1
|
Černý J, Arora G. Proteases and protease inhibitors in saliva of hard ticks: Biological role and pharmacological potential. ADVANCES IN PARASITOLOGY 2024; 126:229-251. [PMID: 39448192 DOI: 10.1016/bs.apar.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Hard ticks (family Ixodidae) are significant vectors of pathogens affecting humans and animals. This review explores the composition of tick saliva, focusing on proteases and protease inhibitors, their biological roles, and their potential in vaccines and therapies. Tick saliva contains various proteases, mostly metalloproteases, serpins, cystatins, and Kunitz-type inhibitors, which modulate host hemostatic, immune, and wound healing responses to facilitate blood feeding and pathogen transmission. Proteases inhibit blood clotting, degrade extracellular matrix components, and modulate immune responses. Serpins, cystatins, and Kunitz-type inhibitors further inhibit key proteases involved in coagulation and inflammation, making them promising candidates for anticoagulant, anti-inflammatory, and immunomodulatory therapies. Several tick proteases and protease inhibitors have shown potential as vaccine targets, reducing tick feeding success and pathogen transmission. Future research should focus on comprehensive proteomic and genomic analyses, detailed structural and functional studies, and vaccine trials. Advanced omics approaches and bioinformatics tools will be crucial in uncovering the complex interactions between ticks, hosts, and pathogens, improving tick control strategies and public health outcomes.
Collapse
Affiliation(s)
- Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia.
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States; Laboratory of Host-Pathogen Dynamics, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
2
|
Gray J, Kahl O, Zintl A. Pathogens transmitted by Ixodes ricinus. Ticks Tick Borne Dis 2024; 15:102402. [PMID: 39368217 DOI: 10.1016/j.ttbdis.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Ixodes ricinus is the most important tick vector in central and western Europe and one of the most researched parasites. However, in the published literature on the tick and the pathogens it transmits, conjecture about specific transmission cycles and the clinical significance of certain microbes is not always clearly separated from confirmed facts. This article aims to present up-to-date, evidence-based information about the well-researched human pathogens tick-borne encephalitis virus, louping-ill virus, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and several Babesia species, with a focus on their development in the tick, transmission dynamics and the competent reservoir hosts that support their circulation in the environment. Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia helvetica and Rickettsia monacensis, which are much less common causes of disease but may affect immunocompromised patients, are also briefly discussed. Finally, the possible role of I. ricinus in the transmission of Coxiella burnetii, Francisella tularensis, Bartonella spp. and Spiroplasma ixodetis is reviewed.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Vaz-Rodrigues R, Mazuecos L, Villar M, Contreras M, González-García A, Bonini P, Scimeca RC, Mulenga A, de la Fuente J. Tick salivary proteome and lipidome with low glycan content correlate with allergic type reactions in the zebrafish model. Int J Parasitol 2024; 54:649-659. [PMID: 39074655 DOI: 10.1016/j.ijpara.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Ticks, as hematophagous ectoparasites, can manipulate host immune and metabolic processes, causing tick-borne allergies such as α-Gal syndrome (AGS). Glycolipids with bound galactose-alpha-1-3-galactose (α-Gal) are potential allergenic molecules associated with AGS. Nevertheless, proteins and lipids lacking α-Gal modifications may contribute to tick salivary allergies and be linked to AGS. In this study, we characterized the effect of deglycosylated tick salivary proteins without lipids on treated zebrafish fed with dog food formulated with mammalian (beef, lamb, pork) meat by quantitative proteomics analysis of intestinal samples. The characterization and functional annotations of tick salivary lipids with low representation of glycolipids was conducted using a lipidomics approach. Results showed a significant effect of treatment with saliva and saliva deglycosylated protein fraction on zebrafish abnormal or no feeding (p < 0.005). Treatment with this fraction affected multiple metabolic pathways, defense responses to pathogens and protein metabolism, which correlated with abnormal or no feeding. Lipidomics analysis identified 23 lipid classes with low representation of glycolipids (0.70% of identified lipids). The lipid class with highest representation was phosphatidylcholine (PC; 26.66%) and for glycolipids it corresponded to diacylglycerol (DG; 0.48%). Qualitative analysis of PC antibodies revealed that individuals bitten by ticks were more likely to produce PC-IgG antibodies (p < 0.001). DG levels were significantly higher in tick salivary glands (p < 0.05) compared with tick saliva and salivary fractions. The α-Gal content was higher in tick saliva than in deglycosylated saliva and lipid fractions. These results support a possible role for tick salivary proteins and lipids without α-Gal modifications in AGS.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Almudena González-García
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Paolo Bonini
- oloBion SL, Av. Dr. Marañón 8, 08028Barcelona, Spain
| | - Ruth C Scimeca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
4
|
Marnin L, Valencia LM, Bogale HN, Laukaitis-Yousey HJ, Rolandelli A, Ferraz CR, O’Neal AJ, Schmitter-Sánchez AD, Cuevas EB, Nguyen TT, Leal-Galvan B, Rickert DM, Mendes MT, Samaddar S, Butler LR, Singh N, Cabrera Paz FE, Oliver JD, Jameson JM, Munderloh UG, Oliva Chávez AS, Mulenga A, Park S, Serre D, Pedra JH. Tick extracellular vesicles undermine epidermal wound healing during hematophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566612. [PMID: 37986907 PMCID: PMC10659423 DOI: 10.1101/2023.11.10.566612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species. We demonstrate through single cell RNA sequencing and murine genetics that wildtype animals infested with EV-deficient Ixodes scapularis display a unique population of keratinocytes with an overrepresentation of pathways connected to wound healing. Tick feeding affected keratinocyte proliferation in a density-dependent manner, which relied on EVs and dendritic epidermal T cells (DETCs). This occurrence was linked to phosphoinositide 3-kinase activity, keratinocyte growth factor (KGF) and transforming growth factor β (TGF-β) levels. Collectively, we uncovered a strategy employed by a blood-feeding arthropod that impairs the integrity of the epithelial barrier, contributing to ectoparasite fitness.
Collapse
Affiliation(s)
- Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J. Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Camila Rodrigues Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Axel D. Schmitter-Sánchez
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Bencosme Cuevas
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David M. Rickert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Julie M Jameson
- Department of Biology, California State University San Marcos, San Marcos, CA, USA
| | | | | | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Sangbum Park
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H.F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Grillon A, Sauleau E, Boulanger N. Risk of Ixodes ricinus Bites in a Population of Forestry Workers in an Endemic Region in France. Pathogens 2024; 13:696. [PMID: 39204296 PMCID: PMC11357543 DOI: 10.3390/pathogens13080696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The progressing worldwide increases in tick occurrence and tick-borne diseases calls for the development of new prevention strategies to reduce their impact on human and animal health. Defining the risk of exposure to tick bites is therefore essential. Forestry workers are at high risk of tick bites. We set up an explorative study among forestry workers in the Alsace region in eastern France to measure the different factors affecting the risk of Ixodes ricinus tick bites during their activities in forests. For one year, forestry workers recorded the presence of ticks on their clothes and tick bites every time they were working in teams in different forest ecosystems. Questions about the prevention measures they followed were also noted. Among the 32 participants, we were able to differentiate between groups having a high, neutral, or low risk of being bitten. The median tick bite number per year was 4 (0-8). We tried to identify individual as well as environmental factors affecting the risk of tick bites. Factors influencing the risk were the seasonal peak of tick activity in May and June, the time of exposure, and the forest ecosystems visited during the year. Additional factors potentially affecting the risk were also identified.
Collapse
Affiliation(s)
- Antoine Grillon
- UR3073, PHAVI, Groupe Borrelia, Université de Strasbourg, F-67000 Strasbourg, France;
- Centre National de Référence Borrelia, CHRU Strasbourg, F-67200 Strasbourg, France
| | - Erik Sauleau
- ICube UMR 7357—Laboratoire des Sciences de L’ingénieur, de L’informatique et de L’imagerie, Laboratoire, CS 10413, F-67412 Illkirch Cedex, France;
| | - Nathalie Boulanger
- UR3073, PHAVI, Groupe Borrelia, Université de Strasbourg, F-67000 Strasbourg, France;
- Centre National de Référence Borrelia, CHRU Strasbourg, F-67200 Strasbourg, France
| |
Collapse
|
6
|
Berthold A, Lloyd VK. Changes in the Transcriptome and Long Non-Coding RNAs but Not the Methylome Occur in Human Cells Exposed to Borrelia burgdorferi. Genes (Basel) 2024; 15:1010. [PMID: 39202370 PMCID: PMC11353914 DOI: 10.3390/genes15081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Lyme disease, caused by infection with members of the Lyme borreliosis group of Borrelia spirochete bacteria, is increasing in frequency and distribution worldwide. Epigenetic interactions between the mammalian host, tick, and bacterial pathogen are poorly understood. In this study, high-throughput next-generation sequencing (NGS) allowed for the in vitro study of the transcriptome, non-coding RNAs, and methylome in human host cells in response to Borrelia burgdorferi infection. We tested the effect of the Borrelia burgdorferi strain B31 on a human primary cell line (HUVEC) and an immortalized cell line (HEK-293) for 72 h, a long-duration time that might allow for epigenetic responses in the exposed human host cells. Differential gene expression was detected in both cell models in response to B. burgdorferi. More differentially expressed genes were found in HUVECs compared to HEK-293 cells. Borrelia burgdorferi exposure significantly induced genes in the interferon, in addition to cytokine and other immune response signaling in HUVECs. In HEK-293 cells, pre-NOTCH processing in Golgi was significantly downregulated in Borrelia-exposed cells. Other significantly altered gene expressions were found in genes involved in the extracellular matrix. No significant global methylation changes were detected in HUVECs or HEK-293 cells exposed to B. burgdorferi; however, two long non-coding RNAs and a pseudogene were deregulated in response to B. burgdorferi in HUVECs, suggesting that other epigenetic mechanisms may be initiated by infection.
Collapse
Affiliation(s)
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada;
| |
Collapse
|
7
|
González-Cueto E, de la Fuente J, López-Camacho C. Potential of mRNA-based vaccines for the control of tick-borne pathogens in one health perspective. Front Immunol 2024; 15:1384442. [PMID: 38947333 PMCID: PMC11211597 DOI: 10.3389/fimmu.2024.1384442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
The One Health approach, which integrates the health of humans, animals, plants, and ecosystems at various levels, is crucial for addressing interconnected health threats. This is complemented by the advent of mRNA vaccines, which have revolutionized disease prevention. They offer broad-spectrum effectiveness and can be rapidly customized to target specific pathogens. Their utility extends beyond human medicine, showing potential in veterinary practices to control diseases and reduce the risk of zoonotic transmissions. This review place mRNA vaccines and One Health in the context of tick-borne diseases. The potential of these vaccines to confer cross-species immunity is significant, potentially disrupting zoonotic disease transmission cycles and protecting the health of both humans and animals, while reducing tick populations, infestations and circulation of pathogens. The development and application of mRNA vaccines for tick and tick-borne pathogens represent a comprehensive strategy in global health, fostering a healthier ecosystem for all species in our interconnected world.
