1
|
Lescoat C, Perrotte D, Barry S, Oden É, Herbet V, Beaunée G, Tabouret M, Benoit F, Pitel PH, Duquesne V, Bailly X, Thézé J, Kouokam G. Spatio-temporal distribution and international context of bovine viral diarrhoea virus genetic diversity in France. Vet Res 2024; 55:129. [PMID: 39363368 PMCID: PMC11451180 DOI: 10.1186/s13567-024-01377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Bovine viral diarrhoea (BVD) is one of the most economically damaging livestock enzootic diseases in the world. BVD aetiological agents are three pestiviruses (BVDV-1, -2 and HoBi-like pestivirus), which exhibit high genetic diversity and complex transmission cycles. This considerably hampers the management of the disease, which is why eradication plans have been implemented in several countries. In France, a national plan has been in place since 2019. Our understanding of its impact on the distribution of BVDV genotypes is limited by the availability of French genetic data. Here, we conducted a molecular epidemiology study to refine our knowledge of BVDV genetic diversity in France, characterise its international relationships, and analyse national spatio-temporal genotypic distribution. We collated 1037 BVDV-positive samples throughout France between 2011 and 2023, with a greater sampling effort in two major cattle production areas. We developed a high-throughput sequencing protocol which we used to complete the 5'UTR genotyping of this collection. We show that two main BVDV-1 genotypes, 1e and 1b, account for 88% of genotyped sequences. We also identified seven other BVDV-1 genotypes occurring at low frequencies and three BVDV-2 samples (genotype 2c). Phylogenetic analyses indicate different worldwide distribution patterns between the two main BVDV-1 genotypes. Their relative frequencies present no major changes in France since the 1990s and few variations at the national scale. We also found some degree of local spatial structuring in western France. Overall, our results demonstrate the potential of large-scale sequence-based surveillance to monitor changes in the epidemiological situation of enzootic diseases.
Collapse
Affiliation(s)
- Claire Lescoat
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
| | | | - Séverine Barry
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
| | | | - Valentin Herbet
- Ruminant Disease and Welfare Unit, National Reference Laboratory for BVD, ANSES, Ploufragan-Plouzané-Niort Laboratory, Niort, France
| | | | - Marc Tabouret
- Ruminant Disease and Welfare Unit, National Reference Laboratory for BVD, ANSES, Ploufragan-Plouzané-Niort Laboratory, Niort, France
| | | | | | | | - Xavier Bailly
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
| | - Julien Thézé
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France.
| | - Guy Kouokam
- Ruminant Disease and Welfare Unit, National Reference Laboratory for BVD, ANSES, Ploufragan-Plouzané-Niort Laboratory, Niort, France
- French Federation of Animal Health Protection Groups (GDS France), Paris, France
| |
Collapse
|
2
|
Zhao YQ, Wang XF, Zhang JL, Wu Y, Wang J, Wang JF. Melatonin inhibits bovine viral diarrhea virus replication by ER stress-mediated NF-κB signal pathway and autophagy in MDBK cells. Front Cell Infect Microbiol 2024; 14:1431836. [PMID: 39233905 PMCID: PMC11371798 DOI: 10.3389/fcimb.2024.1431836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Bovine viral diarrhea-mucosal disease (BVD-MD) is a contagious disease in cattle, caused by the bovine viral diarrhea virus (BVDV). This virus continues to spread globally, exerting pressure on both public health and the economy. Despite its impact, there are currently no effective drugs for treating BVDV. This study utilized Madin-Darby bovine kidney (MDBK) cells as a model to investigate the antiviral effects of melatonin against Bovine Viral Diarrhea Virus (BVDV) and its connection with endoplasmic reticulum (ER) stress. Our results show that melatonin can suppress BVDV proliferation in MDBK cells by modulating the endoplasmic reticulum (ER) stress-mediated NF-κB pathway and autophagy. Specifically, melatonin alleviated ER stress, inhibited the activation of IκBα and p65, regulated autophagy, and reduced the expression levels of pro-inflammatory cytokines. Further, when we treated BVDV-infected cells with the ER stress inducer thapsigargin, it led to significant activation of the NF-κB pathway and autophagy. Conversely, treating the cells with the ER stress inhibitor 4-phenylbutyric acid reversed these effects. These findings suggest that melatonin exerts its antiviral effects primarily through the PERK-eIF2α-ATF4 of ER stress-mediated NF-κB pathway and autophagy. Overall, our study underscores the potential of melatonin as an effective protective and therapeutic option against BVDV, offering insights into its anti-infective mechanisms.
