1
|
Chen F, Zhu M, Li W. Advances in research on malignant transformation of endometriosis-associated ovarian cancer. Front Oncol 2024; 14:1475231. [PMID: 39445058 PMCID: PMC11496038 DOI: 10.3389/fonc.2024.1475231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Endometriosis (EMs) is a prevalent chronic gynecological condition that depends on estrogen, marked by the presence of active endometrial tissue (glands and stroma) outside the uterus. Although pathologically benign, it exhibits biological behaviors such as invasion and metastasis akin to malignant tumors. Endometriosis-associated ovarian carcinoma (EAOC), arising from malignant transformation of EMs, poses significant clinical challenges. However, the mechanisms underlying EAOC pathogenesis remain incompletely understood, with a lack of reliable biomarkers for early diagnosis and personalized treatment strategies. Considering the significant number of EMs patients and the extended period during which malignant transformation can occur, EAOC deserves significant attention. Current research both domestically and internationally indicates that the pathogenesis of EAOC is complex, involving genetic mutations, immune microenvironment, oxidative stress, epigenetic changes, and related areas. This review summarizes the mechanisms underlying the development of EAOC.
Collapse
Affiliation(s)
- Fang Chen
- Department of Gynecology, People’s Hospital of Liaoning Province, Shenyang, China
| | - Mengying Zhu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wenjuan Li
- Department of Gynecology, People’s Hospital of Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Khan AA, Kim JH. Recent advances in materials and manufacturing of implantable devices for continuous health monitoring. Biosens Bioelectron 2024; 261:116461. [PMID: 38850737 DOI: 10.1016/j.bios.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Implantable devices are vital in healthcare, enabling continuous monitoring, early disease detection, informed decision-making, enhanced outcomes, cost reduction, and chronic condition management. These devices provide real-time data, allowing proactive healthcare interventions, and contribute to overall improvements in patient care and quality of life. The success of implantable devices relies on the careful selection of materials and manufacturing methods. Recent materials research and manufacturing advancements have yielded implantable devices with enhanced biocompatibility, reliability, and functionality, benefiting human healthcare. This paper provides a comprehensive overview of the latest developments in implantable medical devices, emphasizing the importance of material selection and manufacturing methods, including biocompatibility, self-healing capabilities, corrosion resistance, mechanical properties, and conductivity. It explores various manufacturing techniques such as microfabrication, 3D printing, laser micromachining, electrospinning, screen printing, inkjet printing, and nanofabrication. The paper also discusses challenges and limitations in the field, including biocompatibility concerns, privacy and data security issues, and regulatory hurdles for implantable devices.
Collapse
Affiliation(s)
- Akib Abdullah Khan
- School of Engineering and Computer Science, Washington State University, Vancouver, WA, 98686, USA
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA, 98686, USA; Department of Mechanical Engineering, University of Washington, WA, 98195, USA.
| |
Collapse
|
3
|
Bocian IY, Chin AR, Rodriguez A, Collins W, Sindher SB, Chinthrajah RS. Asthma management in the digital age. FRONTIERS IN ALLERGY 2024; 5:1451768. [PMID: 39291253 PMCID: PMC11405314 DOI: 10.3389/falgy.2024.1451768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Asthma affects 25 million people in the United States, and its prevalence is increasing. Access to care and adherence to prescribed asthma-treatment programs remain the principal formidable challenges for asthma management. Telemedicine offers substantial opportunities for improved asthma care of patients across the full range of socioeconomic strata. Ever-improving digital tools for asthma assessment and treatment are key components of telemedicine platforms for asthma management. These include a variety of remote patient-monitoring devices, digital inhaler systems, and mobile-health applications that facilitate ongoing assessment and adherence to treatment protocols. Digital tools for monitoring treatment focus on tracking medication use, inhalation technique, and physiological markers such as peak-flow rate and pulse-oximetry. Telemedicine visits allow for elements of assessment via video, approximating or duplicating many aspects of in-person visits, such as evaluating a patient's general appearance, breathing effort, and cough. Challenges remain in ensuring equitable access to these technologies, especially in rural and low-income areas, and in maintaining patient privacy and data security in digital platforms.
Collapse
Affiliation(s)
- Ilan Y Bocian
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Andrew R Chin
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Alyssa Rodriguez
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - William Collins
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Sayantani B Sindher
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - R Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Abbassy M, Ali MZ, Sharma RM, Irani YP, Dahlan A, Azhar M, Aslam N, Hasan B, Hameed A. Biosensors with left ventricular assist devices. Heart Fail Rev 2024; 29:957-967. [PMID: 38940991 PMCID: PMC11306381 DOI: 10.1007/s10741-024-10413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Heart failure imposes a significant global health burden, standing as a primary contributor to mortality. Various indicators and physiological shifts within the body may hint at distinct cardiac conditions. Specific biosensors have the capability to identify these changes. Integrating or embedding these biosensors into mechanical circulatory support devices (MCSDs), such as left ventricular assist devices (LVADs), becomes crucial for monitoring alterations in biochemical and physiological factors subsequent to an MCSD implantation. Detecting abnormal changes early in the course of disease progression will allow for improved patient outcomes and prognosis following an MCSD implantation. The aim of this review is to explore the available biosensors that may be coupled or implanted alongside LVADs to monitor biomarkers and changes in physiological parameters. Different fabrication materials for the biosensors are discussed, including their advantages and disadvantages. This review also examines the feasibility of integrating feedback control mechanisms into LVAD systems using data from the biosensors. Challenges facing this emerging technology and future directions for research and development are outlined as well. The overarching goal is to provide an overview of how implanted biosensors may improve the performance and outcomes of LVADs through continuous monitoring and closed-loop control.
Collapse
Affiliation(s)
- Mahmoud Abbassy
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland
| | - Muhammad Zain Ali
- Internal Medicine, Kent Hospital, Brown University, Warwick, Rhode Island, USA
| | - Riya Manas Sharma
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland
| | - Yohan Porus Irani
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Dublin, Ireland
| | - Adil Dahlan
- UCD School of Medicine, University College Dublin, Health Sciences Centre, Dublin 4, Belfield, Dublin, Ireland
| | - Maimoona Azhar
- Graduate Entry Medicine, School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, 123 St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Nadeem Aslam
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Babar Hasan
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland.
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
5
|
Ghazizadeh E, Naseri Z, Deigner HP, Rahimi H, Altintas Z. Approaches of wearable and implantable biosensor towards of developing in precision medicine. Front Med (Lausanne) 2024; 11:1390634. [PMID: 39091290 PMCID: PMC11293309 DOI: 10.3389/fmed.2024.1390634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/30/2024] [Indexed: 08/04/2024] Open
Abstract
In the relentless pursuit of precision medicine, the intersection of cutting-edge technology and healthcare has given rise to a transformative era. At the forefront of this revolution stands the burgeoning field of wearable and implantable biosensors, promising a paradigm shift in how we monitor, analyze, and tailor medical interventions. As these miniature marvels seamlessly integrate with the human body, they weave a tapestry of real-time health data, offering unprecedented insights into individual physiological landscapes. This log embarks on a journey into the realm of wearable and implantable biosensors, where the convergence of biology and technology heralds a new dawn in personalized healthcare. Here, we explore the intricate web of innovations, challenges, and the immense potential these bioelectronics sentinels hold in sculpting the future of precision medicine.
Collapse
Affiliation(s)
- Elham Ghazizadeh
- Department of Bioinspired Materials and Biosensor Technologies, Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Naseri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Villingen-Schwenningen, Germany
- Fraunhofer Institute IZI (Leipzig), Rostock, Germany
- Faculty of Science, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Hossein Rahimi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zeynep Altintas
- Department of Bioinspired Materials and Biosensor Technologies, Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| |
Collapse
|
6
|
Chatzilakou E, Hu Y, Jiang N, Yetisen AK. Biosensors for melanoma skin cancer diagnostics. Biosens Bioelectron 2024; 250:116045. [PMID: 38301546 DOI: 10.1016/j.bios.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.