Collapse
Affiliation(s)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC)-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | | |
Collapse
|
8
|
Szabó MPJ, Queiroz CL, Suzin A, Rodrigues VDS, Vieira RBK, Martins MM, Rezende LM, Sousa ACP, Ramos VDN, Muraro FM, Fernandes LK, Santos LCM, Maia RDC, Rezende AF. Density and behavior of capybara (Hydrochoerus hydrochaeris) ticks (Acari: Ixodidae) Amblyomma sculptum and Amblyomma dubitatum with notes on Rickettsia bellii infection: Assessing human exposure risk. Ticks Tick Borne Dis 2024; 15:102330. [PMID: 38460340 DOI: 10.1016/j.ttbdis.2024.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
In several urban and peri‑urban areas of Brazil, populations of Amblyomma sculptum and Amblyomma dubitatum ticks are maintained by capybaras (Hydrochoerus hydrochaeris). In some of these areas, this host and these tick species are associated with Brazilian spotted fever (BSF), a lethal human disease caused by the bacterium Rickettsia rickettsii. In this work, we evaluated the risk of human exposure to these tick species using four collection techniques to discern host-seeking behavior. The study was carried out in 10 urban sites inhabited by capybaras in Uberlândia, a BSF-free municipality in southeastern Brazil. Ticks were collected in areas of 400 m2 at each site and at three seasons. Within the same municipality, the distance and speed of A. sculptum nymphs moving towards the CO2 traps were evaluated. In a sample of ticks Rickettsia DNA was investigated. During the study period, 52,953 ticks were collected. Among these, 83.4 % were A. sculptum (1,523 adults, 10,545 nymphs and 32,104 larvae) and 16.6 % were A. dubitatum (464 adults, 2,153 nymphs and 6,164 larvae). An average annual questing tick density of 4.4/m² was observed, with the highest density recorded at one site in autumn (31.8/m²) and the lowest in summer at another site (0.03/m²). The visual search yielded the highest proportion of A. sculptum larvae, constituting 47 % of the total and 63.6 % of all A. sculptum larvae. In contrast, CO2 traps collected a greater proportion of nymphs and adults of A. sculptum ticks. In the case of A. dubitatum, the CO2 trap was the most efficient technique with 57.7 % of captures of this species, especially of nymphs (94.5 % of captures) and adults (97.8 % of captures). Ticks' ambush height on vegetation (9 to 77 cm), observed by visual search 30 times, yielded a total of 20,771 ticks. Of these, 28 (93 %) were A. sculptum ticks, with only two (7 %) identified as A. dubitatum ticks. Among A. sculptum ticks, the nymph was the most attracted stage to humans and larva in the case of A. dubitatum. Amblyomma sculptum adults and nymphs were significantly more attracted to humans than those of A. dubitatum, but A. dubitatum larvae were significantly more attracted than the same stage of A. sculptum. The maximum distance and speed of horizontal displacement for A. sculptum nymphs were five meters and 2.0 m/h, respectively. The only species of Rickettsia detected in ticks, exclusively in A. dubitatum, was R. bellii. Importantly, it was observed that the higher the proportion of A. sculptum in the community of ticks, the lower the rate of infection of A. dubitatum by R. bellii. In conclusion, host-seeking behavior differed between the two tick species, as well as between stages of the same species. A greater restriction of A. dubitatum ticks to the soil was observed, while larvae and nymphs of A. sculptum dispersed higher in the vegetation. The behavior presented by A. sculptum provides greater opportunities for contact with the hosts, while A. dubitatum depends more on an active search for a host, the hunter behavior. Taken together, these observations show that a human being crossing an area infested with A. sculptum and A. dubitatum ticks will have almost exclusive contact with A. sculptum larvae and/or nymphs. Humans in a stationary position (sitting, lying or immobile) are exposed to both tick species, but they are more attractive to adults and mainly nymphs of A. sculptum compared to the corresponding stages of the tick A. dubitatum. The negative effect of A. sculptum on A. dubitatum infection by R. bellii deserves further studies.
Collapse
Affiliation(s)
- Matias P J Szabó
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil.
| | - Caroline Lopes Queiroz
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Adriane Suzin
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Vinicius da Silva Rodrigues
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Raíssa Brauner Kamla Vieira
- Programa de Pós-graduação em Clínica e Reprodução, Animal da Universidade Federal Fluminense. Niterói, Rio de Janeiro, Brazil
| | - Maria Marlene Martins
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Lais Miguel Rezende
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Ana Carolina P Sousa
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Vanessa do Nascimento Ramos
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Fernanda Marinho Muraro
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Lais Keocheguerian Fernandes
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Lorena C M Santos
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Rodrigo da Costa Maia
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| | - Amanda Ferreira Rezende
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, Campus Umuarama-Bloco 6T, CEP 38405-302, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
9
|
Khogali R, Bastos A, Bargul JL, Getange D, Kabii J, Masiga D, Villinger J. Tissue-specific localization of tick-borne pathogens in ticks collected from camels in Kenya: insights into vector competence. Front Cell Infect Microbiol 2024; 14:1382228. [PMID: 38698904 PMCID: PMC11063324 DOI: 10.3389/fcimb.2024.1382228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Background Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.
Collapse
Affiliation(s)
- Rua Khogali
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| | - Armanda Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Kabii
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
10
|
Karim S, Leyva-Castillo JM, Narasimhan S. Tick salivary glycans - a sugar-coated tick bite. Trends Parasitol 2023; 39:1100-1113. [PMID: 37838514 DOI: 10.1016/j.pt.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
Ticks are hematophagous arthropods that transmit disease-causing pathogens worldwide. Tick saliva deposited into the tick-bite site is composed of an array of immunomodulatory proteins that ensure successful feeding and pathogen transmission. These salivary proteins are often glycosylated, and glycosylation is potentially critical for the function of these proteins. Some salivary glycans are linked to the phenomenon of red meat allergy - an allergic response to red meat consumption in humans exposed to certain tick species. Tick salivary glycans are also invoked in the phenomenon of acquired tick resistance wherein non-natural host species exposed to tick bites develop an immune response that thwarts subsequent tick feeding. This review dwells on our current knowledge of these two phenomena, thematically linked by salivary glycans.
Collapse
Affiliation(s)
- Shahid Karim
- University of Southern Mississippi, Hattiesburg, MS, USA
| | - Juan Manuel Leyva-Castillo
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven-06520, CT, USA.
| |
Collapse
|
11
|
Carnero-Morán Á, Oleaga A, Cano-Argüelles AL, Pérez-Sánchez R. Function-guided selection of salivary antigens from Ornithodoros erraticus argasid ticks and assessment of their protective efficacy in rabbits. Ticks Tick Borne Dis 2023; 14:102218. [PMID: 37364364 DOI: 10.1016/j.ttbdis.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
The identification of new protective antigens for the development of tick vaccines may be approached by selecting antigen candidates that have key biological functions. Bioactive proteins playing key functions for tick feeding and pathogen transmission are secreted into the host via tick saliva. Adult argasid ticks must resynthesise and replace these proteins after each feeding to be able to repeat new trophogonic cycles. Therefore, these proteins are considered interesting antigen targets for tick vaccine development. In this study, the salivary gland transcriptome and saliva proteome of Ornithodoros erraticus females were inspected to select and test new vaccine candidate antigens. For this, we focused on transcripts overexpressed after feeding that encoded secretory proteins predicted to be immunogenic and annotated with functions related to blood ingestion and modulation of the host defensive response. Completeness of the transcript sequence, as well as a high expression level and a high fold-change after feeding were also scored resulting in the selection of four candidates, an acid tail salivary protein (OeATSP), a multiple coagulation factor deficiency protein 2 homolog (OeMCFD2), a Cu/Zn-superoxide dismutase (OeSOD) and a sulfotransferase (OeSULT), which were later produced as recombinant proteins. Vaccination of rabbits with each individual recombinant antigen induced strong humoral responses that reduced blood feeding and female reproduction, providing, respectively, 46.8%, 45.7%, 54.3% and 31.9% protection against O. erraticus infestations and 0.7%, 3.9%, 3.1% and 8.7% cross-protection against infestations by the African tick, Ornithodoros moubata. The joint protective efficacy of these antigens was tested in a second vaccine trial reaching 58.3% protection against O. erraticus and 18.6% cross-protection against O. moubata. These results (i) provide four new protective salivary antigens from argasid ticks that might be included in multi-antigenic vaccines designed for the control of multiple tick species; (ii) reveal four functional protein families never tested before as a source of protective antigens in ticks; and (iii) show that multi-antigenic vaccines increase vaccine efficacy compared with individual antigens. Finally, our data add value to the salivary glands as a protective antigen source in argasids for the control of tick infestations.
