1
|
Dutt TS, Spencer JS, Karger BR, Fox A, Obregon-Henao A, Podell BK, Anderson GB, Henao-Tamayo M. ELISA-R: an R-based method for robust ELISA data analysis. Front Immunol 2024; 15:1427526. [PMID: 39416778 PMCID: PMC11479990 DOI: 10.3389/fimmu.2024.1427526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) is a technique to detect the presence of an antigen or antibody in a sample. ELISA is a simple and cost-effective method that has been used for evaluating vaccine efficacy by detecting the presence of antibodies against viral/bacterial antigens and diagnosis of disease stages. Traditional ELISA data analysis utilizes a standard curve of known analyte, and the concentration of the unknown sample is determined by comparing its observed optical density against the standard curve. However, in the case of vaccine research for complicated bacteria such as Mycobacterium tuberculosis (Mtb), there is no prior information regarding the antigen against which high-affinity antibodies are generated and therefore plotting a standard curve is not feasible. Consequently, the analysis of ELISA data in this instance is based on a comparison between vaccinated and unvaccinated groups. However, to the best of our knowledge, no robust data analysis method exists for "non-standard curve" ELISA. In this paper, we provide a straightforward R-based ELISA data analysis method with open access that incorporates end-point titer determination and curve-fitting models. Our modified method allows for direct measurement data input from the instrument, cleaning and arranging the dataset in the required format, and preparing the final report with calculations while leaving the raw data file unchanged. As an illustration of our method, we provide an example from our published data in which we successfully used our method to compare anti-Mtb antibodies in vaccinated vs non-vaccinated mice.
Collapse
Affiliation(s)
- Taru S. Dutt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - John S. Spencer
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - Burton R. Karger
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Amy Fox
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - Brendan K. Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - G. Brooke Anderson
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Lybeck K, Tollefsen S, Mikkelsen H, Sjurseth SK, Lundegaard C, Aagaard C, Olsen I, Jungersen G. Selection of vaccine-candidate peptides from Mycobacterium avium subsp. paratuberculosis by in silico prediction, in vitro T-cell line proliferation, and in vivo immunogenicity. Front Immunol 2024; 15:1297955. [PMID: 38352876 PMCID: PMC10861761 DOI: 10.3389/fimmu.2024.1297955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is a global concern in modern livestock production worldwide. The available vaccines against paratuberculosis do not offer optimal protection and interfere with the diagnosis of bovine tuberculosis. The aim of this study was to identify immunogenic MAP-specific peptides that do not interfere with the diagnosis of bovine tuberculosis. Initially, 119 peptides were selected by either (1) identifying unique MAP peptides that were predicted to bind to bovine major histocompatibility complex class II (MHC-predicted peptides) or (2) selecting hydrophobic peptides unique to MAP within proteins previously shown to be immunogenic (hydrophobic peptides). Subsequent testing of peptide-specific CD4+ T-cell lines from MAP-infected, adult goats vaccinated with peptides in cationic liposome adjuvant pointed to 23 peptides as being most immunogenic. These peptides were included in a second vaccine trial where three groups of eight healthy goat kids were vaccinated with 14 MHC-predicted peptides, nine hydrophobic peptides, or no peptides in o/w emulsion adjuvant. The majority of the MHC-predicted (93%) and hydrophobic peptides (67%) induced interferon-gamma (IFN-γ) responses in at least one animal. Similarly, 86% of the MHC-predicted and 89% of the hydrophobic peptides induced antibody responses in at least one goat. The immunization of eight healthy heifers with all 119 peptides formulated in emulsion adjuvant identified more peptides as immunogenic, as peptide specific IFN-γ and antibody responses in at least one heifer was found toward 84% and 24% of the peptides, respectively. No peptide-induced reactivity was found with commercial ELISAs for detecting antibodies against Mycobacterium bovis or MAP or when performing tuberculin skin testing for bovine tuberculosis. The vaccinated animals experienced adverse reactions at the injection site; thus, it is recommend that future studies make improvements to the vaccine formulation. In conclusion, immunogenic MAP-specific peptides that appeared promising for use in a vaccine against paratuberculosis without interfering with surveillance and trade tests for bovine tuberculosis were identified by in silico analysis and ex vivo generation of CD4+ T-cell lines and validated by the immunization of goats and cattle. Future studies should test different peptide combinations in challenge trials to determine their protective effect and identify the most MHC-promiscuous vaccine candidates.
Collapse
Affiliation(s)
- Kari Lybeck
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Stig Tollefsen
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Heidi Mikkelsen
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Claus Lundegaard
- Department of Systems Biology, Centre for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ingrid Olsen
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Gregers Jungersen
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Rijnink WF, Ottenhoff THM, Joosten SA. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front Immunol 2021; 12:640168. [PMID: 33679802 PMCID: PMC7930078 DOI: 10.3389/fimmu.2021.640168] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is still a major threat to mankind, urgently requiring improved vaccination and therapeutic strategies to reduce TB-disease burden. Most present vaccination strategies mainly aim to induce cell-mediated immunity (CMI), yet a series of independent studies has shown that B-cells and antibodies (Abs) may contribute significantly to reduce the mycobacterial burden. Although early studies using B-cell knock out animals did not support a major role for B-cells, more recent studies have provided new evidence that B-cells and Abs can contribute significantly to host defense against Mtb. B-cells and Abs exist in many different functional subsets, each equipped with unique functional properties. In this review, we will summarize current evidence on the contribution of B-cells and Abs to immunity toward Mtb, their potential utility as biomarkers, and their functional contribution to Mtb control.
Collapse
Affiliation(s)
- Willemijn F Rijnink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Ullah I, Bibi S, Ul Haq I, Safia, Ullah K, Ge L, Shi X, Bin M, Niu H, Tian J, Zhu B. The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01 E and MVA85A. Front Immunol 2020; 11:1806. [PMID: 33133057 PMCID: PMC7578575 DOI: 10.3389/fimmu.2020.01806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background: Tuberculosis (TB) is a severe infectious disease with devastating effects on global public health. No TB vaccine has yet been approved for use on latent TB infections and healthy adults. In this study, we performed a systematic review and meta-analysis to evaluate the immunogenicity and safety of the M72/AS01E and MVA85A subunit vaccines. The M72/AS01E is a novel peptide-based vaccine currently in progress, which may increase the protection level against TB infection. The MVA85A was a viral vector-based TB subunit vaccine being used in the clinical trials. The vaccines mentioned above have been studied in various phase I/II clinical trials. Immunogenicity and safety is the first consideration for TB vaccine development. Methods: The PubMed, Embase, and Cochrane Library databases were searched for published studies (until October 2019) to find out information on the M72/AS01E and MVA85A candidate vaccines. The meta-analysis was conducted by applying the standard methods and processes established by the Cochrane Collaboration. Results: Five eligible randomized clinical trials (RCTs) were selected for the meta-analysis of M72/AS01E candidate vaccines. The analysis revealed that the M72/AS01E subunit vaccine had an abundance of polyfunctional M72-specific CD4+ T cells [standardized mean difference (SMD) = 2.37] in the vaccine group versus the control group, the highest seropositivity rate [relative risk (RR) = 5.09]. The M72/AS01E vaccinated group were found to be at high risk of local injection site redness (RR = 2.64), headache (RR = 1.59), malaise (RR = 3.55), myalgia (RR = 2.27), fatigue (RR = 2.16), pain (RR = 3.99), swelling (RR = 5.09), and fever (RR = 2.04) compared to the control groups. The incidences of common adverse events of M72/AS01E were local injection site redness, headache, malaise, myalgia, fatigue, pain, swelling, fever, etc. Six eligible RCTs were selected for the meta-analysis on MVA85A candidate vaccines. The analysis revealed that the subunit vaccine MVA85A had a higher abundance of overall pooled proportion polyfunctional MVA85A-specific CD4+ T cells SMD = 2.41 in the vaccine group vs. the control group, with the highest seropositivity rate [estimation rate (ER) = 0.55]. The MVA85A vaccinated group were found to be at high risk of local injection site redness (ER = 0.55), headache (ER = 0.40), malaise (ER = 0.29), pain (ER = 0.54), myalgia (ER = 0.31), and fever (ER = 0.20). The incidences of common adverse events of MVA85A were local injection site redness, headache, malaise, pain, myalgia, fever, etc. Conclusion: The M72/AS01E and MVA85A vaccines against TB are safe and had immunogenicity in diverse clinical trials. The M72/AS01E and MVA85A vaccines are associated with a mild adverse reaction. The meta-analysis on immunogenicity and safety of M72/AS01E and MVA85A vaccines provides useful information for the evaluation of available subunit vaccines in the clinic.
Collapse
Affiliation(s)
- Inayat Ullah
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Shaheen Bibi
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China.,School of Life Science, Northwest Normal University, Lanzhou, China
| | - Ijaz Ul Haq
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Safia
- Pakistan Institute of Community Ophthalmology (PICO), Hayatabad Medical Complex, KMU, Peshawar, Pakistan
| | - Kifayat Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Long Ge
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xintong Shi
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Ma Bin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Jinhui Tian
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Nutritional status positively impacts humoral immunity against its Mycobacterium tuberculosis, disease progression, and vaccine development. PLoS One 2020; 15:e0237062. [PMID: 32760105 PMCID: PMC7410285 DOI: 10.1371/journal.pone.0237062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Nutritional status contributes to the regulation of immune responses against pathogens, and malnutrition has been considered as a risk factor for tuberculosis (TB). Mycobacterium tuberculosis (Mtb), the causative agent of TB, can modulate host lipid metabolism and induce lipid accumulation in macrophages, where the bacilli adopt a dormant phenotype. In addition, serum lipid components play dual roles in the regulation of and protection from Mtb infection. We analyzed the relationship between nutritional status and the humoral immune response in TB patients. We found that serum HDL levels are positively correlated with the serum IgA specific for Mtb antigens. Analysis of the relationship between serum nutritional parameters and clinical parameters in TB patients showed that serum albumin and CRP levels were negatively correlated before treatment. We also observed reduced serum LDL levels in TB patients following treatment. These findings may provide insight into the role of serum lipids in host immune responses against Mtb infection. Furthermore, improving the nutritional status may enhance vaccination efficacy.