Collapse
Affiliation(s)
- Eleni Chatzilakou
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; JinFeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
7
|
Campuzano S, Barderas R, Moreno-Casbas MT, Almeida Á, Pingarrón JM. Pursuing precision in medicine and nutrition: the rise of electrochemical biosensing at the molecular level. Anal Bioanal Chem 2024; 416:2151-2172. [PMID: 37420009 PMCID: PMC10951035 DOI: 10.1007/s00216-023-04805-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In the era that we seek personalization in material things, it is becoming increasingly clear that the individualized management of medicine and nutrition plays a key role in life expectancy and quality of life, allowing participation to some extent in our welfare and the use of societal resources in a rationale and equitable way. The implementation of precision medicine and nutrition are highly complex challenges which depend on the development of new technologies able to meet important requirements in terms of cost, simplicity, and versatility, and to determine both individually and simultaneously, almost in real time and with the required sensitivity and reliability, molecular markers of different omics levels in biofluids extracted, secreted (either naturally or stimulated), or circulating in the body. Relying on representative and pioneering examples, this review article critically discusses recent advances driving the position of electrochemical bioplatforms as one of the winning horses for the implementation of suitable tools for advanced diagnostics, therapy, and precision nutrition. In addition to a critical overview of the state of the art, including groundbreaking applications and challenges ahead, the article concludes with a personal vision of the imminent roadmap.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Rodrigo Barderas
- UFIEC, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Maria Teresa Moreno-Casbas
- Nursing and Healthcare Research Unit (Investén-isciii), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángeles Almeida
- Instituto de Biología Funcional y Genómica, CSIC, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
8
|
Figueiredo C, Psotta C, Jayakumar K, Lielpetere A, Mandal T, Schuhmann W, Leech D, Falk M, Pita M, Shleev S, De Lacey AL. Effect of Protection Polymer Coatings on the Performance of an Amperometric Galactose Biosensor in Human Plasma. BIOSENSORS 2024; 14:167. [PMID: 38667160 PMCID: PMC11047878 DOI: 10.3390/bios14040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Galactose monitoring in individuals allows the prevention of harsh health conditions related to hereditary metabolic diseases like galactosemia. Current methods of galactose detection need development to obtain cheaper, more reliable, and more specific sensors. Enzyme-containing amperometric sensors based on galactose oxidase activity are a promising approach, which can be enhanced by means of their inclusion in a redox polymer coating. This strategy simultaneously allows the immobilization of the biocatalyst to the electroactive surface and hosts the electron shuttling units. An additional deposition of capping polymers prevents external interferences like ascorbic or uric acid as well as biofouling when measuring in physiological fuels. This work studies the protection effect of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate (MPC) and polyvinylimidazole-polysulfostyrene (P(VI-SS)) when incorporated in the biosensor design for the detection of galactose in human plasma.
Collapse
Affiliation(s)
- Carina Figueiredo
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.F.)
| | - Carolin Psotta
- Department of Biomedical Science, Faculty of Health and Society, & Biofilms-Research Center for Biointerfaces, Malmo University, 205 06 Malmö, Sweden (S.S.)
- Aptusens AB, 293 94 Kyrkhult, Sweden
| | - Kavita Jayakumar
- School of Biological and Chemical Sciences & Ryan Institute, University of Galway, H91 TK33 Galway, Ireland (T.M.)
| | - Anna Lielpetere
- Analytical Chemistry-Center for Electrochemical Science (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44791 Bochum, Germany; (A.L.); (W.S.)
| | - Tanushree Mandal
- School of Biological and Chemical Sciences & Ryan Institute, University of Galway, H91 TK33 Galway, Ireland (T.M.)
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Science (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44791 Bochum, Germany; (A.L.); (W.S.)
| | - Dónal Leech
- School of Biological and Chemical Sciences & Ryan Institute, University of Galway, H91 TK33 Galway, Ireland (T.M.)
| | - Magnus Falk
- Department of Biomedical Science, Faculty of Health and Society, & Biofilms-Research Center for Biointerfaces, Malmo University, 205 06 Malmö, Sweden (S.S.)
| | - Marcos Pita
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.F.)
| | - Sergey Shleev
- Department of Biomedical Science, Faculty of Health and Society, & Biofilms-Research Center for Biointerfaces, Malmo University, 205 06 Malmö, Sweden (S.S.)
- Aptusens AB, 293 94 Kyrkhult, Sweden
| | - Antonio L. De Lacey
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.F.)
| |
Collapse
|
9
|
Kotturi D, Paterson S, McShane M. Surface-Enhanced Spatially Offset Raman Spectroscopy in Tissue. BIOSENSORS 2024; 14:81. [PMID: 38392000 PMCID: PMC10886963 DOI: 10.3390/bios14020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
One aim of personalized medicine is to use continuous or on-demand monitoring of metabolites to adjust prescription dosages in real time. Surface-enhanced spatially offset Raman spectroscopy (SESORS) is an optical technique capable of detecting surface-enhanced Raman spectroscopy (SERS)-active targets under a barrier, which may enable frequent metabolite monitoring. Here we investigate how the intensity of the signal from SERS-active material varies spatially through tissue, both experimentally and in a computational model. Implant-sized, SERS-active hydrogel was placed under different thicknesses of contiguous tissue. Emission spectra were collected at the air-tissue boundary over a range of offsets from the excitation site. New features were added to the Monte Carlo light-tissue interaction model to modify the optical properties after inelastic scattering and to calculate the distribution of photons as they exit the model. The Raman signals were detectable through all barrier thicknesses, with strongest emission for the case of 0 mm offset between the excitation and detector. A steep decline in the signal intensities occurred for offsets greater than 2 mm. These results did not match published SORS work (where targets were much larger than an implant). However, the model and experimental results agree in showing the greatest intensities at 0 mm offset and a steep gradient in the intensities with increasing offset. Also, the model showed an increase in the number of photons when the new, longer wavelengths were used following the Stokes shift for scattering and the graphical display of the exiting photons was helpful in the determination and confirmation of the optimal offset.
Collapse
Affiliation(s)
- Dayle Kotturi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA (S.P.)
| | - Sureyya Paterson
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA (S.P.)
| | - Mike McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA (S.P.)
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Tiryaki E, Zorlu T. Recent Advances in Metallic Nanostructures-assisted Biosensors for Medical Diagnosis and Therapy. Curr Top Med Chem 2024; 24:930-951. [PMID: 38243934 DOI: 10.2174/0115680266282489240109050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals. These interactions yield measurable data concerning the existence and concentration of particular biomolecules. The inherent characteristics of metal nanostructures, such as conductivity, plasmon resonance, and catalytic activity, serve to amplify both sensitivity and specificity in these biosensors. This review provides an in-depth exploration of the latest advancements in metallic nanostructures-assisted biosensors, highlighting their transformative impact on medical science and envisioning their potential in shaping the future of personalized healthcare.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications, Italian Institute of Technology, 16163, Genova, Italy
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Tolga Zorlu
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
11
|
Palavicini G. Intelligent Health: Progress and Benefit of Artificial Intelligence in Sensing-Based Monitoring and Disease Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:9053. [PMID: 38005442 PMCID: PMC10675666 DOI: 10.3390/s23229053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Technology has progressed and allows people to go further in multiple fields related to social issues. Medicine cannot be the exception, especially nowadays, when the COVID-19 pandemic has accelerated the use of technology to continue living meaningfully, but mainly in giving consideration to people who remain confined at home with health issues. Our research question is: how can artificial intelligence (AI) translated into technological devices be used to identify health issues, improve people's health, or prevent severe patient damage? Our work hypothesis is that technology has improved so much during the last decades that Medicine cannot remain apart from this progress. It must integrate technology into treatments so proper communication between intelligent devices and human bodies could better prevent health issues and even correct those already manifested. Consequently, we will answer: what has been the progress of Medicine using intelligent sensor-based devices? Which of those devices are the most used in medical practices? Which is the most benefited population, and what do physicians currently use this technology for? Could sensor-based monitoring and disease diagnosis represent a difference in how the medical praxis takes place nowadays, favouring prevention as opposed to healing?
Collapse
Affiliation(s)
- Gabriela Palavicini
- Department of Media and Digital Culture, Instituto Tecnológico y de Estudios Superiores de Monterrey, Mexico City 01389, Mexico
| |
Collapse
|
12
|
Kaushal JB, Raut P, Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. BIOSENSORS 2023; 13:976. [PMID: 37998151 PMCID: PMC10669243 DOI: 10.3390/bios13110976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.
