupal stage and epidermis, and the expression of AccCPR2 may be induced or inhibited under different stressors. RNA interference experiments showed that knockdown of AccCPR2 reduced the activity of antioxidant enzymes, led to the accumulation of oxidative damage and suppressed the expression of several antioxidant genes. In addition, knockdown of AccCPR2 also reduced the pesticide resistance of A. cerana cerana. The overexpression of AccCPR2 in a prokaryotic system further confirmed its role in resistance to various stresses. In summary, AccCPR2 may play pivotal roles in the normal development and environmental stress response of A. cerana cerana. This study also enriched the theoretical knowledge of the resistance biology of bees.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu, P. R. China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ming Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| |
Collapse
|
12
|
Zoh MG, Tutagata J, Fodjo BK, Mouhamadou CS, Sadia CG, McBeath J, Schmitt F, Horstmann S, David JP, Reynaud S. Exposure of Anopheles gambiae larvae to a sub-lethal dose of an agrochemical mixture induces tolerance to adulticides used in vector control management. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106181. [PMID: 35504174 DOI: 10.1016/j.aquatox.2022.106181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The heavy use of pesticides in agricultural areas often leads to the contamination of nearby mosquito larvae breeding sites. Exposure to complex mixtures of agrochemicals can affect the insecticide sensitivity of mosquito larvae. Our study objective was to determine whether agrochemical residues in Anopheline larval breeding sites can affect the tolerance of adults to commonly used adulticides. We focussed on Fludora® Fusion, a vector control insecticide formulation combining two insecticides (deltamethrin and clothianidin) with different modes of action. An. gambiae larvae were exposed to a sub-lethal dose of a mixture of agrochemical pesticides used in a highly active agricultural area on the Ivory Coast. Comparative bioassays with Fludora Fusion mixture and its two insecticide components (deltamethrin and clothianidin) were carried out between adult mosquitoes exposed or not to the agrochemicals at the larval stage. A transcriptomic analysis using RNA sequencing was then performed on larvae and adults to study the molecular mechanisms underlying the phenotypic changes observed. Bioassays revealed a significantly increased tolerance of adult females to clothianidin (2.5-fold) and Fludora Fusion mixture (2.2-fold) following larval exposure to agrochemicals. Significantly increased tolerance to deltamethrin was not observed suggesting that insecticide exposure affects the adult efficacy of the Fludora Fusion mixture mainly through mechanisms acting on clothianidin. Transcriptomic analysis revealed the potential of agrochemicals to induce various resistance mechanisms including cuticle proteins, detoxification action and altered insecticide sequestration. These results suggest that although the Fludora Fusion mixture is effective for adult vector control, its efficacy may be locally affected by the ecological context. The present study also suggests that, although the complex interactions between the use of agrochemicals and vector control insecticides are difficult to decipher in the field, they still must be considered in the context of insecticide resistance management programmes.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Jordan Tutagata
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Behi K Fodjo
- Centre Suisse de la Recherche Scientifique en Côte d'Ivoire, Côte d'Ivoire
| | | | | | | | | | | | - Jean-Philippe David
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| |
Collapse
|
13
|
Musiba RM, Tarimo BB, Monroe A, Msaky D, Ngowo H, Mihayo K, Limwagu A, Chilla GT, Shubis GK, Ibrahim A, Greer G, Mcha JH, Haji KA, Abbas FB, Ali A, Okumu FO, Kiware SS. Outdoor biting and pyrethroid resistance as potential drivers of persistent malaria transmission in Zanzibar. Malar J 2022; 21:172. [PMID: 35672768 PMCID: PMC9171934 DOI: 10.1186/s12936-022-04200-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Low-level of malaria transmission persist in Zanzibar despite high coverage of core vector control interventions. This study was carried out in hot-spot sites to better understand entomological factors that may contribute to residual malaria transmission in Zanzibar. METHODS A total of 135 households were randomly selected from six sites and consented to participate with 20-25 households per site. Mosquito vector surveillance was carried out indoors and outdoors from 6:00 pm-7:00 am using miniaturized double net trap (DN-Mini™). Additional collections were done indoors using mouth aspirators to retrieve resting mosquitoes from wall and ceiling surfaces, and outdoors using resting bucket and pit traps. All collected mosquitoes were morphologically and genetically (PCR) analysed in the laboratory. All collected anopheline and blood-fed mosquitoes were analysed for sporozoite infection and blood meal host preferences by Circumsporozoite Protein ELISA and blood meal ELISA, respectively. The differences between indoor and outdoor mosquito biting rates were analysed using generalized linear mixed models. Levels of resistance to commonly used insecticides were quantified by WHO susceptibility tests. RESULTS Out of 704 malaria vectors collected across 135 households, PCR analysis shows that 98.60% were Anopheles arabiensis, 0.6% Anopheles merus and 0.6% Anopheles gambiae sensu stricto. Sporozoite ELISA analysis indicates that all mosquitoes were negative for the malaria parasite. The results show that more An. arabiensis were collected outdoor (~ 85%) compared to indoor (~ 15%). Furthermore, large numbers of An. arabiensis were caught in outdoor resting sites, where the pit trap (67.2%) collected more mosquitoes compared to the outdoor DN-Mini trap (32.8%). Nearly two-thirds (60.7%) of blood-fed mosquitoes had obtained blood meals from non-human hosts. Mosquitoes displayed non-uniform susceptibility status and resistance intensity among the tested insecticides across the study sites to all WHO recommended insecticides across the study sites. CONCLUSION This study suggests that in contexts such as Zanzibar, testing of novel techniques to complement indoor protection and targeting outdoor biting and/or resting mosquitoes, may be warranted to complement existing interventions and contribute to malaria elimination efforts. The study highlights the need to implement novel interventions and/or adaptations of strategies that can target outdoors biting mosquitoes.
Collapse
Affiliation(s)
| | | | - April Monroe
- PMI VectorWorks Project, Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | | | - Halfan Ngowo
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Alex Limwagu
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | | | | | - George Greer
- US President's Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, Tanzania
| | - Juma H Mcha
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania
| | - Khamis A Haji
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania
| | - Faiza B Abbas
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania
| | | | - Samson S Kiware
- Ifakara Health Institute, Dar es Salaam, Tanzania
- Pan African Mosquito Control Association (PAMCA), Nairobi, Kenya
| |
Collapse
|
14
|
Machani MG, Ochomo E, Amimo F, Mukabana WR, Githeko AK, Yan G, Afrane YA. Behavioral responses of pyrethroid resistant and susceptible Anopheles gambiae mosquitoes to insecticide treated bed net. PLoS One 2022; 17:e0266420. [PMID: 35390050 PMCID: PMC8989192 DOI: 10.1371/journal.pone.0266420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background Long-lasting insecticidal nets are an effective tool in reducing malaria transmission. However, with increasing insecticide resistance little is known about how physiologically resistant malaria vectors behave around a human-occupied bed net, despite their importance in malaria transmission. We used the Mbita bednet trap to assess the host-seeking behavior of insecticide-resistant Anopheles gambiae mosquitoes under semi-field conditions. The trap incorporates a mosquito netting panel which acts as a mechanical barrier that prevents host-seeking mosquitoes from reaching the human host baiting the trap. Methods Susceptible and pyrethroid-resistant colonies of female Anopheles gambiae mosquitoes aged 3–5 days old were used in this study. The laboratory-bred mosquitoes were color-marked with fluorescent powders and released inside a semi-field environment where a human subject slept inside a bednet trap erected in a traditional African hut. The netting panel inside the trap was either untreated (control) or deltamethrin-impregnated. The mosquitoes were released outside the hut. Only female mosquitoes were used. A window exit trap was installed on the hut to catch mosquitoes exiting the hut. A prokopack aspirator was used to collect indoor and outdoor resting mosquitoes. In addition, clay pots were placed outside the hut to collect outdoor resting mosquitoes. The F1 progeny of wild-caught mosquitoes were also used in these experiments. Results The mean number of resistant mosquitoes trapped in the deltamethrin-impregnated bed net trap was higher (mean = 50.21± 3.7) compared to susceptible counterparts (mean + 22.4 ± 1.31) (OR = 1.445; P<0.001). More susceptible mosquitoes were trapped in an untreated (mean = 51.9 ± 3.6) compared to a deltamethrin-treated bed net trap (mean = 22.4 ± 1.3) (OR = 2.65; P<0.001). Resistant mosquitoes were less likely to exit the house when a treated bed net was present compared to the susceptible mosquitoes. The number of susceptible mosquitoes caught resting outdoors (mean + 28.6 ± 2.22) when a treated bed net was hanged was higher than when untreated bednet was present inside the hut (mean = 4.6 ± 0.74). The susceptible females were 2.3 times more likely to stay outdoors away from the treated bed net (OR = 2.25; 95% CI = [1.7–2.9]; P<0.001). Conclusion The results show that deltamethrin-treatment of netting panels inside the bednet trap did not alter the host-seeking behavior of insecticide-resistant female An. gambiae mosquitoes. On the contrary, susceptible females exited the hut and remained outdoors when a treated net was used. However, further investigations of the behavior of resistant mosquitoes under natural conditions should be undertaken to confirm these observations and improve the current intervention which are threatened by insecticide resistance and altered vector behavior.