Collapse
|
6
|
Matsumoto M, Kubota T, Fujita S, Shiozaki K, Kishida S, Yamamoto A. Elucidation of the Interleukin 12 Production Mechanism during Intracellular Bacterial Infection in Amberjack, Seriola dumerili. Infect Immun 2019; 87:e00459-19. [PMID: 31501250 PMCID: PMC6803335 DOI: 10.1128/iai.00459-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
Intracellular bacterial infections affect all vertebrates. Cultured fish are particularly vulnerable because no effective protection measures have been established since such infections emerged approximately 50 years ago. As in other vertebrates, the induction of cell-mediated immunity (CMI) plays an important role in protecting fish against infection. However, details of the mechanism of CMI induction in fish have not been clarified. In the present study, we focused on the production of interleukin 12 (IL-12), an important factor in CMI induction in fish. Using several different approaches, we investigated IL-12 regulation in amberjack (Seriola dumerili), the species most vulnerable to intracellular bacterial disease. The results of promoter assays and transcription factor gene expression analyses showed that the expression of interferon regulatory factor-1 (IRF-1) and activator protein-1 (AP-1) is necessary for IL-12 production. Phagocytosis of living cells (LCs) of Nocardia seriolae bacteria induced IL-12 production in neutrophils, accompanied by IRF-1 and AP-1 gene expression. Bacteria in which the exported repetitive protein (Erp)-like gene was deleted (Δerp-L) could not establish intracellular parasitism or induce IRF-1 and AP-1 expression or IL-12 production, despite being phagocytosed by neutrophils. These data suggest that IL-12 production is regulated by (i) two transcription factors, IRF-1 and AP-1, (ii) phagocytosis of LCs by neutrophils, and (iii) one or more cell components of LCs. Our results enhance the understanding of the immune response to intracellular bacterial infections in vertebrates and could facilitate the discovery of new agents to prevent intracellular bacterial disease.
Collapse
Affiliation(s)
- Megumi Matsumoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Taisei Kubota
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Sinsuke Fujita
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Shosei Kishida
- Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
7
|
Ji Z, Jian M, Chen T, Luo L, Li L, Dai X, Bai R, Ding Z, Bi Y, Wen S, Zhou G, Abi ME, Liu A, Bao F. Immunogenicity and Safety of the M72/AS01 E Candidate Vaccine Against Tuberculosis: A Meta-Analysis. Front Immunol 2019; 10:2089. [PMID: 31552037 PMCID: PMC6735267 DOI: 10.3389/fimmu.2019.02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Currently, there is no tuberculosis (TB) vaccine recommended for use in latent TB infections and healthy adults. M72/AS01E is a new peptide vaccine currently under development, which may improve protection against TB disease. This vaccine has been investigated in several phase I/II clinical trials. We conducted a meta-analysis to clarify the immunogenicity and safety of the M72/AS01E peptide vaccine. Methods: We searched the PubMed, Embase, and Cochrane Library databases for published studies (until December 2018) investigating this candidate vaccine. A meta-analysis was performed using the standard methods and procedures established by the Cochrane Collaboration. Results: Seven eligible studies—involving 4,590 participants—were selected. The analysis revealed a vaccine efficacy was 57.0%, significantly higher abundance of polyfunctional M72-specific CD4+ T cells [standardized mean difference (SMD) = 2.58] in the vaccine group vs. the control group, the highest seropositivity rate [relative risk (RR) = 74.87] at 1 month after the second dose of vaccination (Day 60), and sustained elevated anti-M72 IgG geometric mean concentration at study end (Day 210) (SWD = 4.94). Compared with the control, participants who received vaccination were at increased risk of local injection site redness [relative risk (RR) = 5.99], local swelling (RR = 7.57), malaise (RR = 3.01), and fatigue (RR = 3.17). However, they were not at increased risk of headache (RR = 1.57), myalgia (RR = 0.97), and pain (RR = 3.02). Conclusion: The M72/AS01E vaccine against TB is safe and effective. Although the vaccine is associated with a mild adverse reaction, it is promising for the prevention of TB in healthy adults.
Collapse
Affiliation(s)
- Zhenhua Ji
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Miaomiao Jian
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Taigui Chen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Lisha Luo
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Lianbao Li
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Xiting Dai
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Ruolan Bai
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Zhe Ding
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yunfeng Bi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Shiyuan Wen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Guozhong Zhou
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Manzama-Esso Abi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Aihua Liu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Major Childhood Diseases, Kunming Medical University, Kunming, China
| | - Fukai Bao
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Major Childhood Diseases, Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Kawahara JY, Irvine EB, Alter G. A Case for Antibodies as Mechanistic Correlates of Immunity in Tuberculosis. Front Immunol 2019; 10:996. [PMID: 31143177 PMCID: PMC6521799 DOI: 10.3389/fimmu.2019.00996] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis infects one quarter of the world's population and is the leading cause of death by a single infectious agent, responsible for a reported 1.3 million deaths in 2017. While Mycobacterium tuberculosis is treatable with antibiotic therapy, the increased prevalence of drug resistance, coupled with the variable efficacy of the only widely approved vaccine, has highlighted the need for creative approaches to therapeutic and vaccine development. Historically, a productive immune response to M. tuberculosis has been thought to be nearly entirely cell-mediated, with humoral immunity being largely dismissed. However, in this review, we will discuss the historical skepticism surrounding the role of the humoral immune response to M. tuberculosis, and examine more recent evidence suggesting that antibodies may play a valuable role in host defense against the pathogen. Despite the amount of data portraying antibodies in a negative light, emerging data have begun to highlight the unexpected role of antibodies in M. tuberculosis control. Specifically, it has become clear that antibody features of both the variable and constant domain (Fc) ultimately determine the extent to which antibodies modulate disease. Thus, a more precise definition of the antigen-binding and innate immune recruiting functions of antibodies that contribute to M. tuberculosis restriction, are sure to help guide the development of next-generation therapeutics and vaccines to curb this global epidemic.
Collapse
Affiliation(s)
- Jeffrey Y. Kawahara
- Ragon Institute of MGH, MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Edward B. Irvine
- Ragon Institute of MGH, MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, United States
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
9
|
Chang Y, Meng X, Li Y, Liang J, Li T, Meng D, Zhu T, Yu P. Synthesis and immunogenicity of the Mycobacterium tuberculosis arabinomannan-CRM197 conjugate. MEDCHEMCOMM 2019; 10:543-553. [PMID: 31057734 DOI: 10.1039/c8md00546j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/15/2019] [Indexed: 01/06/2023]
Abstract
Lipoarabinomannan (LAM) is a major structural surface component of Mycobacterium tuberculosis. This study describes the synthesis of the well-defined lipoarabinomannan (LAM) specific dodecasaccharide-protein conjugate and immunological studies. Arabinomannan (AM) dodecasaccharide has been efficiently synthesized and covalently conjugated to carrier proteins, including cross reactive mutant (CRM197) diphtheria toxoid and bovine serum albumin (BSA) for novel neoglycoconjugates, creating a potent T-dependent conjugate vaccine. Preliminary mice immunization studies on the neoglycoconjugate revealed that it could give rise to a strong IgG antibody titer in mice at 4.0 μg dose with an aluminum phosphate adjuvant. AM-CRM197 shows potential as an excellent candidate for a new carbohydrate-based vaccine that would be capable of eliciting a protective immune response against tuberculosis.
Collapse
Affiliation(s)
- Yunsong Chang
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Xin Meng
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Yaxin Li
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Jianmei Liang
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Tingshen Li
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety , College of Food Engineering and Biotechnology , Tianjin University of Science & Technology , Tianjin , 300457 , PR China
| | - Tao Zhu
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562.,CanSino Biologics Inc. , Tianjin 300457 , PR China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| |
Collapse
|
10
|
Bavaro T, Pinto A, Dall’Oglio F, Hernáiz MJ, Morelli CF, Zambelli P, De Micheli C, Conti P, Tamborini L, Terreni M. Flow-based biocatalysis: Application to peracetylated arabinofuranosyl-1,5-arabinofuranose synthesis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Olivares N, Rodriguez Y, Zatarain-Barron ZL, Marquina B, Mata-Espinosa D, Barrios-Payán J, Parada C, Moguel B, Espitia-Pinzón C, Estrada I, Hernandez-Pando R. A significant therapeutic effect of immunoglobulins administered alone, or in combination with conventional chemotherapy, in experimental pulmonary tuberculosis caused by drug-sensitive or drug-resistant strains. Pathog Dis 2018; 75:4654846. [PMID: 29186408 DOI: 10.1093/femspd/ftx118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/22/2017] [Indexed: 11/14/2022] Open
Abstract
The recommended chemotherapy for drug-sensitive tuberculosis (TB) consists of four different antibiotics administrated for 6 months. This long treatment leads to significant compliance problems and consequently to recrudescence of the disease and to the development of multidrug-resistant (MDR) strains. Thus, new alternatives are needed to shorten or simplify the treatment of TB. Antibodies have therapeutic effects in animal models of TB, so their use as adjuvants in drug-sensitive and MDR TB is an interesting alternative. To assess the effect of antibodies, BALB/c mice with active late disease 60 days after infection with drug-sensitive TB strain H37Rv were treated with intravenous immunoglobulin (IVIg), alone or in combination with conventional chemotherapy. When compared with control non-treated animals, IVIg alone produced a significantly decreased burden of pulmonary bacilli. This decrease was even greater when IVIg was used in combination with conventional chemotherapy. The combined therapy also significantly reduced tissue damage (pneumonia) when compared to infected animals treated only with antibiotics. IVIg treatment also caused decreased bacillary burdens in mice infected with an MDR strain. In vitro experiments suggested that improving phagocytosis by efficient opsonization is perhaps the principal mechanism of this beneficial therapeutic effect.