Collapse
Affiliation(s)
- Ángel Carnero-Morán
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain
| | - Ana Laura Cano-Argüelles
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain.
| |
Collapse
|
12
|
Contreras M, Vaz-Rodrigues R, Mazuecos L, Villar M, Artigas-Jerónimo S, González-García A, Shilova NV, Bovin NV, Díaz-Sánchez S, Ferreras-Colino E, Pacheco I, Chmelař J, Kopáček P, Cabezas-Cruz A, Gortázar C, de la Fuente J. Allergic reactions to tick saliva components in zebrafish model. Parasit Vectors 2023; 16:242. [PMID: 37468955 PMCID: PMC10357745 DOI: 10.1186/s13071-023-05874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Alpha-Gal syndrome (AGS) is a tick-borne food allergy caused by IgE antibodies against the glycan galactose-alpha-1,3-galactose (α-Gal) present in glycoproteins and glycolipids from mammalian meat. To advance in the diagnosis and treatment of AGS, further research is needed to unravel the molecular and immune mechanisms underlying this syndrome. The objective of this study is the characterization of tick salivary components and proteins with and without α-Gal modifications involved in modulating human immune response against this carbohydrate. METHODS Protein and α-Gal content were determined in tick saliva components, and proteins were identified by proteomics analysis of tick saliva fractions. Pathophysiological changes were recorded in the zebrafish (Danio rerio) model after exposure to distinct Ixodes ricinus tick salivary components. Serum samples were collected from zebrafish at day 8 of exposure to determine anti-α-Gal, anti-glycan, and anti-tick saliva protein IgM antibody titers by enzyme-linked immunosorbent assay (ELISA). RESULTS Zebrafish treated with tick saliva and saliva protein fractions combined with non-protein fractions demonstrated significantly higher incidence of hemorrhagic type allergic reactions, abnormal behavioral patterns, or mortality when compared to the phosphate-buffered saline (PBS)-treated control group. The main tick salivary proteins identified in these fractions with possible functional implication in AGS were the secreted protein B7P208-salivary antigen p23 and metalloproteases. Anti-α-Gal and anti-tick salivary gland IgM antibody titers were significantly higher in distinct saliva protein fractions and deglycosylated saliva group when compared with PBS-treated controls. Anti-glycan antibodies showed group-related profiles. CONCLUSIONS Results support the hypothesis that tick salivary biomolecules with and without α-Gal modifications are involved in modulating immune response against this carbohydrate.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Rita Vaz-Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, Universidad de Castilla-La Mancha, Ave. Camilo José Cela 10, 13071, Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Almudena González-García
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Nadezhda V Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russian Federation
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Oparina str. 4, 117198, Moscow, Russian Federation
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russian Federation
- Centre for Kode Technology Innovation, School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Auckland, New Zealand
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Microbiología, Universidad de La Laguna, Entrada Campus Anchieta, 4, 38200, La Laguna, Tenerife, Canary Islands, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czechia
| | - Petr Kopáček
- Institute of ParasitologyBiology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czechia
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
13
|
Nogueira BCF, Orozco AMO, Argumedo AK, de Oliveira Faustino A, de Oliveira LL, da Fonseca LA, Campos AK. Circulating oxidative stress and acute phase protein levels in horses infested with ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2023:10.1007/s10493-023-00798-z. [PMID: 37285109 DOI: 10.1007/s10493-023-00798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023]
Abstract
Ticks have saliva rich in immunoregulatory molecules that interfere with the host's physiology in order to feed. This study aimed to evaluate the concentration of acute phase proteins and circulating oxidative stress in response to infestation by Amblyomma sculptum and Dermacentor nitens in two breed horses, Mangalarga Marchador and Breton Postier, to define resistance or susceptibility to ticks. Among the oxidative stress markers, we observed lower malondialdehyde and nitric oxide in horses with tick infestation, consequently not altering the antioxidant enzymes. Breton Postier with tick infestation showed a reduction in the ferric reducing ability of plasma (FRAP), which may be due to lower feeding of the host due to the stress caused by the infestation or even to sequestration of components induced by the tick during blood feeding. The alpha-1-antitrypsin, an acute phase protein, showed an increase in Mangalarga Marchador with tick infestation; curiously it is related to a protective action against tissue damage, pathogens and parasites. We could assume that Mangalarga Marchador showed a better response to ticks when compared to Breton Postier. However, it is still early to define the resistance or susceptibility to ticks, as we did not observe significant changes in most of the analyzed variables. Further studies are needed to understand the compounds and mechanisms of action of the tick saliva in the acute phase proteins and the possible relationships of oxidative stress in the host and the tick during blood feeding.
Collapse
Affiliation(s)
| | | | - Ana Karina Argumedo
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Artur Kanadani Campos
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Liu L, Cheng R, Mao SQ, Duan DY, Feng LL, Cheng TY. Saliva proteome of partially- and fully-engorged adult female Haemaphysalis flava ticks. Vet Parasitol 2023; 318:109933. [PMID: 37043866 DOI: 10.1016/j.vetpar.2023.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Tick saliva is a reservoir of bioactive proteins. Saliva protein compositions change dynamically during blood-feeding. Decipherment of protein profiles in different blood-feeding stages may bring deeper insight into tick feeding physiology and provide targets for immunologic control alternatives. However, having the infancy of tick genome sequencing, assembly, annotation, and limited knowledge of tick salivary proteins restrain the data interpretation. Here, we aimed to depict the saliva protein profile in partially- (PE) and fully-engorged (FE) Haemaphysalis flava ticks, with a special focus on the analysis of those uncharacterized proteins. Saliva was collected from PE and FE adult female H. flava ticks. Saliva proteins were analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS-MS). MS data were searched against an in-house salivary gland transcriptome library for identification of tick-derived proteins. Abundances of proteins were compared between PE and FE ticks. The uncharacterized proteins detected in saliva were further bioinformatically analyzed. In total, 614 proteins were identified including 94 host proteins and 520 tick-derived proteins. The 226 tick-derived high-confidence proteins were classified into 10 categories: transporters, enzymes, protease inhibitors, immunity-related proteins, lipocalins, glycine-rich proteins, muscle proteins, secreted proteins, uncharacterized proteins and others. A total of 98 proteins were shared in both PE and FE with 74 only in PE and 54 only in FE. Abundances of 24 shared proteins were significantly higher in PE. The profile of top 15 most abundant proteins was also different between PE and FE ticks. The 65 uncharacterized proteins detected in tick saliva were branched into subclusters 1 A, 1B, 2, 3 A, 3B and 3 C based on particular motifs like RGD, LRR, indicating their diverse predicted functions like anti-coagulation, regulation of innate immune, or other functions. This study provides and compares saliva proteomes of H. flava ticks in two feeding stages with special cluster analysis on the uncharacterized proteins. Further investigations are needed to confirm the roles of these uncharacterized proteins in ticks.
Collapse
Affiliation(s)
- Lei Liu
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Rong Cheng
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Si-Qing Mao
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li-Li Feng
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
15
|
Kahl O, Gray JS. The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick Borne Dis 2023; 14:102114. [PMID: 36603231 DOI: 10.1016/j.ttbdis.2022.102114] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Prior to its identification as the vector of Lyme borreliosis spirochaetes in Europe in 1983, interest in Ixodes ricinus (L.) was moderate and mainly concerned the transmission of pathogens to farm animals and of tick-borne encephalitis virus to humans. The situation now is very different, and more papers have been published on I. ricinus than on any other ixodid tick species. However, this large literature is scattered and in recent years has become dominated by the molecular detection and characterization of the many pathogens that I. ricinus transmits. Several decades have now elapsed since a review addressing its basic biology and ecology appeared, and the present publication seeks to present basic aspects of its biology and ecology that are related to its role as a vector of disease agents, including its life cycle, feeding behaviour, host relations, survival off the host, and the impact of weather and climate.
Collapse
Affiliation(s)
- Olaf Kahl
- tick-radar GmbH, 10555 Berlin, Germany.
| | | |
Collapse
|
16
|
Filatov S, Dyčka F, Sterba J, Rego RO. A simple non-invasive method to collect soft tick saliva reveals differences in Ornithodoros moubata saliva composition between ticks infected and uninfected with Borrelia duttonii spirochetes. Front Cell Infect Microbiol 2023; 13:1112952. [PMID: 36743301 PMCID: PMC9895398 DOI: 10.3389/fcimb.2023.1112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Introduction: We developed a new simple method to assess the composition of proteinaceous components in the saliva of Ornithodoros moubata, the main vehicle for pathogen transmission and a likely source of bioactive molecules acting at the tick-vertebrate host interface. To collect naturally expectorated saliva from the ticks we employed an artificial membrane feeding technique using a simple, chemically defined diet containing phagostimulants and submitted native saliva samples collected in this way for liquid chromatography-mass spectrometry (LC-MS) analysis. These experiments were conducted with groups of uninfected ticks as well as with O. moubata infected with B. duttonii. The ticks exhibited a fair feeding response to the tested diet with engorgement rates reaching as high as 60-100% of ticks per feeding chamber. The LC-MS analysis identified a total of 17 and 15 proteins in saliva samples from the uninfected and infected O. moubata nymphs, respectively. Importantly, the analysis was sensitive enough to detect up to 9 different proteins in the samples of saliva containing diet upon which as few as 6 nymphal ticks fed during the experiments. Some of the proteins recognized in the analysis are well known for their immunomodulatory activity in a vertebrate host, whereas others are primarily thought of as structural or "housekeeping" proteins and their finding in the naturally expectorated tick saliva confirms that they can be secreted and might serve some functions at the tick-host interface. Most notably, some of the proteins that have long been suspected for their importance in the vector-pathogen interactions of Borrelia spirochetes were detected only in the samples from infected ticks, suggesting that their expression was altered by the persistent colonization of the tick's salivary glands by spirochetes. The simple method described herein is an important addition to the toolbox available to study the vector-host-pathogen interactions in the rapidly feeding soft ticks.