Collapse
Affiliation(s)
- Maxwell G. Machani
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Kisumu, Kenya
- * E-mail: (MGM); (YAA)
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Fred Amimo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Kisumu, Kenya
| | - Wolfgang R. Mukabana
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Science for Health Society, Nairobi, Kenya
| | - Andrew K. Githeko
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- * E-mail: (MGM); (YAA)
| |
Collapse
|
15
|
Dye-Braumuller KC, Gordon JR, McCoy K, Johnson D, Dinglasan R, Nolan MS. Riding the Wave: Reactive Vector-Borne Disease Policy Renders the United States Vulnerable to Outbreaks and Insecticide Resistance. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:401-411. [PMID: 35064260 PMCID: PMC8924968 DOI: 10.1093/jme/tjab219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 06/14/2023]
Abstract
Funding for vector-borne disease surveillance, management, and research is cyclical and reactive in the United States. The subsequent effects have yielded gross inequities nationally that unintentionally support recurrent outbreaks. This policy forum is comprised of four primary subsections that collectively identify specific areas for improvement and offer innovative solutions to address national inadequacies in vector borne disease policy and infrastructure.
Collapse
Affiliation(s)
| | | | - Kaci McCoy
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, FL, USA
- University of Florida Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, Gainesville, FL, USA
| | - Danielle Johnson
- Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Rhoel Dinglasan
- CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, FL, USA
- University of Florida Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, Gainesville, FL, USA
| | - Melissa S Nolan
- Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
16
|
Omotayo AI, Ande AT, Oduola AO, Adelaja OJ, Adesalu O, Jimoh TR, Ghazali AI, Awolola ST. Multiple insecticide resistance mechanisms in urban population of Anopheles coluzzii (Diptera: culicidae) from Lagos, South-West Nigeria. Acta Trop 2022; 227:106291. [PMID: 34958768 DOI: 10.1016/j.actatropica.2021.106291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/01/2022]
Abstract
Malaria is a major public health challenge in Africa with Nigeria accounting for the highest burden of the disease in the world. Vector control has proved to be a highly effective component of malaria control, however, the development and spread of insecticide resistance in major vectors of malaria have been a major challenge. This study assessed resistance mechanisms in Anopheles coluzzii populations from Kosofe, Lagos mainland and Ojo Local Government Areas in Lagos, Nigeria where An. gambiae s.l is resistant to DDT and Permethrin. WHO susceptibility bioassay test was used in determining resistance status of An. coluzzii to discriminating doses of DDT and Permethrin while synergist assay was used to assess the involvement of monooxygenases in resistance development. Sub-species of An. gambiae s.l (An. gambiae and An. coluzzii) were identified using polymerase chain reaction (PCR) and Restriction Fragment Length Polymorphism (PCR-RFLP) while Allele-Specific Polymerase Chain Reaction (AS-PCR) assay was used to detect knockdown mutation (kdr-West; L1014F). Biochemical assays were used in determining the activities of metabolic enzymes. High DDT resistance was recorded in An. coluzzii populations from the three sites. Mortality rate of mosquitoes exposed confirmed Permethrin resistance in Kosofe (50%) and Lagos mainland (48%) but resistance was suspected in Ojo (96%). All specimens tested were confirmed as An. coluzzii with low kdr frequency; 11.6%, 16.4% and 6.7% in Kosofe, Lagos mainland and Ojo respectively. Pre-exposure to synergist (PBO) before exposure to Permethrin led to increased mortality in all populations. Esterase activity was insignificantly overexpressed in Kosofe (p = 0.849) and Lagos mainland (p = 0.229) populations. In contrast, GST activity was significantly lower in populations from Lagos mainland (63.650 ± 9.861; p = 0.007) and Ojo (91.765 ± 4.959; p = 0.042) than Kisumu susceptible strains (120.250 ± 13.972). Monooxygenase activity was higher in Lagos mainland (2.371 ± 0.261) and Ojo (1.361 ± 0.067) populations, albeit significantly in Lagos mainland (p = 0.007) only. Presence of target-site mutation in all populations, increased mortality with pre-exposure to PBO and elevated monooxygenase in Lagos mainland population were confirmed. Multiple resistance mechanisms in some urban populations of An. coluzzii from Lagos, Nigeria calls for appropriate resistance management strategies.
Collapse
|
17
|
Morgan J, Salcedo-Sora JE, Triana-Chavez O, Strode C. Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:192-212. [PMID: 34718656 PMCID: PMC8755997 DOI: 10.1093/jme/tjab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/08/2023]
Abstract
Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Ormskirk, UK
| | - J Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Omar Triana-Chavez
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of Antioquia, Medellín, Colombia
| | - Clare Strode
- Department of Biology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
18
|
Genomic and Transcriptomic Analysis Reveals Cuticular Protein Genes Responding to Different Insecticides in Fall Armyworm Spodoptera frugiperda. INSECTS 2021; 12:insects12110997. [PMID: 34821798 PMCID: PMC8622913 DOI: 10.3390/insects12110997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a serious pest of crucial crops causing great threats to the food security of the world. It has evolved resistance to various insecticides, while the underlying molecular mechanisms remain largely unknown. Cuticular proteins (CPs), as primary components in cuticle, play an important role in insects' protection against environmental stresses. Few of them have been documented as participating in insecticide resistance in several insect species. In order to explore whether CP genes of the FAW exhibit a functional role in responding to insecticides stress, a total of 206 CPs, classified into eight families, were identified from the genome of the FAW through a homology-based approach coupled with manual efforts. The temporal expression profiles of all identified CP genes across developmental stages and their responses to 23 different insecticides were analyzed using the RNA-seq data. Expression profiling indicated that most of the CP genes displayed stage-specific expression patterns. It was found that the expression of 51 CP genes significantly changed after 48 h exposure to 17 different insecticides. The expression of eight CP genes responding to four insecticides were confirmed by RT-PCR analysis. The results showed that their overall expression profiles were consistent with RNA-seq analysis. The findings provide a basis for further functional investigation of CPs implied in insecticide stress in FAW.
Collapse
|
19
|
Chen EH, Hou QL. Identification and expression analysis of cuticular protein genes in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104943. [PMID: 34446209 DOI: 10.1016/j.pestbp.2021.104943] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Structural cuticular proteins (CPs) are major components of the insect cuticle, and they play critical roles in insect development and insecticide resistance. Here, a total of 196 CP genes were successfully annotated in the Plutella xylostella genome. On the basis of motif analysis, these CPs were classified into 10 different families, including 122 CPR, 12 CPAP1, 8 CPAP3, 9 CPLCP, 2 Tweedle, 1 CPF, 1 CPFL, 1 CPCFC, 17 CPG and 2 18 aa proteins, and the remaining 21 unclassified CPs were classed as cuticular proteins hypothetical (CPH). A phylogenetic analysis of CPs from different insects revealed species-specific clades of RR-1 and RR-2 genes, suggesting that CP gene duplication might occur independently among insect taxa, while we also found that some other CPs (such as CPAP1 and CPAP3) had a closer relationship based on their conserved domain architecture. Using available RNAseq libraries, the expression profiles of the CPs were analyzed over the four developmental stages of the insect (i.e., egg, larva, pupa, and adult), revealing stage-specific expression patterns for the CPs. In a chlorpyrifos resistant strain, 18 CP genes were found to be more than two-fold upregulated compared to the susceptible control strain, and qRT-PCR analysis showed that these CP genes were overexpressed after exposure to chlorpyrifos, suggesting a potential role in the molecular mechanism of insecticide resistance in P. xylostella. This study provides the tools and molecular basis to study the role of CPs in the post-embryonal development and the mechanisms of insecticide resistance of P. xylostella.
Collapse
Affiliation(s)
- Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Qiu-Li Hou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
20
|
Zhang C, Shi Q, Li T, Cheng P, Guo X, Song X, Gong M. Comparative proteomics reveals mechanisms that underlie insecticide resistance in Culex pipiens pallens Coquillett. PLoS Negl Trop Dis 2021; 15:e0009237. [PMID: 33764997 PMCID: PMC7993597 DOI: 10.1371/journal.pntd.0009237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
Mosquito control based on chemical insecticides is considered as an important element of the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of insecticide resistance of important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. In contrast to target site resistance, other mechanisms are far from being fully understood. Global protein profiles among cypermethrin-resistant, propoxur-resistant, dimethyl-dichloro-vinyl-phosphate-resistant and susceptible strain of Culex pipiens pallens were obtained and proteomic differences were evaluated by using isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography/tandem mass spectrometric analysis. A susceptible strain of Culex pipiens pallens showed elevated resistance levels after 25 generations of insecticide selection, through iTRAQ data analysis detected 2,502 proteins, of which 1,513 were differentially expressed in insecticide-selected strains compared to the susceptible strain. Finally, midgut differential protein expression profiles were analyzed, and 62 proteins were selected for verification of differential expression using iTRAQ and parallel reaction monitoring strategy, respectively. iTRAQ profiles of adaptation selection to three insecticide strains combined with midgut profiles revealed that multiple insecticide resistance mechanisms operate simultaneously in resistant insects of Culex pipiens pallens. Significant molecular resources were developed for Culex pipiens pallens, potential candidates were involved in metabolic resistance and reducing penetration or sequestering insecticide. Future research that is targeted towards RNA interference of the identified metabolic targets, such as cuticular proteins, cytochrome P450s, glutathione S-transferases and ribosomal proteins proteins and biological pathways (drug metabolism—cytochrome P450, metabolism of xenobiotics by cytochrome P450, oxidative phosphorylation, ribosome) could lay the foundation for a better understanding of the genetic basis of insecticide resistance in Culex pipiens pallens. Global protein profiles were compared among a susceptible strain of Cx. pipiens pallens and strains that were cypermethrin-resistant, propoxur-resistant, and dimethyl-dichloro-vinyl-phosphate-resistant after 25 generations of selection by distinct chemical insecticide families, multiple mechanisms were found to operate simultaneously in resistant mosquitoes of Cx. pipiens pallens, including mechanisms to lower penetration of or sequester the insecticide or to increase biodegradation of the insecticide via subtle alterations in either the cuticular protein levels or the activities of detoxification enzymes (P450s and glutathione S-transferases).