Collapse
Affiliation(s)
- Nesty Olivares
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition Salvador Zubirán. Avenida Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Ciudad de México, México.,Institute of Biomedical Research, National Autonomous University of Mexico, 04510 México, DF, México
| | - Yadira Rodriguez
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition Salvador Zubirán. Avenida Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Ciudad de México, México
| | - Zyanya Lucia Zatarain-Barron
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition Salvador Zubirán. Avenida Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Ciudad de México, México
| | - Brenda Marquina
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition Salvador Zubirán. Avenida Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Ciudad de México, México
| | - Dulce Mata-Espinosa
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition Salvador Zubirán. Avenida Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Ciudad de México, México
| | - Jorge Barrios-Payán
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition Salvador Zubirán. Avenida Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Ciudad de México, México
| | - Cristina Parada
- Institute of Biomedical Research, National Autonomous University of Mexico, 04510 México, DF, México
| | - Bárbara Moguel
- Institute of Biomedical Research, National Autonomous University of Mexico, 04510 México, DF, México
| | - Clara Espitia-Pinzón
- Institute of Biomedical Research, National Autonomous University of Mexico, 04510 México, DF, México
| | - Iris Estrada
- National School of Biological Sciences, IPN, Carpio y Plan de Ayala s/n, Colonia Santo Tomas, 11340 Mexico, DF, Mexico
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition Salvador Zubirán. Avenida Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Ciudad de México, México
| |
Collapse
|
12
|
Bai X, Aerts SL, Verma D, Ordway DJ, Chan ED. Epidemiologic Evidence of and Potential Mechanisms by Which Second-Hand Smoke Causes Predisposition to Latent and Active Tuberculosis. Immune Netw 2018; 18:e22. [PMID: 29984040 PMCID: PMC6026693 DOI: 10.4110/in.2018.18.e22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022] Open
Abstract
Many studies have linked cigarette smoke (CS) exposure and tuberculosis (TB) infection and disease although much fewer have studied second-hand smoke (SHS) exposure. Our goal is to review the epidemiologic link between SHS and TB as well as to summarize the effects SHS and direct CS on various immune cells relevant for TB. PubMed searches were performed using the key words "tuberculosis" with "cigarette," "tobacco," or "second-hand smoke." The bibliography of relevant papers were examined for additional relevant publications. Relatively few studies associate SHS exposure with TB infection and active disease. Both SHS and direct CS can alter various components of host immunity resulting in increased vulnerability to TB. While the epidemiologic link of these 2 health maladies is robust, more definitive, mechanistic studies are required to prove that SHS and direct CS actually cause increased susceptibility to TB.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Denver Veterans Affairs Medical Center, University of Colorado Anschutz Medical Center, Denver, CO 80045, USA
- Department of Medicine and Office of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| | - Shanae L. Aerts
- Department of Medicine and Office of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
| | - Deepshikha Verma
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO 80523, USA
| | - Diane J. Ordway
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO 80523, USA
| | - Edward D. Chan
- Department of Medicine, Denver Veterans Affairs Medical Center, University of Colorado Anschutz Medical Center, Denver, CO 80045, USA
- Department of Medicine and Office of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| |
Collapse
|
13
|
Awoniyi DO, Baumann R, Chegou NN, Kriel B, Jacobs R, Kidd M, Loxton AG, Kaempfer S, Singh M, Walzl G. Detection of a combination of serum IgG and IgA antibodies against selected mycobacterial targets provides promising diagnostic signatures for active TB. Oncotarget 2018; 8:37525-37537. [PMID: 28415587 PMCID: PMC5514927 DOI: 10.18632/oncotarget.16401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/27/2017] [Indexed: 01/13/2023] Open
Abstract
Immunoglobulin G (IgG) based tests for the diagnosis of active tuberculosis (TB) disease often show a lack of specificity in TB endemic regions, which is mainly due to a high background prevalence of LTBI. Here, we investigated the combined performance of the responses of different Ig classes to selected mycobacterial antigens in primary healthcare clinic attendees with signs and symptoms suggestive of TB. The sensitivity and specificity of IgA, IgG and/or IgM to LAM and 7 mycobacterial protein antigens (ESAT-6, Tpx, PstS1, AlaDH, MPT64, 16kDa and 19kDa) and 2 antigen combinations (TUB, TB-LTBI) in the plasma of 63 individuals who underwent diagnostic work-up for TB after presenting with symptoms and signs compatible with possible active TB were evaluated. Active TB was excluded in 42 individuals of whom 21 has LTBI whereas active TB was confirmed in 21 patients of whom 19 had a follow-up blood draw at the end of 6-month anti-TB treatment. The leading single serodiagnostic markers to differentiate between the presence or absence of active TB were anti-16 kDa IgA, anti-MPT64 IgA with sensitivity and specificity of 90%/90% and 95%/90%, respectively. The combined use of 3 or 4 antibodies further improved this performance to accuracies above 95%. After successful completion of anti-TB treatment at month 6, the levels of 16 kDa IgA and 16 kDa IgM dropped significantly whereas LAM IgG and TB-LTBI IgG increased. These results show the potential of extending investigation of anti-tuberculous IgG responses to include IgM and IgA responses against selected protein and non-protein antigens in differentiating active TB from other respiratory diseases in TB endemic settings.
Collapse
Affiliation(s)
- Dolapo O Awoniyi
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ralf Baumann
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany.,Lionex Diagnostics and Therapeutics, Braunschweig, Germany
| | - Novel N Chegou
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Belinda Kriel
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ruschca Jacobs
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Analysis, Stellenbosch University, Stellenbosch, South Africa
| | - Andre G Loxton
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Mahavir Singh
- Lionex Diagnostics and Therapeutics, Braunschweig, Germany
| | - Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Coppola M, Arroyo L, van Meijgaarden KE, Franken KL, Geluk A, Barrera LF, Ottenhoff THM. Differences in IgG responses against infection phase related Mycobacterium tuberculosis (Mtb) specific antigens in individuals exposed or not to Mtb correlate with control of TB infection and progression. Tuberculosis (Edinb) 2017; 106:25-32. [PMID: 28802401 DOI: 10.1016/j.tube.2017.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) occurs in only 3-10% of Mycobacterium tuberculosis (Mtb) infected individuals, suggesting that natural immunity can contain Mtb infection, although this remains poorly understood. Next to T-cells, a potentially protective role for B-cells and antibodies has emerged recently. However, the Mtb antigens involved remain ill-defined. Here, we investigated in a TB-endemic setting IgG levels against 15 Mtb antigens, representing various phases of Mtb infection and known to be potent human T-cell antigens. IgG levels against ESAT6/CFP10, Rv0440, Rv0867c, Rv1737c, Rv2029c, Rv2215, Rv2389c, Rv3616c and Mtb purified protein derivative (PPD) were higher in TB patients than in endemic and non-endemic controls. The only exception was Rv1733c that was preferentially recognized by antibodies from endemic controls compared to TB patients and non-endemic controls, suggesting a potential correlation with control of TB infection and progression. In patients, IgG levels against Ag85B and Rv2029c correlated with Mtb loads, while immunoglobulins against Rv0440 differed between genders. Our results support the potential role of certain Mtb antigen-(Rv1733c) specific antibodies in the control of TB infection and progression, while other Mtb antigen-specific antibodies correlate with TB disease activity and bacillary loads. The findings for Rv1733c agree with previous T-cell results and have implications for including antibody-mediated immunity in designing new strategies to control TB.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands.
| | - Leonar Arroyo
- Grupo de Inmunología Cellular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Krista E van Meijgaarden
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| | - Kees Lmc Franken
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| | - Annemieke Geluk
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| | - Luis F Barrera
- Grupo de Inmunología Cellular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Tom H M Ottenhoff
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| |
Collapse
|
15
|
Vidyarthi A, Khan N, Agnihotri T, Siddiqui KF, Nair GR, Arora A, Janmeja AK, Agrewala JN. Antibody response against PhoP efficiently discriminates among healthy individuals, tuberculosis patients and their contacts. PLoS One 2017; 12:e0173769. [PMID: 28319170 PMCID: PMC5358785 DOI: 10.1371/journal.pone.0173769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis continues to be one of the most devastating global health problem. Its diagnosis will benefit in timely initiation of the treatment, cure and therefore reduction in the transmission of the disease. Tests are available, but none can be comprehensively relied on for its diagnosis; especially in TB-endemic zones. PhoP is a key player in Mycobacterium tuberculosis virulence but nothing has been known about its role in the diagnosis of TB. We monitored the presence of anti-PhoP antibodies in the healthy, patients and their contacts. In addition, we also measured antibodies against early secretory antigens ESAT-6 and CFP-10, and latency associated antigen Acr-1 to include proteins that are associated with the different stages of disease progression. Healthy subjects showed high antibody titer against PhoP than patients and their contacts. In addition, a distinct pattern in the ratio of Acr-1/PhoP was observed among all cohorts. This study for the first time demonstrates a novel role of anti-PhoP antibodies, as a possible marker for the diagnosis of TB and therefore will contribute in the appropriate action and management of the disease.