Collapse
Affiliation(s)
- Serhii Filatov
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, Ukraine,*Correspondence: Serhii Filatov, ; Ryan O.M. Rego,
| | - Filip Dyčka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Jan Sterba
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Ryan O.M. Rego
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia,*Correspondence: Serhii Filatov, ; Ryan O.M. Rego,
| |
Collapse
|
17
|
Jmel MA, Voet H, Araújo RN, Tirloni L, Sá-Nunes A, Kotsyfakis M. Tick Salivary Kunitz-Type Inhibitors: Targeting Host Hemostasis and Immunity to Mediate Successful Blood Feeding. Int J Mol Sci 2023; 24:1556. [PMID: 36675071 PMCID: PMC9865953 DOI: 10.3390/ijms24021556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Abstract
Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promising therapeutic potential. They target key proteases involved in major cellular processes such as inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease inhibitors from the Kunitz superfamily have a low molecular weight (18-24 kDa) and are characterized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel β-sheets stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease inhibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic applications. In doing so, we highlight that their pharmacological properties can be exploited for the development of novel therapies and vaccines.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Hanne Voet
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Ricardo N. Araújo
- Laboratory of Hematophagous Arthropods, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro 21941-902, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Anderson Sá-Nunes
- National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro 21941-902, RJ, Brazil
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
18
|
Narasimhan S, Booth CJ, Philipp MT, Fikrig E, Embers ME. Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding. Pathogens 2023; 12:132. [PMID: 36678479 PMCID: PMC9861725 DOI: 10.3390/pathogens12010132] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The blacklegged tick, Ixodes scapularis, is the predominant vector of Borrelia burgdorferi, the agent of Lyme disease in the USA. Natural hosts of I. scapularis such as Peromyscus leucopus are repeatedly infested by these ticks without acquiring tick resistance. However, upon repeated tick infestations, non-natural hosts such as guinea pigs, mount a robust immune response against critical tick salivary antigens and acquire tick resistance able to thwart tick feeding and Borrelia burgdorferi transmission. The salivary targets of acquired tick resistance could serve as vaccine targets to prevent tick feeding and the tick transmission of human pathogens. Currently, there is no animal model able to demonstrate both tick resistance and diverse clinical manifestations of Lyme disease. Non-human primates serve as robust models of human Lyme disease. By evaluating the responses to repeated tick infestation, this animal model could accelerate our ability to define the tick salivary targets of acquired resistance that may serve as vaccines to prevent the tick transmission of human pathogens. Towards this goal, we assessed the development of acquired tick resistance in non-human primates upon repeated tick infestations. We report that following repeated tick infestations, non-human primates do not develop the hallmarks of acquired tick resistance observed in guinea pigs. However, repeated tick infestations elicit immune responses able to impair the tick transmission of B. burgdorferi. A mechanistic understanding of the protective immune responses will provide insights into B. burgdorferi-tick-host interactions and additionally contribute to anti-tick vaccine discovery.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carmen J. Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mario T. Philipp
- Division of Bacteriology & Parasitology, Tulane School of Medicine, New Orleans, LA 70112, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monica E. Embers
- Division of Bacteriology & Parasitology, Tulane School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
19
|
Couret J, Schofield S, Narasimhan S. The environment, the tick, and the pathogen - It is an ensemble. Front Cell Infect Microbiol 2022; 12:1049646. [PMID: 36405964 PMCID: PMC9666722 DOI: 10.3389/fcimb.2022.1049646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 03/22/2024] Open
Abstract
Ixodes scapularis is one of the predominant vectors of Borrelia burgdorferi, the agent of Lyme disease in the USA. The geographic distribution of I. scapularis, endemic to the northeastern and northcentral USA, is expanding as far south as Georgia and Texas, and northwards into Canada and poses an impending public health problem. The prevalence and spread of tick-borne diseases are influenced by the interplay of multiple factors including microbiological, ecological, and environmental. Molecular studies have focused on interactions between the tick-host and pathogen/s that determine the success of pathogen acquisition by the tick and transmission to the mammalian host. In this review we draw attention to additional critical environmental factors that impact tick biology and tick-pathogen interactions. With a focus on B. burgdorferi we highlight the interplay of abiotic factors such as temperature and humidity as well as biotic factors such as environmental microbiota that ticks are exposed to during their on- and off-host phases on tick, and infection prevalence. A molecular understanding of this ensemble of interactions will be essential to gain new insights into the biology of tick-pathogen interactions and to develop new approaches to control ticks and tick transmission of B. burgdorferi, the agent of Lyme disease.
Collapse
Affiliation(s)
- Jannelle Couret
- Department of Biological Sciences, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI, United States
| | - Samantha Schofield
- Department of Biological Sciences, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI, United States
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
20
|
Strobl J, Mündler V, Müller S, Gindl A, Berent S, Schötta AM, Kleissl L, Staud C, Redl A, Unterluggauer L, Aguilar González AE, Weninger ST, Atzmüller D, Klasinc R, Stanek G, Markowicz M, Stockinger H, Stary G. Tick feeding modulates the human skin immune landscape to facilitate tick-borne pathogen transmission. J Clin Invest 2022; 132:e161188. [PMID: 36166299 PMCID: PMC9621130 DOI: 10.1172/jci161188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
During cutaneous tick attachment, the feeding cavity becomes a site of transmission for tick salivary compounds and tick-borne pathogens. However, the immunological consequences of tick feeding for human skin remain unclear. Here, we assessed human skin and blood samples upon tick bite and developed a human skin explant model mimicking Ixodes ricinus bites and tick-borne pathogen infection. Following tick attachment, we observed rapidly occurring patterns of immunomodulation, including increases in neutrophils and cutaneous B and T cells. T cells upregulated tissue residency markers, while lymphocytic cytokine production was impaired. In early stages of Borrelia burgdorferi model infections, we detected strain-specific immune responses and close spatial relationships between macrophages and spirochetes. Preincubation of spirochetes with tick salivary gland extracts hampered accumulation of immune cells and increased spirochete loads. Collectively, we showed that tick feeding exerts profound changes on the skin immune network that interfere with the primary response against tick-borne pathogens.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Verena Mündler
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sophie Müller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna Gindl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sara Berent
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna-Margarita Schötta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Sophie T. Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Denise Atzmüller
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Romana Klasinc
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerold Stanek
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mateusz Markowicz
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
21
|
Barillas-Mury C, Ribeiro JMC, Valenzuela JG. Understanding pathogen survival and transmission by arthropod vectors to prevent human disease. Science 2022; 377:eabc2757. [PMID: 36173836 DOI: 10.1126/science.abc2757] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many endemic poverty-associated diseases, such as malaria and leishmaniasis, are transmitted by arthropod vectors. Pathogens must interact with specific molecules in the vector gut, the microbiota, and the vector immune system to survive and be transmitted. The vertebrate host, in turn, is infected when the pathogen and vector-derived factors, such as salivary proteins, are delivered into the skin by a vector bite. Here, we review recent progress in our understanding of the biology of pathogen transmission from the human to the vector and back, from the vector to the host. We also highlight recent advances in the biology of vector-borne disease transmission, which have translated into additional strategies to prevent human disease by either reducing vector populations or by disrupting their ability to transmit pathogens.
Collapse
Affiliation(s)
- Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| |
Collapse
|
22
|
Price KJ, Witmier BJ, Eckert RA, Boyer CN. Recovery of Partially Engorged Haemaphysalis longicornis (Acari: Ixodidae) Ticks from Active Surveillance. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1842-1846. [PMID: 35851919 PMCID: PMC9473650 DOI: 10.1093/jme/tjac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 06/15/2023]
Abstract
The invasive Asian longhorned tick, Haemaphysalis longicornis, has rapidly spread across the northeastern United States and is associated with pathogens of public health and veterinary concern. Despite its importance in pathogen dynamics, H. longicornis blood-feeding behavior in nature, specifically the likelihood of interrupted feeding, remains poorly documented. Here, we report the recovery of partially engorged, questing H. longicornis from active tick surveillance in Pennsylvania. Significantly more engorged H. longicornis nymphs (1.54%) and adults (3.07%) were recovered compared to Ixodes scapularis nymphs (0.22%) and adults (zero). Mean Scutal Index difference between unengorged and engorged nymph specimens was 0.65 and 0.42 for I. scapularis and H. longicornis, respectively, suggesting the questing, engorged H. longicornis also engorged to a comparatively lesser extent. These data are among the first to document recovery of engorged, host-seeking H. longicornis ticks and provide initial evidence for interrupted feeding and repeated successful questing events bearing implications for pathogen transmission and warranting consideration in vector dynamics models.
Collapse
Affiliation(s)
- Keith J Price
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA 17110, USA
| | | | - Rebecca A Eckert
- Department of Environmental Studies, Gettysburg College, Gettysburg, PA 17325, USA
| | - Christian N Boyer
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA 17110, USA
| |
Collapse
|
23
|
Medina JM, Jmel MA, Cuveele B, Gómez-Martín C, Aparicio-Puerta E, Mekki I, Kotál J, Martins LA, Hackenberg M, Bensaoud C, Kotsyfakis M. Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host. Front Cell Infect Microbiol 2022; 12:919786. [PMID: 35992165 PMCID: PMC9386188 DOI: 10.3389/fcimb.2022.919786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/14/2022] [Indexed: 12/13/2022] Open
Abstract
Ticks are blood-feeding arthropods that use the components of their salivary glands to counter the host’s hemostatic, inflammatory, and immune responses. The tick midgut also plays a crucial role in hematophagy. It is responsible for managing blood meals (storage and digestion) and protecting against host immunity and pathogen infections. Previous transcriptomic studies revealed the complexity of tick sialomes (salivary gland transcriptomes) and mialomes (midgut transcriptomes) which encode for protease inhibitors, lipocalins (histamine-binding proteins), disintegrins, enzymes, and several other tick-specific proteins. Several studies have demonstrated that mammalian hosts acquire tick resistance against repeated tick bites. Consequently, there is an urgent need to uncover how tick sialomes and mialomes respond to resistant hosts, as they may serve to develop novel tick control strategies and applications. Here, we mimicked natural repeated tick bites in a laboratory setting and analyzed gene expression dynamics in the salivary glands and midguts of adult female ticks. Rabbits were subjected to a primary (feeding on a naive host) and a secondary infestation of the same host (we re-exposed the hosts but to other ticks). We used single salivary glands and midguts dissected from individual siblings adult pathogen-free female Ixodes ricinus to reduce genetic variability between individual ticks. The comprehensive analysis of 88 obtained RNA-seq data sets allows us to provide high-quality annotated sialomes and mialomes from individual ticks. Comparisons between fed/unfed, timepoints, and exposures yielded as many as 3000 putative differentially expressed genes (DEG). Interestingly, when classifying the exposure DEGs by means of a clustering approach we observed that the majority of these genes show increased expression at early feeding time-points in the mid-gut of re-exposed ticks. The existence of clearly defined groups of genes with highly similar responses to re-exposure suggests the existence of molecular swiches. In silico functional analysis shows that these early feeding reexposure response genes form a dense interaction network at protein level being related to virtually all aspects of gene expression regulation and glycosylation. The processed data is available through an easy-to-use database-associated webpage (https://arn.ugr.es/IxoriDB/) that can serve as a valuable resource for tick research.
Collapse
Affiliation(s)
- José María Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Granada, Spain
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
| | - Brent Cuveele
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
| | - Cristina Gómez-Martín
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Program Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Ernesto Aparicio-Puerta
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Granada, Spain
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Imen Mekki
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Jan Kotál
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
| | | | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Granada, Spain
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
- *Correspondence: Michail Kotsyfakis, ; Chaima Bensaoud,
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
- *Correspondence: Michail Kotsyfakis, ; Chaima Bensaoud,
| |
Collapse
|
24
|
Gomes R, Kolářová I, Sá-Nunes A, Carneiro M. Editorial: Hematophagous arthropod saliva: a multifunctional tool. Front Cell Infect Microbiol 2022; 12:977511. [PMID: 35909959 PMCID: PMC9326350 DOI: 10.3389/fcimb.2022.977511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Regis Gomes
- Biotechnology, Oswaldo Cruz Foundation, Eusébio, Brazil
- *Correspondence: Regis Gomes,
| | - Iva Kolářová
- Laboratory for Biology of Insect Vectors, Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development, Rio de Janeiro, Brazil
| | - Matheus Carneiro
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
25
|
Maldonado-Ruiz LP, Urban J, Davis BN, Park JJ, Zurek L, Park Y. Dermal secretion physiology and thermoregulation in the lone star tick, Amblyomma americanum. Ticks Tick Borne Dis 2022; 13:101962. [PMID: 35525214 DOI: 10.1016/j.ttbdis.2022.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Ticks are hematophagous ectoparasites that transmit a wide range of pathogens. The lone star tick, Amblyomma americanum, is one of the most widely distributed ticks in the Midwest and Eastern United States. Lone star ticks, as other three-host ixodid ticks, can survive in harsh environments for extended periods without a blood meal. Physiological mechanisms that allow them to survive during hot and dry seasons include thermal tolerance and water homeostasis. Dermal fluid secretions have been described in metastriate ticks including A. americanum. We hypothesized that tick dermal secretion in the unfed tick plays a role in thermoregulation, as described in other hematophagous arthropods during blood feeding. In this study, we found that physical contact with a heat probe at 45 °C or high environmental temperature at ∼50 °C can trigger dermal secretion in A. americanum and other metastriate ticks in the off-host period. We demonstrated that dermal secretion plays a role in evaporative cooling when ticks are exposed to high temperatures. We find that type II dermal glands, having paired two cells and forming large glandular structures, are the source of dermal secretion. The secretion was triggered by an injection of serotonin, and the serotonin-mediated secretion was suppressed by a pretreatment with ouabain, a Na/K-ATPase blocker, implying that the secretion is controlled by serotonin and the downstream Na/K-ATPase.