Collapse
Affiliation(s)
- Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
- * E-mail: (ZCX); (GMQ)
| | - Qiqi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Tao Li
- Nanning MHelixProTech Co., Ltd., Nanning Hi-tech Zone Bioengineering Center, Nanning, P.R. China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Xiao Song
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
- * E-mail: (ZCX); (GMQ)
| |
Collapse
|
21
|
Muhammad A, Ibrahim SS, Mukhtar MM, Irving H, Abajue MC, Edith NMA, Da’u SS, Paine MJI, Wondji CS. High pyrethroid/DDT resistance in major malaria vector Anopheles coluzzii from Niger-Delta of Nigeria is probably driven by metabolic resistance mechanisms. PLoS One 2021; 16:e0247944. [PMID: 33705436 PMCID: PMC7951933 DOI: 10.1371/journal.pone.0247944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Entomological surveillance of local malaria vector populations is an important component of vector control and resistance management. In this study, the resistance profile and its possible mechanisms was characterised in a field population of the major malaria vector Anopheles coluzzii from Port Harcourt, the capital of Rivers state, in the Niger-Delta Region of Nigeria. Larvae collected in Port-Harcourt, were reared to adulthood and used for WHO bioassays. The population exhibited high resistance to permethrin, deltamethrin and DDT with mortalities of 6.7% ± 2.4, 37.5% ± 3.2 and 6.3% ± 4.1, respectively, but were fully susceptible to bendiocarb and malathion. Synergist bioassays with piperonylbutoxide (PBO) partially recovered susceptibility, with mortalities increasing to 53% ± 4, indicating probable role of CYP450s in permethrin resistance (χ2 = 29.48, P < 0.0001). Transcriptional profiling revealed five major resistance-associated genes overexpressed in the field samples compared to the fully susceptible laboratory colony, Ngoussou. Highest fold change (FC) was observed with GSTe2 (FC = 3.3 in permethrin exposed and 6.2 in unexposed) and CYP6Z3 (FC = 1.4 in exposed and 4.6 in unexposed). TaqMan genotyping of 32 F0 females detected the 1014F and 1575Y knockdown resistance (kdr) mutations with frequencies of 0.84 and 0.1, respectively, while 1014S mutation was not detected. Sequencing of a fragment of the voltage-gated sodium channel, spanning exon 20 from 13 deltamethrin-resistant and 9 susceptible females revealed only 2 distinct haplotypes with a low haplotype diversity of 0.33. The findings of high pyrethroid resistance but with a significant degree of recovery after PBO synergist assay suggests the need to move to PBO-based nets. This could be complemented with carbamate- or organophosphate-based indoor residual spraying in this area.
Collapse
Affiliation(s)
- Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Sulaiman S. Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- Department of Biochemistry, Bayero University, Kano, Nigeria
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | | | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Maduamaka C. Abajue
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Noutcha M. A. Edith
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Sabitu S. Da’u
- Department of Science, School of Continuing Education, Bayero University, Kano, Nigeria
| | - Mark J. I. Paine
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| |
Collapse
|
22
|
Chen EH, Duan JY, Song W, Wang DX, Tang PA. RNA-seq Analysis Reveals Mitochondrial and Cuticular Protein Genes Are Associated with Phosphine Resistance in the Rusty Grain Beetle (Coleoptera:Laemophloeidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:440-453. [PMID: 33346362 DOI: 10.1093/jee/toaa273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Indexed: 06/12/2023]
Abstract
The rusty grain beetle, Cryptolestes ferrugineus (Stephens), is a serious pest of stored grain, which has developed high levels of resistance to phosphine. In this study, five geographically distant populations of C. ferrugineus had been collected in China, specifically in granaries where phosphine fumigant is used for pest control, and they showed a high resistance ratio up to 1,907 (LC50 = 21.0 mg/liter). Then, a reference transcriptome was constructed to use as a basis for investigating the molecular mechanisms of phosphine resistance in this species, which consisted of 47,006 unigenes with a mean length of 1,090. Subsequently, the RNA-Seq analysis of individuals from the most susceptible and resistant populations led to the identification of 54 genes that are differentially expressed. GO and KEGG analysis demonstrated that genes associated with mitochondrial and respiration functions were significantly enriched. Also, the 'structural constituent of cuticle' term was annotated in the GO enrichment analysis and further qRT-PCR confirmed that the expression levels of nine cuticular protein genes were significantly increased in the resistant population. In conclusion, we present here a transcriptome-wide overview of gene expression changes between resistant and susceptible populations of C. ferrugineus, and this in turn documents that mitochondria and cuticular protein genes may play together a crucial role in phosphine resistance. Further gene function analysis should enable the provision of advice to expedite resistance management decisions.
Collapse
Affiliation(s)
- Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Jin-Yan Duan
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Wei Song
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Dian-Xuan Wang
- Collaborative Innovation Center of Grain Storage Security, Zhengzhou, Henan, China
| | - Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Gueye OK, Tchouakui M, Dia AK, Faye MB, Ahmed AA, Wondji MJ, Nguiffo DN, J. Mugenzi LM, Tripet F, Konaté L, Diabate A, Dia I, Gaye O, Faye O, Niang EHA, S. Wondji C. Insecticide Resistance Profiling of Anopheles coluzzii and Anopheles gambiae Populations in the Southern Senegal: Role of Target Sites and Metabolic Resistance Mechanisms. Genes (Basel) 2020; 11:E1403. [PMID: 33255805 PMCID: PMC7760107 DOI: 10.3390/genes11121403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
The emergence and spread of insecticide resistance among the main malaria vectors is threatening the effectiveness of vector control interventions in Senegal. The main drivers of this resistance in the Anopheles gambiae complex (e.g., An. gambiae and Anopheles coluzzii) remains poorly characterized in Senegal. Here we characterized the main target site and metabolic resistances mechanisms among the An. gambiae and An. coluzzii populations from their sympatric and allopatric or predominance area in Senegal. Larvae and pupae of An. gambiae s.l. were collected, reared to adulthood, and then used for insecticides susceptibility and synergist assays using the WHO (World Health Organisation) test kits for adult mosquitoes. The TaqMan method was used for the molecular characterization of the main target site insecticide resistance mechanisms (Vgsc-1014F, Vgsc-1014S, N1575Y and G119S). A RT-qPCR (Reverse Transcriptase-quantitative Polymerase Chaine Reaction) was performed to estimate the level of genes expression belonging to the CYP450 (Cytochrome P450) family. Plasmodium infection rate was investigated using TaqMan method. High levels of resistance to pyrethroids and DDT and full susceptibility to organophosphates and carbamates where observed in all three sites, excepted a probable resistance to bendiocarb in Kedougou. The L1014F, L1014S, and N1575Y mutations were found in both species. Pre-exposure to the PBO (Piperonyl butoxide) synergist induced a partial recovery of susceptibility to permethrin and full recovery to deltamethrin. Subsequent analysis of the level of genes expression, revealed that the CYP6Z1 and CYP6Z2 genes were over-expressed in wild-resistant mosquitoes compared to the reference susceptible strain (Kisumu), suggesting that both the metabolic resistance and target site mutation involving kdr mutations are likely implicated in this pyrethroid resistance. The presence of both target-site and metabolic resistance mechanisms in highly pyrethroid-resistant populations of An. gambiae s.l. from Senegal threatens the effectiveness and the sustainability of the pyrethroid-based tools and interventions currently deployed in the country. The Kdr-west mutation is widely widespread in An. coluzzii sympatric population. PBO or Duo nets and IRS (Indoor Residual Spraying) with organophosphates could be used as an alternative measure to sustain malaria control in the study area.
Collapse
Affiliation(s)
- Oumou. K. Gueye
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), Yaounde BP 13591, Cameroon; (M.T.); (M.J.W.); (D.N.N.); (L.M.J.M.)
| | - Abdoulaye K. Dia
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Mouhamed B. Faye
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Amblat A. Ahmed
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Murielle J. Wondji
- Centre for Research in Infectious Diseases (CRID), Yaounde BP 13591, Cameroon; (M.T.); (M.J.W.); (D.N.N.); (L.M.J.M.)
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Daniel N. Nguiffo
- Centre for Research in Infectious Diseases (CRID), Yaounde BP 13591, Cameroon; (M.T.); (M.J.W.); (D.N.N.); (L.M.J.M.)
| | - Leon. M. J. Mugenzi
- Centre for Research in Infectious Diseases (CRID), Yaounde BP 13591, Cameroon; (M.T.); (M.J.W.); (D.N.N.); (L.M.J.M.)
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK;
| | - Lassana Konaté
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Abdoulaye Diabate
- Centre Muraz/Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso BP 545, Burkina Faso;
| | - Ibrahima Dia
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal;
| | - Oumar Gaye
- Service de Parasitologie-Mycologie, Faculté de Médecine, Pharmacie et d’Odontologie, Université Cheikh Anta Diop, Dakar BP 5005, Senegal;
| | - Ousmane Faye
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - El Hadji A. Niang
- Laboratoire d’Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar BP 5005, Senegal; (A.K.D.); (M.B.F.); (A.A.A.); (L.K.); (O.F.); (E.H.A.N.)