Collapse
Affiliation(s)
- Yi-Qing Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xue-Fei Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jia-Lu Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Wu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiu-Feng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, Hainan, China
| |
Collapse
|
3
|
Köster J, Schneider K, Höper D, Salditt A, Beer M, Miller T, Wernike K. Novel Pestiviruses Detected in Cattle Interfere with Bovine Viral Diarrhea Virus Diagnostics. Viruses 2024; 16:1301. [PMID: 39205275 PMCID: PMC11359563 DOI: 10.3390/v16081301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Since the start of the mandatory nationwide bovine viral diarrhea (BVD) eradication program in Germany in 2011, the number of persistently infected (PI) animals has decreased considerably, resulting in a continuous decrease in seroprevalence. The increasingly BVD-naive cattle population could facilitate spillover infections with non-BVDV ruminant pestiviruses. Here, we report two cases in which novel pestiviruses were isolated from cattle; in both cases, the whole genome sequence showed the highest level of identity to strain "Pestivirus reindeer-1". Both novel viruses gave positive results in BVDV diagnostic test systems, confirming that cross-reactivity is an important issue in pestivirus diagnostics. In the first case, the pestivirus was probably transmitted from sheep kept with the affected cattle, suggesting that the co-housing of small ruminants and cattle is a risk factor. The source of infection could not be determined in the second case. The occurrence of these two cases in independent cattle holdings within a relatively short time frame suggests that it would be useful to determine the presence of pestiviruses in small ruminants or even wild ruminants to better assess risk factors, especially for BVDV-free populations.
Collapse
Affiliation(s)
- Judith Köster
- Aulendorf State Veterinary Diagnostic Centre, Löwenbreitestraße 18/20, 88326 Aulendorf, Germany
| | - Karla Schneider
- Aulendorf State Veterinary Diagnostic Centre, Löwenbreitestraße 18/20, 88326 Aulendorf, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Andreas Salditt
- Aulendorf State Veterinary Diagnostic Centre, Löwenbreitestraße 18/20, 88326 Aulendorf, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas Miller
- Aulendorf State Veterinary Diagnostic Centre, Löwenbreitestraße 18/20, 88326 Aulendorf, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
4
|
Wernike K, Beer M. Comparison of bovine viral diarrhea virus detection methods: Results of an international proficiency trial. Vet Microbiol 2024; 290:109985. [PMID: 38219410 DOI: 10.1016/j.vetmic.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Bovine viral diarrhea virus (BVDV), one of the most important infectious cattle diseases globally, is being combated in multiple countries. The main source for virus transmission within herds and especially to unaffected cattle farms are life-long persistently infected (PI), immunotolerant animals. Therefore, the early identification of PI calves is a major pillar of disease control programs. In addition, rapid and reliable virus identification is necessary to confirm the causative agent in acute clinical cases. Here, we initiated an international interlaboratory proficiency trial in order to evaluate BVDV detection methods. Four ear notch samples and four sera were provided to the participating veterinary diagnostic laboratories (n = 40). Two of the ear notches and two sera contained BVDV and two ear notches and one serum were negative for pestiviruses. The remaining serum was positive for the ovine border disease virus (BDV). The sample panel was analyzed by an ERNS-based ELISA for antigen detection, diverse real-time RT-PCR (RT-qPCR) assays and/or virus isolation. Occasionally, additional typing of the virus strains was performed by sequencing or specific antibody staining of the obtained cell culture isolates. While the antigen ELISA allowed reliable BVDV diagnostics, infectious virus could be isolated only in just under half of the attempts (43.33%). RT-qPCR enabled the sensitive detection of pestiviruses, though an impact of the extraction method on the resulting quantification cycle values was observed. In general, subsequent typing of the detected virus strains is required to differentiate BVDV from BDV infections. In conclusion, for BVDV identification in clinical cases or in the context of disease control, RT-qPCR methods or ERNS antigen ELISAs should be preferentially used.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
5
|
Zhigailov AV, Perfilyeva YV, Ostapchuk YO, Kan SA, Lushova AV, Kuligin AV, Ivanova KR, Kuatbekova SA, Abdolla N, Naizabayeva DA, Maltseva ER, Berdygulova ZA, Mashzhan AS, Zima YA, Nizkorodova AS, Skiba YA, Mamadaliyev SM. Molecular and serological survey of bovine viral diarrhea virus infection in cattle in Kazakhstan. Res Vet Sci 2023; 162:104965. [PMID: 37516041 DOI: 10.1016/j.rvsc.2023.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The aim of this study was to estimate the occurrence of bovine viral diarrhea virus (BVDV) infection and to assess the population immunity in cattle vaccinated against BVDV in different regions of Kazakhstan. Cattle samples were collected in 12 oblasts (43 districts) of Kazakhstan. A total of 2477 cattle from 114 herds and 21 Bukhara deer (Cervus elaphus bactrianus) were examined by ELISA and conventional RT-PCR. Univariate and multivariate logistic regression analysis was performed to identify risk factors associated with BVDV infection in the country. In total, antibodies against BVDV were found in 79.3% (1965/2477) of all the animals and 92.1% (105/114) of all the herds examined. Seroprevalence in unvaccinated and vaccinated animals was 48.6% (447/920) and 98.7% (1391/1410), respectively. Seroprevalence in deer was 19.1% (4/21). The BVDV RNA was detected in six unvaccinated cattle (0.2%). Sequence analysis of the 5'-untranslated region demonstrated that four of the detected strains belonged to BVDV-1 and two strains to BVDV-2. Regression analysis revealed that age, production type, housing method, farm size, and geographic location were risk factors for BVDV infection in cattle in Kazakhstan. The present data confirm circulation of BVDV-1 and BVDV-2 in Kazakhstan and highlight the need to improve strategies for prevention and control of BVDV infection in the country.