Collapse
Affiliation(s)
| | - Joshua Urban
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Brianna N Davis
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Jessica J Park
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic; Department of Microbiology, Nutrition and Dietetics, Czech Agricultural University, Prague, Czech Republic
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan KS66506, USA.
| |
Collapse
|
26
|
Pérez-Sánchez R, Cano-Argüelles AL, González-Sánchez M, Oleaga A. First Data on Ornithodoros moubata Aquaporins: Structural, Phylogenetic and Immunogenic Characterisation as Vaccine Targets. Pathogens 2022; 11:pathogens11060694. [PMID: 35745548 PMCID: PMC9227307 DOI: 10.3390/pathogens11060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Ornithodoros moubata transmits African swine fever and human relapsing fever in Africa. The elimination of O. moubata populations from anthropic environments is expected to improve the prevention and control of these diseases. Tick vaccines have emerged as a sustainable method for tick control, and tick aquaporins (AQPs) are promising targets for tick vaccines due to their vital functions, immunogenicity and ease of access by neutralising host antibodies. This study aimed at the systematic identification of the AQPs expressed by O. moubata (OmAQPs) and their characterisation as vaccine targets. Therefore, AQP coding sequences were recovered from available transcriptomic datasets, followed by PCR amplification, cloning, sequence verification and the analysis of the AQP protein structure and epitope exposure. Seven OmAQPs were identified and characterised: six were aquaglyceroporins, and one was a water-specific aquaporin. All of these were expressed in the salivary glands and midgut and only three in the coxal glands. Epitope exposure analysis identified three extracellular domains in each AQP, which concentrate overlapping B and T cell epitopes, making them interesting vaccine targets. Based on these domain sequences, a set of ten antigenic peptides was designed, which showed adequate properties to be produced and tested in pilot vaccine trials.
Collapse
|
27
|
Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022; 20:818-853. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Ticks, particularly hard ticks (Ixodidae), which are among the most important vectors of dangerous infectious agents, feed on their hosts for extended periods of time. With this lifestyle, numerous adaptations have evolved in ticks and their hosts, the pharmacological importance of which is increasingly being recognized. Many bioactive substances in tick saliva are being considered as the basis of new drugs. For example, components of tick cement can be developed into tissue adhesives or wound closures. Analgesic and antipruritic salivary components inhibit histamine or bradykinin, while other tick-derived molecules bind opioid or cannabinoid receptors. Tick saliva inhibits the extrinsic, intrinsic, or common pathway of blood coagulation with implications for the treatment of thromboembolic diseases. It contains vasodilating substances and affects wound healing. The broad spectrum of immunomodulatory and immunosuppressive effects of tick saliva, such as inhibition of chemokines or cellular immune responses, allows development of drugs against inflammation in autoimmune diseases and/or infections. Finally, modern vaccines against ticks can curb the spread of serious infections. The medical importance of the complex tick-host interactions is increasingly being recognized and translated into first clinical applications. Using selected examples, an overview of the mutual adaptations of ticks and hosts is given here, focusing on their significance to medical advance.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| |
Collapse
|
28
|
Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022; 20:818-855. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
29
|
Guizzo MG, Tirloni L, Gonzalez SA, Farber MD, Braz G, Parizi LF, Dedavid E Silva LA, da Silva Vaz I, Oliveira PL. Coxiella Endosymbiont of Rhipicephalus microplus Modulates Tick Physiology With a Major Impact in Blood Feeding Capacity. Front Microbiol 2022; 13:868575. [PMID: 35591999 PMCID: PMC9111531 DOI: 10.3389/fmicb.2022.868575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
In the past decade, metagenomics studies exploring tick microbiota have revealed widespread interactions between bacteria and arthropods, including symbiotic interactions. Functional studies showed that obligate endosymbionts contribute to tick biology, affecting reproductive fitness and molting. Understanding the molecular basis of the interaction between ticks and their mutualist endosymbionts may help to develop control methods based on microbiome manipulation. Previously, we showed that Rhipicephalus microplus larvae with reduced levels of Coxiella endosymbiont of R. microplus (CERM) were arrested at the metanymph life stage (partially engorged nymph) and did not molt into adults. In this study, we performed a transcriptomic differential analysis of the R. microplus metanymph in the presence and absence of its mutualist endosymbiont. The lack of CERM resulted in an altered expression profile of transcripts from several functional categories. Gene products such as DA-P36, protease inhibitors, metalloproteases, and evasins, which are involved in blood feeding capacity, were underexpressed in CERM-free metanymphs. Disregulation in genes related to extracellular matrix remodeling was also observed in the absence of the symbiont. Taken together, the observed alterations in gene expression may explain the blockage of development at the metanymph stage and reveal a novel physiological aspect of the symbiont-tick-vertebrate host interaction.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States.,Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Sergio A Gonzalez
- Instituto de Agrobiotecnologia y Biologia Molecular (IABIMO), INTA-CONICET, Hurlingham, Argentina
| | - Marisa D Farber
- Instituto de Agrobiotecnologia y Biologia Molecular (IABIMO), INTA-CONICET, Hurlingham, Argentina
| | - Glória Braz
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Small, charged proteins in salmon louse (Lepeophtheirus salmonis) secretions modulate Atlantic salmon (Salmo salar) immune responses and coagulation. Sci Rep 2022; 12:7995. [PMID: 35568726 PMCID: PMC9107468 DOI: 10.1038/s41598-022-11773-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Little is known about glandular proteins secreted from the skin- and blood-feeding ectoparasite salmon louse (Lepeophtheirus salmonis). The labial gland has ducts extending into the oral cavity of the lice, and the present study aimed to identify novel genes expressed by this gland type and to investigate their role in modulation of host parameters at the lice feeding site. Five genes associated with labial gland function were identified and named Lepeophteirus salmonis labial gland protein (LsLGP) 1-4 and 1 like (LsLGP1L). All LsLGPs were predicted to be small charged secreted proteins not encoding any known protein domains. Functional studies revealed that LsLGP1 and/or LsLGP1L regulated the expression of other labial gland genes. Immune dampening functions were indicated for LsLGP2 and 3. Whereas LsLGP2 was expressed throughout the parasitic life cycle and found to dampen inflammatory cytokines, LsLGP3 displayed an increased expression in mobile stages and appeared to dampen adaptive immune responses. Expression of LsLGP4 coincided with moulting to the mobile pre-adult I stage where hematophagous feeding is initiated, and synthetic LsLGP4 decreased the clotting time of Atlantic salmon plasma. Results from the present study confirm that the salmon louse secretes immune modulating and anti-coagulative proteins with a potential application in new immune based anti-salmon louse treatments.
Collapse
|
31
|
Maqbool M, Sajid MS, Saqib M, Anjum FR, Tayyab MH, Rizwan HM, Rashid MI, Rashid I, Iqbal A, Siddique RM, Shamim A, Hassan MA, Atif FA, Razzaq A, Zeeshan M, Hussain K, Nisar RHA, Tanveer A, Younas S, Kamran K, Rahman SU. Potential Mechanisms of Transmission of Tick-Borne Viruses at the Virus-Tick Interface. Front Microbiol 2022; 13:846884. [PMID: 35602013 PMCID: PMC9121816 DOI: 10.3389/fmicb.2022.846884] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ticks (Acari; Ixodidae) are the second most important vector for transmission of pathogens to humans, livestock, and wildlife. Ticks as vectors for viruses have been reported many times over the last 100 years. Tick-borne viruses (TBVs) belong to two orders (Bunyavirales and Mononegavirales) containing nine families (Bunyaviridae, Rhabdoviridae, Asfarviridae, Orthomyxovirida, Reoviridae, Flaviviridae, Phenuviridae, Nyamiviridae, and Nairoviridae). Among these TBVs, some are very pathogenic, causing huge mortality, and hence, deserve to be covered under the umbrella of one health. About 38 viral species are being transmitted by <10% of the tick species of the families Ixodidae and Argasidae. All TBVs are RNA viruses except for the African swine fever virus from the family Asfarviridae. Tick-borne viral diseases have also been classified as an emerging threat to public health and animals, especially in resource-poor communities of the developing world. Tick-host interaction plays an important role in the successful transmission of pathogens. The ticks' salivary glands are the main cellular machinery involved in the uptake, settlement, and multiplication of viruses, which are required for successful transmission into the final host. Furthermore, tick saliva also participates as an augmenting tool during the physiological process of transmission. Tick saliva is an important key element in the successful transmission of pathogens and contains different antimicrobial proteins, e.g., defensin, serine, proteases, and cement protein, which are key players in tick-virus interaction. While tick-virus interaction is a crucial factor in the propagation of tick-borne viral diseases, other factors (physiological, immunological, and gut flora) are also involved. Some immunological factors, e.g., toll-like receptors, scavenger receptors, Janus-kinase (JAK-STAT) pathway, and immunodeficiency (IMD) pathway are involved in tick-virus interaction by helping in virus assembly and acting to increase transmission. Ticks also harbor some endogenous viruses as internal microbial faunas, which also play a significant role in tick-virus interaction. Studies focusing on tick saliva and its role in pathogen transmission, tick feeding, and control of ticks using functional genomics all point toward solutions to this emerging threat. Information regarding tick-virus interaction is somewhat lacking; however, this information is necessary for a complete understanding of transmission TBVs and their persistence in nature. This review encompasses insight into the ecology and vectorial capacity of tick vectors, as well as our current understanding of the predisposing, enabling, precipitating, and reinforcing factors that influence TBV epidemics. The review explores the cellular, biochemical, and immunological tools which ensure and augment successful evading of the ticks' defense systems and transmission of the viruses to the final hosts at the virus-vector interface. The role of functional genomics, proteomics, and metabolomics in profiling tick-virus interaction is also discussed. This review is an initial attempt to comprehensively elaborate on the epidemiological determinants of TBVs with a focus on intra-vector physiological processes involved in the successful execution of the docking, uptake, settlement, replication, and transmission processes of arboviruses. This adds valuable data to the existing bank of knowledge for global stakeholders, policymakers, and the scientific community working to devise appropriate strategies to control ticks and TBVs.