Collapse
Affiliation(s)
| | - Nargis Khan
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | | | - Girish R. Nair
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashish Arora
- CSIR-Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
16
|
Prados-Rosales R, Carreño L, Cheng T, Blanc C, Weinrick B, Malek A, Lowary TL, Baena A, Joe M, Bai Y, Kalscheuer R, Batista-Gonzalez A, Saavedra NA, Sampedro L, Tomás J, Anguita J, Hung SC, Tripathi A, Xu J, Glatman-Freedman A, Jacobs WR, Chan J, Porcelli SA, Achkar JM, Casadevall A. Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathog 2017; 13:e1006250. [PMID: 28278283 PMCID: PMC5360349 DOI: 10.1371/journal.ppat.1006250] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/21/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
Currently there are a dozen or so of new vaccine candidates in clinical trials for prevention of tuberculosis (TB) and each formulation attempts to elicit protection by enhancement of cell-mediated immunity (CMI). In contrast, most approved vaccines against other bacterial pathogens are believed to mediate protection by eliciting antibody responses. However, it has been difficult to apply this formula to TB because of the difficulty in reliably eliciting protective antibodies. Here, we developed capsular polysaccharide conjugates by linking mycobacterial capsular arabinomannan (AM) to either Mtb Ag85b or B. anthracis protective antigen (PA). Further, we studied their immunogenicity by ELISA and AM glycan microarrays and protection efficacy in mice. Immunization with either Abg85b-AM or PA-AM conjugates elicited an AM-specific antibody response in mice. AM binding antibodies stimulated transcriptional changes in Mtb. Sera from AM conjugate immunized mice reacted against a broad spectrum of AM structural variants and specifically recognized arabinan fragments. Conjugate vaccine immunized mice infected with Mtb had lower bacterial numbers in lungs and spleen, and lived longer than control mice. These findings provide additional evidence that humoral immunity can contribute to protection against Mtb. Vaccine design in the TB field has been driven by the imperative of attempting to elicit strong cell-mediated responses. However, in recent decades evidence has accumulated that humoral immunity can protect against many intracellular pathogens through numerous mechanisms. In this work, we demonstrate that immunization with mycobacterial capsular arabinomannan (AM) conjugates elicited responses that contributed to protection against Mtb infection. We developed two different conjugates including capsular AM linked to the Mtb related protein Ag85b or the Mtb unrelated PA from B. anthracis and found that immunization with AM conjugates elicited antibody populations with different specificities. These surface-specific antibodies could directly modify the transcriptional profile and metabolism of mycobacteria. In addition, we observed a prolonged survival and a reduction in bacterial numbers in lungs and spleen in mice immunized with Ag85b-AM conjugates after infection with Mtb and that the presence of AM-binding antibodies was associated with modest prolongation in survival and a marked reduction in mycobacterial dissemination. Finally, we show that AM is antigenically variable and could potentially form the basis for a serological characterization of mycobacteria based on serotypes.
Collapse
Affiliation(s)
- Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
- * E-mail:
| | - Leandro Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Millennium Institute on Immunology and Immunotherapy, Programa Disciplinario de Inmunologia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tingting Cheng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Caroline Blanc
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Brian Weinrick
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Adel Malek
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Todd L. Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Center, Edmonton, Alberta, Canada
| | - Andres Baena
- Grupo de Inmunologia Celular e inmunogenetica, Universidad de Antioquia, Medellin, Colombia
| | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Center, Edmonton, Alberta, Canada
| | - Yu Bai
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Center, Edmonton, Alberta, Canada
| | - Rainer Kalscheuer
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ana Batista-Gonzalez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Noemi A. Saavedra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
| | | | - Julen Tomás
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Juan Anguita
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Section 2, Nankang, Taipei, Taiwan
| | - Ashish Tripathi
- Genomics Research Center, Academia Sinica, Section 2, Nankang, Taipei, Taiwan
| | - Jiayong Xu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Aharona Glatman-Freedman
- Infectious Diseases Unit, Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer, Israel
- Department of Pediatrics, and Department of Family and Community Medicine, New York Medical College, Valhalla, NY, United States of America
| | - Williams R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Jacqueline M. Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| |
Collapse
|
17
|
Tirado Y, Puig A, Alvarez N, Borrero R, Aguilar A, Camacho F, Reyes F, Fernandez S, Perez JL, Acevedo R, Mata Espinoza D, Payan JAB, Garcia MDLA, Kadir R, Sarmiento ME, Hernandez-Pando R, Norazmi MN, Acosta A. Mycobacterium smegmatis proteoliposome induce protection in a murine progressive pulmonary tuberculosis model. Tuberculosis (Edinb) 2016; 101:44-48. [PMID: 27865396 DOI: 10.1016/j.tube.2016.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 11/18/2022]
Abstract
Tuberculosis (TB) remains an important cause of mortality and morbidity. The TB vaccine, BCG, is not fully protective against the adult form of the disease and is unable to prevent its transmission although it is still useful against severe childhood TB. Hence, the search for new vaccines is of great interest. In a previous study, we have shown that proteoliposomes obtained from Mycobacterium smegmatis (PLMs) induced cross reactive humoral and cellular response against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLMs, a murine model of progressive pulmonary TB was used. Animals immunized with PLMs with and without alum (PLMs/PLMsAL respectively) showed protection compared to non-immunized animals. Mice immunized with PLMsAL induced similar protection as that of BCG. Animals immunized with BCG, PLMs and PLMsAL showed a significant decrease in tissue damage (percentage of pneumonic area/lung) compared to non-immunized animals, with a more prominent effect in BCG vaccinated mice. The protective effect of the administration of PLMs in mice supports its future evaluation as experimental vaccine candidate against Mtb.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Alum Compounds
- Animals
- BCG Vaccine
- Bacterial Load
- Disease Models, Animal
- Disease Progression
- Male
- Mice, Inbred BALB C
- Mycobacterium smegmatis/immunology
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/isolation & purification
- Pneumonia, Bacterial/microbiology
- Pneumonia, Bacterial/pathology
- Pneumonia, Bacterial/prevention & control
- Proteolipids/immunology
- Tuberculosis Vaccines
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dulce Mata Espinoza
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubiran", D.F. Mexico, Mexico
| | - Jorge Alberto Barrios Payan
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubiran", D.F. Mexico, Mexico
| | | | - Ramlah Kadir
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - María E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubiran", D.F. Mexico, Mexico
| | - Mohd-Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; INFORMM, Universiti Sains Malaysia, Kelantan, Malaysia.
| | | |
Collapse
|
18
|
Kadir NA, Sarmiento ME, Acosta A, Norazmi MN. Cellular and humoral immunogenicity of recombinant Mycobacterium smegmatis expressing Ag85B epitopes in mice. Int J Mycobacteriol 2016; 5:7-13. [DOI: 10.1016/j.ijmyco.2015.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/22/2015] [Accepted: 09/27/2015] [Indexed: 10/22/2022] Open
|
19
|
Evidence of a pro-apoptotic effect of specific antibodies in a bovine macrophage model of infection with Mycobacterium avium subsp. paratuberculosis. Vet Immunol Immunopathol 2015; 169:47-53. [PMID: 26827838 DOI: 10.1016/j.vetimm.2015.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/26/2015] [Accepted: 12/05/2015] [Indexed: 12/12/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's disease (JD), a chronic granulomatous enteritis in ruminants. Understanding the protective immune response following infection is crucial to improve the diagnosis and the development of vaccines against this disease. The goal of this work was to assess whether specific antibodies were able to modulate the macrophage response to MAP infection by evaluating apoptosis and TNF-α secretion in an in vitro model. Sera from healthy (n=2), MAP-infected (n=3) and lipoarabinomannan (LAM)-immunized (n=3) bovines were evaluated. LAM was chosen as immunogen due to its relevant role in mycobacterial pathogenesis. We demonstrated by two different techniques (Acridine Orange/Ethidium Bromide microscopy and Annexin V/7-Amino-Actinomycin D flow cytometry) that the immune sera from both, MAP-infected and LAM-immunized bovines, significantly increased macrophage apoptosis in infected cultures. Comparable levels of apoptosis were detected when MAP was pre-incubated with purified specific antibodies instead of whole serum. Furthermore, this effect was accompanied by a significantly higher secretion of TNF-α. These results strongly suggest that specific antibodies could limit the impact of MAP on the apoptosis of bovine cells. This work would contribute to elucidate the role of the specific antibody response in bovine JD and its prevention.