Collapse
Affiliation(s)
- Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Sanjay Kumar
- Durham School of Architectural Engineering and Construction, Scott Campus, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| |
Collapse
|
13
|
Yogev D, Goldberg T, Arami A, Tejman-Yarden S, Winkler TE, Maoz BM. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng 2023; 7:031506. [PMID: 37781727 PMCID: PMC10539032 DOI: 10.1063/5.0152290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Implantable sensors have revolutionized the way we monitor biophysical and biochemical parameters by enabling real-time closed-loop intervention or therapy. These technologies align with the new era of healthcare known as healthcare 5.0, which encompasses smart disease control and detection, virtual care, intelligent health management, smart monitoring, and decision-making. This review explores the diverse biomedical applications of implantable temperature, mechanical, electrophysiological, optical, and electrochemical sensors. We delve into the engineering principles that serve as the foundation for their development. We also address the challenges faced by researchers and designers in bridging the gap between implantable sensor research and their clinical adoption by emphasizing the importance of careful consideration of clinical requirements and engineering challenges. We highlight the need for future research to explore issues such as long-term performance, biocompatibility, and power sources, as well as the potential for implantable sensors to transform healthcare across multiple disciplines. It is evident that implantable sensors have immense potential in the field of medical technology. However, the gap between research and clinical adoption remains wide, and there are still major obstacles to overcome before they can become a widely adopted part of medical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben M. Maoz
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
14
|
Chan D, Maikawa CL, d’Aquino AI, Raghavan SS, Troxell ML, Appel EA. Polyacrylamide-based hydrogel coatings improve biocompatibility of implanted pump devices. J Biomed Mater Res A 2023; 111:910-920. [PMID: 36861657 PMCID: PMC10161736 DOI: 10.1002/jbm.a.37521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
The introduction of transcutaneous and subcutaneous implants and devices into the human body instigates fouling and foreign body responses (FBRs) that limit their functional lifetimes. Polymer coatings are a promising solution to improve the biocompatibility of such implants, with potential to enhance in vivo device performance and prolong device lifetime. Here we sought to develop novel materials for use as coatings on subcutaneously implanted devices to reduce the FBR and local tissue inflammation in comparison to gold standard materials such as poly(ethylene glycol) and polyzwitterions. We prepared a library of polyacrylamide-based copolymer hydrogels, which were selected from materials previously shown to exhibit remarkable antifouling properties with blood and plasma, and implanted them into the subcutaneous space of mice to evaluate their biocompatibility over the course of 1 month. The top performing polyacrylamide-based copolymer hydrogel material, comprising a 50:50 mixture of N-(2-hydroxyethyl)acrylamide (HEAm) and N-(3-methoxypropyl)acrylamide (MPAm), exhibited significantly better biocompatibility and lower tissue inflammation than gold standard materials. Moreover, when applied to polydimethylsiloxane disks or silicon catheters as a thin coating (45 ± 1 μm), this leading copolymer hydrogel coating significantly improved implant biocompatibility. Using a rat model of insulin-deficient diabetes, we showed that insulin pumps fitted with HEAm-co-MPAm hydrogel-coated insulin infusion catheters exhibited improved biocompatibility and extended functional lifetime over pumps fitted with industry standard catheters. These polyacrylamide-based copolymer hydrogel coatings have the potential to improve device function and lifetime, thereby reducing the burden of disease management for people regularly using implanted devices.
Collapse
Affiliation(s)
- Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
| | - Caitlin L. Maikawa
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Andrea I. d’Aquino
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
| | - Shyam S. Raghavan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Megan L. Troxell
- Department of Pathology, University of Virginia, Charlottesville, VA, 22902
| | - Eric A. Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Pediatrics (Endocrinology), Stanford University School of Medicine, Stanford, CA 94305
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305
- ChEM-H Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
15
|
Barhoum A, Sadak O, Ramirez IA, Iverson N. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges. Adv Colloid Interface Sci 2023; 317:102920. [PMID: 37207377 DOI: 10.1016/j.cis.2023.102920] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Hydrogels are excellent water-swollen polymeric materials for use in wearable, implantable, and disposable biosensors. Hydrogels have unique properties such as low cost, ease of preparation, transparency, rapid response to external conditions, biocompatibility and self-adhesion to the skin, flexibility, and strain sensitivity, making them ideal for use in biosensor platforms. This review provides a detailed overview of advanced applications of stimuli-responsive hydrogels in biosensor platforms, from hydrogel synthesis and functionalization for bioreceptor immobilization to several important diagnostic applications. Emphasis is placed on recent advances in the fabrication of ultrasensitive fluorescent and electrically conductive hydrogels and their applications in wearable, implantable, and disposable biosensors for quantitative measurements. Design, modification, and assembly techniques of fluorescent, ionically conductive, and electrically conductive hydrogels to improve performance will be addressed. The advantages and performance improvements of immobilizing bioreceptors (e.g., antibodies, enzymes, and aptamers), and incorporating fluorescent and electrically conductive nanomaterials are described, as are their limitations. Potential applications of hydrogels in implantable, wearable, disposable portable biosensors for quantitative detection of the various bioanalytes (ions, molecules, drugs, proteins, and biomarkers) are discussed. Finally, the global market for hydrogel-based biosensors and future challenges and prospects are discussed in detail.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; National Center for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 D09 Y074, Dublin, Ireland.
| | - Omer Sadak
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Electrical and Electronics Engineering, Ardahan University, Ardahan, Turkey
| | - Ivon Acosta Ramirez
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nicole Iverson
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
16
|
Flynn CD, Chang D, Mahmud A, Yousefi H, Das J, Riordan KT, Sargent EH, Kelley SO. Biomolecular sensors for advanced physiological monitoring. NATURE REVIEWS BIOENGINEERING 2023; 1:1-16. [PMID: 37359771 PMCID: PMC10173248 DOI: 10.1038/s44222-023-00067-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Dingran Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| | - Hanie Yousefi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Kimberly T. Riordan
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Edward H. Sargent
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Shana O. Kelley
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL USA
| |
Collapse
|
17
|
Gamboa J, Paulo-Mirasol S, Estrany F, Torras J. Recent Progress in Biomedical Sensors Based on Conducting Polymer Hydrogels. ACS APPLIED BIO MATERIALS 2023; 6:1720-1741. [PMID: 37115912 DOI: 10.1021/acsabm.3c00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biosensors are increasingly taking a more active role in health science. The current needs for the constant monitoring of biomedical signals, as well as the growing spending on public health, make it necessary to search for materials with a combination of properties such as biocompatibility, electroactivity, resorption, and high selectivity to certain bioanalytes. Conducting polymer hydrogels seem to be a very promising materials, since they present many of the necessary properties to be used as biosensors. Furthermore, their properties can be shaped and enhanced by designing conductive polymer hydrogel-based composites with more specific functionalities depending on the end application. This work will review the recent state of the art of different biological hydrogels for biosensor applications, discuss the properties of the different components alone and in combination, and reveal their high potential as candidate materials in the fabrication of all-organic diagnostic, wearable, and implantable sensor devices.