Collapse
Affiliation(s)
- Mahvish Maqbool
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Faisal Rasheed Anjum
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, Pakistan
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Haleem Tayyab
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Muhammad Rizwan
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Sciences Narowal, Lahore, Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imaad Rashid
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Asif Iqbal
- Section of Parasitology, Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan
| | - Rao Muhammad Siddique
- Section of Parasitology, Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan
| | - Asim Shamim
- Department of Pathobiology, University of the Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Adeel Hassan
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, Collège of Veterinary and Animal Sciences, Jhang, Pakistan
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdul Razzaq
- Agricultural Linkages Program, Pakistan Agriculture Research Council, Islamabad, Pakistan
| | - Muhammad Zeeshan
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Hussain
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | | | - Akasha Tanveer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Younas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Kamran
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Sajjad ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
32
|
Handajani J, Kusumajati D, Fathiyah H, Susilowati H, Tandelilin RT. Quality improvement of saliva by chewing tapioca pearls in bubble tea drinks: a randomized experimental trial. F1000Res 2022; 10:56. [PMID: 35387272 PMCID: PMC8938629 DOI: 10.12688/f1000research.28028.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Bubble tea drinks contain tea and tapioca pearls. Chewing tapioca pearls in bubble tea drinks may increase salivary components. Because of its proteins, inorganic components, and enzymes, saliva plays an important role in the body’s defense against bacteria and viruses. This study aims to analyze the effect of chewing tapioca pearls in bubble tea drinks on salivary C-reactive protein (CRP) and calcium (Ca) levels. Methods: The inclusion criterion was 18–25 years of age. The exclusion criteria were receiving medication, using dentures, a history of dry mouth, smoking and systemic disease. In the first week of the experiment, subjects drank bubble tea with tapioca pearls for three days (intervention week). In the second week, the same subjects drank tea without pearls for three days (control week). Each subject drank the bubble tea for 5 minutes per day over 3 days. Saliva samples were collected on the first day before bubble tea consumption (pretest) and on the third day after tea consumption (posttest). Saliva collection was performed in the morning (09:00 am–12:00 pm) for 1 minute. Sixty saliva samples were collected from 15 subjects. Salivary CRP levels were measured using a commercial ELISA kit, and Ca levels were determined using semi-quantitative test strips. Results: Salivary CRP decreased significantly on the third day in the intervention group but showed no significant difference with the control group. Calcium levels increased significantly on the third day in both groups. Conclusion: Bubble tea drinks could improve the quality of saliva by decreasing salivary CRP and increasing Ca levels. Trial registration: ClinicalTrials.gov,
NCT04670341 (17
th December 2020).
Collapse
Affiliation(s)
- Juni Handajani
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Dinda Kusumajati
- Dental Hygiene Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Hania Fathiyah
- Dental Hygiene Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Heni Susilowati
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Regina T.C. Tandelilin
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| |
Collapse
|
33
|
Neelakanta G, Sultana H. Tick Saliva and Salivary Glands: What Do We Know So Far on Their Role in Arthropod Blood Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2022; 11:816547. [PMID: 35127563 PMCID: PMC8809362 DOI: 10.3389/fcimb.2021.816547] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Ticks are blood-sucking arthropods that have developed myriad of strategies to get a blood meal from the vertebrate host. They first attach to the host skin, select a bite site for a blood meal, create a feeding niche at the bite site, secrete plethora of molecules in its saliva and then starts feeding. On the other side, host defenses will try to counter-attack and stop tick feeding at the bite site. In this constant battle between ticks and the host, arthropods successfully pacify the host and completes a blood meal and then replete after full engorgement. In this review, we discuss some of the known and emerging roles for arthropod components such as cement, salivary proteins, lipocalins, HSP70s, OATPs, and extracellular vesicles/exosomes in facilitating successful blood feeding from ticks. In addition, we discuss how tick-borne pathogens modulate(s) these components to infect the vertebrate host. Understanding the biology of arthropod blood feeding and molecular interactions at the tick-host interface during pathogen transmission is very important. This information would eventually lead us in the identification of candidates for the development of transmission-blocking vaccines to prevent diseases caused by medically important vector-borne pathogens.
Collapse
|
34
|
Villar M, Pacheco I, Mateos-Hernández L, Cabezas-Cruz A, Tabor AE, Rodríguez-Valle M, Mulenga A, Kocan KM, Blouin EF, de la Fuente J. Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Rev Proteomics 2021; 18:1099-1116. [PMID: 34904495 DOI: 10.1080/14789450.2021.2018305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Ticks are obligate hematophagous arthropods that synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) associated with the alpha-gal syndrome (AGS) or allergy to mammalian meat consumption. RESEARCH DESIGN AND METHODS In this study, we used a proteomics approach to characterize tick proteins in salivary glands (sialome SG), secreted saliva (sialome SA) and with α-Gal modification (alphagalactome SG and SA) in model tick species associated with the AGS in the United States (Amblyomma americanum) and Australia (Ixodes holocyclus). Selected proteins reactive to sera (IgE) from patients with AGS were identified to advance in the identification of possible proteins associated with the AGS. For comparative analysis, the α-Gal content was measured in various tick species. RESULTS The results confirmed that ticks produce proteins with α-Gal modifications and secreted into saliva during feeding. Proteins identified in tick alphagalactome SA by sera from patients with severe AGS symptomatology may constitute candidate disease biomarkers. CONCLUSIONS The results support the presence tick-derived proteins with α-Gal modifications in the saliva with potential implications in AGS and other disorders and protective capacity against tick infestations and pathogen infection. Future research should focus on the characterization of the function of tick glycoproteins with α-Gal in tick biology and AGS.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.,Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Ala E Tabor
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, 306 Carmody Road, St. Lucia, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Road, St. Lucia, QLD 4072, Australia
| | - Manuel Rodríguez-Valle
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, 306 Carmody Road, St. Lucia, QLD 4072, Australia
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX77843, United States
| | - Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edmour F Blouin
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
35
|
Impact of tick salivary gland extracts on cytotoxic activity of mouse natural killer cells. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00954-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ, Ostfeld RS, Marconi RT, Aucott J, Ma'ayan A, Keesing F, Lewis K, Ben Mamoun C, Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B, Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR, Baumgarth N, Fallon BA. Recent Progress in Lyme Disease and Remaining Challenges. Front Med (Lausanne) 2021; 8:666554. [PMID: 34485323 PMCID: PMC8416313 DOI: 10.3389/fmed.2021.666554] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lyme disease (also known as Lyme borreliosis) is the most common vector-borne disease in the United States with an estimated 476,000 cases per year. While historically, the long-term impact of Lyme disease on patients has been controversial, mounting evidence supports the idea that a substantial number of patients experience persistent symptoms following treatment. The research community has largely lacked the necessary funding to properly advance the scientific and clinical understanding of the disease, or to develop and evaluate innovative approaches for prevention, diagnosis, and treatment. Given the many outstanding questions raised into the diagnosis, clinical presentation and treatment of Lyme disease, and the underlying molecular mechanisms that trigger persistent disease, there is an urgent need for more support. This review article summarizes progress over the past 5 years in our understanding of Lyme and tick-borne diseases in the United States and highlights remaining challenges.
Collapse
Affiliation(s)
- Jason R. Bobe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brandon L. Jutras
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | | | - Monica E. Embers
- Tulane University Health Sciences, New Orleans, LA, United States
| | - Allison Bailey
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - John Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avi Ma'ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Kim Lewis
- Department of Biology, Northeastern University, Boston, MA, United States
| | | | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mecaila E. McClune
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | - Ricardo Maggi
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bennett Nemser
- Steven & Alexandra Cohen Foundation, Stamford, CT, United States
| | - Aydogan Ozcan
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Omai Garner
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Zachary Ballard
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Hyou-Arm Joung
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roland R. Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and the Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian A. Fallon
- Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
37
|
Kitsou C, Fikrig E, Pal U. Tick host immunity: vector immunomodulation and acquired tick resistance. Trends Immunol 2021; 42:554-574. [PMID: 34074602 PMCID: PMC10089699 DOI: 10.1016/j.it.2021.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022]
Abstract
Ticks have an unparalleled ability to parasitize diverse land vertebrates. Their natural persistence and vector competence are supported by the evolution of sophisticated hematophagy and remarkable host immune-evasion activities. We analyze the immunomodulatory roles of tick saliva which facilitates their acquisition of a blood meal from natural hosts and allows pathogen transmission. We also discuss the contrasting immunological events of tick-host associations in non-reservoir or incidental hosts, in which the development of acquired tick resistance can deter tick attachment. A critical appraisal of the intricate immunobiology of tick-host associations can plant new seeds of innovative research and contribute to the development of novel preventive strategies against ticks and tick-transmitted infections.
Collapse
Affiliation(s)
- Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA; Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA.
| |
Collapse
|
38
|
Keshavarz B, Erickson LD, Platts-Mills TAE, Wilson JM. Lessons in Innate and Allergic Immunity From Dust Mite Feces and Tick Bites. FRONTIERS IN ALLERGY 2021; 2:692643. [PMID: 35387017 PMCID: PMC8974698 DOI: 10.3389/falgy.2021.692643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Allergic diseases represent a major cause of morbidity in modern industrialized and developing countries. The origins and development of allergic immune responses have proven difficult to unravel and remain an important scientific objective. House dust mites (HDM) and ticks represent two important causes of allergic disease. Investigations into HDM fecal particles and tick bites have revealed insights which have and will continue to shape our understanding of allergic immunity. In the present review, focus is given to the role of innate immunity in shaping the respective responses to HDM and ticks. The HDM fecal particle represents a rich milieu of molecules that can be recognized by pathogen-recognition receptors of the innate immune system. Factors in tick saliva and/or tissue damage resultant from tick feeding are thought to activate innate immune signaling that promotes allergic pathways. Recent evidence indicates that innate sensing involves not only the direct recognition of allergenic agents/organisms, but also indirect sensing of epithelial barrier disruption. Although fecal particles from HDM and bites from ticks represent two distinct causes of sensitization, both involve a complex array of molecules that contribute to an innate response. Identification of specific molecules will inform our understanding of the mechanisms that contribute to allergic immunity, however the key may lie in the combination of molecules delivered to specific sites in the body.