Collapse
|
20
|
Kondratieva TK, Linge IA, Kondratieva EV, Dyatlov AV, Drutskaya MS, Zvartsev RV, Nedospasov SA, Apt AS. Formation of compact aggregates of B-lymphocytes in lung tissue during mycobacterial infection in mice depends on TNF production by these cells and is not an element of the host's immunological protection. BIOCHEMISTRY (MOSCOW) 2015; 79:1358-62. [PMID: 25716729 DOI: 10.1134/s0006297914120098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tumor necrosis factor (TNF) plays a pivotal role in the early control of Mycobacterium tuberculosis and M. avium infections by a host. It was previously shown that both phagocyte-derived and T-cell-derived TNF productions are critical for protective immunity against M. tuberculosis, but the role of TNF produced by B-cells remained unclear. By comparing mice with B-cell-specific TNF deletion to littermate control mice, here we show that TNF production by B-lymphocytes is essential for the formation of infection-specific aggregates of B-cells in the lung. It is likely that these compact foci represent a pathogenic feature of inflammatory response rather than an element of protective immunity, since the capacity to form aggregates has no influence on the severity of M. tuberculosis- and M. avium-triggered diseases.
Collapse
Affiliation(s)
- T K Kondratieva
- Central Research Institute of Tuberculosis, Russian Academy of Medical Sciences, Moscow, 107564, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Ashley Jacobs
- Department of Medicine, Imperial College London, United Kingdom
| | | |
Collapse
|
22
|
Tomlinson AJ, Chambers MA, McDonald RA, Delahay RJ. Association of quantitative interferon-γ responses with the progression of naturally acquired Mycobacterium bovis infection in wild European badgers (Meles meles). Immunology 2015; 144:263-70. [PMID: 25109384 DOI: 10.1111/imm.12369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 01/07/2023] Open
Abstract
Bovine tuberculosis is one of the biggest challenges facing cattle farming in Great Britain. European badgers (Meles meles) are a reservoir host for the causal agent, Mycobacterium bovis. There have been significant recent advances in diagnostic testing for tuberculosis in humans, cattle and badgers, with the development of species-specific assays for interferon-γ (IFN-γ), an important cytokine in tuberculous infections. Using data collected from longitudinal studies of naturally infected wild badgers, we report that the magnitude of the IFN-γ response to M. bovis antigens at the disclosing test event was positively correlated with subsequent progression of disease to a seropositive or excreting state. In addition, we show that the magnitude of the IFN-γ response, despite fluctuation, declined with time after the disclosing event for all badgers, but remained significantly higher in those animals with evidence of disease progression. We discuss how our findings may be related to the immunopathogenesis of natural M. bovis infection in badgers.
Collapse
Affiliation(s)
- Alexandra J Tomlinson
- National Wildlife Management Centre, Animal Health and Veterinary Laboratories Agency, Nympsfield, Gloucestershire, UK
| | | | | | | |
Collapse
|
23
|
Chan J, Mehta S, Bharrhan S, Chen Y, Achkar JM, Casadevall A, Flynn J. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Semin Immunol 2014; 26:588-600. [PMID: 25458990 PMCID: PMC4314354 DOI: 10.1016/j.smim.2014.10.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis.
Collapse
Affiliation(s)
- John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Simren Mehta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sushma Bharrhan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yong Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arturo Casadevall
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - JoAnne Flynn
- Departments of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
24
|
Achkar JM, Chan J, Casadevall A. Role of B cells and antibodies in acquired immunity against Mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2014; 5:a018432. [PMID: 25301934 DOI: 10.1101/cshperspect.a018432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Accumulating evidence has documented a role for B cells and antibodies (Abs) in the immunity against Mycobacterium tuberculosis (Mtb). Passive transfer studies with monoclonal antibodies (mAbs) against mycobacterial antigens have shown protection against the tubercle bacillus. B cells and Abs are believed to contribute to an enhanced immune response against Mtb by modulating various immunological components in the infected host including the T-cell compartment. Nevertheless, the extent and contribution of B cells and Abs to protection against Mtb remains uncertain. In this article we summarize the most relevant findings supporting the role of B cells and Abs in the defense against Mtb and discuss the potential mechanisms of protection.
Collapse
Affiliation(s)
- Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461 Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Arturo Casadevall
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461 Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
25
|
Immunoinformatics study on highly expressed Mycobacterium tuberculosis genes during infection. Tuberculosis (Edinb) 2014; 94:475-81. [DOI: 10.1016/j.tube.2014.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 12/22/2022]
|
26
|
Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine in HIV-infected adults on combination antiretroviral therapy: a phase I/II, randomized trial. AIDS 2014; 28:1769-81. [PMID: 24911353 DOI: 10.1097/qad.0000000000000343] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Tuberculosis (TB) is highly prevalent among HIV-infected people, including those receiving combination antiretroviral therapy (cART), necessitating a well tolerated and efficacious TB vaccine for these populations. We evaluated the safety and immunogenicity of the candidate TB vaccine M72/AS01 in adults with well controlled HIV infection on cART. DESIGN A randomized, observer-blind, controlled trial (NCT00707967). METHODS HIV-infected adults on cART in Switzerland were randomized 3 : 1 : 1 to receive two doses, 1 month apart, of M72/AS01, AS01 or 0.9% physiological saline (N = 22, N = 8 and N = 7, respectively) and were followed up to 6 months postdose 2 (D210). Individuals with CD4⁺ cell counts below 200 cells/μl were excluded. Adverse events (AEs) including HIV-specific and laboratory safety parameters were recorded. Cell-mediated (ICS) and humoral (ELISA) responses were evaluated before vaccination, 1 month after each dose (D30, D60) and D210. RESULTS Thirty-seven individuals [interquartile range (IQR) CD4⁺ cell counts at screening: 438-872 cells/μl; undetectable HIV-1 viremia] were enrolled; 73% of individuals reported previous BCG vaccination, 97.3% tested negative for the QuantiFERON-TB assay. For M72/AS01 recipients, no vaccine-related serious AEs or cART-regimen adjustments were recorded, and there were no clinically relevant effects on laboratory safety parameters, HIV-1 viral loads or CD4⁺ cell counts. M72/AS01 was immunogenic, inducing persistent and polyfunctional M72-specific CD4⁺ T-cell responses [medians 0.70% (IQR 0.37-1.07) at D60] and 0.42% (0.24-0.61) at D210, predominantly CD40L⁺IL-2⁺TNF-α⁺, CD40L⁺IL-2⁺ and CD40L⁺IL-2⁺TNF-α⁺IFN-γ⁺]. All M72/AS01 vaccines were seropositive for anti-M72 IgG after second vaccination until study end. CONCLUSION M72/AS01 was clinically well tolerated and immunogenic in this population, supporting further clinical evaluation in HIV-infected individuals in TB-endemic settings.
Collapse
|
27
|
Yuk JM, Jo EK. Host immune responses to mycobacterial antigens and their implications for the development of a vaccine to control tuberculosis. Clin Exp Vaccine Res 2014; 3:155-67. [PMID: 25003089 PMCID: PMC4083068 DOI: 10.7774/cevr.2014.3.2.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 01/17/2023] Open
Abstract
Tuberculosis (TB) remains a worldwide health problem, causing around 2 million deaths per year. Despite the bacillus Calmette Guérin vaccine being available for more than 80 years, it has limited effectiveness in preventing TB, with inconsistent results in trials. This highlights the urgent need to develop an improved TB vaccine, based on a better understanding of host-pathogen interactions and immune responses during mycobacterial infection. Recent studies have revealed a potential role for autophagy, an intracellular homeostatic process, in vaccine development against TB, through enhanced immune activation. This review attempts to understand the host innate immune responses induced by a variety of protein antigens from Mycobacterium tuberculosis, and to identify future vaccine candidates against TB. We focus on recent advances in vaccine development strategies, through identification of new TB antigens using a variety of innovative tools. A new understanding of the host-pathogen relationship, and the usefulness of mycobacterial antigens as novel vaccine candidates, will contribute to the design of the next generation of vaccines, and to improving the host protective immune responses while limiting immunopathology during M. tuberculosis infection.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
28
|
Waters WR, Maggioli MF, McGill JL, Lyashchenko KP, Palmer MV. Relevance of bovine tuberculosis research to the understanding of human disease: historical perspectives, approaches, and immunologic mechanisms. Vet Immunol Immunopathol 2014; 159:113-32. [PMID: 24636301 DOI: 10.1016/j.vetimm.2014.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, demonstrating a profound relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due to Mycobacterium tuberculosis in humans and Mycobacterium bovis in cattle, is an exemplary model for the demonstration of this concept. Early studies with cattle were instrumental in the development of the use of Koch's tuberculin as an in vivo measure of cell-mediated immunity for diagnostic purposes. Calmette and Guerin demonstrated the efficacy of an attenuated M. bovis strain (BCG) in cattle prior to use of this vaccine in humans. The interferon-γ release assay, now widely used for TB diagnosis in humans, was developed circa 1990 for use in the Australian bovine TB eradication program. More recently, M. bovis infection and vaccine efficacy studies with cattle have demonstrated a correlation of vaccine-elicited T cell central memory (TCM) responses to vaccine efficacy, correlation of specific antibody to mycobacterial burden and lesion severity, and detection of antigen-specific IL-17 responses to vaccination and infection. Additionally, positive prognostic indicators of bovine TB vaccine efficacy (i.e., responses measured after infection) include: reduced antigen-specific IFN-γ, iNOS, IL-4, and MIP1-α responses; reduced antigen-specific expansion of CD4(+) T cells; and a diminished activation profile on T cells within antigen stimulated cultures. Delayed type hypersensitivity and IFN-γ responses correlate with infection but do not necessarily correlate with lesion severity whereas antibody responses generally correlate with lesion severity. Recently, serologic tests have emerged for the detection of tuberculous animals, particularly elephants, captive cervids, and camelids. B cell aggregates are consistently detected within tuberculous lesions of humans, cattle, mice and various other species, suggesting a role for B cells in the immunopathogenesis of TB. Comparative immunology studies including partnerships of researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in both man and animals.