Collapse
Affiliation(s)
- Jillian Gamboa
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Sofia Paulo-Mirasol
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Francesc Estrany
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Juan Torras
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| |
Collapse
|
18
|
da Silva Junior EB, Hamasaki EE, Smaili HY, Wozniak A, Tristão ESY, Loureiro MDP, Milano JB, de Meneses MS, de Oliveira RM, Ramina R. Fiber-Optic Intracranial Pressure Monitoring System Using Wi-Fi-An In Vivo Study. Neurosurgery 2023; 92:647-656. [PMID: 36512829 DOI: 10.1227/neu.0000000000002250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Continuous invasive monitoring of intracranial pressure (ICP) is essential in neurocritical care for surveillance and management of raised ICP. Fluid-based systems and strain gauge microsensors remain the current standard. In the past few decades, several studies with wireless monitoring were developed aiming to reduce invasiveness and complications. OBJECTIVE To describe a novel Wi-Fi fiber-optic device for continuous ICP monitoring using smartphone in a swine model. METHODS Two ICP sensors (wireless prototype and wire-based reference) were implanted in the cerebral parenchyma of a swine model for a total of 120 minutes of continuous monitoring. Every 5 minutes, jugular veins compression was performed to evaluate ICP changes. The experimentation was divided in 3 phases for comparison and analysis. RESULTS Phase 1 showed agreement in ICP changes for both sensors during jugular compression and releasing, with a positive and strong Spearman correlation (r = 0.829, P < .001). Phase 2 started after inversion of the sensors in the burr holes; there was a positive and moderately weak Spearman correlation (r = 0.262, P < .001). For phase 3, the sensors were returned to the first burr holes; the prototype behaved similarly to the reference sensor, presenting a positive and moderately strong Spearman correlation (r = 0.669, P < .001). CONCLUSION A Wi-Fi ICP monitoring system was demonstrated in a comprehensive and feasible way. It was possible to observe, using smartphone, an adequate correlation regarding ICP variations. Further adaptations are already being developed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ricardo Ramina
- Department of Neurosurgery, Instituto de Neurologia de Curitiba, Curitiba, Brazil
| |
Collapse
|
19
|
Biosensor integrated tissue chips and their applications on Earth and in space. Biosens Bioelectron 2023; 222:114820. [PMID: 36527831 PMCID: PMC10143284 DOI: 10.1016/j.bios.2022.114820] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/24/2022] [Accepted: 10/13/2022] [Indexed: 12/27/2022]
Abstract
The development of space exploration technologies has positively impacted everyday life on Earth in terms of communication, environmental, social, and economic perspectives. The human body constantly fluctuates during spaceflight, even for a short-term mission. Unfortunately, technology is evolving faster than humans' ability to adapt, and many therapeutics entering clinical trials fail even after being subjected to vigorous in vivo testing due to toxicity and lack of efficacy. Therefore, tissue chips (also mentioned as organ-on-a-chip) with biosensors are being developed to compensate for the lack of relevant models to help improve the drug development process. There has been a push to monitor cell and tissue functions, based on their biological signals and utilize the integration of biosensors into tissue chips in space to monitor and assess cell microenvironment in real-time. With the collaboration between the Center for the Advancement of Science in Space (CASIS), the National Aeronautics and Space Administration (NASA) and other partners, they are providing the opportunities to study the effects of microgravity environment has on the human body. Institutions such as the National Institute of Health (NIH) and National Science Foundation (NSF) are partnering with CASIS and NASA to utilize tissue chips onboard the International Space Station (ISS). This article reviews the endless benefits of space technology, the development of integrated biosensors in tissue chips and their applications to better understand human biology, physiology, and diseases in space and on Earth, followed by future perspectives of tissue chip applications on Earth and in space.
Collapse
|
20
|
Cicha I, Priefer R, Severino P, Souto EB, Jain S. Biosensor-Integrated Drug Delivery Systems as New Materials for Biomedical Applications. Biomolecules 2022; 12:biom12091198. [PMID: 36139035 PMCID: PMC9496590 DOI: 10.3390/biom12091198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 12/17/2022] Open
Abstract
Biosensor-integrated drug delivery systems are innovative devices in the health area, enabling continuous monitoring and drug administration. The use of smart polymer, bioMEMS, and electrochemical sensors have been extensively studied for these systems, especially for chronic diseases such as diabetes mellitus, cancer and cardiovascular diseases as well as advances in regenerative medicine. Basically, the technology involves sensors designed for the continuous analysis of biological molecules followed by drug release in response to specific signals. The advantages include high sensitivity and fast drug release. In this work, the main advances of biosensor-integrated drug delivery systems as new biomedical materials to improve the patients’ quality of life with chronic diseases are discussed.
Collapse
Affiliation(s)
- Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences, Boston University, Boston, MA 02115, USA
| | - Patrícia Severino
- Post-Graduation Program in Industrial Biotechnology, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil
- Institute of Technology and Research, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4200-135 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, 4200-135 Porto, Portugal
- Correspondence: (E.B.S.); (S.J.)
| | - Sona Jain
- Post-Graduation Program in Industrial Biotechnology, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil
- Correspondence: (E.B.S.); (S.J.)
| |
Collapse
|
21
|
Veletić M, Apu EH, Simić M, Bergsland J, Balasingham I, Contag CH, Ashammakhi N. Implants with Sensing Capabilities. Chem Rev 2022; 122:16329-16363. [PMID: 35981266 DOI: 10.1021/acs.chemrev.2c00005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the aging human population and increased numbers of surgical procedures being performed, there is a growing number of biomedical devices being implanted each year. Although the benefits of implants are significant, there are risks to having foreign materials in the body that may lead to complications that may remain undetectable until a time at which the damage done becomes irreversible. To address this challenge, advances in implantable sensors may enable early detection of even minor changes in the implants or the surrounding tissues and provide early cues for intervention. Therefore, integrating sensors with implants will enable real-time monitoring and lead to improvements in implant function. Sensor integration has been mostly applied to cardiovascular, neural, and orthopedic implants, and advances in combined implant-sensor devices have been significant, yet there are needs still to be addressed. Sensor-integrating implants are still in their infancy; however, some have already made it to the clinic. With an interdisciplinary approach, these sensor-integrating devices will become more efficient, providing clear paths to clinical translation in the future.
Collapse
Affiliation(s)
- Mladen Veletić
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ehsanul Hoque Apu
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Mitar Simić
- Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Jacob Bergsland
- The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ilangko Balasingham
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Portable, Disposable, Biomimetic Electrochemical Sensors for Analyte Detection in a Single Drop of Whole Blood. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Current diagnostics call for rapid, sensitive, and selective screening of physiologically important biomarkers. Point-of-care (POC) devices for the rapid, reliable, and easy acquisition of bioinformation at, or near the patient, offer opportunities for better healthcare management. Electrochemical biosensors with high sensitivity and ease of miniaturization are advantageous for such applications. We report a photolithographically micropatterned PEDOT:PSS and silk protein-based fully organic 3-electrode sensor (O3ES) for ultralow volume (single drop—10 µL) detection of analytes in whole blood. The O3ES produces reliable electrochemical signals in whole blood from a mouse model with minimal biofouling interference. The O3ES is demonstrated as a portable device for the simultaneous detection of dopamine, ascorbic acid and uric acid using voltammetry techniques. The O3ES displays excellent sensitivity towards each analyte in whole blood, and in the presence of each other. The water-based, ambient processing of the sensors allows the immobilization of enzymes in the organic working electrode. Amperometric detection of uric acid via uricase with high sensitivity in whole blood is demonstrated. Finally, the performance of the O3ES under enzymatic degradation is studied by monitoring sensitivity over an operating lifetime of ~14 days. This work demonstrates the realization of low-cost, disposable POC sensors capable of detecting blood metabolites using ultralow sample volumes.
Collapse
|
23
|
The Effects of Silicone Enclosure Colour on the Function of Optical Sensors. BIOLOGY 2022; 11:biology11060932. [PMID: 35741453 PMCID: PMC9220147 DOI: 10.3390/biology11060932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Implantable optical sensing is a rapidly growing field that allows for continuous monitoring of internal organs’ physiological states. Near-infrared spectroscopy is an optical sensing technology allowing for low-cost, non-invasive, high-sensitivity measurement of tissue oxygenation and haemodynamic parameters. The colour of an optical sensor’s enclosure affects the sensor’s sensitivity, function, and ability to detect tissue vital signs. This study compared the optical properties of coloured silicone materials and related these properties to the function of silicone enclosed implantable near-infrared spectroscopy sensors. We demonstrated that sensor enclosures highly reflective to red and near-infrared light facilitated light propagation to the photodetector and increased the ability to detect the effects of cardiac pulsation and respiratory rhythm on tissue haemodynamics. In contrast, highly absorptive sensor enclosures resulted in better detection and monitoring of tissue oxygenation. Abstract The colour of the silicone enclosure of an implantable reflectance-based optical probe plays a critical role in sensor performance. Red-coloured probes that are highly reflective to near-infrared light have been found to increase photodetector power by a factor of 6 for wavelengths between 660 and 950 nm and triple the magnitude of measured cardiac pulsations compared to traditional black probes. The increase in photodetector power and cardiac pulsation magnitude is presumably due to increased spatial range resulting from a higher magnitude of superficial tissue scattering. Conversely, probes with highly absorbent colours such as black and blue result in more stable signals and are expected to have higher spatial resolution and depth of penetration.