Collapse
Affiliation(s)
- Behnam Keshavarz
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Loren D. Erickson
- Beirne B. Carter Center for Immunology Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Thomas A. E. Platts-Mills
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey M. Wilson
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
39
|
Yoshikawa S, Miyake K, Kamiya A, Karasuyama H. The role of basophils in acquired protective immunity to tick infestation. Parasite Immunol 2021; 43:e12804. [PMID: 33124059 PMCID: PMC8244031 DOI: 10.1111/pim.12804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023]
Abstract
Ticks are blood-feeding ectoparasites that transmit a variety of pathogens to host animals and humans, causing severe infectious diseases such as Lyme disease. In a certain combination of animal and tick species, tick infestation elicits acquired immunity against ticks in the host, which can reduce the ability of ticks to feed on blood and to transmit pathogens in the following tick infestations. Therefore, our understanding of the cellular and molecular mechanisms of acquired tick resistance (ATR) can advance the development of anti-tick vaccines to prevent tick infestation and tick-borne diseases. Basophils are a minor population of white blood cells circulating in the bloodstream and are rarely observed in peripheral tissues under steady-state conditions. Basophils have been reported to accumulate at tick-feeding sites during re-infestation in cattle, rabbits, guinea pigs and mice. Selective ablation of basophils resulted in a loss of ATR in guinea pigs and mice, illuminating the essential role of basophils in the manifestation of ATR. In this review, we discuss the recent advance in the elucidation of the cellular and molecular mechanisms underlying basophil recruitment to the tick-feeding site and basophil-mediated ATR.
Collapse
Affiliation(s)
- Soichiro Yoshikawa
- Department of Cellular PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity LaboratoryTMDU Advanced Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Atsunori Kamiya
- Department of Cellular PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity LaboratoryTMDU Advanced Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
40
|
Nogueira BCF, Campos AK, Alves RS, de Cássia Vieira Faria R, Sarandy MM, Fonseca E Silva F, Gonçalves RV. Oxidative and local histopathological response on skin wound of horses due to Amblyomma sculptum tick parasitism. Res Vet Sci 2021; 136:550-560. [PMID: 33892365 DOI: 10.1016/j.rvsc.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Amblyomma sculptum is frequently observed parasitizing horses, responsible for economic losses, damage to the host''s skin and transmission of pathogens. The oxidative stress profile and inflammatory mechanisms involved in this parasitism remain poorly studied. Thus, this study aimed to assess the histopathological changes and oxidative profile responses of horses in the attachment site of A. sculptum to find variations that indicate resistance and susceptibility between the breeds to this tick, based on the hypothesis that resistant animals have a greater inflammatory response and lesser number of attached ticks. We analyzed female horses of two breeds, Mangalarga Marchador and Breton Postier, naturally infested by Amblyomma sculptum. The ticks were counted and full-thickness excisional skin wounds of 10 mm were made on the perineal region on the attachment site of partially engorged females for histological and biochemical analyzes. The occurrence of the tick on the skin caused an increase in cellularity, inflammatory infiltrate, mast cells, pyknotic nuclei, and changes in the fibrous components of the matrix. The negative correlation observed between tick infestation and inflammatory response indicated that animals with greater inflammatory response tend to have less tick infestation. The oxidative stress markers, MDA, PCN and NO not present great variation; however, between the antioxidant enzymes levels, SOD was higher in tick attachment of Breton Postier skin, this may mean that these animals had higher oxidative enzymatic activity and consequently less tissue damage, while the GST dropped in the attachment sites compared to the control, which may indicate that animals were in a state of significant oxidative stress or raises the question of the possibility of enzymatic sequestration by ticks. No significant differences were found in the resistance of the two breeds since most of the analyzes varied due to the presence or absence of the tick attached to the skin. We draw attention to the importance of studying characteristics of the animal's antioxidant responses to the tick and the action of tick saliva on antioxidant enzymes and ROS because these characteristics are interdependent with the inflammatory response.
Collapse
Affiliation(s)
| | - Artur Kanadani Campos
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Raul Santos Alves
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil; Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
41
|
Pacheco I, Prado E, Artigas-Jerónimo S, Lima-Barbero JF, de la Fuente G, Antunes S, Couto J, Domingos A, Villar M, de la Fuente J. Comparative analysis of Rhipicephalus tick salivary gland and cement elementome. Heliyon 2021; 7:e06721. [PMID: 33869878 PMCID: PMC8045051 DOI: 10.1016/j.heliyon.2021.e06721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/04/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Rhipicephalus spp. (Acari: Ixodidae) ticks are obligate hematophagous arthropods, which constitute a model for the study of vector-host interactions. The chemical composition or elementome of salivary glands (SG) and cement provides information relevant for the study of protein-based complex multifunctional tissues with a key role in tick biology. In this study, we characterized the elementome of cement cones in Rhipicephalus sanguineus collected from naturally infested dogs and in SG and cement of R. bursa collected from experimentally infested rabbits at different feeding stages. The elementome was characterized using scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDS). The results showed the identification of up to 14 chemical elements in the cement, and suggested tick/host-driven differences in the cement elementome between tick species and between SG and cement within the same species. By still unknown mechanisms, ticks may regulate cement elementome during feeding to affect various biological processes. Although these analyses are preliminary, the results suggested that N is a key component of the cement elementome with a likely origin in SG/salivary proteins (i.e., Glycine (C2H5NO2)-rich superfamily member proteins; GRPs) and other tick/host-derived components (i.e. NAPDH). Future research should be focused on tick elementome and its functional implications to better understand cement structure and function.
Collapse
Affiliation(s)
- Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Eduardo Prado
- Department of Applied Physics, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - José Francisco Lima-Barbero
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Sabiotec, Camino de Moledores s/n. 13003, 13071 Ciudad Real, Spain
| | - Gabriela de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Sabiotec, Camino de Moledores s/n. 13003, 13071 Ciudad Real, Spain
| | - Sandra Antunes
- GHMT - Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical - IHMT, Universidade Nova de Lisboa – UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Joana Couto
- GHMT - Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical - IHMT, Universidade Nova de Lisboa – UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Ana Domingos
- GHMT - Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical - IHMT, Universidade Nova de Lisboa – UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
42
|
O'Neal AJ, Singh N, Mendes MT, Pedra JHF. The genus Anaplasma: drawing back the curtain on tick-pathogen interactions. Pathog Dis 2021; 79:6207937. [PMID: 33792663 DOI: 10.1093/femspd/ftab022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Tick-borne illnesses pose a serious concern to human and veterinary health and their prevalence is on the rise. The interactions between ticks and the pathogens they carry are largely undefined. However, the genus Anaplasma, a group of tick-borne bacteria, has been instrumental in uncovering novel paradigms in tick biology. The emergence of sophisticated technologies and the convergence of entomology with microbiology, immunology, metabolism and systems biology has brought tick-Anaplasma interactions to the forefront of vector biology with broader implications for the infectious disease community. Here, we discuss the use of Anaplasma as an instrument for the elucidation of novel principles in arthropod-microbe interactions. We offer an outlook of the primary areas of study, outstanding questions and future research directions.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Pérez-Sánchez R, Carnero-Morán Á, Soriano B, Llorens C, Oleaga A. RNA-seq analysis and gene expression dynamics in the salivary glands of the argasid tick Ornithodoros erraticus along the trophogonic cycle. Parasit Vectors 2021; 14:170. [PMID: 33743776 PMCID: PMC7980729 DOI: 10.1186/s13071-021-04671-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. Tick salivary proteins secreted to the host at the feeding interface play critical roles for tick feeding and may contribute to host infection by tick-borne pathogens; accordingly, these proteins represent interesting antigen targets for the development of vaccines aimed at the control and prevention of tick infestations and tick-borne diseases. METHODS To identify these proteins, the transcriptome of the salivary glands of O. erraticus was de novo assembled and the salivary gene expression dynamics assessed throughout the trophogonic cycle using Illumina sequencing. The genes differentially upregulated after feeding were selected and discussed as potential antigen candidates for tick vaccines. RESULTS Transcriptome assembly resulted in 22,007 transcripts and 18,961 annotated transcripts, which represent 86.15% of annotation success. Most salivary gene expression took place during the first 7 days after feeding (2088 upregulated transcripts), while only a few genes (122 upregulated transcripts) were differentially expressed from day 7 post-feeding onwards. The protein families more abundantly overrepresented after feeding were lipocalins, acid and basic tail proteins, proteases (particularly metalloproteases), protease inhibitors, secreted phospholipases A2, 5'-nucleotidases/apyrases and heme-binding vitellogenin-like proteins. All of them are functionally related to blood ingestion and regulation of host defensive responses, so they can be interesting candidate protective antigens for vaccines. CONCLUSIONS The O. erraticus sialotranscriptome contains thousands of protein coding sequences-many of them belonging to large conserved multigene protein families-and shows a complexity and functional redundancy similar to those observed in the sialomes of other argasid and ixodid tick species. This high functional redundancy emphasises the need for developing multiantigenic tick vaccines to reach full protection. This research provides a set of promising candidate antigens for the development of vaccines for the control of O. erraticus infestations and prevention of tick-borne diseases of public and veterinary health relevance, such as TBRF and ASF. Additionally, this transcriptome constitutes a valuable reference database for proteomics studies of the saliva and salivary glands of O. erraticus.