Collapse
Affiliation(s)
- Andrey V Zhigailov
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Yuliya V Perfilyeva
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan.
| | - Yekaterina O Ostapchuk
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Sofiya A Kan
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Anzhelika V Lushova
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Artyom V Kuligin
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Karina R Ivanova
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan
| | | | - Nurshat Abdolla
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Dinara A Naizabayeva
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Elina R Maltseva
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan; Tethys Scientific Society, Almaty 050063, Kazakhstan
| | - Zhanna A Berdygulova
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan
| | - Akzhigit S Mashzhan
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | | | - Anna S Nizkorodova
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Yuriy A Skiba
- Almaty Branch of the National Center for Biotechnology, Almaty 050054, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan; Tethys Scientific Society, Almaty 050063, Kazakhstan
| | | |
Collapse
|
6
|
Rivas J, Hasanaj A, Deblon C, Gisbert P, Garigliany MM. Genetic diversity of Bovine Viral Diarrhea Virus in cattle in France between 2018 and 2020. Front Vet Sci 2022; 9:1028866. [PMID: 36304414 PMCID: PMC9593101 DOI: 10.3389/fvets.2022.1028866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) is one of the main pathogens that affects ruminants worldwide, generating significant economic losses. Like other RNA viruses, BVDV is characterized by a high genetic variability, generating the emergence of new variants, and increasing the risk of new outbreaks. The last report on BVDV genotypes in France was in 2008, since which there have been no new information. The goal of this study is to determine the genetic diversity of BVDV strains currently circulating in France. To this aim, samples of cattle were taken from different departments that are part of the main areas of livestock production during the years 2018 to 2020. Using the partial sequence of the 5'UTR region of the viral genome, we identified and classified 145 samples corresponding to Pestivirus A and one sample corresponding to Pestivirus D. For the Pestivirus A samples, the 1e, 1b, 1d, and 1l genotypes, previously described in France, were identified. Next, the 1r and 1s genotypes, not previously described in the country, were detected. In addition, a new genotype was identified and was tentatively assigned as 1x genotype. These results indicate an increase in the genetic diversity of BVDV in France.
Collapse
Affiliation(s)
- José Rivas
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Alesia Hasanaj
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Caroline Deblon
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium,*Correspondence: Mutien-Marie Garigliany
| |
Collapse
|
7
|
Blood Transcriptome Analysis of Beef Cow with Different Parity Revealed Candidate Genes and Gene Networks Regulating the Postpartum Diseases. Genes (Basel) 2022; 13:genes13091671. [PMID: 36140838 PMCID: PMC9498831 DOI: 10.3390/genes13091671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal parity is an important physiological factor influencing beef cow reproductive performance. However, there are few studies on the influence of different calving periods on early growth and postpartum diseases. Here, we conducted blood transcriptomic analysis on cows of different parities for gene discovery. We used Short Time Series Expression Miner (STEM) analysis to determine gene expression levels in cows of various parities and divided multiple parities into three main periods (nulliparous, primiparous, and multiparous) for subsequent analysis. Furthermore, the top 15,000 genes with the lowest median absolute deviation (MAD) were used to build a co-expression network using weighted correlation network analysis (WGCNA), and six independent modules were identified. Combing with Exon Wide Selection Signature (EWSS) and protein-protein interaction (PPI) analysis revealed that TPCN2, KIF22, MICAL3, RUNX2, PDE4A, TESK2, GPM6A, POLR1A, and KLHL6 involved in early growth and postpartum diseases. The GO and KEGG enrichment showed that the Parathyroid hormone synthesis, secretion, and action pathway and stem cell differentiation function-related pathways were enriched. Collectively, our study revealed candidate genes and gene networks regulating the early growth and postpartum diseases and provided new insights into the potential mechanism of reproduction advantages of different parity selection.
Collapse
|
8
|
DNAJC14-Independent Replication of the Atypical Porcine Pestivirus. J Virol 2022; 96:e0198021. [PMID: 35852352 PMCID: PMC9364808 DOI: 10.1128/jvi.01980-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called “shaking piglets,” suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.
Collapse
|
9
|
Thomas KM, Kibona T, Claxton JR, de Glanville WA, Lankester F, Amani N, Buza JJ, Carter RW, Chapman GE, Crump JA, Dagleish MP, Halliday JEB, Hamilton CM, Innes EA, Katzer F, Livingstone M, Longbottom D, Millins C, Mmbaga BT, Mosha V, Nyarobi J, Nyasebwa OM, Russell GC, Sanka PN, Semango G, Wheelhouse N, Willett BJ, Cleaveland S, Allan KJ. Prospective cohort study reveals unexpected aetiologies of livestock abortion in northern Tanzania. Sci Rep 2022; 12:11669. [PMID: 35803982 PMCID: PMC9270399 DOI: 10.1038/s41598-022-15517-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Livestock abortion is an important cause of productivity losses worldwide and many infectious causes of abortion are zoonotic pathogens that impact on human health. Little is known about the relative importance of infectious causes of livestock abortion in Africa, including in subsistence farming communities that are critically dependent on livestock for food, income, and wellbeing. We conducted a prospective cohort study of livestock abortion, supported by cross-sectional serosurveillance, to determine aetiologies of livestock abortions in livestock in Tanzania. This approach generated several important findings including detection of a Rift Valley fever virus outbreak in cattle; high prevalence of C. burnetii infection in livestock; and the first report of Neospora caninum, Toxoplasma gondii, and pestiviruses associated with livestock abortion in Tanzania. Our approach provides a model for abortion surveillance in resource-limited settings. Our findings add substantially to current knowledge in sub-Saharan Africa, providing important evidence from which to prioritise disease interventions.