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases (CRID), Yaounde BP 13591, Cameroon; (M.T.); (M.J.W.); (D.N.N.); (L.M.J.M.)
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
24
|
Diouf EH, Niang EHA, Samb B, Diagne CT, Diouf M, Konaté A, Dia I, Faye O, Konaté L. Multiple insecticide resistance target sites in adult field strains of An. gambiae (s.l.) from southeastern Senegal. Parasit Vectors 2020; 13:567. [PMID: 33176872 PMCID: PMC7661151 DOI: 10.1186/s13071-020-04437-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND High coverage of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of vector control strategy in Senegal where insecticide resistance by the target vectors species is a great of concern. This study explores insecticide susceptibility profile and target-site mutations mechanisms within the Anopheles gambiae complex in southeastern Senegal. METHODS Larvae of Anopheles spp. were collected in two sites from southeastern Senegal Kedougou and Wassadou/Badi in October and November 2014, and reared until adult emergence. Wild F0 adult mosquitoes were morphologically identified to species. Susceptibility of 3-5-day-old An. gambiae (s.l.) samples to 11 insecticides belonging to the four insecticide classes was assessed using the WHO insecticide susceptibility bioassays. Tested samples were identified using molecular techniques and insecticide resistance target-site mutations (kdr, ace-1 and rdl) were determined. RESULTS A total of 3742 An. gambiae (s.l.) were exposed to insecticides (2439 from Kedougou and 1303 from Wassadou-Badi). Tests with pyrethroid insecticides and DDT showed high level of resistance in both Kedougou and Wassadou/Badi. Resistance to pirimiphos-methyl and malathion was not detected while resistance to bendoicarb and fenitrothion was confirmed in Kedougou. Of the 745 specimens of An. gambiae (s.l.) genotyped, An. gambiae (s.s.) (71.6%) was the predominant species, followed by An. arabiensis (21.7%), An. coluzzii (6.3%) and hybrids (An. gambiae (s.s.)/An. coluzzii; 0.4%). All target site mutations investigated (Vgsc-1014F, Vgsc-1014S, Ace-1 and Rdl) were found at different frequencies in the species of the Anopheles gambiae complex. Vgsc-1014F mutation was more frequent in An. gambiae (s.s.) and An. coluzzii than An. arabiensis. Vgsc-1014S was present in An. gambiae (s.l.) populations in Wassadou but not in Kedougou. Ace-1 and rdl mutations were more frequent in An. gambiae (s.s.) in comparison to An. arabiensis and An. coluzzii. CONCLUSIONS Resistance to all the four insecticide classes tested was detected in southeastern Senegal as well as all target site mutations investigated were found. Data will be used by the national Malaria Control Programme.
Collapse
Affiliation(s)
- El hadji Diouf
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - El hadji Amadou Niang
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Badara Samb
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Mbaye Diouf
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Abdoulaye Konaté
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Ousmane Faye
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Lassana Konaté
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| |
Collapse
|
25
|
Nkahe DL, Kopya E, Djiappi-Tchamen B, Toussile W, Sonhafouo-Chiana N, Kekeunou S, Mimpfoundi R, Awono-Ambene P, Wondji CS, Antonio-Nkondjio C. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res 2020; 5:171. [PMID: 33029560 PMCID: PMC7525343 DOI: 10.12688/wellcomeopenres.16039.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated. Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results: Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F- kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.
Collapse
Affiliation(s)
- Diane Leslie Nkahe
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Borel Djiappi-Tchamen
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | | | - Nadege Sonhafouo-Chiana
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Sevilor Kekeunou
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Remy Mimpfoundi
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | | | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
26
|
NGONGHALA CALISTUSN, WAIRIMU JOSEPHINE, ADAMSKI JESSE, DESAI HARDIK. IMPACT OF ADAPTIVE MOSQUITO BEHAVIOR AND INSECTICIDE-TREATED NETS ON MALARIA PREVALENCE. J BIOL SYST 2020. [DOI: 10.1142/s0218339020400100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Malaria prevalence in sub-Saharan Africa remains high. Kenya for example, records about 3.5 million new cases and 11 thousand deaths each year.1 Most of these cases and deaths are among children under five. The main control method in malaria endemic regions has been through the use of insecticide-treated nets (ITNs). Although this approach has been fairly successful, the gains are threatened by mosquito-resistance to pyrethroids (insecticides on nets), physical and chemical degradation of ITNs that reduce their efficacy, inconsistent and improper use by humans, etc. We present a model to investigate the effects of ITN use and mosquito-resistance and adaptation to pyrethroids used to treat bed nets on malaria prevalence and control in malaria endemic regions. The model captures the development and loss of resistance to insecticides, the effects of ITN use on malaria control in a setting where proper and consistent use is not guaranteed, as well as differentiated biting of human hosts by resistant and sensitive mosquitoes. Important thresholds, including the basic reproduction number [Formula: see text], and two parameter groupings that are important for disease control and for establishing the existence of endemic equilibria to the model are calculated. Furthermore, a global sensitivity analysis is carried out to identify important parameters such as insecticide treated bed-net coverage, ITN, the maximum biting rate of resistant mosquitoes, etc., that drive the system and that can be targeted for disease control. Threshold levels of ITN coverage and ITN efficacy required for containing the disease are identified and shown to depend on the type of insecticide-resistance. For example, when mosquito-resistance to insecticides is not permanent and is acquired only through recruitment and the efficacy of ITNs is [Formula: see text], about [Formula: see text] net coverage is required to contain malaria. However, for the same ITN efficacy, i.e., [Formula: see text], approximately [Formula: see text] net coverage is required to contain the disease when resistance to insecticides is permanent and is acquired through recruitment and mutation in mosquitoes. The model exhibits a backward bifurcation, which implies that simply reducing [Formula: see text] slightly below unity might not be enough to contain the disease. We conclude that appropriate measures to reduce or eliminate mosquito-resistance to insecticides, ensure that more people in endemic areas own and use ITNs properly, and that the efficacy of these nets remain high most of the time, as well as educating populations in malaria endemic areas on how to keep mosquito densities low and minimize mosquito bites are important for containing malaria.
Collapse
Affiliation(s)
- CALISTUS N. NGONGHALA
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA
| | | | - JESSE ADAMSKI
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| | - HARDIK DESAI
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
27
|
Nkahe DL, Kopya E, Djiappi-Tchamen B, Toussile W, Sonhafouo-Chiana N, Kekeunou S, Mimpfoundi R, Awono-Ambene P, Wondji CS, Antonio-Nkondjio C. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res 2020; 5:171. [PMID: 33029560 PMCID: PMC7525343 DOI: 10.12688/wellcomeopenres.16039.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 08/03/2024] Open
Abstract
Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated. Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results: Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F- kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.
Collapse
Affiliation(s)
- Diane Leslie Nkahe
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Borel Djiappi-Tchamen
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | | | - Nadege Sonhafouo-Chiana
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Sevilor Kekeunou
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Remy Mimpfoundi
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | | | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
28
|
Fagbohun IK, Idowu ET, Otubanjo OA, Awolola TS. First report of AChE1 (G119S) mutation and multiple resistance mechanisms in Anopheles gambiae s.s. in Nigeria. Sci Rep 2020; 10:7482. [PMID: 32366848 PMCID: PMC7198501 DOI: 10.1038/s41598-020-64412-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
Susceptibility and PBO synergist bioassays were done using 3-5 days old female Anopheles mosquito collected from Lagos State, Nigeria with WHO test papers DDT (4%), permethrin (0.75%), Bendiocarb (1%) and PBO (4%) according to standard procedures. The activities of cytochrome P450s, glutathione S-transferase and carboxylesterases were determined using biochemical assays. The presence of kdr-w, kdr-e and Ace-1R mutations were examined using molecular assays. Resistance to DDT and permethrin in An gambiae s.s from the four Local Government Areas (LGAs) was recorded while suspected resistance to bendiocarb was recorded in mosquitoes from Alimosho and Kosofe LGAs. PBO synergist reduced the knockdown time and also recorded significantly (P < 0.05) higher 24 hrs percentage mortality compared to non-synergized bioassays. Increased activities of detoxifying enzymes was recorded in wild mosquito compared to the insecticides susceptible laboratory strain and this was significant (P < 0.05) in P450s, esterase α and β. Kdr-w was detected in An. gambiae s.s from all the LGAs, kdr-e (L1014S) was detected in Alimosho, Kosofe and Ibeju-Lekki, while the Ace-1R gene was detected in Alimosho and Kosofe. Results from this study provide evidence for resistance of An. gambiae from Lagos State to multiple classes of neurotoxic insecticides with multiple resistance mechanisms to these insecticides.