Collapse
|
24
|
Smart nanofibres for specific and ultrasensitive nanobiosensors and drug delivery systems. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biosensors are dynamically developing analytical devices for the detection of substrates or other bioactive substances. They can be used for quick gas or liquid analyses and the construction of sensitive detection systems. This review highlights the advances and development of biosensors suitable for human and veterinary medicine and, namely, a novel contribution of nanotechnology for ultrasensitive diagnosis and personalized medicine. The synergic effect of nanotechnology and biosensors opens a new dimension for effective treatment and disease detection at their early stages.
Collapse
|
25
|
Aledhari M, Razzak R, Qolomany B, Al-Fuqaha A, Saeed F. Biomedical IoT: Enabling Technologies, Architectural Elements, Challenges, and Future Directions. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022; 10:31306-31339. [PMID: 35441062 PMCID: PMC9015691 DOI: 10.1109/access.2022.3159235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This paper provides a comprehensive literature review of various technologies and protocols used for medical Internet of Things (IoT) with a thorough examination of current enabling technologies, use cases, applications, and challenges. Despite recent advances, medical IoT is still not considered a routine practice. Due to regulation, ethical, and technological challenges of biomedical hardware, the growth of medical IoT is inhibited. Medical IoT continues to advance in terms of biomedical hardware, and monitoring figures like vital signs, temperature, electrical signals, oxygen levels, cancer indicators, glucose levels, and other bodily levels. In the upcoming years, medical IoT is expected replace old healthcare systems. In comparison to other survey papers on this topic, our paper provides a thorough summary of the most relevant protocols and technologies specifically for medical IoT as well as the challenges. Our paper also contains several proposed frameworks and use cases of medical IoT in hospital settings as well as a comprehensive overview of previous architectures of IoT regarding the strengths and weaknesses. We hope to enable researchers of multiple disciplines, developers, and biomedical engineers to quickly become knowledgeable on how various technologies cooperate and how current frameworks can be modified for new use cases, thus inspiring more growth in medical IoT.
Collapse
Affiliation(s)
- Mohammed Aledhari
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA
| | - Rehma Razzak
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA
| | - Basheer Qolomany
- College of Business and Technology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Ala Al-Fuqaha
- College of Science and Engineering (CSE), Hamad Bin Khalifa University, Doha, Qatar
| | - Fahad Saeed
- School of Computing and Information Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
26
|
Chitrakar C, Hedrick E, Adegoke L, Ecker M. Flexible and Stretchable Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1664. [PMID: 35268893 PMCID: PMC8911085 DOI: 10.3390/ma15051664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
Medical science technology has improved tremendously over the decades with the invention of robotic surgery, gene editing, immune therapy, etc. However, scientists are now recognizing the significance of 'biological circuits' i.e., bodily innate electrical systems for the healthy functioning of the body or for any disease conditions. Therefore, the current trend in the medical field is to understand the role of these biological circuits and exploit their advantages for therapeutic purposes. Bioelectronics, devised with these aims, work by resetting, stimulating, or blocking the electrical pathways. Bioelectronics are also used to monitor the biological cues to assess the homeostasis of the body. In a way, they bridge the gap between drug-based interventions and medical devices. With this in mind, scientists are now working towards developing flexible and stretchable miniaturized bioelectronics that can easily conform to the tissue topology, are non-toxic, elicit no immune reaction, and address the issues that drugs are unable to solve. Since the bioelectronic devices that come in contact with the body or body organs need to establish an unobstructed interface with the respective site, it is crucial that those bioelectronics are not only flexible but also stretchable for constant monitoring of the biological signals. Understanding the challenges of fabricating soft stretchable devices, we review several flexible and stretchable materials used as substrate, stretchable electrical conduits and encapsulation, design modifications for stretchability, fabrication techniques, methods of signal transmission and monitoring, and the power sources for these stretchable bioelectronics. Ultimately, these bioelectronic devices can be used for wide range of applications from skin bioelectronics and biosensing devices, to neural implants for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA; (C.C.); (E.H.); (L.A.)
| |
Collapse
|
27
|
González-Fernández E, Staderini M, Marland JRK, Gray ME, Uçar A, Dunare C, Blair EO, Sullivan P, Tsiamis A, Greenhalgh SN, Gregson R, Clutton RE, Smith S, Terry JG, Argyle DJ, Walton AJ, Mount AR, Bradley M, Murray AF. In vivo application of an implantable tri-anchored methylene blue-based electrochemical pH sensor. Biosens Bioelectron 2022; 197:113728. [PMID: 34763151 DOI: 10.1016/j.bios.2021.113728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
The development of robust implantable sensors is important in the successful advancement of personalised medicine as they have the potential to provide in situ real-time data regarding the status of health and disease and the effectiveness of treatment. Tissue pH is a key physiological parameter and herein, we report the design, fabrication, functionalisation, encapsulation and protection of a miniaturised, self-contained, electrochemical pH sensor system and characterisation of sensor performance. Notably for the first time in this environment the pH sensor was based on a methylene blue redox reporter which showed remarkable robustness, accuracy and sensitivity. This was achieved by encapsulation of a self-assembled monolayer containing methylene blue entrapped within a Nafion layer. Another powerful feature was the incorporation, within the same implanted device, of a fabricated on-chip Ag/AgCl reference electrode - vital in any electrochemical sensor, but often ignored. When utilised in vivo, the sensor allowed accurate tracking of externally induced pH changes within a naturally occurring ovine lung cancer model, and correlated well with single point laboratory measurements made on extracted arterial blood, whilst enabling in vivo time-dependent measurements. The sensors functioned robustly whilst implanted, and maintained in vitro function once extracted and together, these results demonstrate proof-of-concept of the ability to sense real-time intratumoral tissue pH changes in vivo.
Collapse
Affiliation(s)
- Eva González-Fernández
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Matteo Staderini
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Jamie R K Marland
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - Mark E Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK
| | - Ahmet Uçar
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK; School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, EH9 3DW, UK; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazıt University, 06010 Ankara, Turkey
| | - Camelia Dunare
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - Ewen O Blair
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - Paul Sullivan
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, EH9 3DW, UK
| | - Andreas Tsiamis
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, EH9 3DW, UK
| | - Stephen N Greenhalgh
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK
| | - Rachael Gregson
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK
| | - Richard Eddie Clutton
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK
| | - Stewart Smith
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, EH9 3DW, UK
| | - Jonathan G Terry
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK
| | - Anthony J Walton
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - Andrew R Mount
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK.
| | - Mark Bradley
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK.
| | - Alan F Murray
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, EH9 3DW, UK.
| |
Collapse
|
28
|
Emerging Microfluidic and Biosensor Technologies for Improved Cancer Theranostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:461-495. [DOI: 10.1007/978-3-031-04039-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Barbosa AI, Rebelo R, Reis RL, Correlo VM. Biosensors Advances: Contributions to Cancer Diagnostics and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:259-273. [DOI: 10.1007/978-3-031-04039-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Yabe A, Okada M, Hara ES, Torii Y, Matsumoto T. Self-adhering implantable device of titanium: Enhanced soft-tissue adhesion by sandblast pretreatment. Colloids Surf B Biointerfaces 2021; 211:112283. [PMID: 34922156 DOI: 10.1016/j.colsurfb.2021.112283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Self-adhering implantable devices, which can be immobilized inside the bodies without suturing nor organic glues, made of metallic biomaterials would be optimal devices for preventing device-related complications such as device migration after implantation. We reported previously that acid-treated commercially-pure titanium (CpTi) adhered directly and immediately on hydrous non-keratinized soft tissues. Herein, we investigated the influence of sandblasting as pretreatment for acid-treated CpTi to increase its soft tissue adhesiveness. First, the effects of sandblasting conditions (i.e., pressure, distance and time) were investigated in terms of the sandblasted surface area and the degree of deformation (i.e., internal stress formation) of CpTi films. The effect of the sandblasting on the immediate soft tissue adhesion of acid-treated CpTi was investigated using an ex vivo shear adhesion test with mouse dermal tissues. The optimal sandblasting pretreatment remarkably improved the soft tissue adhesion strength of acid-treated CpTi (102 ± 19 kPa) compared with the non-sandblasted counterparts (41 ± 2 kPa). Finally, the CpTi adhesive was applied for immobilizing a near field communication (NFC) device in vivo, and was shown to have strong immediate adhesion to muscle fascia.