Collapse
Affiliation(s)
- Kate M Thomas
- Centre for International Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
- Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania.
- Ministry for Primary Industries, New Zealand Food Safety, Wellington, New Zealand.
| | - Tito Kibona
- Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, United Republic of Tanzania
| | - John R Claxton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William A de Glanville
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Felix Lankester
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
- Global Animal Health Tanzania, Arusha, United Republic of Tanzania
| | - Nelson Amani
- Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania
| | - Joram J Buza
- Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, United Republic of Tanzania
| | - Ryan W Carter
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gail E Chapman
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - John A Crump
- Centre for International Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania
| | | | - Jo E B Halliday
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Caroline Millins
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania
| | - Victor Mosha
- Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania
| | - James Nyarobi
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Obed M Nyasebwa
- Ministry of Livestock and Fisheries, Zonal Veterinary Centre-Arusha, Arusha, United Republic of Tanzania
| | | | - Paul N Sanka
- Tanzania Veterinary Laboratory Agency, Arusha, United Republic of Tanzania
| | - George Semango
- Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, United Republic of Tanzania
| | - Nick Wheelhouse
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Brian J Willett
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Sarah Cleaveland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn J Allan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Research Progress on Emerging Viral Pathogens of Small Ruminants in China during the Last Decade. Viruses 2022; 14:v14061288. [PMID: 35746759 PMCID: PMC9228844 DOI: 10.3390/v14061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
China is the country with the largest number of domestic small ruminants in the world. Recently, the intensive and large-scale sheep/goat raising industry has developed rapidly, especially in nonpastoral regions. Frequent trading, allocation, and transportation result in the introduction and prevalence of new pathogens. Several new viral pathogens (peste des petits ruminants virus, caprine parainfluenza virus type 3, border disease virus, enzootic nasal tumor virus, caprine herpesvirus 1, enterovirus) have been circulating and identified in China, which has attracted extensive attention from both farmers and researchers. During the last decade, studies examining the etiology, epidemiology, pathogenesis, diagnostic methods, and vaccines for these emerging viruses have been conducted. In this review, we focus on the latest findings and research progress related to these newly identified viral pathogens in China, discuss the current situation and problems, and propose research directions and prevention strategies for different diseases in the future. Our aim is to provide comprehensive and valuable information for the prevention and control of these emerging viruses and highlight the importance of surveillance of emerging or re-emerging viruses.
Collapse
|
11
|
Wernike K, Beer M. International proficiency trial for bovine viral diarrhea virus (BVDV) antibody detection: limitations of milk serology. BMC Vet Res 2022; 18:168. [PMID: 35524302 PMCID: PMC9074317 DOI: 10.1186/s12917-022-03265-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Control programs were implemented in several countries against bovine viral diarrhea (BVD), one of the most significant cattle diseases worldwide. Most of the programs rely on serological diagnostics in any phase of the program. For the detection of antibodies against BVD virus (BVDV), neutralization tests as well as a variety of (commercially available) ELISAs are used. Here, test systems applied in various laboratories were evaluated in the context of an international interlaboratory proficiency trial. A panel of standardized samples comprising five sera and five milk samples was sent to veterinary diagnostic laboratories (n=51) and test kit manufacturers (n=3). Results The ring trial sample panel was investigated by nine commercially available antibody ELISAs as well as by neutralization tests against diverse BVDV-1, BVDV-2 and/or border disease virus (BDV) strains. The negative serum and milk sample as well as a serum collected after BVDV-2 infection were mostly correctly tested regardless of the applied test system. A serum sample obtained from an animal immunized with an inactivated BVDV-1 vaccine tested positive by neutralization tests or by total antibody or Erns-based ELISAs, while all applied NS3-based ELISAs gave negative results. A further serum, containing antibodies against the ovine BDV, reacted positive in all applied BVDV ELISAs, a differentiation between anti-BDV and anti-BVDV antibodies was only enabled by parallel application of neutralization tests against BVDV and BDV isolates. For the BVDV antibody-positive milk samples (n=4), which mimicked prevalences of 20% (n=2) or 50% (n=2), considerable differences in the number of positive results were observed, which mainly depended on the ELISA kit and the sample incubation protocols used. These 4 milk samples tested negative in 43.6%, 50.9%, 3.6% and 56.4%, respectively, of all investigations. Overall, negative results occurred more often, when a short sample incubation protocol instead of an over-night protocol was applied. Conclusions While the seronegative samples were correctly evaluated in most cases, there were considerable differences in the number of correct evaluations for the seropositive samples, most notably when pooled milk samples were tested. Hence, thorough validation and careful selection of ELISA tests are necessary, especially when applied during surveillance programs in BVD-free regions.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