Collapse
|
29
|
Chukwuekezie O, Nwosu E, Nwangwu U, Dogunro F, Onwude C, Agashi N, Ezihe E, Anioke C, Anokwu S, Eloy E, Attah P, Orizu F, Ewo S, Okoronkwo A, Joseph A, Ikeakor I, Haruna S, Gnanguenon V. Resistance status of Anopheles gambiae (s.l.) to four commonly used insecticides for malaria vector control in South-East Nigeria. Parasit Vectors 2020; 13:152. [PMID: 32209131 PMCID: PMC7092433 DOI: 10.1186/s13071-020-04027-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Progress made in the control of malaria vectors globally is largely due to the use of insecticides. However, success in the fight against malaria has slowed down or even stalled due to a host of factors including insecticide resistance. The greatest burden of the disease is felt in Africa, particularly Nigeria. Unfortunately, adequate information on insecticide resistance is lacking in many parts of the country, particularly the South-East Zone. Hence, this study aims to bridge the information gap in the Zone. METHODS The study was conducted from April to December 2016. Anopheles gambiae (s.l.) larvae and pupae were collected from one community each, in the five states of the South-East Zone and reared to the adult stage. The adults were subjected to bioassays for insecticide resistance in accordance with the World Health Organization test procedures, across the four classes of insecticides used in public health. The mosquitoes were also subjected to molecular identification to the species level, and genotyped for West African knockdown resistance mutation (L1014F) and insensitive acetylcholinesterase-1 resistance mutation (G119S). RESULTS The mosquitoes were susceptible (100%) to bendiocarb but resistant to pirimiphos-methyl (39.6%), deltamethrin (57%) and dichlorodiphenyltrichloroethane (DDT) (13%). Molecular analysis revealed that only An. gambiae (sensu stricto) was found in all the states except for Ebonyi, where only Anopheles coluzzii was present. High frequencies (0.6-0.9) of the L1014F mutation were found across the zone. The L1014F mutation was significantly higher in An. gambiae (s.s.) than in An. coluzzii (P < 0.0001). A relatively low frequency (0.2) of the G119S mutation was found in An. coluzzii, and only in Ebonyi State. CONCLUSION The results show that mosquitoes collected from the South-East Zone of Nigeria were resistant to all insecticides used, except for bendiocarb. The presence of L1014F and G119S resistance mutations reported in this study calls for urgent attention to stop the growing threat of insecticide resistance in the country.
Collapse
Affiliation(s)
| | - Emmanuel Nwosu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Udoka Nwangwu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Festus Dogunro
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Cosmas Onwude
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Nneka Agashi
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Ebuka Ezihe
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Clementina Anioke
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Stephen Anokwu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Emelda Eloy
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Peter Attah
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Francis Orizu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Sylvester Ewo
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Angela Okoronkwo
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Anumba Joseph
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Ijeoma Ikeakor
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Sylvester Haruna
- Department of Biological Sciences, Kogi State University, Anyigba, Nigeria
| | | |
Collapse
|
30
|
Cui C, Yang Y, Zhao T, Zou K, Peng C, Cai H, Wan X, Hou R. Insecticidal Activity and Insecticidal Mechanism of Total Saponins from Camellia oleifera. Molecules 2019; 24:molecules24244518. [PMID: 31835551 PMCID: PMC6943515 DOI: 10.3390/molecules24244518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022] Open
Abstract
Chemical pesticides are commonly used during the cultivation of agricultural products to control pests and diseases. Excessive use of traditional pesticides can cause environmental and human health risks. There are ongoing searches for new plant-derived pesticides to reduce the use of chemical pesticides. In this study, tea saponin extracts of different purities were extracted from Camellia oleifera seeds using AB-8 macroporous resin and gradient elution with ethanol. The insecticidal effects of the tea saponin extracts were evaluated by contact toxicity tests and stomach toxicity tests using the lepidopteran pest of tea plantation, Ectropis obliqua. The total saponins extracted using 70% ethanol showed strong contact toxicity (LC50 = 8.459 mg/L) and stomach toxicity (LC50 = 22.395 mg/L). In-depth mechanistic studies demonstrated that tea saponins can disrupt the waxy layer of the epidermis, causing serious loss of water, and can penetrate the inside of the intestine of E. obliqua. After consumption of the tea saponins, the intestinal villi were shortened and the cavities of the intestinal wall were disrupted, which resulted in larval death. This study highlights the potential of tea saponins as a natural, plant-derived pesticide for the management of plant pests.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ruyan Hou
- Correspondence: ; Tel.: +86-551-65786765
| |
Collapse
|
31
|
Dar MI, Green ID, Khan FA. Trace metal contamination: Transfer and fate in food chains of terrestrial invertebrates. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2019.e00116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Naeem H, Oneeb M, Ashraf K, Rashid MI, Nazir MM, Tabassum S. Insecticide susceptibility status and major detoxifying enzymes activity in Anopheles subpictus from Kasur, Pakistan. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:336-344. [PMID: 30779201 DOI: 10.1111/mve.12367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/25/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Anopheles subpictus s.l. Grassi (Diptera: Culicidae) is a malaria vector in South Asia, where insecticides are the mainstay for vector control interventions. Information on any variation in metabolic enzyme levels in mosquitoes is helpful with respect to adapting alternative strategies for vector control. The scarce data on the biochemical basis of insecticide resistance in malaria vectors of Pakistan limit the available information for vector control interventions within the country. The insecticide susceptibility status and its biochemical basis against dichlorodiphenyltrichloroethane (DDT) (4%), deltamethrin (0.05%) and permethrin (0.75%) in An. subpictus s.l. collected from all Tehsils of district Kasur were evaluated. For this purpose, a World Health Organization susceptibility bioassay was performed followed by the detection of altered metabolic enzyme activity using biochemical assays. Similarly, a significant difference in knock-down effect was observed among field collected and susceptible strain against all insecticides 24 h post exposure. The overall mean mortality rates of DDT, deltamethrin and permethrin were 27.86% [95% confidence interval (CI) = 29.65-26.06], 44.89% (95% CI = 46.23-43.54) and 78.82% (95% CI = 80.16-77.47), respectively. The biochemical assays revealed an elevated level of metabolic enzymes in the field population. The results provide evidence of resistance against organochlorine and pyrethroid groups in a field population of An. subpictus s.l. from district Kasur mediated by multiple metabolic mechanisms, including acetylcholinesterases, esterases, cytochrome P450 and glutathione S-transferases.
Collapse
Affiliation(s)
- H Naeem
- Department of Parasitology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - M Oneeb
- Department of Parasitology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - K Ashraf
- Department of Parasitology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - M I Rashid
- Department of Parasitology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - M M Nazir
- Department of Pathobiology, Bahauddin Zakariya University, Multan, Pakistan
| | - S Tabassum
- Department of Statistics, The Women University, Multan, Pakistan
| |
Collapse
|
33
|
Simma EA, Dermauw W, Balabanidou V, Snoeck S, Bryon A, Clark RM, Yewhalaw D, Vontas J, Duchateau L, Van Leeuwen T. Genome-wide gene expression profiling reveals that cuticle alterations and P450 detoxification are associated with deltamethrin and DDT resistance in Anopheles arabiensis populations from Ethiopia. PEST MANAGEMENT SCIENCE 2019; 75:1808-1818. [PMID: 30740870 DOI: 10.1002/ps.5374] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Vector control is the main intervention in malaria control and elimination strategies. However, the development of insecticide resistance is one of the major challenges for controlling malaria vectors. Anopheles arabiensis populations in Ethiopia showed resistance against both DDT and the pyrethroid deltamethrin. Although an L1014F target-site resistance mutation was present in the voltage gated sodium channel of investigated populations, the levels of resistance indicated the presence of additional resistance mechanisms. In this study, we used genome-wide transcriptome profiling by RNAseq to assess differentially expressed genes between three deltamethrin and DDT resistant An. arabiensis field populations - Asendabo, Chewaka and Tolay - and two susceptible strains - Sekoru and Mozambique. RESULTS Both RNAseq analysis and RT-qPCR showed that a glutathione-S-transferase, gstd3, and a cytochrome P450 monooxygenase, cyp6p4, were significantly overexpressed in the group of resistant populations compared to the susceptible strains, suggesting that the enzymes they encode play a key role in metabolic resistance against deltamethrin or DDT. Furthermore, a gene ontology enrichment analysis showed that expression changes of cuticle related genes were strongly associated with insecticide resistance. Although this did not translate in increased thickness of the procuticle, a higher cuticular hydrocarbon content was observed in a resistant population. CONCLUSION Our transcriptome sequencing of deltamethrin and DDT resistant An. arabiensis populations from Ethiopia suggests non-target site resistance mechanisms and paves the way for further investigation of the role of cuticle composition in insecticide resistance of malaria vectors. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eba A Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Astrid Bryon
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, College of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - Luc Duchateau
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Fagbohun IK, Oyeniyi TA, Idowu TE, Otubanjo OA, Awolola ST. Cytochrome P450 Mono-Oxygenase and Resistance Phenotype in DDT and Deltamethrin-Resistant Anopheles gambiae (Diptera: Culicidae) and Culex quinquefasciatus in Kosofe, Lagos, Nigeria. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:817-821. [PMID: 30753574 PMCID: PMC6467639 DOI: 10.1093/jme/tjz006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Pyrethroids and DDT are key insecticides in the control of malaria, yellow fever, and lymphatic filariasis vectors. Knockdown and metabolic resistance mechanisms have been proven to be important in determining the efficacy of insecticides. Here we investigated cytochrome P450 as a resistance mechanism in Anopheles gambiae Giles and Culex quinquefasciatus Say exposed to deltamethrin and DDT. Two- to three-days-old adult female mosquitoes were used for insecticide exposures and PBO synergistic assays using WHO standard guidelines, kits and test papers (DDT 4%, deltamethrin 0.05%, and PBO 4%). Polymerase chain reaction (PCR) assays were used for the identification of the species and for characterization of the kdr allele. Mortality at 24 h post-exposure was 18 and 17% in An. gambiae s.s. exposed to DDT and deltamethrin, respectively; 1 and 5% in Cx. quinquefasciatus exposed to DDT and deltamethrin respectively. Significant (P < 0.01) levels of susceptibility was recorded in mosquitoes pre-exposed to PBO, as KDT50 and 24 h of exposure ranged from 37.6 min to 663.4 min and 27 to 80%, respectively. Presence of a knockdown resistance allele was recorded in An. gambiae s.s., 22.5% for homozygote resistance and 7.5% for heterozygotes, while Cx. quinquefasciatus populations showed no kdr allele despite the high level of resistance to DDT and deltamethrin. Findings from this study indicated that cytochrome P450 mono-oxygenase expression is highly implicated in the resistance phenotype to DDT and pyrethroids in An. gambiae and Cx. quinquefasciatus in the study area.