Collapse
Affiliation(s)
- Atsushi Yabe
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of Comprehensive Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Comprehensive Dental Clinic, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Emilio Satoshi Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yasuhiro Torii
- Department of Comprehensive Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Comprehensive Dental Clinic, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
31
|
Optimizing antimicrobial use: challenges, advances and opportunities. Nat Rev Microbiol 2021; 19:747-758. [PMID: 34158654 DOI: 10.1038/s41579-021-00578-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
An optimal antimicrobial dose provides enough drug to achieve a clinical response while minimizing toxicity and development of drug resistance. There can be considerable variability in pharmacokinetics, for example, owing to comorbidities or other medications, which affects antimicrobial pharmacodynamics and, thus, treatment success. Although current approaches to antimicrobial dose optimization address fixed variability, better methods to monitor and rapidly adjust antimicrobial dosing are required to understand and react to residual variability that occurs within and between individuals. We review current challenges to the wider implementation of antimicrobial dose optimization and highlight novel solutions, including biosensor-based, real-time therapeutic drug monitoring and computer-controlled, closed-loop control systems. Precision antimicrobial dosing promises to improve patient outcome and is important for antimicrobial stewardship and the prevention of antimicrobial resistance.
Collapse
|
32
|
Growth and Drug Interaction Monitoring of NIH 3T3 Cells by Image Analysis and Capacitive Biosensor. MICROMACHINES 2021; 12:mi12101248. [PMID: 34683298 PMCID: PMC8540853 DOI: 10.3390/mi12101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Capacitive biosensors are manufactured on glass slides using the semiconductor process to monitor cell growth and cell–drug interactions in real time. Capacitance signals are continuously monitored for each 10 min interval during a 48 h period, with the variations of frequency from 1 kHz to 1 MHz. The capacitance values showed a gradual increase with the increase in NIH 3T3 cell numbers. After 48 h of growth, 6.67 μg/mL puromycin is injected for the monitoring of the cell–drug interaction. The capacitance values rapidly increased during a period of about 10 h, reflecting the rapid increase in the cell numbers. In this study, we monitored the state of cells and the cell–drug interactions using the developed capacitive biosensor. Additionally, we monitored the state of cell behavior using a JuLiTM Br&FL microscope. The monitoring of cell state by means of a capacitive biosensor is more sensitive than confluence measuring using a JuLiTM Br&FL microscope image. The developed capacitive biosensor could be applied in a wide range of bio-medical areas; for example, non-destructive real-time cell growth and cell–drug interaction monitoring.
Collapse
|
33
|
Molloy A, Beaumont K, Alyami A, Kirimi M, Hoare D, Mirzai N, Heidari H, Mitra S, Neale SL, Mercer JR. Challenges to the development of the next generation of self-reporting cardiovascular implantable medical devices. IEEE Rev Biomed Eng 2021; 15:260-272. [PMID: 34520361 DOI: 10.1109/rbme.2021.3110084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiovascular disease (CVD) is a group of heart and vasculature conditions which are the leading form of mortality worldwide. Blood vessels can become narrowed, restricting blood flow, and drive the majority of hearts attacks and strokes. Surgical interventions are frequently required; including percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). Despite successful opening of vessels and restoration of blood flow, often in-stent restenosis (ISR) and graft failure can still occur, resulting in subsequent patient morbidity and mortality. A new generation of cardiovascular implants that have sensors and real-time monitoring capabilities are being developed to combat ISR and graft failure. Self-reporting stent/graft technology could enable precision medicine-based healthcare by detecting the earliest features of disease, even before symptoms occur. Bringing an implantable medical device with wireless electronic sensing capabilities to market is complex and often obstructive undertaking. This critical review analyses the obstacles that need to be overcome for self-reporting stents/grafts to be developed and provide a precision-medicine based healthcare for cardiovascular patients. Here we assess the latest research and technological advancement in the field, the current devices and the market potential for their end-user implementation.
Collapse
|
34
|
Wijayaratna U, Kiridena S, Adams JD, Behrend CJ, Anker JN. Synovial fluid pH sensor for early detection of prosthetic hip infections. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2104124. [PMID: 36478668 PMCID: PMC9725744 DOI: 10.1002/adfm.202104124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 05/11/2023]
Abstract
We describe an implantable sensor developed to measure synovial fluid pH for noninvasive early detection and monitoring of hip infections using standard-of-care plain radiography. The sensor was made of a pH responsive polyacrylic acid-based hydrogel, which expands at high pH and contracts at low pH. A radiodense tantalum bead and a tungsten wire were embedded in the two ends of the hydrogel in order to monitor the change in length of the hydrogel sensor in response to pH via plain radiography. The effective pKa of the hydrogel-based pH sensor was 5.6 with a sensitivity of 3 mm/pH unit between pH 4 and 8. The sensor showed a linear response and reversibility in the physiologically relevant pH range of pH 6.5 and 7.5 in both buffer and bovine synovial fluid solutions with a 30-minute time constant. The sensor was attached to an explanted prosthetic hip and the pH response determined from the X-ray images by measuring the length between the tantalum bead and the radiopaque wire. Therefore, the developed sensor would enable noninvasive detection and studying of implant hip infection using plain radiography.
Collapse
Affiliation(s)
- Uthpala Wijayaratna
- Department of Chemistry, Clemson University, 102 BRC, 105 Collings St., Clemson, SC 29634, USA
| | - Sachindra Kiridena
- Department of Chemistry, Clemson University, 102 BRC, 105 Collings St., Clemson, SC 29634, USA
| | - John D Adams
- Prisma Health-Upstate, Department of Orthopedic Surgery, Second Floor Support Tower, 701 Grove Road, Greenville, SC 29605, USA
| | | | - Jeffrey N Anker
- Departments of Chemistry and BioEngineering, and Center for Optical Materials Science and Engineering Technology (COMSET), Clemson University, 102 BRC, 105 Collings St., Clemson, SC 29634, USA
| |
Collapse
|
35
|
Kotturi D, Paterson S, McShane M. Comparison of SERS pH probe responses after microencapsulation within hydrogel matrices. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210153R. [PMID: 34519190 PMCID: PMC8435981 DOI: 10.1117/1.jbo.26.9.097001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Personalized medicine requires the tracking of an individual's metabolite levels over time to detect anomalies and evaluate the body's response to medications. Implanted sensors offer effective means to continuously monitor specific metabolite levels, provided they are accurate, stable over long time periods, and do no harm. AIM Four types of hydrogel embedded with pH-sensitive sensors were evaluated for their accuracy, sensitivity, reversibility, longevity, dynamic response, and consistency in static versus dynamic conditions and long-term storage. APPROACH Raman spectroscopy was first used to calibrate the intensity of pH-sensitive peaks of the Raman-active hydrogel sensors in a static pH environment. The dynamic response was then assessed for hydrogels exposed to changing pH conditions within a flow cell. Finally, the static pH response after 5 months of storage was determined. RESULTS All four types of hydrogels allowed the surface-enhanced Raman spectroscopy (SERS) sensors to respond to the pH level of the local environment without introducing interfering signals, resulting in consistent calibration curves. When the pH level changed, the probes in the gels were slow to reach steady-state, requiring several hours, and response times were found to vary among hydrogels. Only one type, poly(2-hydroxyethyl methacrylate) (pHEMA), lasted five months without significant degradation of dynamic range. CONCLUSIONS While all hydrogels appear to be viable candidates as biocompatible hosts for the SERS sensing chemistry, pHEMA was found to be most functionally stable over the long interval tested. Poly(ethylene glycol) hydrogels exhibit the most rapid response to changing pH. Since these two gel types are covalently cross-linked and do not generally degrade, they both offer advantages over sodium alginate for use as implants.