Collapse
Affiliation(s)
- W Ray Waters
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States.
| | - Mayara F Maggioli
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Ames, IA, United States
| | | | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
29
|
Legesse M, Ameni G, Medhin G, Mamo G, Franken KLMC, Ottenhoff THM, Bjune G, Abebe F. IgA response to ESAT-6/CFP-10 and Rv2031 antigens varies in patients with culture-confirmed pulmonary tuberculosis, healthy Mycobacterium tuberculosis-infected and non-infected individuals in a tuberculosis endemic setting, Ethiopia. Scand J Immunol 2013; 78:266-74. [PMID: 23713613 DOI: 10.1111/sji.12080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/16/2013] [Indexed: 11/27/2022]
Abstract
Little attention has been given to the role of antibodies against Mycobacterium tuberculosis (Mtb) infection. We have compared the levels of IgA and IgG against ESAT-6/CFP-10 and Rv2031c antigens in sera of patients with culture-confirmed pulmonary tuberculosis (PTB), healthy Mtb-infected and non-infected individuals in endemic TB settings. Venous blood samples were collected from 166 study participants; sera were separated and assayed by an enzyme-linked immunosorbent assay (ELISA). QuantiFERON-TB Gold In-Tube (QFTGIT) assay was used for the screening of latent TB infection. The mean optical density (OD) values of IgA against ESAT-6/CFP-10 and Rv2031 were significantly higher in sera of patients with culture-confirmed PTB compared with healthy Mtb-infected and non-infected individuals (P < 0.001). The mean OD values of IgG against ESAT-6/CFP-10 and Rv2031 were also significantly higher in sera of patients with culture-confirmed PTB compared with healthy Mtb-infected and non-infected individuals (P < 0.05). The mean OD values of IgA against both antigens were also higher in sera of healthy Mtb-infected cases compared with non-infected individuals. There were positive correlations (P < 0.05) between the level of IFN-γ induced in QFTGIT assay and the OD values of serum IgA against both antigens in healthy Mtb-infected subjects. This study shows the potential of IgA response against ESAT-6/CFP-10 and Rv2031 antigens in discriminating clinical TB from healthy Mtb-infected and non-infected cases. Nevertheless, further well-designed cohort study is needed to fully realize the full potential of this diagnostic marker.
Collapse
Affiliation(s)
- M Legesse
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia; Department of Community Medicine, Institute for Health and Society, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Achkar JM, Casadevall A. Antibody-mediated immunity against tuberculosis: implications for vaccine development. Cell Host Microbe 2013; 13:250-62. [PMID: 23498951 DOI: 10.1016/j.chom.2013.02.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is an urgent need for new and better vaccines against tuberculosis (TB). Current vaccine design strategies are generally focused on the enhancement of cell-mediated immunity. Antibody-based approaches are not being considered, mostly due to the paradigm that humoral immunity plays little role in the protection against intracellular pathogens. Here, we reappraise and update the increasing evidence for antibody-mediated immunity against Mycobacterium tuberculosis, discuss the complexity of antibody responses to mycobacteria, and address mechanism of protection. Based on these findings and discussions, we challenge the common belief that immunity against M. tuberculosis relies solely on cellular defense mechanisms, and posit that induction of antibody-mediated immunity should be included in TB vaccine development strategies.
Collapse
Affiliation(s)
- Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
31
|
Abstract
Needle-free, mucosal immunization is a highly desirable strategy for vaccination against many pathogens, especially those entering through the respiratory mucosa, such as Mycobacterium tuberculosis. Unfortunately, mucosal vaccination against tuberculosis (TB) is impeded by a lack of suitable adjuvants and/or delivery platforms that could induce a protective immune response in humans. Here, we report on a novel biotechnological approach for mucosal vaccination against TB that overcomes some of the current limitations. This is achieved by coating protective TB antigens onto the surface of inert bacterial spores, which are then delivered to the respiratory tract. Our data showed that mice immunized nasally with coated spores developed humoral and cellular immune responses and multifunctional T cells and, most importantly, presented significantly reduced bacterial loads in their lungs and spleens following pathogenic challenge. We conclude that this new vaccine delivery platform merits further development as a mucosal vaccine for TB and possibly also other respiratory pathogens.
Collapse
|
32
|
Olivares N, Marquina B, Mata-Espinoza D, Zatarain-Barron ZL, Pinzón CE, Estrada I, Parada C, Collin M, Rook G, Hernandez-Pando R. The protective effect of immunoglobulin in murine tuberculosis is dependent on IgG glycosylation. Pathog Dis 2013; 69:176-83. [PMID: 23873753 DOI: 10.1111/2049-632x.12069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 01/28/2023] Open
Abstract
Antibodies have demonstrated having a protective effect in animal models of tuberculosis (TB). These experiments have considered the specificity of antigen recognition and the different isotypes and subclasses as significant contributors of this effect. However, the carbohydrate chain heterogeneity on the Fc region of IgG (Fc-IgG) can play an important role in modulating the immune response. Patients with TB usually have high titers of specific IgG; however, the carbohydrate associated with Fc-IgG usually lacks galactose. To assess the effect of this abnormal IgG in murine pulmonary TB, we evaluated the specificity of recognition to Mycobacterium tuberculosis antigens in vitro and protective effects in vivo comparing human intravenous immunoglobulin (IVIg) and IVIg treated with an endoglycosidase to remove the glycan residues (EndoS-treated IVIg). Our results showed similar antigen recognition. The study of distribution and kinetics of IVIg in serum and bronchial lavage after intraperitoneal (i.p.) administration in mice showed that IVIg circulates for 21 days. Finally, the protective effect of intact and EndoS-treated IVIg administered by i.p was studied in a murine model of progressive TB. IVIg treatment caused reduction in pulmonary bacilli loads, larger granulomas, and less pneumonia, while animals treated with EndoS-treated IVIg were not protected compared with control animals. Thus, IVIg has a protective activity in experimental pulmonary TB, and this effect requires intact Fc oligosaccharides.
Collapse
Affiliation(s)
- Nesty Olivares
- National Institute of Medical Sciences and Nutrition Salvador Zubirán, DelegaciónTlalpan, Mexico; Institute of Biomedical Research, National Autonomous University of Mexico, México, D.F, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kozakiewicz L, Phuah J, Flynn J, Chan J. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:225-50. [PMID: 23468112 DOI: 10.1007/978-1-4614-6111-1_12] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) remains a serious threat to public health, causing 2 million deaths annually world-wide. The control of TB has been hindered by the requirement of long duration of treatment involving multiple chemotherapeutic agents, the increased susceptibility to Mycobacterium tuberculosis infection in the HIV-infected population, and the development of multi-drug resistant and extensively resistant strains of tubercle bacilli. An efficacious and cost-efficient way to control TB is the development of effective anti-TB vaccines. This measure requires thorough understanding of the immune response to M. tuberculosis. While the role of cell-mediated immunity in the development of protective immune response to the tubercle bacillus has been well established, the role of B cells in this process is not clearly understood. Emerging evidence suggests that B cells and humoral immunity can modulate the immune response to various intracellular pathogens, including M. tuberculosis. These lymphocytes form conspicuous aggregates in the lungs of tuberculous humans, non-human primates, and mice, which display features of germinal center B cells. In murine TB, it has been shown that B cells can regulate the level of granulomatous reaction, cytokine production, and the T cell response. This chapter discusses the potential mechanisms by which specific functions of B cells and humoral immunity can shape the immune response to intracellular pathogens in general, and to M. tuberculosis in particular. Knowledge of the B cell-mediated immune response to M. tuberculosis may lead to the design of novel strategies, including the development of effective vaccines, to better control TB.
Collapse
Affiliation(s)
- Lee Kozakiewicz
- Department of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
34
|
Abstract
For centuries the treatment of TB has presented an enormous challenge to global health. In the 20th century, the treatment of TB patients with long-term multidrug therapy gave hope that TB could be controlled and cured; however, contrary to these expectations and coinciding with the emergence of AIDS, the world has witnessed a rampant increase in hard-to-treat cases of TB, along with the emergence of highly virulent and multidrug-resistant Mycobacterium tuberculosis strains. Unfortunately, these bacteria are now circulating around the world, and there are few effective drugs to treat them. As a result, the prospects for improved treatment and control of TB in the 21st century have worsened and we urgently need to identify new therapies that deal with this problem. The potential use of immunotherapy for TB is now of greater consideration than ever before, as immunotherapy could potentially overcome the problem of drug resistance. TB immunotherapy targets the already existing host anti-TB immune response and aims to enhance killing of the bacilli. For this purpose, several approaches have been used: the use of anti-Mycobacteria antibodies; enhancing the Th1 protective responses by using mycobacterial antigens or increasing Th1 cytokines; interfering with the inflammatory process and targeting of immunosuppressive pathways and targeting the cell activation/proliferation pathways. This article reviews our current understanding of TB immunity and targets for immunotherapy that could be used in combination with current TB chemotherapy.