12
|
Huser AF, Schär JG, Bachofen C, de Martin E, Portmann J, Stalder H, Schweizer M. Benefit of Bovine Viral Diarrhoea (BVD) Eradication in Cattle on Pestivirus Seroprevalence in Sheep. Front Vet Sci 2021; 8:681559. [PMID: 34671657 PMCID: PMC8520948 DOI: 10.3389/fvets.2021.681559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine viral diarrhoea virus (BVDV) and Border disease virus (BDV) are closely related pestiviruses of cattle and sheep, respectively. Both viruses may be transmitted between either species, but control programs are restricted to BVDV in cattle. In 2008, a program to eradicate bovine viral diarrhoea (BVD) in cattle was started in Switzerland. As vaccination is prohibited, the cattle population is now widely naïve to pestivirus infections. In a recent study, we determined that nearly 10% of cattle are positive for antibodies to BDV. Here, we show that despite this regular transmission of BDV from small ruminants to cattle, we could only identify 25 cattle that were persistently infected with BDV during the last 12 years of the eradication program. In addition, by determining the BVDV and BDV seroprevalence in sheep in Central Switzerland before and after the start of the eradication, we provide evidence that BVDV is transmitted from cattle to sheep, and that the BVDV seroprevalence in sheep significantly decreased after its eradication in cattle. While BDV remains endemic in sheep, the population thus profited at least partially from BVD eradication in cattle. Importantly, on a national level, BVD eradication does not appear to be generally derailed by the presence of pestiviruses in sheep. However, with every single virus-positive cow, it is necessary to consider small ruminants as a potential source of infection, resulting in costly but essential investigations in the final stages of the eradication program.
Collapse
Affiliation(s)
| | | | - Claudia Bachofen
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Elena de Martin
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jasmine Portmann
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Pestivirus infections of cattle. Vet Rec 2021; 189:281-282. [PMID: 34623650 DOI: 10.1002/vetr.1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This focus article has been prepared by Arthur Otter, Nick Torrens and Lucy Martindale of the APHA Cattle Expert Group, Penrith Veterinary Investigation Centre and Surveillance Intelligence Unit, respectively.
Collapse
|
14
|
Non-Bovine Species and the Risk to Effective Control of Bovine Viral Diarrhoea (BVD) in Cattle. Pathogens 2021; 10:pathogens10101263. [PMID: 34684212 PMCID: PMC8540666 DOI: 10.3390/pathogens10101263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022] Open
Abstract
Bovine viral diarrhoea virus (BVDV) is an economically important and highly prevalent virus of domestic cattle. Infections with BVDV may lead to both, reproductive and immunological effects that can result in widespread calf losses and increased susceptibility to diseases, such as mastitis and respiratory disease. While BVDV is generally considered to be host specific, it and other Pestivirus species, such as Border disease virus (BDV) in sheep, have been shown to be infecting species other than those from which they were originally isolated from. Recently BVDV was placed on the OIE’s list of notifiable disease and control and eradication programmes for BVDV have been developed throughout much of Europe, the United States, and the United Kingdom. While some countries, including Sweden and Ireland have successfully implemented eradication programmes, other countries such as New Zealand and Australia are still in the early stages of BVDV control. Despite effective control methods, incursions of BVDV into previously cleared herds still occur. While the cause of these incursions is often due to lapses in control methods, the ability of ruminant pestiviruses to infect species other than cattle poses the question as to whether non-bovine species could be impeding the success of BVDV eradication and control. As such, the aim of this review is to make mention of what is known about the cross-species transmission of BVDV, BDV and other pestiviruses between cattle and non-bovine ungulate species and draw conclusions as to the risk non-bovine species pose to the successful control and eradication of BVDV from cattle.
Collapse
|
15
|
Schweizer M, Stalder H, Haslebacher A, Grisiger M, Schwermer H, Di Labio E. Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus. Front Vet Sci 2021; 8:702730. [PMID: 34557540 PMCID: PMC8452978 DOI: 10.3389/fvets.2021.702730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.
Collapse
Affiliation(s)
- Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | - Elena Di Labio
- Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
16
|
Abstract
Livestock products supply about 13 percent of energy and 28 percent of protein in diets consumed worldwide. Diarrhea is a leading cause of sickness and death of beef and dairy calves in their first month of life and also affecting adult cattle, resulting in large economic losses and a negative impact on animal welfare. Despite the usual multifactorial origin, viruses are generally involved, being among the most important causes of diarrhea. There are several viruses that have been confirmed as etiological agents (i.e., rotavirus and coronavirus), and some viruses that are not yet confirmed as etiological agents. This review summarizes the viruses that have been detected in the enteric tract of cattle and tries to deepen and gather knowledge about them.