Collapse
Affiliation(s)
- Dayle Kotturi
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Sureyya Paterson
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Mike McShane
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M University, Department of Materials Science and Engineering, College Station, Texas, United States
| |
Collapse
|
36
|
Liu G. Grand Challenges in Biosensors and Biomolecular Electronics. Front Bioeng Biotechnol 2021; 9:707615. [PMID: 34422782 PMCID: PMC8377753 DOI: 10.3389/fbioe.2021.707615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
37
|
Nasrabadi MZ, Tabibi H, Salmani M, Torkashvand M, Zarepour E. A comprehensive survey on non-invasive wearable bladder volume monitoring systems. Med Biol Eng Comput 2021; 59:1373-1402. [PMID: 34258707 DOI: 10.1007/s11517-021-02395-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Measuring the volume of urine in the bladder is a significant issue in patients who suffer from the lack of bladder fullness sensation or have problems with timeliness getting to the restroom, such as spinal cord injury patients and some of the elderlies. Real-time monitoring of the bladder, therefore, can be highly helpful for urinary incontinence. Bladder volume monitoring technologies can be divided into two distinct categories of invasive and non-invasive. In invasive techniques, a catheter is directly inserted into the urethra to measure the amount of urine accurately. However, it is painful, limits the user's ordinary movements, and may hurt the urinary tract. Current non-invasive techniques measure the volume of the bladder from the skin using different stationary or portable apparatus at health centers. Both techniques have difficulties and are not cost-effective to use for a long period. Recently, both invasive and non-invasive methods have been attempted to be produced in the form of wearable devices utilizing different sensing and communication technologies. Wearable bladder monitoring devices can be easily used by patients with no or few clinical steps, making them much more affordable than non-wearable devices. While wearable devices seem to be a highly convenient and effective solution, they suffer from few drawbacks, such as relatively low precision. Hence, a great number of studies have been conducted to address these issues. In this article, we review and discuss non-invasive and minimally invasive methods for monitoring the bladder volume. We focus on the most practical and state-of-the-art methods employed in wearable devices, classify them by engineering and medical characteristics, and investigate their specifications, architectures, and measurement algorithms. This study aims to introduce the latest advances in this field to practitioners while comparing the advantages and disadvantages of existing approaches. Our study concludes with open problems and future trends in the area of bladder monitoring and measurement systems. Graphical abstract Wearable bladder monitoring system.
Collapse
Affiliation(s)
| | - Hamideh Tabibi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Salmani
- School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Eisa Zarepour
- School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
38
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
39
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
40
|
Tholl M, Spring M, de Brot S, Casoni D, Zurbuchen A, Tanner H, Haeberlin A. Implications of wound healing on subcutaneous photovoltaic energy harvesting. IEEE Trans Biomed Eng 2021; 69:23-31. [PMID: 34086560 DOI: 10.1109/tbme.2021.3086671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Implanted cardiac pacemakers must be regularly replaced due to depleted batteries. A possible alternative is proposed by subcutaneous photovoltaic energy harvesting. The bodys reaction to an implant can cause device encapsulation. Potential changes in spectral light transmission of skin can inuence the performance of subcutaneous photovoltaic cells and has not yet been studied in large animal studies. METHODS Subcutaneous implants measuring changes in the light reaching the implant were developed. Three pigs received those implants and were analyzed for seven weeks. Spectral measurements with known irradiation were performed to identify possible changes in the transparency of the tissues above the implant during the wound healing process. A histological analysis at the end of the trial investigated the skin tissue above the subcutaneous photovoltaic implants. RESULTS The implants measured decreasing light intensity and shifts in the lights spectrum during the initial wound healing phase. In a later stage of tissue recovery, the implants measured a generally reduced light intensity compared to the healthy tissue after implantation. The spectral distribution of the measured light at the end of the trial was similar to the rst measurements. The histological analysis showed subcutaneous granulation tissue formation for all devices. CONCLUSION The varying reduction of light intensity reaching the implants means that safety margins must be sufciently high to ensure the power. At the end of the wound healing process, the spectral distribution of the light reaching the implant is similar to healthy tissue. Signicance: Optimizations of spectral sensitivity of photovoltaic cells are possible.
Collapse
|
41
|
Murti BT, Putri AD, Huang YJ, Wei SM, Peng CW, Yang PK. Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv 2021; 11:20403-20422. [PMID: 35479927 PMCID: PMC9033966 DOI: 10.1039/d1ra01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.
Collapse
Affiliation(s)
- Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
| | - Athika Darumas Putri
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yi-June Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Shih-Min Wei
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Chih-Wei Peng
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Po-Kang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Department of Biomedical Sciences and Engineering, National Central University Chung-li Taiwan
| |
Collapse
|
42
|
Pulugu P, Ghosh S, Rokade S, Choudhury K, Arya N, Kumar P. A perspective on implantable biomedical materials and devices for diagnostic applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Bhave G, Chen JC, Singer A, Sharma A, Robinson JT. Distributed sensor and actuator networks for closed-loop bioelectronic medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 46:125-135. [PMID: 34366697 PMCID: PMC8336425 DOI: 10.1016/j.mattod.2020.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Designing implantable bioelectronic systems that continuously monitor physiological functions and simultaneously provide personalized therapeutic solutions for patients remains a persistent challenge across many applications ranging from neural systems to bioelectronic organs. Closed-loop systems typically consist of three functional blocks, namely, sensors, signal processors and actuators. An effective system, that can provide the necessary therapeutics, tailored to individual physiological factors requires a distributed network of sensors and actuators. While significant progress has been made, closed-loop systems still face many challenges before they can truly be considered as long-term solutions for many diseases. In this review, we consider three important criteria where materials play a critical role to enable implantable closed-loop systems: Specificity, Biocompatibility and Connectivity. We look at the progress made in each of these fields with respect to a specific application and outline the challenges in creating bioelectronic technologies for the future.
Collapse
|
44
|
Carvalho SG, Silvestre ALP, Martins Dos Santos A, Fonseca-Santos B, Rodrigues WD, Palmira Daflon Gremião M, Chorilli M, Villanova JCO. Polymeric-based drug delivery systems for veterinary use: State of the art. Int J Pharm 2021; 604:120756. [PMID: 34058307 DOI: 10.1016/j.ijpharm.2021.120756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
One of the challenges to the success of veterinary pharmacotherapy is the limited number of drugs and dosage forms available exclusively to this market, due to the interspecies variability of animals, such as anatomy, physiology, pharmacokinetics, and pharmacodynamics. For this reason, studies in this area have become a highlight, since they are still scarce in comparison with those on human drug use. To overcome many limitations related to the bioavailability, efficacy, and safety of pharmacotherapy in animals, especially livestock and domestic animals, polymers-based drug delivery systems are promising tools if they guarantee greater selectivity and less toxicity in dosage forms. In addition, these tools may be developed according to the great interspecies variability. To contribute to these discussions, this paper provides an updated review of the major polymer-based drug delivery systems projected for veterinary use. Traditional and innovative drug delivery systems based on polymers are presented, with an emphasis on films, microparticles, micelles, nanogels, nanoparticles, tablets, implants and hydrogel-based drug delivery systems. We discuss important concepts for the veterinarian about the mechanisms of drug release and, for the pharmacist, the advantages in the development of pharmaceutical forms for the animal population. Finally, challenges and opportunities are presented in the field of pharmaceutical dosage forms for veterinary use in response to the interests of the pharmaceutical industry.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Aline Martins Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, SP, Brazil
| | - Winner Duque Rodrigues
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Janaína Cecília Oliveira Villanova
- Laboratory of Pharmaceutical Production, Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), 29500-000 Alegre, ES, Brazil.
| |
Collapse
|
45
|
Borvinskaya E, Gurkov A, Shchapova E, Mutin A, Timofeyev M. Histopathological analysis of zebrafish after introduction of non-biodegradable polyelectrolyte microcapsules into the circulatory system. PeerJ 2021; 9:e11337. [PMID: 33996284 PMCID: PMC8106396 DOI: 10.7717/peerj.11337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Polyelectrolyte microcapsules are among the most promising carriers of various sensing substances for their application inside the bloodstream of vertebrates. The long-term effects of biodegradable microcapsules in mammals are relatively well studied, but this is not the case for non-biodegradable microcapsules, which may be even more generally applicable for physiological measurements. In the current study, we introduced non-biodegradable polyelectrolyte microcapsules coated with polyethylene glycol (PMs-PEG) into the circulatory system of zebrafish to assess their long-term effects on fish internal organs with histopathologic analysis. Implantation of PMs-PEG was not associated with the formation of microclots or thrombi in thin capillaries; thus, the applied microcapsules had a low aggregation capacity. The progression of the immune response to the implant depended on the time and the abundance of microparticles in the tissues. We showed that inflammation originated from recognition and internalization of PMs-PEG by phagocytes. These microcapsule-filled immune cells have been found to migrate through the intestinal wall into the lumen, demonstrating a possible mechanism for partial microparticle elimination from fish. The observed tissue immune response to PMs-PEG was local, without a systemic effect on the fish morphology. The most pronounced chronic severe inflammatory reaction was observed near the injection site in renal parenchyma and within the abdominal cavity since PMs-PEG were administered with kidney injection. Blood clots and granulomatosis were noted at the injection site but were not found in the kidneys outside the injection site. Single microcapsules brought by blood into distal organs did not have a noticeable effect on the surrounding tissues. The severity of noted pathologies of the gills was insufficient to affect respiration. No statistically significant alterations in hepatic morphology were revealed after PMs-PEG introduction into fish body. Overall, our data demonstrate that despite they are immunogenic, non-biodegradable PMs-PEG have low potential to cause systemic effects if applied in the minimal amount necessary for detection of fluorescent signal from the microcapsules.