Collapse
Affiliation(s)
| | - Tolulope A Oyeniyi
- Vector Research Laboratory, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Taiwo E Idowu
- Department of Zoology, University of Lagos, Lagos, Nigeria
| | | | - Samson T Awolola
- Vector Research Laboratory, Nigeria Institute of Medical Research, Lagos, Nigeria
| |
Collapse
|
35
|
Wang YW, Li YZ, Li GQ, Wan PJ, Li C. Identification of Cuticular Protein Genes in the Colorado Potato Beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:912-923. [PMID: 30615165 DOI: 10.1093/jee/toy396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 06/09/2023]
Abstract
Structural cuticular proteins (CPs) are the primary components of insect cuticle, linings of salivary gland, foregut, hindgut and tracheae, and midgut peritrophic membrane. Variation of CPs in insect cuticle can cause penetration resistance to insecticides. Moreover, depletion of specific CP by RNA interference may be a suitable way for the development of potential pest control traits. Leptinotarsa decemlineata (Say) CPs are poorly characterized at present, and therefore, we mined the genome and transcriptome data to better annotate and classify L. decemlineata CPs in this study, by comparison with the annotated CPs of Tribolium castaneum Browse (Coleoptera: Tenebrionidae). We identified 175 CP genes. Except one miscellaneous CP with an 18-amino acid motif, these CPs were classified into 7 families based on motifs and phylogenetic analyses (CPs with a Rebers and Riddiford motif, CPR; CPs analogous to peritrophins, CPAP3 and CPAP1; CPs with a tweedle motif, TWDL; CPs with a 44-amino acid motif, CPF; CPs that are CPF-like, CPFL; and CPs with two to three copies of C-X5-C motif, CPCFC). Leptinotarsa decemlineata CPRs could be categorized into three subfamilies: RR-1 (50), RR-2 (85), and RR-3 (2). The RR-1 proteins had an additional motif with a conserved YTADENGF sequence. The RR-2 members possessed a conserved RDGDVVKG region and three copes of G-x(3)-VV. Few genes were found in TWDL (9), CPAP1 (9), CPAP3 (8), CPF (5), CPFL (4), and CPCFC (2) families. The findings provide valuable information to explore molecular modes of penetration resistance to insecticides and to develop dsRNA-based control method in L. decemlineata.
Collapse
Affiliation(s)
- Yan-Wei Wang
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu-Zhe Li
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - Guo-Qing Li
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Chao Li
- Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
36
|
Awolola TS, Adeogun A, Olakiigbe AK, Oyeniyi T, Olukosi YA, Okoh H, Arowolo T, Akila J, Oduola A, Amajoh CN. Pyrethroids resistance intensity and resistance mechanisms in Anopheles gambiae from malaria vector surveillance sites in Nigeria. PLoS One 2018; 13:e0205230. [PMID: 30517090 PMCID: PMC6281219 DOI: 10.1371/journal.pone.0205230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 09/22/2018] [Indexed: 11/18/2022] Open
Abstract
Anopheles gambiae, An. coluzzii and An. arabiensis are the three major vectors of malaria in Nigeria. These mosquitoes have developed resistance to different insecticides. Insecticides resistance intensity assay was recently introduced to provide insight into the potential operational significance of insecticide resistance. Here, we present data on pyrethroids resistance intensity and resistance mechanisms from six vector surveillance sites (Lagos, Ogun, Edo, Anambra, Kwara and Niger) in Nigeria. Adult Anopheles reared from larval collections were tested using WHO insecticides susceptibility protocol with 1x concentration of permethrin and deltamethrin followed with intensity assays with 5x and 10x concentrations of both insecticides. Synergistic and biochemical assays were carried out and underlying resistance mechanisms determined following standard protocols. Anopheles gambiae constituted >50% samples tested in five sites. Permethrin and deltamethrin resistance was observed at all the sites. The Kdt50 varied from 15 minutes (CI = 13.6-17.2) in deltamethrin to 42.1 minutes (CI = 39.4-44.1) in permethrin. For both insecticides, Kdt95 was >30 minutes with 25% to 87% post exposure mortality at the different sites. The West Africa knock down resistance (kdr-w) mechanism was found at each site. Resistant An. gambiae from Lagos, Ogun and Niger synergized prior to permethrin or deltamethrin exposure showed significant mortality (89-100%) compared to unsynergized mosquitoes (Lagos, p = 0.031; Ogun, p = 0.025; Niger, p = 0.018). Biochemical analyses revealed significant increased levels of P450 enzymes in resistant Anopheles gambiae from Lagos (p = 0.038); Ogun (p = 0.042) and Niger (p = 0.028) in addition to GST in Lagos (p = 0.028) and Ogun (p = 0.033). Overall, the results revealed high pyrethroid resistance associated with increased activities of metabolic enzymes (P450 + GST) in An. gambiae and An. coluzzii from Lagos and Ogun. The presence of kdr + P450 conferred moderate resistance whereas low resistance was the case where kdr was the sole resistance mechanism. Findings thus suggests that elevated levels of cytochrome P450 enzymes together with GST were responsible for high or severe pyrethroid resistance.
Collapse
Affiliation(s)
- Taiwo Samson Awolola
- Nigerian Institute of Medical Research, 6 Edmund Crescent, Yaba, Lagos, Nigeria
- * E-mail:
| | - Adedapo Adeogun
- Nigerian Institute of Medical Research, 6 Edmund Crescent, Yaba, Lagos, Nigeria
| | | | - Tolulope Oyeniyi
- Nigerian Institute of Medical Research, 6 Edmund Crescent, Yaba, Lagos, Nigeria
| | | | - Hilary Okoh
- Department of Biological Sciences, Federal University Oye, Oye, Ekiti State, Nigeria
| | | | - Joel Akila
- National Malaria Elimination Program, Federal Ministry of Health, Abuja, Nigeria
| | - Adedayo Oduola
- Department of Zoology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | | |
Collapse
|
37
|
Zhou Y, Wang Y, Li X, Peprah FA, Wang X, Liu H, Lin F, Gu J, Yu F, Shi H. Applying microarray-based technique to study and analyze silkworm (Bombyx mori) transcriptomic response to long-term high iron diet. Genomics 2018; 111:1504-1513. [PMID: 30391296 DOI: 10.1016/j.ygeno.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
To investigate the biological processes affected by long-term iron supplementation, newly hatched silkworms were exposed to high iron mulberry diet (10 and 100 ppm) and its effect on silkworm transcriptom was determined. The results showed that the silkworm was responsive to iron by increasing iron concentration and ferritin levels in the hemolymph and by regulating the expression of many other genes. A total of 523 and 326 differentially expressed genes were identified in 10 and 100 ppm Fe group compared to the control, respectively. Of these genes, 249 were shared between in both the 10 ppm and 100 ppm Fe group, including 152 up-regulated and 97 down-regulated genes. These shared genes included 19 known Fe regulated, 24 immune-related, 12 serine proteases and serine proteases homologs, 41 cuticular and cuticle genes. Ten genes (carboxypeptidases A, serine protease homologs 85, fibrohexamerin/P25, transferrin, sex-specific storage-protein 2, fungal protease inhibitor F, insect intestinal mucin, peptidoglycan recognition protein B, cuticle protein CPH45, unknown gene) were involved in the regulation of iron overload responses.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Yingying Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Xiaofeng Li
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Xiaochen Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haitao Liu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, PR China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
38
|
Schmidt M, Hrabcova V, Jun D, Kuca K, Musilek K. Vector Control and Insecticidal Resistance in the African Malaria Mosquito Anopheles gambiae. Chem Res Toxicol 2018; 31:534-547. [PMID: 29847927 DOI: 10.1021/acs.chemrestox.7b00285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mosquito-borne diseases (including malaria) belong among the leading causes of death in humans. Vector control is a crucial part of the global strategy for management of mosquito-associated diseases, when insecticide use is the most important component in this effort. However, drug and insecticide resistance threaten the successes made with existing methods. Reduction or elimination of malaria is not possible without effective mosquito control. This article reviews current strategies of intervention in vector control to decrease transmission of disease and covers current relevant knowledge in molecular biology, biochemistry, and medicinal chemistry.