Collapse
Affiliation(s)
- Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain.
| | - Ángel Carnero-Morán
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| | - Beatriz Soriano
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| |
Collapse
|
44
|
Boulanger N, Wikel S. Induced Transient Immune Tolerance in Ticks and Vertebrate Host: A Keystone of Tick-Borne Diseases? Front Immunol 2021; 12:625993. [PMID: 33643313 PMCID: PMC7907174 DOI: 10.3389/fimmu.2021.625993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ticks and tick transmitted infectious agents are increasing global public health threats due to increasing abundance, expanding geographic ranges of vectors and pathogens, and emerging tick-borne infectious agents. Greater understanding of tick, host, and pathogen interactions will contribute to development of novel tick control and disease prevention strategies. Tick-borne pathogens adapt in multiple ways to very different tick and vertebrate host environments and defenses. Ticks effectively pharmacomodulate by its saliva host innate and adaptive immune defenses. In this review, we examine the idea that successful synergy between tick and tick-borne pathogen results in host immune tolerance that facilitates successful tick infection and feeding, creates a favorable site for pathogen introduction, modulates cutaneous and systemic immune defenses to establish infection, and contributes to successful long-term infection. Tick, host, and pathogen elements examined here include interaction of tick innate immunity and microbiome with tick-borne pathogens; tick modulation of host cutaneous defenses prior to pathogen transmission; how tick and pathogen target vertebrate host defenses that lead to different modes of interaction and host infection status (reservoir, incompetent, resistant, clinically ill); tick saliva bioactive molecules as important factors in determining those pathogens for which the tick is a competent vector; and, the need for translational studies to advance this field of study. Gaps in our understanding of these relationships are identified, that if successfully addressed, can advance the development of strategies to successfully disrupt both tick feeding and pathogen transmission.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Fédération de Médecine Translationnelle - UR7290, Early Bacterial Virulence, Group Borrelia, Université de Strasbourg, Strasbourg, France.,Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Stephen Wikel
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine, Quinnipiac University, Hamden, CT, United States
| |
Collapse
|
45
|
Gray J, Kahl O, Zintl A. What do we still need to know about Ixodes ricinus? Ticks Tick Borne Dis 2021; 12:101682. [PMID: 33571753 DOI: 10.1016/j.ttbdis.2021.101682] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
In spite of many decades of intensive research on Ixodes ricinus, the castor bean tick of Europe, several important aspects of its basic biology remain elusive, such as the factors determining seasonal development, tick abundance and host specificity, and the importance of water management. Additionally, there are more recent questions about the geographical diversity of tick genotypes and phenotypes, the role of migratory birds in the ecoepidemiology of I. ricinus, the importance of protective immune responses against I. ricinus, particularly in the context of vaccination, and the role of the microbiome in pathogen transmission. Without more detailed knowledge of these issues, it is difficult to assess the likely effects of changes in climate and biodiversity on tick distribution and activity, to predict potential risks arising from new and established tick populations and I. ricinus-borne pathogens, and to improve prevention and control measures. This review aims to discuss the most important outstanding questions against the backdrop of the current state of knowledge of this important tick species.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
46
|
Handajani J, Kusumajati D, Fathiyah H, Susilowati H, Tandelilin RT. Quality improvement of saliva by chewing tapioca pearls in bubble tea drinks: a randomized experimental trial: (Study on salivary C-reactive protein (CRP) and calcium (Ca) levels). F1000Res 2021; 10:56. [PMID: 35387272 PMCID: PMC8938629 DOI: 10.12688/f1000research.28028.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 01/31/2024] Open
Abstract
Background: Bubble tea drinks contain tea and tapioca pearls. Chewing tapioca pearls in bubble tea drinks may increase salivary components. Because of its proteins, inorganic components, and enzymes, saliva plays an important role in the body's defense against bacteria and viruses. This study aims to analyze the effect of chewing tapioca pearls in bubble tea drinks on salivary C-reactive protein (CRP) and calcium (Ca) levels. Methods: The inclusion criterion was 18-25 years of age. The exclusion criteria were receiving medication, using dentures, a history of dry mouth, smoking and systemic disease. In the first week of the experiment, subjects drank bubble tea with tapioca pearls for three days (intervention week). In the second week, the same subjects drank tea without pearls for three days (control week). Each subject drank the bubble tea for 5 minutes per day over 3 days. Saliva samples were collected on the first day before bubble tea consumption (pretest) and on the third day after tea consumption (posttest). Saliva collection was performed in the morning (09:00 am-12:00 pm) for 1 minute. Sixty saliva samples were collected from 15 subjects. Salivary CRP levels were measured using a commercial ELISA kit, and Ca levels were determined using semi-quantitative test strips. Results: Salivary CRP decreased significantly on the third day in the intervention group but showed no significant difference with the control group. Calcium levels increased significantly on the third day in both groups. Conclusion: Bubble tea drinks could improve the quality of saliva by decreasing salivary CRP and increasing Ca levels. Trial registration: ClinicalTrials.gov, NCT04670341 (17 th December 2020).
Collapse
Affiliation(s)
- Juni Handajani
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Dinda Kusumajati
- Dental Hygiene Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Hania Fathiyah
- Dental Hygiene Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Heni Susilowati
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Regina T.C. Tandelilin
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| |
Collapse
|
47
|
Reif KE, Backus EA. AC-DC electropenetrography unmasks fine temporal details of feeding behaviors for two tick species on unsedated hosts. Sci Rep 2021; 11:2040. [PMID: 33479263 PMCID: PMC7820320 DOI: 10.1038/s41598-020-80257-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/18/2020] [Indexed: 11/09/2022] Open
Abstract
Ticks are significant nuisance pests and vectors of pathogens for humans, companion animals, and livestock. Limited information on tick feeding behaviors hampers development and rigorous evaluation of tick and tick-borne pathogen control measures. To address this obstacle, the present study examined the utility of AC–DC electropenetrography (EPG) to monitor feeding behaviors of adult Dermacentor variabilis and Amblyomma americanum in real-time. EPG recording was performed during early stages of slow-phase tick feeding using an awake calf host. Both tick species exhibited discernable and stereotypical waveforms of low-, medium-, and high-frequencies. Similar waveform families and types were observed for both tick species; however, species-specific waveform structural differences were also observed. Tick waveforms were hierarchically categorized into three families containing seven types. Some waveform types were conserved by both species (e.g., Types 1b, 1c, 2b, 2c) while others were variably performed among species and individually recorded ticks (e.g., Types 1a, 2a, 2d). This study provides a proof-of-principle demonstration of the feasibility for using EPG to monitor, evaluate, and compare tick feeding behaviors, providing a foundation for future studies aimed at correlating specific feeding behaviors with waveforms, and ultimately the influence of control measures and pathogens on tick feeding behaviors.
Collapse
Affiliation(s)
- Kathryn E Reif
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506-5802, USA.
| | - Elaine A Backus
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA, 93648, USA
| |
Collapse
|
48
|
Jmel MA, Aounallah H, Bensaoud C, Mekki I, Chmelař J, Faria F, M’ghirbi Y, Kotsyfakis M. Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk. Int J Mol Sci 2021; 22:E892. [PMID: 33477394 PMCID: PMC7831016 DOI: 10.3390/ijms22020892] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Hajer Aounallah
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Chaima Bensaoud
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Youmna M’ghirbi
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
| | - Michalis Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| |
Collapse
|
49
|
Handajani J, Kusumajati D, Fathiyah H. Effect chewing tapioca pearls in the bubble tea drinks on the salivary α-amylase and phosphate level. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20214105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bubble tea drinks contained tapioca pearls, that can stimulate mastication. Chewing tapioca pearls may stimulate saliva production. Increased salivary secretion is thought to be correlated with an increase in inorganic components and salivary α-amylase (SAA). This study aimed to evaluate the effect of bubble tea on SAA and salivary phosphate (PO43-) levels.
Subjects were 15 people with a total sample of 60. Each subject drank bubble tea with tapioca pearl for 3 days in the first week as the intervention group. In the second week the subjects drank tea without bubble for 3 days as a control group. Saliva samples were taken on day 1 before treatment and day 3 after treatment. Saliva was collected in the morning 09:00 am–12:00 pm for 1 minute. SAA levels were measured using an ELISA kit with Optical Density (OD) at 405 nm. Phosphate levels were measured using a semi-quantitative test kit. Data were analyzed using ANOVA, Kruskal Wallis, t-test, and Pearson test (p < 0.05).
The results of ANOVA and Kruskall-Wallis showed that there was a significant difference in the effect of consumption of bubble tea and tea without bubble (p < 0.005) on SAA and phosphate levels. SAA and phosphate levels increased significantly after drinking bubble tea and tea without bubble (p < 0.05). SAA levels after drinking bubble tea were significantly higher than after drinking tea without bubble. Comparison between phosphate levels after drinking bubble tea and tea without bubble were not significantly different (p > 0.05). Correlation between SAA and phosphate level was a significant different (p < 0.05) and r was moderate category. It was concluded that the consumption of drinking bubble tea and tea without bubbles could increase salivary α-amylase (SAA) also phosphate level and may improve quality of saliva through a salivary buffer mechanism.
Collapse
|
50
|
Strong interactions between Salp15 homologues from the tick I. ricinus and distinct types of the outer surface OspC protein from Borrelia. Ticks Tick Borne Dis 2020; 12:101630. [PMID: 33401196 DOI: 10.1016/j.ttbdis.2020.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
Ticks belonging to the genus Ixodes are parasites feeding on vertebrate blood and vectors for many pathogenic microbes, including Borrelia burgdorferi sensu lato spirochetes, the causative agent of Lyme borreliosis. The tick saliva contains a mixture of bioactive molecules showing a wide range of properties for efficient engorgement. One of the most extensively studied components of tick saliva is a 15-kDa salivary gland protein (Salp15) from Ixodes scapularis. This multifunctional protein suppresses the immune response of hosts through pleiotropic action on a few crucial defense pathways. Salp15 and its homologue from I. ricinus Iric1 have been also shown to bind to Borrelia burgdorferi sensu stricto outer surface protein C (OspC) permitting the spirochetes to evade antibody-mediated killing in the human host. Further studies revealed that Salp15 and Iric1 protected B. burgdorferi s. s. and B. garinii expressing OspC against the complement system. OspC is the most variable protein on the outer surface of Borrelia, which in addition to Salp15 can also bind other ligands, such as plasminogen, fibrinogen, fibronectin or complement factor 4. So far several OspC variants produced by B. burgdorferi s. l. spirochetes were shown to be capable of binding Salp15 or its homologue, but the protection against borreliacidal antibodies has only been proven in the case of B. burgdorferi s. s. The question of Salp15 contribution to Borrelia survival during the infection has been comprehensively studied during the last decades. In contrast, the organization of the OspC-Salp15 complex has been poorly explored. This report describes the binding between three Salp15 homologues from the tick Ixodes ricinus (Iric1, Iric2 and Iric3) and OspC from four B. burgdorferi sensu lato strains in terms of the binding parameters, analyzed with two independent biophysical methods - Microscale thermophoresis (MST) and Biolayer interferometry (BLI). The results of both experiments show a binding constant at the nanomolar level, which indicates very strong interactions. While the Iric1-OspC binding has been reported before, we show in this study that also Iric2 and Iric3 are capable of OspC binding with high affinity. This observation suggests that these two Salp15 homologues might be used by B. burgdorferi s. l. in a way analogous to Iric1. A comparison of the results from the two methods let us propose that N-terminal immobilization of OspC significantly increases the affinity between the two proteins. Finally, our results indicate that the Iric binding site is located in close proximity of the OspC epitopes recognized by human antibodies, which may have important biological and medical implications.
Collapse
|