Collapse
|
17
|
Righi C, Petrini S, Pierini I, Giammarioli M, De Mia GM. Global Distribution and Genetic Heterogeneity of Border Disease Virus. Viruses 2021; 13:950. [PMID: 34064016 PMCID: PMC8223970 DOI: 10.3390/v13060950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Border disease virus (BDV) belongs to the genus Pestivirus of the family Flaviviridae. Interspecies transmission of BDV between sheep, cattle, and pigs occurs regularly, sometimes making diagnosis a challenge. BDV can yield substantial economic losses, including prenatal and postnatal infections in lambs, which are the primary source of infection and maintenance of the virus in the population. Since BDV is antigenically and genetically related to bovine viral diarrhea virus (BVDV), it might pose a significant risk to cattle, influencing BVDV eradication campaigns. Similarly, the presence of BDV in swine herds due to pestivirus spillover between small ruminants and pigs might cause uncertainty in classical swine fever virus (CSFV) diagnostics. Therefore, knowledge of BDV epidemiology in different geographical regions will help prevent its spread and optimize control measures. Previous epidemiological studies have shown that various BDV genotypes are predominant in different countries. This review provides an overview of the spread of BDV world-wide in different host species.
Collapse
Affiliation(s)
| | | | | | | | - Gian Mario De Mia
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (S.P.); (I.P.); (M.G.)
| |
Collapse
|
18
|
Bohórquez JA, Sozzi E, Wang M, Alberch M, Abad X, Gaffuri A, Lelli D, Rosell R, Pérez LJ, Moreno A, Ganges L. The new emerging ovine pestivirus can infect pigs and confers strong protection against classical swine fever virus. Transbound Emerg Dis 2021; 69:1539-1555. [PMID: 33896109 DOI: 10.1111/tbed.14119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Several emerging pestiviruses have been reported lately, some of which have proved to cause disease. Recently, a new ovine pestivirus (OVPV), isolated from aborted lambs, with high genetic identity to classical swine fever virus (CSFV), has proved to induce reproductive disorders in pregnant ewes. OVPV also generated strong serological and molecular cross-reaction with CSFV. To assess the capacity of OVPV to infect swine, twelve piglets were infected either by intranasal or intramuscular route. Daily clinical evaluation and weekly samplings were performed to determine pathogenicity, viral replication and excretion and induction of immune response. Five weeks later, two pigs from each group were euthanized and tissue samples were collected to study viral replication and distribution. OVPV generated only mild clinical signs in the piglets, including wasting and polyarthritis. The virus was able to replicate, as shown by the RNA levels found in sera and swabs and persisted in tonsil for at least 5 weeks. Viral replication activated the innate and adaptive immunity, evidenced by the induction of interferon-alpha levels early after infection and cross-neutralizing antibodies against CSFV, including humoural response against CSFV E2 and Erns glycoproteins. Close antigenic relation between OVPV and CSFV genotype 2.3 was detected. To determine the OVPV protection against CSFV, the OVPV-infected pigs were challenged with a highly virulent strain. Strong clinical, virological and immunological protection was generated in the OVPV-infected pigs, in direct contrast with the infection control group. Our findings show, for the first time, the OVPV capacity to infect swine, activate immunity, and the robust protection conferred against CSFV. In addition, their genetic and antigenic similarities, the close relationship between both viruses, suggest their possible coevolution as two branches stemming from a shared origin at the same time in two different hosts.
Collapse
Affiliation(s)
| | - Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Miaomiao Wang
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Mònica Alberch
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Xavier Abad
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Alessandra Gaffuri
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain.,Departament d'Agricultura, Ramadería, Pesca i Alimentació (DARP), Generalitat de Catalunya, Barcelona, Spain
| | - Lester Josue Pérez
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| |
Collapse
|
19
|
Hidayat W, Wuryastuty H, Wasito R. Detection of Pestivirus in small ruminants in Central Java, Indonesia. Vet World 2021; 14:996-1001. [PMID: 34083951 PMCID: PMC8167512 DOI: 10.14202/vetworld.2021.996-1001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Globally, pestiviruses are among the most economically important viral pathogens of livestock. The genus Pestivirus comprises four species, including bovine viral diarrhea virus type 1 and 2 (BVDV-1 and BVDV-2), which infect cattle, border disease virus and classical swine fever virus which infect small ruminants and pigs, respectively. Accumulating evidence suggests that pestiviruses are no longer species-specific, creating new challenges for disease control. In Indonesia, investigations related to pestiviruses remain focused on cattle as the primary host and no research has been conducted on small ruminants (sheep and goats). Therefore, the present study aimed to study the possible occurrence of pestivirus (BVDV or BVD) infections in small ruminants in Indonesia, particularly in Central Java. Materials and Methods: We used 46 blood samples consisting of 26 sheep’s blood and 20 goat’s blood. Samples were selected from 247 small ruminant blood collected between July and October 2020 in Central Java, Indonesia, which met the following criteria: Female, local species, approximately 1-2 years old, never been pregnant, raised in the backyard, and had no close contact with cattle in either shelter or grazing area. We tested plasma samples from sheep and goats using competitive antibody enzyme-linked immunosorbent assay to detect specific antibodies against pestivirus followed by reverse transcription-polymerase chain reaction (RT-PCR) analysis for all positive samples to differentiate the species of pestivirus. Results: Two of the 20 samples collected from goats were positive for pestivirus at the serological and molecular levels, whereas 2 of 26 samples collected from sheep were doubtful but tested negative by RT-PCR. The genotyping test results obtained using nested PCR revealed that the positive samples collected from goats had a BVDV-1 genotype. Conclusion: The results of the present study demonstrated that BVDV-1 can infect species other than bovines, in Central Java, Indonesia. Further studies involving a larger number of samples are required to: (1) Determine the actual seroprevalence of pestiviruses in small ruminants and (2) Determine the potency of small ruminants as reservoirs for pestiviruses, both of which are important for the identification of the appropriate control program for pestiviruses in Indonesia.