Collapse
Affiliation(s)
- Monika Schmidt
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic.,Faculty of Science, Department of Chemistry , University of Hradec Kralove , Rokitanskeho 62 , 500 03 Hradec Kralove , Czech Republic
| | - Veronika Hrabcova
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic.,Faculty of Science, Department of Chemistry , University of Hradec Kralove , Rokitanskeho 62 , 500 03 Hradec Kralove , Czech Republic
| | - Daniel Jun
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic.,Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy , University of Defence , Trebesska 1575 , 500 01 Hradec Kralove , Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic.,Faculty of Science, Department of Chemistry , University of Hradec Kralove , Rokitanskeho 62 , 500 03 Hradec Kralove , Czech Republic
| | - Kamil Musilek
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic.,Faculty of Science, Department of Chemistry , University of Hradec Kralove , Rokitanskeho 62 , 500 03 Hradec Kralove , Czech Republic
| |
Collapse
|
39
|
Balabanidou V, Grigoraki L, Vontas J. Insect cuticle: a critical determinant of insecticide resistance. CURRENT OPINION IN INSECT SCIENCE 2018; 27:68-74. [PMID: 30025637 DOI: 10.1016/j.cois.2018.03.001] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Intense use of insecticides has resulted in the selection of extreme levels of resistance in insect populations. Therefore understanding the molecular basis of insecticide resistance mechanisms becomes critical. Penetration resistance refers to modifications in the cuticle that will eventually slow down the penetration of insecticide molecules within insects' body. So far, two mechanisms of penetration resistance have been described, the cuticle thickening and the altering of cuticle composition. Cuticular modifications are attributed to the over-expression of diversified genes or proteins, which belong to structural components (cuticular proteins mainly), enzymes that catalyze enzymatic reactions (CYP4G16 and laccase 2) or ABC transporters that promote cuticular translocation. In the present review we summarize recent studies and discuss future perspectives.
Collapse
Affiliation(s)
- Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece; Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
| | - Linda Grigoraki
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
40
|
Chen EH, Hou QL, Dou W, Wei DD, Yue Y, Yang RL, Yang PJ, Yu SF, De Schutter K, Smagghe G, Wang JJ. Genome-wide annotation of cuticular proteins in the oriental fruit fly (Bactrocera dorsalis), changes during pupariation and expression analysis of CPAP3 protein genes in response to environmental stresses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 97:53-70. [PMID: 29729388 DOI: 10.1016/j.ibmb.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Cuticular proteins (CPs) are essential components of the insect cuticle as they create a structural and protective shield and may have a role in insect development. In this paper, we studied the CPs in the oriental fruit fly (Bactrocera dorsalis), one of the most economically important pests in the Tephritidae family around the world. The availability of a complete genome sequence (NCBI Assembly: ASM78921v2) allowed the identification of 164 CP genes in B. dorsalis. Comparative analysis of the CPs in B. dorsalis with those in the model insect Drosophila melanogaster and the closely related Ceratitis capitata, and CPs from mosquitoes, Lepidoptera, Hymenoptera and Coleoptera identified Diptera-specific genes and cuticle development patterns. Analysis of their evolutionary relationship revealed that some CP families had evolved according to the phylogeny of the different insect species, while others shared a closer relationship based on domain architecture. Subsequently, transcriptome analysis showed that while most of the CPs (60-100% of the family members) are expressed in the epidermis, some were also present in internal organs such as the fat body and the reproductive organs. Furthermore, the study of the expression profiles throughout development revealed a profound change in the expression of CPs during the formation of the puparium (pupariation). Further analysis of the expression profiles of the CPAP3 genes under various environmental stresses revealed them to be involved in the response to pesticides and arid and extreme temperatures conditions. In conclusion, the data provide a particular overview of CPs and their evolutionary and transcriptional dynamics, and in turn they lay a molecular foundation to explore their roles in the unique developmental process of insect metamorphosis and stress responses.
Collapse
Affiliation(s)
- Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Yong Yue
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Pei-Jin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Shuai-Feng Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | | | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China; Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
41
|
Main BJ, Everitt A, Cornel AJ, Hormozdiari F, Lanzaro GC. Genetic variation associated with increased insecticide resistance in the malaria mosquito, Anopheles coluzzii. Parasit Vectors 2018; 11:225. [PMID: 29618373 PMCID: PMC5885317 DOI: 10.1186/s13071-018-2817-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria mortality rates in sub-Saharan Africa have declined significantly in recent years as a result of increased insecticide-treated bed net (ITN) usage. A major challenge to further progress is the emergence and spread of insecticide resistance alleles in the Anopheles mosquito vectors, like An. coluzzii. A non-synonymous mutation in the para voltage-gated sodium channel gene reduces pyrethroid-binding affinity, resulting in knockdown resistance (kdr). Metabolic mechanisms of insecticide resistance involving detoxification genes like cytochrome P450 genes, carboxylesterases, and glutathione S-transferases are also important. As some gene activity is tissue-specific and/or environmentally induced, gene regulatory variation may be overlooked when comparing expression from whole mosquito bodies under standard rearing conditions. RESULTS We detected complex insecticide resistance in a 2014 An. coluzzii colony from southern Mali using bottle bioassays. Additional bioassays involving recombinant genotypes from a cross with a relatively susceptible 1995 An. coluzzii colony from Mali confirmed the importance of kdr and associated increased permethrin resistance to the CYP9K1 locus on the X chromosome. Significant differential expression of CYP9K1 was not observed among these colonies in Malpighian tubules. However, the P450 gene CYP6Z1 was overexpressed in resistant individuals following sublethal permethrin exposure and the carboxylesterase gene COEAE5G was constitutively overexpressed. CONCLUSIONS The significant P450-related insecticide resistance observed in the 2014 An. coluzzii colony indicates that ITNs treated with the P450 inhibitor piperonyl butoxide (PBO) would be more effective in this region. The known insecticide resistance gene CYP6Z1 was differentially expressed exclusively in the context of sublethal permethrin exposure, highlighting the importance of tissue-specificity and environmental conditions in gene expression studies. The increased activity of the carboxylesterase COEAE5G in the resistant An. coluzzii colony suggests resistance to other insecticides like organophosphates. Additional gene expression studies involving other tissues (e.g. fat body) would provide a more comprehensive view of genes underlying metabolic insecticide resistance in An. coluzzii from Mali. Identifying genetic markers linked to these regulatory alleles is an important next step that would substantially improve insecticide resistance surveillance and population genetic studies in this important vector species.
Collapse
Affiliation(s)
- Bradley J Main
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA, 95616, USA.
| | - Amanda Everitt
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA, 95616, USA
| | - Anthony J Cornel
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Fereydoun Hormozdiari
- Department of Biochemistry and Molecular Medicine, MIND Institute and UC-Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Gregory C Lanzaro
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA, 95616, USA
| |
Collapse
|
42
|
Masson V, Arafah K, Voisin S, Bulet P. Comparative Proteomics Studies of Insect Cuticle by Tandem Mass Spectrometry: Application of a Novel Proteomics Approach to the Pea Aphid Cuticular Proteins. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/21/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Philippe Bulet
- Platform BioPark Archamps; Archamps France
- Institute for Advanced Biosciences; CR Inserm U1209; CNRS UMR 5309; University of Grenoble-Alpes; Grenoble France
| |
Collapse
|
43
|
Zhou D, Xu Y, Zhang C, Hu MX, Huang Y, Sun Y, Ma L, Shen B, Zhu CL. ASGDB: a specialised genomic resource for interpreting Anopheles sinensis insecticide resistance. Parasit Vectors 2018; 11:32. [PMID: 29321052 PMCID: PMC5763776 DOI: 10.1186/s13071-017-2584-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Anopheles sinensis is an important malaria vector in Southeast Asia. The widespread emergence of insecticide resistance in this mosquito species poses a serious threat to the efficacy of malaria control measures, particularly in China. Recently, the whole-genome sequencing and de novo assembly of An. sinensis (China strain) has been finished. A series of insecticide-resistant studies in An. sinensis have also been reported. There is a growing need to integrate these valuable data to provide a comprehensive database for further studies on insecticide-resistant management of An. sinensis. RESULTS A bioinformatics database named An. sinensis genome database (ASGDB) was built. In addition to being a searchable database of published An. sinensis genome sequences and annotation, ASGDB provides in-depth analytical platforms for further understanding of the genomic and genetic data, including visualization of genomic data, orthologous relationship analysis, GO analysis, pathway analysis, expression analysis and resistance-related gene analysis. Moreover, ASGDB provides a panoramic view of insecticide resistance studies in An. sinensis in China. In total, 551 insecticide-resistant phenotypic and genotypic reports on An. sinensis distributed in Chinese malaria-endemic areas since the mid-1980s have been collected, manually edited in the same format and integrated into OpenLayers map-based interface, which allows the international community to assess and exploit the high volume of scattered data much easier. The database has been given the URL: http://www.asgdb.org /. CONCLUSIONS ASGDB was built to help users mine data from the genome sequence of An. sinensis easily and effectively, especially with its advantages in insecticide resistance surveillance and control.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Cheng Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Meng-Xue Hu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Yun Huang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Chang-Liang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| |
Collapse
|
44
|
Abstract
This article presents an overview of the development of techniques for analyzing cuticular proteins (CPs), their transcripts, and their genes over the past 50 years based primarily on experience in the laboratory of J.H. Willis. It emphasizes changes in the kind of data that can be gathered and how such data provided insights into the molecular underpinnings of insect metamorphosis and cuticle structure. It describes the techniques that allowed visualization of the location of CPs at both the anatomical and intracuticular levels and measurement of the appearance and deployment of transcripts from CP genes as well as what was learned from genomic and transcriptomic data. Most of the early work was done with the cecropia silkmoth, Hyalophora cecropia, and later work was with Anopheles gambiae.