Collapse
Affiliation(s)
- Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology & Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
35
|
Leroux-Roels I, Forgus S, De Boever F, Clement F, Demoitié MA, Mettens P, Moris P, Ledent E, Leroux-Roels G, Ofori-Anyinam O. Improved CD4⁺ T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine 2012; 31:2196-206. [PMID: 22643213 DOI: 10.1016/j.vaccine.2012.05.035] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/25/2012] [Accepted: 05/16/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND The Bacille Calmette-Guérin (BCG) tuberculosis (TB) vaccine provides incomplete protection, necessitating development of an effective vaccine against TB disease. The Mtb72F/AS02 candidate vaccine was previously shown to be clinically well tolerated and immunogenic in Purified Protein Derivative (PPD)-negative adults. To improve the stability of Mtb72F, a point mutation was introduced into a putative serine protease site to give the final M72 construct. AS01 is an Adjuvant System that can potentially improve both humoral and cellular immune responses compared to the AS02 Adjuvant System or unadjuvanted vaccine. This study evaluated the safety and immunogenicity in Mtb-naïve adults of vaccines containing 40 μg of the M72 antigen with AS02 or AS01 and compared the results with Mtb72F/AS02 vaccine (40 μg dose), M72 in saline (40 μg dose) and AS01 alone. METHODS In this Phase I/II observer-blind controlled trial, 110 participants were randomized (4:4:1:1:1) to receive M72/AS01, M72/AS02, Mtb72F/AS02, M72/saline or AS01, following a 0, 1-month schedule. Subjects receiving the adjuvanted M72 vaccines were followed up until 3 years post vaccination. Evaluation of the immune response and safety/reactogenicity was performed. RESULTS For all vaccines, solicited adverse events (AEs) were predominantly mild to moderate and transient. No vaccine-related serious AEs occurred and no subject withdrew due to an AE. Immune responses induced by Mtb72F and M72 antigens combined with AS02 were similar. M72/AS01 and M72/AS02 induced robust polyfunctional M72-specific CD4(+) T cell and antibody responses persisting at 3 years, with the highest CD4(+) T cell responses found with M72/AS01. CONCLUSION This first clinical study with M72/AS01 and M72/AS02 showed that both vaccines were clinically well tolerated and induced high magnitude and persistent cell-mediated and humoral immune responses. The Mtb72F/AS02 and M72/AS02 vaccines were comparably immunogenic with significantly higher immune responses compared to the M72/saline control. Of the formulations tested, M72/AS01 demonstrated significantly higher vaccine specific Th1 CD4(+) T cell responses supporting its further clinical evaluation.
Collapse
|
36
|
Tomlinson A, Chambers M, Delahay R. Mycobacterium bovis infection in badger cubs: re-assessing the evidence for maternally derived immunological protection from advanced disease. Vet Immunol Immunopathol 2012; 148:326-30. [PMID: 22613668 DOI: 10.1016/j.vetimm.2012.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
The Eurasian badger (Meles meles) is a significant source of bovine tuberculosis in cattle in the UK and Ireland. Protection from infectious diseases, arising from maternal antibody transfer, is a well-established immunological phenomenon in mammals. In a previous study of wild badgers, transient serological responses in cubs were taken as evidence of maternal antibody transfer, and it was speculated this conferred protection from subsequent mycobacterial excretion following acquisition of tuberculosis. However successful defence against mycobacterial infections is likely to be dominated by a cell-mediated response. Using a substantially larger dataset from the same badger population, we revisited the hypothesis of maternally derived protection. Whilst we found a significant association between transient serological responses and absence of subsequent Mycobacterium bovis excretion, the likelihood of detection of such responses was not significantly associated either with badger age, or with infection in the breeding females within a cub's natal group. We concluded that although maternal antibody transfer in badgers almost certainly occurs, transient serological responses represent an invalid proxy, and the reduced likelihood of M. bovis excretion associated with transient responses was more likely to be due to the lower sensitivity of the Brock ELISA test in detecting badgers with less advanced disease.
Collapse
|
37
|
Nonnecke B, Waters W, Goff J, Foote M. Adaptive immunity in the colostrum-deprived calf: Response to early vaccination with Mycobacterium bovis strain bacille Calmette Guerin and ovalbumin. J Dairy Sci 2012; 95:221-39. [DOI: 10.3168/jds.2011-4712] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/16/2011] [Indexed: 01/11/2023]
|
38
|
Comparative evaluation of profiles of antibodies to mycobacterial capsular polysaccharides in tuberculosis patients and controls stratified by HIV status. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:198-208. [PMID: 22169090 DOI: 10.1128/cvi.05550-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the complexity of tuberculosis (TB) serology, antibodies (Abs) remain attractive biomarkers for TB. Recent evidence of a mycobacterial capsule that consists mainly of the polysaccharides arabinomannan (AM) and glucan provides new options for serologic targets. For this study, Ab responses to AM and glucan for 47 U.S. TB patients (33 HIV negative [HIV(-)], 14 HIV positive [HIV(+)]), 42 healthy controls, and 38 asymptomatic HIV(+) controls were evaluated by enzyme-linked immunosorbent assays (ELISAs). The results were compared with Ab responses to the mycobacterial glycolipid cell wall antigen lipoarabinomannan (LAM) and to the proteins malate synthase (MS) and MPT51. We found that the main immunoglobulin (Ig) isotype response to polysaccharides was IgG, predominantly of subclass IgG2. IgG responses to AM were significantly higher for HIV(-) and HIV(+) TB cases than for controls (P, <0.0001 and <0.01, respectively); significantly higher for HIV(-) than for HIV(+) TB cases (P, <0.01); and significantly higher in sputum smear-positive than smear-negative patients in both HIV(-) and HIV(+) cases (P, 0.01 and 0.02, respectively). In both TB groups, titers of Ab to glucan were significantly lower than titers of Ab to AM (P, <0.0001). IgG responses to AM and MS or to AM and MPT51 did not correlate with each other in HIV(-) TB patients, while they correlated significantly in HIV(+) TB patients (P, 0.01 and 0.05, respectively). We conclude that Ab responses to AM could contribute to the serodiagnosis of TB, especially for HIV(-) TB patients. This study also provides new and important insights into the differences in the profiles of Abs to mycobacterial antigens between HIV(-) and HIV(+) TB patients.
Collapse
|
39
|
Santema W, Rutten V, Koets A. Bovine paratuberculosis: recent advances in vaccine development. Vet Q 2011; 31:183-91. [DOI: 10.1080/01652176.2011.633766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
40
|
Feng L, Li L, Liu Y, Qiao D, Li Q, Fu X, Wang H, Lao S, Wu C. B lymphocytes that migrate to tuberculous pleural fluid via the SDF-1/CXCR4 axis actively respond to antigens specific for Mycobacterium tuberculosis. Eur J Immunol 2011; 41:3261-9. [PMID: 21818756 DOI: 10.1002/eji.201141625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/20/2011] [Accepted: 08/01/2011] [Indexed: 11/12/2022]
Abstract
B-cell biology has been largely uncharacterized in the field of tuberculosis (TB). In this study, we investigated the immunophenotypical and functional characteristics of B cells obtained from the pleural fluid (PF) and peripheral blood of patients with tuberculous pleuritis (TP). Our results indicated that the total numbers of B cells, CD27(+) memory B cells and plasmablasts were clearly lower in the PF than in peripheral blood. Furthermore, we found significantly higher expression of CXCR4 on B cells in the PF, and a chemotaxis assay showed that B cells in the PF were more responsive to stromal cell-derived factor-1 (SDF-1) than B cells from peripheral blood. In addition, SDF-1 levels in PF were remarkably high compared with SDF-1 levels in plasma, suggesting that the SDF-1/CXCR4 axis might facilitate the migration of circulating B cells into tuberculous pleural space. Importantly, we observed that significantly more antibodies were produced by B cells in the PF following stimulation with BCG, early secretory antigenic target (ESAT-6)/culture filtrate protein-10 (CFP-10) or ESAT-6 protein. Collectively, these data demonstrate that Mycobacterium tuberculosis-specific B cells exist at local sites of infection in TP patients and this localization might influence the immune response to M. tuberculosis.
Collapse
Affiliation(s)
- Lian Feng
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fact and fiction in tuberculosis vaccine research: 10 years later. THE LANCET. INFECTIOUS DISEASES 2011; 11:633-40. [DOI: 10.1016/s1473-3099(11)70146-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Gupta A, Kaul A, Tsolaki AG, Kishore U, Bhakta S. Mycobacterium tuberculosis: immune evasion, latency and reactivation. Immunobiology 2011; 217:363-74. [PMID: 21813205 DOI: 10.1016/j.imbio.2011.07.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/16/2011] [Accepted: 07/05/2011] [Indexed: 02/02/2023]
Abstract
One-third of the global human population harbours Mycobacterium tuberculosis in dormant form. This dormant or latent infection presents a major challenge for global efforts to eradicate tuberculosis, because it is a vast reservoir of potential reactivation and transmission. This article explains how the pathogen evades the host immune response to establish a latent infection, and how it emerges from a state of latency to cause reactivation disease. This review highlights the key factors responsible for immune evasion and reactivation. It concludes by identifying interesting candidates for drug or vaccine development, as well as identifying unresolved questions for the future research.