Collapse
Affiliation(s)
- W Hidayat
- Master Study Program, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - H Wuryastuty
- Department of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - R Wasito
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
20
|
Riitho V, Strong R, Larska M, Graham SP, Steinbach F. Bovine Pestivirus Heterogeneity and Its Potential Impact on Vaccination and Diagnosis. Viruses 2020; 12:v12101134. [PMID: 33036281 PMCID: PMC7601184 DOI: 10.3390/v12101134] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Bovine Pestiviruses A and B, formerly known as bovine viral diarrhoea viruses (BVDV)-1 and 2, respectively, are important pathogens of cattle worldwide, responsible for significant economic losses. Bovine viral diarrhoea control programmes are in effect in several high-income countries but less so in low- and middle-income countries where bovine pestiviruses are not considered in disease control programmes. However, bovine pestiviruses are genetically and antigenically diverse, which affects the efficiency of the control programmes. The emergence of atypical ruminant pestiviruses (Pestivirus H or BVDV-3) from various parts of the world and the detection of Pestivirus D (border disease virus) in cattle highlights the challenge that pestiviruses continue to pose to control measures including the development of vaccines with improved cross-protective potential and enhanced diagnostics. This review examines the effect of bovine pestivirus diversity and emergence of atypical pestiviruses in disease control by vaccination and diagnosis.
Collapse
Affiliation(s)
- Victor Riitho
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
| | - Rebecca Strong
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland;
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK;
- School of Veterinary Medicine, University of Surrey, Guilford GU2 7XH, UK
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
- School of Veterinary Medicine, University of Surrey, Guilford GU2 7XH, UK
- Correspondence:
| |
Collapse
|
21
|
A CRISPR/Cas9 Generated Bovine CD46-knockout Cell Line-A Tool to Elucidate the Adaptability of Bovine Viral Diarrhea Viruses (BVDV). Viruses 2020; 12:v12080859. [PMID: 32781607 PMCID: PMC7472008 DOI: 10.3390/v12080859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) entry into a host cell is mediated by the interaction of the viral glycoprotein E2 with the cellular transmembrane CD46 receptor. In this study, we generated a stable Madin-Darby Bovine Kidney (MDBK) CD46-knockout cell line to study the ability of different pestivirus A and B species (BVDV-1 and -2) to escape CD46-dependent cell entry. Four different BVDV-1/2 isolates showed a clearly reduced infection rate after inoculation of the knockout cells. However, after further passaging starting from the remaining virus foci on the knockout cell line, all tested virus isolates were able to escape CD46-dependency and grew despite the lack of the entry receptor. Whole-genome sequencing of the escape-isolates suggests that the genetic basis for the observed shift in infectivity is an amino acid substitution of an uncharged (glycine/asparagine) for a charged amino acid (arginine/lysine) at position 479 in the ERNS in three of the four isolates tested. In the fourth isolate, the exchange of a cysteine at position 441 in the ERNS resulted in a loss of ERNS dimerization that is likely to influence viral cell-to-cell spread. In general, the CD46-knockout cell line is a useful tool to analyze the role of CD46 for pestivirus replication and the virus-receptor interaction.
Collapse
|
22
|
Decrypting the Origin and Pathogenesis in Pregnant Ewes of a New Ovine Pestivirus Closely Related to Classical Swine Fever Virus. Viruses 2020; 12:v12070775. [PMID: 32709168 PMCID: PMC7411581 DOI: 10.3390/v12070775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
This study shows the origin and the pathogenic role of a novel ovine pestivirus (OVPV) isolated in 2017 in Italy, as a pathogenic agent causing severe abortions after infection in pregnant ewes and high capacity for virus trans-placental transmission as well as the birth of lambs suffering OVPV-persistent infection. The OVPV infection induced early antibody response detected by the specific ELISA against classical swine fever virus (CSFV), another important virus affecting swine. The neutralizing antibody response were similar against CSFV strains from genotype 2 and the OVPV. These viruses showed high identity in the B/C domain of the E2-glycoprotein. Close molecular diagnostics cross-reactivity between CSFV and OVPV was found and a new OVPV molecular assay was developed. The phylodynamic analysis showed that CSFV seems to have emerged as the result of an inter-species jump of Tunisian sheep virus (TSV) from sheep to pigs. The OVPV and the CSFV share the TSV as a common ancestor, emerging around 300 years ago. This suggests that the differentiation of TSV into two dangerous new viruses for animal health (CSFV and OVPV) was likely favored by human intervention for the close housing of multiple species for intensive livestock production.