Collapse
Affiliation(s)
- Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
45
|
Ondeto BM, Nyundo C, Kamau L, Muriu SM, Mwangangi JM, Njagi K, Mathenge EM, Ochanda H, Mbogo CM. Current status of insecticide resistance among malaria vectors in Kenya. Parasit Vectors 2017; 10:429. [PMID: 28927428 PMCID: PMC5606043 DOI: 10.1186/s13071-017-2361-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Insecticide resistance has emerged as one of the major challenges facing National Malaria Control Programmes in Africa. A well-coordinated national database on insecticide resistance (IRBase) can facilitate the development of effective strategies for managing insecticide resistance and sustaining the effectiveness of chemical-based vector control measures. The aim of this study was to assemble a database on the current status of insecticide resistance among malaria vectors in Kenya. METHODS Data was obtained from published literature through PubMed, HINARI and Google Scholar searches and unpublished literature from government reports, research institutions reports and malaria control programme reports. Each data source was assigned a unique identification code and entered into Microsoft Excel 2010 datasheets. Base maps on the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya were generated using ArcGIS Desktop 10.1 (ESRI, Redlands, CA, USA). RESULTS Insecticide resistance status among the major malaria vectors in Kenya was reported in all the four classes of insecticides including pyrethroids, carbamates, organochlorines and organophosphates. Resistance to pyrethroids has been detected in Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.) while resistance to carbamates was limited to An. gambiae (s.s.) and An. arabiensis. Resistance to the organochlorine was reported in An. gambiae (s.s.) and An. funestus (s.s.) while resistance to organophosphates was reported in An. gambiae (s.l.) only. The mechanisms of insecticide resistance among malaria vectors reported include the kdr mutations (L 1014S and L 1014F) and elevated activity in carboxylesterase, glutathione S-transferases (GST) and monooxygenases. The kdr mutations L 1014S and L 1014F were detected in An. gambiae (s.s.) and An. arabiensis populations. Elevated activity of monooxygenases has been detected in both An. arabiensis and An. gambiae (s.s.) populations while the elevated activity of carboxylesterase and GST has been detected only in An. arabiensis populations. CONCLUSIONS The geographical maps show the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya. The database generated will provide a guide to intervention policies and programmes in the fight against malaria.
Collapse
Affiliation(s)
- Benyl M. Ondeto
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Christopher Nyundo
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Luna Kamau
- KEMRI, Centre for Biotechnology Research and Development, Nairobi, Kenya
| | - Simon M. Muriu
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Joseph M. Mwangangi
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kiambo Njagi
- Ministry of Health, Malaria Control Unit, Nairobi, Kenya
| | - Evan M. Mathenge
- KEMRI, Eastern and Southern Africa Centre of International Parasite Control, Nairobi, Kenya
| | - Horace Ochanda
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Charles M. Mbogo
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| |
Collapse
|
46
|
Yahouédo GA, Chandre F, Rossignol M, Ginibre C, Balabanidou V, Mendez NGA, Pigeon O, Vontas J, Cornelie S. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci Rep 2017; 7:11091. [PMID: 28894186 PMCID: PMC5593880 DOI: 10.1038/s41598-017-11357-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
To tackle the problem of insecticide resistance, all resistance mechanisms need to be studied. This study investigated the involvement of the cuticle in pyrethroid resistance in a strain of Anopheles gambiae, MRS, free of kdr mutations. Bioassays revealed MRS to be resistant to pyrethroids and DDT, indicated by increasing knockdown times and resistance ratios. Moreover, biochemical analysis indicated that metabolic resistance based on enhanced CYP450 activity may also play a role. Insecticide penetration assays showed that there were significantly lower amounts of insecticide in the MRS strain than in the susceptible control. Analysis of the levels of the selected transcripts by qPCR showed that CYP6M2, a major pyrethroid metaboliser, CYP4G16, a gene implicated in resistance via its contribution to the biosynthesis of elevated epicuticular hydrocarbons that delay insecticide uptake, and the cuticle genes CPAP3-E and CPLCX1 were upregulated after insecticide exposure. Other metabolic (CYP6P3, GSTe2) and cuticle (CPLCG3, CPRs) genes were also constitutively upregulated. Microscopic analysis showed that the cuticle layers of the MRS strain were significantly thicker than those of the susceptible strain. This study allowed us to assess the contribution made by the cuticle and metabolic mechanisms to pyrethroid resistance in Anopheles gambiae without target-site mutations.
Collapse
Affiliation(s)
- Gildas A Yahouédo
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France.
| | - Fabrice Chandre
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| | - Marie Rossignol
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| | - Carole Ginibre
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Natacha Garcia Albeniz Mendez
- Walloon Agricultural Research Centre (CRA-W), Agriculture and Natural Environment Department (D3), Plant Protection Products and Biocides, Physico-chemistry and Residues Unit (U10), B-5030, Gembloux, Belgium
| | - Olivier Pigeon
- Walloon Agricultural Research Centre (CRA-W), Agriculture and Natural Environment Department (D3), Plant Protection Products and Biocides, Physico-chemistry and Residues Unit (U10), B-5030, Gembloux, Belgium
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Sylvie Cornelie
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| |
Collapse
|
47
|
Papa F, Windbichler N, Waterhouse RM, Cagnetti A, D'Amato R, Persampieri T, Lawniczak MKN, Nolan T, Papathanos PA. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes. Genome Res 2017; 27:1536-1548. [PMID: 28747381 PMCID: PMC5580713 DOI: 10.1101/gr.217216.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/18/2017] [Indexed: 01/09/2023]
Abstract
Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues.
Collapse
Affiliation(s)
- Francesco Papa
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Robert M Waterhouse
- University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
- Massachusetts Institute of Technology and the Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alessia Cagnetti
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
- Polo d'Innovazione di Genomica, Genetica e Biologia, 06132 Perugia, Italy
| | - Rocco D'Amato
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Tania Persampieri
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
- Polo d'Innovazione di Genomica, Genetica e Biologia, 06132 Perugia, Italy
| | | | - Tony Nolan
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Philippos Aris Papathanos
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
48
|
Cuticle genes CpCPR63 and CpCPR47 may confer resistance to deltamethrin in Culex pipiens pallens. Parasitol Res 2017; 116:2175-2179. [PMID: 28608057 DOI: 10.1007/s00436-017-5521-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Cuticular proteins (CPs) are implicated in insecticide resistance in mosquito populations. Here, we investigated the role of cuticular genes in regulation of insecticide resistance in Culex pipiens pallens. We identified two CpCPRs (CpCPR63 and CpCPR47) that exhibited higher transcript levels in pyrethroid-resistant strains than in susceptible strains. Mosquito mortality was increased after knockdown of CpCPR genes by dsRNA injection. The RNA interference experiment suggested an interaction between CpCPR63 and CpCPR47, as silencing of one gene resulted in decreased expression of the other. These findings revealed that CpCPRs may regulate pyrethroid resistance and could be used as a potential genetic marker to monitor pyrethroid resistance in mosquitoes.
Collapse
|
49
|
Wei Y, Li H, Zhang J, Xiong J, Yi X, You J. Legacy and Current-Use Insecticides in Agricultural Sediments from South China: Impact of Application Pattern on Occurrence and Risk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4247-4254. [PMID: 28493680 DOI: 10.1021/acs.jafc.7b00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Legacy and current-use insecticides were analyzed in sediments collected from a typical rice-planting region in South China. Total concentrations of insecticides varied from 1.63 to 775 ng g-1 with mean and median values of 67.0 and 11.5 ng g-1, respectively. Pyrethroids predominated pesticide composition (31.7%), followed by organophosphates (23.0%) and fiproles (20.8%). Sediment risk analysis showed that pyrethroids, fiproles, and abamectin posed significant risk to benthic invertebrates in one-third of sediments. Different distributions of pyrethroids and organophosphates in urban and agricultural areas were consistent with their application patterns, whereas legacy organochlorine pesticides showed no region-specific distribution because of rapid transition of land use pattern from agricultural to urban areas. Likely illegal use of pyrethroids and fipronil caused serious ecological risks in agricultural waterways. Pyrethroids and fipronil were restricted to use in paddy fields, but their occurrence and risk in agricultural waterways were high, calling for better measures to regulate the illegal use of insecticides.
Collapse
Affiliation(s)
- Yanli Wei
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Huizhen Li
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Junjie Zhang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Jingjing Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiaoyi Yi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing You
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| |
Collapse
|
50
|
Xing D, Yang Q, Jiang L, Li Q, Xiao Y, Ye M, Xia Q. RNA-Seq Analyses for Two Silkworm Strains Reveals Insight into Their Susceptibility and Resistance to Beauveria bassiana Infection. Int J Mol Sci 2017; 18:E234. [PMID: 28208575 PMCID: PMC5343773 DOI: 10.3390/ijms18020234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/17/2022] Open
Abstract
The silkworm Bombyx mori is an economically important species. White muscardine caused by Beauveria bassiana is the main fungal disease in sericulture, and understanding the silkworm responses to B. bassiana infection is of particular interest. Herein, we investigated the molecular mechanisms underlying these responses in two silkworm strains Haoyue (HY, sensitive to B. bassiana) and Kang 8 (K8, resistant to B. bassiana) using an RNA-seq approach. For each strain, three biological replicates for immersion treatment, two replicates for injection treatment and three untreated controls were collected to generate 16 libraries for sequencing. Differentially expressed genes (DEGs) between treated samples and untreated controls, and between the two silkworm strains, were identified. DEGs and the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the two strains exhibited an obvious difference. Several genes encoding cuticle proteins, serine proteinase inhibitors (SPI) and antimicrobial peptides (AMP) and the drug metabolism pathway involved in toxin detoxification were considered to be related to the resistance of K8 to B. bassiana. These results revealed insight into the resistance and susceptibility of two silkworm strains against B. bassiana infection and provided a roadmap for silkworm molecular breeding to enhance its resistance to B. bassiana.
Collapse
Affiliation(s)
- Dongxu Xing
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Qiong Yang
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Qingrong Li
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Yang Xiao
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Mingqiang Ye
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|