Collapse
Affiliation(s)
- Antima Gupta
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | | | | | | | | |
Collapse
|
43
|
Jolly A, Colavecchia SB, Fernández B, Fernández E, Mundo SL. Antibodies Induced by Lipoarabinomannan in Bovines: Characterization and Effects on the Interaction between Mycobacterium Avium Subsp. Paratuberculosis and Macrophages In Vitro. Vet Med Int 2011; 2011:258479. [PMID: 21772964 PMCID: PMC3134984 DOI: 10.4061/2011/258479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/08/2011] [Accepted: 04/15/2011] [Indexed: 12/25/2022] Open
Abstract
Lipoarabinomannan (LAM) is a major glycolipidic antigen on the mycobacterial envelope. The aim of this study was to characterize the humoral immune response induced by immunization with a LAM extract in bovines and to evaluate the role of the generated antibodies in the in vitro infection of macrophages with Mycobacterium avium subsp. paratuberculosis (MAP). Sera from fourteen calves immunized with LAM extract or PBS emulsified in Freund's Incomplete Adjuvant and from five paratuberculosis-infected bovines were studied. LAM-immunized calves developed specific antibodies with IgG1 as the predominant isotype. Serum immunoglobulins were isolated and their effect was examined in MAP ingestion and viability assays using a bovine macrophage cell line. Our results show that the antibodies generated by LAM immunization significantly increase MAP ingestion and reduce its intracellular viability, suggesting an active role in this model.
Collapse
Affiliation(s)
- Ana Jolly
- Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Silvia Beatriz Colavecchia
- Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Bárbara Fernández
- Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Eloy Fernández
- Clínica de Rumiantes, Facultad de Ciencias Veterinarias, Universidad de Buenos Aire (UBA), Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Silvia Leonor Mundo
- Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Chorroarín 280, C1427CWO Buenos Aires, Argentina
| |
Collapse
|
44
|
Joller N, Weber SS, Oxenius A. Antibody - Fc receptor interactions in protection against intracellular pathogens. Eur J Immunol 2011; 41:889-97. [DOI: 10.1002/eji.201041340] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/21/2011] [Accepted: 03/02/2011] [Indexed: 01/12/2023]
|
45
|
Santema W, van Kooten P, Hoek A, Leeflang M, Overdijk M, Rutten V, Koets A. Hsp70 vaccination-induced antibodies recognize B cell epitopes in the cell wall of Mycobacterium avium subspecies paratuberculosis. Vaccine 2011; 29:1364-73. [DOI: 10.1016/j.vaccine.2010.12.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
|
46
|
Evaluation of the safety and immunogenicity of two antigen concentrations of the Mtb72F/AS02(A) candidate tuberculosis vaccine in purified protein derivative-negative adults. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1763-71. [PMID: 20861328 DOI: 10.1128/cvi.00133-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) remains a major cause of illness and death worldwide, making a new TB vaccine an urgent public health priority. Purified protein derivative (PPD)-negative adults (n = 50) were equally randomized to receive 3 doses at 1-month intervals (at 0, 1, and 2 months) of one of the following vaccines: Mtb72F/AS02(A) (10 or 40 μg antigen), Mtb72F/saline (10 or 40 μg antigen), or AS02(A). Mtb72F/AS02(A) recipients received an additional dose 1 year after the first dose to evaluate if the elicited immune response could be boosted. Mtb72F/AS02(A) vaccines were locally reactogenic but clinically well tolerated, with transient adverse events (usually lasting between 1 and 4 days) that resolved without sequelae being observed. No vaccine-related serious adverse events were reported. Vaccination with Mtb72F/AS02(A) induced a strong Mtb72F-specific humoral response and a robust Mtb72F-specific CD4(+) T-cell response, both of which persisted at 9 months after primary immunization and for 1 year after the booster immunization. There was no significant difference between the magnitude of the CD4(+) T-cell response induced by the 10-μg and 40-μg Mtb72F/AS02(A) vaccines. The Mtb72F-specific CD4(+) T cells predominantly expressed CD40L; CD40L and interleukin-2 (IL-2); CD40L and tumor necrosis factor alpha (TNF-α); CD40L, IL-2, and TNF-α; and CD40L, IL-2, TNF-α, and gamma interferon (IFN-γ). Serum IFN-γ, but not TNF-α, was detected 1 day after doses 2 and 3 for the Mtb72F/AS02(A) vaccine but did not persist. Vaccine-induced CD8(+) T-cell responses were not detected, and no immune responses were elicited with AS02(A) alone. In conclusion, Mtb72F/AS02(A) is clinically well tolerated and is highly immunogenic in TB-naïve adults. The 10- and 40-μg Mtb72F/AS02(A) vaccines show comparable safety and immunogenicity profiles.
Collapse
|
47
|
Nogueira L, Cardoso FC, Mattos AM, Bordignon J, Figueiredo CP, Dahlstrom P, Frota CC, Duarte Dos Santos CN, Chalhoub M, Cavada BS, Teixeira HC, Oliveira SC, Barral-Netto M, Báfica A. Mycobacterium tuberculosis Rv1419 encodes a secreted 13 kDa lectin with immunological reactivity during human tuberculosis. Eur J Immunol 2010; 40:744-53. [PMID: 20017196 DOI: 10.1002/eji.200939747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, we have identified a secreted 13 kDa lectin from Mtb (Mtb, Mycobacterium tuberculosis; sMTL-13) by homology search of a non-redundant lectin database. Bioinformatic analysis revealed that sMTL-13 belongs to the ricin-type beta-trefoil family of proteins containing a Sec-type signal peptide present in Mtb complex species, but not in non-tuberculous mycobacteria. Following heterologous expression of sMTL-13 and generation of an mAb (clone 276.B7/IgG1kappa), we confirmed that this lectin is present in culture filtrate proteins from Mtb H37Rv, but not in non-tuberculous mycobacteria-derived culture filtrate proteins. In addition, sMTL-13 leads to an increased IFN-gamma production by PBMC from active tuberculosis (ATB) patients. Furthermore, sera from ATB patients displayed high titers of IgG Ab against sMTL-13, a response found to be decreased following successful anti-tuberculosis therapy. Together, our findings reveal a secreted 13 kDa ricin-like lectin from Mtb, which is immunologically recognized during ATB and could serve as a biomarker of disease treatment.
Collapse
Affiliation(s)
- Lucas Nogueira
- Laboratório de Imunologia e Doenças Infecciosas, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina-SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Silva MT, Portaels F, Pedrosa J. Pathogenetic mechanisms of the intracellular parasite Mycobacterium ulcerans leading to Buruli ulcer. THE LANCET. INFECTIOUS DISEASES 2009; 9:699-710. [PMID: 19850228 DOI: 10.1016/s1473-3099(09)70234-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The necrotising skin infection Buruli ulcer is at present the third most common human mycobacteriosis worldwide, after tuberculosis and leprosy. Buruli ulcer is an emergent disease that is predominantly found in humid tropical regions. There is no vaccine against Buruli ulcer and its treatment is difficult. In addition to the huge social effect, Buruli ulcer is of great scientific interest because of the unique characteristics of its causative organism, Mycobacterium ulcerans. This pathogen is genetically very close to the typical intracellular parasites Mycobacterium marinum and Mycobacterium tuberculosis. We review data supporting the interpretation that M ulcerans has the essential hallmarks of an intracellular parasite, producing infections associated with immunologically relevant inflammatory responses, cell-mediated immunity, and delayed-type hypersensitivity. This interpretation judges that whereas M ulcerans behaves like the other pathogenic mycobacteria, it represents an extreme in the biodiversity of this family of pathogens because of its higher cytotoxicity due to the secretion of the exotoxin mycolactone. The acceptance of the interpretation that Buruli ulcer is caused by an intracellular parasite has relevant prophylactic and therapeutic implications, rather than representing the mere attribution of a label with academic interest, because it prompts the development of vaccines that boost cell-mediated immunity and the use of chemotherapeutic protocols that include intracellularly active antibiotics.
Collapse
Affiliation(s)
- Manuel T Silva
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, Porto 4150-180, Portugal
| | | | | |
Collapse
|
49
|
Murase T, Zheng RB, Joe M, Bai Y, Marcus SL, Lowary TL, Ng KK. Structural Insights into Antibody Recognition of Mycobacterial Polysaccharides. J Mol Biol 2009; 392:381-92. [DOI: 10.1016/j.jmb.2009.06.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|
50
|
Olivares N, Puig A, Aguilar D, Moya A, Cádiz A, Otero O, Izquierdo L, Falero G, Solis RL, Orozco H, Sarmiento ME, Norazmi MN, Hernández-Pando R, Acosta A. Prophylactic effect of administration of human gamma globulins in a mouse model of tuberculosis. Tuberculosis (Edinb) 2009; 89:218-20. [PMID: 19362883 DOI: 10.1016/j.tube.2009.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/11/2009] [Accepted: 02/24/2009] [Indexed: 10/20/2022]
Abstract
The protective effect of human gamma globulins on Mycobacterium tuberculosis infection was evaluated in a mouse model of intratracheal infection. Animals receiving human gamma globulins intranasally, 2h before intratracheal challenge showed a significant decrease in lung bacilli load compared to non-treated animals in different time intervals of up to 2 months after challenge. The same effect was obtained when M. tuberculosis was pre-incubated with the gamma globulin before challenge. The protective effect of the gamma-globulin formulation was abolished after pre-incubation with M. tuberculosis. These results suggest a potential role of specific antibodies in the defence against mycobacterial infections.
Collapse
Affiliation(s)
- Nesty Olivares
- Department of Molecular Biology, Finlay Institute, Ave 27 No. 19805, La Lisa, Havana City, AP 16017, CP 11600, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|