Collapse
|
23
|
Tetsuo M, Matsuno K, Tamura T, Fukuhara T, Kim T, Okamatsu M, Tautz N, Matsuura Y, Sakoda Y. Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag. Pathogens 2020; 9:E188. [PMID: 32143534 PMCID: PMC7157198 DOI: 10.3390/pathogens9030188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
A serum neutralization test (SNT) is an essential method for the serological diagnosis of pestivirus infections, including classical swine fever, because of the cross reactivity of antibodies against pestiviruses and the non-quantitative properties of antibodies in an enzyme-linked immunosorbent assay. In conventional SNTs, an immunoperoxidase assay or observation of cytopathic effect after incubation for 3 to 7 days is needed to determine the SNT titer, which requires labor-intensive or time-consuming procedures. Therefore, a new SNT, based on the luciferase system and using classical swine fever virus, bovine viral diarrhea virus, and border disease virus possessing the 11-amino-acid subunit derived from NanoLuc luciferase was developed and evaluated; this approach enabled the rapid and easy determination of the SNT titer using a luminometer. In the new method, SNT titers can be determined tentatively at 2 days post-infection (dpi) and are comparable to those obtained by conventional SNTs at 3 or 4 dpi. In conclusion, the luciferase-based SNT can replace conventional SNTs as a high-throughput antibody test for pestivirus infections.
Collapse
Affiliation(s)
- Madoka Tetsuo
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
| | - Keita Matsuno
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| | - Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.T.); (T.F.); (Y.M.)
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.T.); (T.F.); (Y.M.)
| | - Taksoo Kim
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Lübeck, D-23562 Lübeck, Germany;
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.T.); (T.F.); (Y.M.)
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
24
|
Casciari C, Sozzi E, Bazzucchi M, Moreno Martin AM, Gaffuri A, Giammarioli M, Lavazza A, De Mia GM. Serological relationship between a novel ovine pestivirus and classical swine fever virus. Transbound Emerg Dis 2020; 67:1406-1410. [DOI: 10.1111/tbed.13480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Cristina Casciari
- Istituto Zooprofilattico Sperimentale dell'umbria e delle Marche “Togo Rosati” Perugia Italy
| | - Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini” Brescia Italy
| | - Moira Bazzucchi
- Istituto Zooprofilattico Sperimentale dell'umbria e delle Marche “Togo Rosati” Perugia Italy
| | - Ana Maria Moreno Martin
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini” Brescia Italy
| | - Alessandra Gaffuri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini” Brescia Italy
| | - Monica Giammarioli
- Istituto Zooprofilattico Sperimentale dell'umbria e delle Marche “Togo Rosati” Perugia Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini” Brescia Italy
| | - Gian Mario De Mia
- Istituto Zooprofilattico Sperimentale dell'umbria e delle Marche “Togo Rosati” Perugia Italy
| |
Collapse
|
25
|
Kaufmann C, Stalder H, Sidler X, Renzullo S, Gurtner C, Grahofer A, Schweizer M. Long-Term Circulation of Atypical Porcine Pestivirus (APPV) within Switzerland. Viruses 2019; 11:E653. [PMID: 31319583 PMCID: PMC6669711 DOI: 10.3390/v11070653] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022] Open
Abstract
In 2015, a new pestivirus was described in pig sera in the United States. This new "atypical porcine pestivirus" (APPV) was later associated with congenital tremor (CT) in newborn piglets. The virus appears to be distributed worldwide, but the limited knowledge of virus diversity and the use of various diagnostic tests prevent direct comparisons. Therefore, we developed an APPV-specific real-time RT-PCR assay in the 5'UTR of the viral genome to investigate both retro- and prospectively the strains present in Switzerland and their prevalence in domestic pigs. Overall, 1080 sera obtained between 1986 and 2018 were analyzed, revealing a virus prevalence of approximately 13% in pigs for slaughter, whereas it was less than 1% in breeding pigs. In the prospective study, APPV was also detected in piglets displaying CT. None of the samples could detect the Linda virus, which is another new pestivirus recently reported in Austria. Sequencing and phylogenetic analysis revealed a broad diversity of APP viruses in Switzerland that are considerably distinct from sequences reported from other isolates in Europe and overseas. This study indicates that APPV has already been widely circulating in Switzerland for many years, mainly in young animals, with 1986 being the earliest report of APPV worldwide.
Collapse
Affiliation(s)
- Cindy Kaufmann
- Institute of Virology and Immunology (IVI), 3001 Bern and 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology (IVI), 3001 Bern and 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Xaver Sidler
- Division of Swine Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland
| | - Sandra Renzullo
- Institute of Virology and Immunology (IVI), 3001 Bern and 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Corinne Gurtner
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
- Institute of Animal Pathology, 3001 Bern, Switzerland
| | - Alexander Grahofer
- Clinic for Swine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology (IVI), 3001 Bern and 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| |
Collapse
|