Collapse
Affiliation(s)
| | - Anton Gurkov
- Institute of Biology at Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Ekaterina Shchapova
- Institute of Biology at Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Andrei Mutin
- Institute of Biology at Irkutsk State University, Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology at Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| |
Collapse
|
46
|
Tholl MV, Zurbuchen A, Tanner H, Haeberlin A. Potential of subdermal solar energy harvesting for medical device applications based on worldwide meteorological data. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200334RR. [PMID: 33694336 PMCID: PMC7946961 DOI: 10.1117/1.jbo.26.3.038002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Active implants require batteries as power supply. Their lifetime is limited and may require a second surgical intervention for replacement. Intracorporal energy harvesting techniques generate power within the body and supply the implant. Solar cells below the skin can be used to harvest energy from light. AIM To investigate the potential of subdermal solar energy harvesting. APPROACH We evaluated global radiation data for defined time slots and calculated the output power of a subdermal solar module based on skin and solar cell characteristics. We assumed solar exposure profiles based on daily habits for an implanted solar cell. The output power was calculated for skin types VI and I/II. RESULTS We show that the yearly mean power in most locations on Earth is sufficient to power modern cardiac pacemakers if 10 min midday solar irradiation is assumed. All skin types are suitable for solar harvesting. Moreover, we provide a software tool to predict patient-specific output power. CONCLUSIONS Subdermal solar energy harvesting is a viable alternative to primary batteries. The comparison to a human case study showed a good agreement of the results. The developed code is available open source to enable researchers to investigate further applications of subdermal solar harvesting.
Collapse
Affiliation(s)
- Maximilien V. Tholl
- University of Bern, sitem Center for Translational Medicine and Biomedical Entrepreneurship, Bern, Switzerland
- Bern University Hospital, Department of Cardiology, Bern, Switzerland
| | - Adrian Zurbuchen
- University of Bern, sitem Center for Translational Medicine and Biomedical Entrepreneurship, Bern, Switzerland
| | - Hildegard Tanner
- Bern University Hospital, Department of Cardiology, Bern, Switzerland
| | - Andreas Haeberlin
- University of Bern, sitem Center for Translational Medicine and Biomedical Entrepreneurship, Bern, Switzerland
- Bern University Hospital, Department of Cardiology, Bern, Switzerland
| |
Collapse
|
47
|
Intelligent automated drug administration and therapy: future of healthcare. Drug Deliv Transl Res 2021; 11:1878-1902. [PMID: 33447941 DOI: 10.1007/s13346-020-00876-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
In the twenty-first century, the collaboration of control engineering and the healthcare sector has matured to some extent; however, the future will have promising opportunities, vast applications, and some challenges. Due to advancements in processing speed, the closed-loop administration of drugs has gained popularity for critically ill patients in intensive care units and routine life such as personalized drug delivery or implantable therapeutic devices. For developing a closed-loop drug delivery system, the control system works with a group of technologies like sensors, micromachining, wireless technologies, and pharmaceuticals. Recently, the integration of artificial intelligence techniques such as fuzzy logic, neural network, and reinforcement learning with the closed-loop drug delivery systems has brought their applications closer to fully intelligent automatic healthcare systems. This review's main objectives are to discuss the current developments, possibilities, and future visions in closed-loop drug delivery systems, for providing treatment to patients suffering from chronic diseases. It summarizes the present insight of closed-loop drug delivery/therapy for diabetes, gastrointestinal tract disease, cancer, anesthesia administration, cardiac ailments, and neurological disorders, from a perspective to show the research in the area of control theory.
Collapse
|
48
|
Choice, Control and Computers: Empowering Wildlife in Human Care. MULTIMODAL TECHNOLOGIES AND INTERACTION 2020. [DOI: 10.3390/mti4040092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this perspective paper and technology overview is to encourage collaboration between designers and animal carers in zoological institutions, sanctuaries, research facilities, and in soft-release scenarios for the benefit of all stakeholders, including animals, carers, managers, researchers, and visitors. We discuss the evolution of animal-centered technology (ACT), including more recent animal-centered computing to increase animal wellbeing by providing increased opportunities for choice and control for animals to gain greater self-regulation and independence. We believe this will increase animal welfare and relative freedom, while potentially improving conservation outcomes. Concurrent with the benefits to the animals, this technology may benefit human carers by increasing workplace efficiency and improving research data collection using automated animal monitoring systems. These benefits are balanced against cultural resistance to change, the imposition of greater staff training, a potential reduction in valuable animal-carer interaction, and the financial costs for technology design, acquisition, obsolescence, and maintenance. Successful applications will be discussed to demonstrate how animal-centered technology has evolved and, in some cases, to suggest future opportunities. We suggest that creative uses of animal-centered technology, based upon solid animal welfare science, has the potential for greatly increasing managed animal welfare, eventually growing from individual animal enrichment features to facility-wide integrated animal movement systems and transitions to wildlife release and rewilding strategies.
Collapse
|
49
|
Piro B, Tran HV, Thu VT. Sensors Made of Natural Renewable Materials: Efficiency, Recyclability or Biodegradability-The Green Electronics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5898. [PMID: 33086552 PMCID: PMC7594081 DOI: 10.3390/s20205898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 01/24/2023]
Abstract
Nowadays, sensor devices are developing fast. It is therefore critical, at a time when the availability and recyclability of materials are, along with acceptability from the consumers, among the most important criteria used by industrials before pushing a device to market, to review the most recent advances related to functional electronic materials, substrates or packaging materials with natural origins and/or presenting good recyclability. This review proposes, in the first section, passive materials used as substrates, supporting matrixes or packaging, whether organic or inorganic, then active materials such as conductors or semiconductors. The last section is dedicated to the review of pertinent sensors and devices integrated in sensors, along with their fabrication methods.
Collapse
Affiliation(s)
- Benoît Piro
- ITODYS, CNRS, Université de Paris, F-75006 Paris, France
| | - Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST), 1st Dai Co Viet Road, 10000 Hanoi, Vietnam;
| | - Vu Thi Thu
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi, Vietnam;
| |
Collapse
|
50
|
Massey IY, Wu P, Wei J, Luo J, Ding P, Wei H, Yang F. A Mini-Review on Detection Methods of Microcystins. Toxins (Basel) 2020; 12:E641. [PMID: 33020400 PMCID: PMC7601875 DOI: 10.3390/toxins12100641] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) produce microcystins (MCs) which are associated with animal and human hepatotoxicity. Over 270 variants of MC exist. MCs have been continually studied due of their toxic consequences. Monitoring water quality to assess the presence of MCs is of utmost importance although it is often difficult because CyanoHABs may generate multiple MC variants, and their low concentration in water. To effectively manage and control these toxins and prevent their health risks, sensitive, fast, and reliable methods capable of detecting MCs are required. This paper aims to review the three main analytical methods used to detect MCs ranging from biological (mouse bioassay), biochemical (protein phosphatase inhibition assay and enzyme linked immunosorbent assay), and chemical (high performance liquid chromatography, liquid chromatography-mass spectrometry, high performance capillary electrophoresis, and gas chromatography), as well as the newly emerging biosensor methods. In addition, the current state of these methods regarding their novel development and usage, as well as merits and limitations are presented. Finally, this paper also provides recommendations and future research directions towards method application and improvement.
Collapse
Affiliation(s)
- Isaac Yaw Massey
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
- School of Public Health, University of South China, Hengyang 421001, China
| |
Collapse
|