1
|
Fan CH, Huang E, Lo WC, Yeh CK. Ultrasound-cavitation-enhanced drug delivery via microbubble clustering induced by acoustic vortex tweezers. ULTRASONICS SONOCHEMISTRY 2025; 114:107273. [PMID: 39979196 DOI: 10.1016/j.ultsonch.2025.107273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
The application of acoustic vortex tweezers (AVT) in conjunction with ultrasound (US) cavitation pulses presents a promising noninvasive approach for the delivery of high concentrations of therapeutic agents. This methodology facilitates the aggregation of drug-loaded microbubbles (MBs) into clusters, which are subsequently destroyed to release their contents. Nevertheless, prior investigations have not thoroughly examined the resonance frequency and cavitation activity of MB clusters, critical factors that could enhance the efficiency of payload release. Theoretically, the resonance frequency of an MB cluster is expected to approximate that of a single large bubble of comparable size, thus being significantly lower than that of the individual MBs constituting the cluster. Accordingly, this study aims to optimize the release of payloads from AVT-trapped MB clusters, which measure 15 to 40 μm (mean radius: 24.7 μm) in size, by employing US at their resonance frequency of 100 kHz, henceforth referred to as "on-resonance US." In this investigation, MBs were loaded with the model drug DiI, resulting in the formation of DiI-MBs, which were then clustered utilizing AVT. On-resonance US excitation was subsequently applied to enhance the release of the drug payload. The dimensional characteristics of the DiI-MB clusters formed via 3-MHz AVT were measured to determine the range of resonance frequencies. Concurrent optical and acoustic analyses were conducted to evaluate the size, oscillation dynamics, and cavitation activity of the DiI-MB clusters in response to on-resonance US excitation. Additionally, the payload release from these clusters was quantitatively assessed. Our results indicate that significant oscillations of individual DiI-MB clusters commenced at a pressure of 44 kPa during 100 kHz US excitation. Further quantitative experiments demonstrated that the synergistic combination of AVT and 100-kHz US at 65 kPa significantly enhanced the payload release efficiency to 93 %. This efficiency surpassed that achieved with either method independently, with increases of 1.8-fold relative to AVT alone and 2.3-fold compared to 100-kHz US alone. The acoustic analyses revealed the onset of inertial cavitation at 44 kPa, which strongly correlated with payload release efficiency (R2 = 0.78). These findings underscore the potential of our proposed methodology in monitoring and enhancing the efficiency of drug release.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Elaine Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Chen Lo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Wang B, Yin Z, You X, Peng H, Jiang Y. Thyroid-Targeted Nano-Bombs Empower HIFU for Graves' Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414597. [PMID: 39840533 PMCID: PMC11923863 DOI: 10.1002/advs.202414597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Graves' disease (GD) is an autoimmune disorder with a high incidence rate, particularly affecting women of reproductive age. Current treatment modalities for GD carry significant disadvantages, especially for pregnant or nursing women. As a novel extracorporeal therapeutic technique, high-intensity focused ultrasound (HIFU) shows great promise for treating GD; however, its low treatment efficacy impedes clinical application. In this study, a thyroid-targeted nano-bomb system (PD-PLGA@Si-Ab/PDA-I, PSAPI) is developed to enhance HIFU efficacy and improve therapeutic outcomes for GD. The core structure of PSAPI encapsulates a phase-transition material, perfluorohexane, and the anti-inflammatory drug diclofenac within a poly(lactide-co-glycolide) (PLGA) and silica shell. A polydopamine coating enhances biocompatibility, while iodine loading and thyroid-stimulating hormone receptor (TSHR) antibodies grafting ensure targeted delivery to the thyroid. Robust in vitro and in vivo results demonstrated that PSAPI is highly biocompatible, accumulates in the thyroid within 24 h after administration, and significantly potentiates the therapeutic efficacy of HIFU, resulting in markedly reduced inflammatory responses. Transcriptomic analysis revealed a cellular defense mechanism activated in PSAPI-treated cells following HIFU irradiation, highlighting potential molecular targets for the future development of HIFU-sensitizing agents. The biocompatible PSAPI nano-bomb developed in this study holds great transformative potential, addressing critical gaps in current therapeutic practices for GD.
Collapse
Affiliation(s)
- Binhao Wang
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Zhuobing Yin
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Xiangyue You
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Hanwei Peng
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Ying Jiang
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| |
Collapse
|
3
|
Fabiano AR, Newman MW, Dombroski JA, Rowland SJ, Knoblauch SV, Kusunose J, Gibson-Corley KN, Kaufman BG, Ren L, Caskey CF, King MR. Applying Ultrasound to Mechanically and Noninvasively Sensitize Prostate Tumors to TRAIL-Mediated Apoptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412995. [PMID: 39976192 DOI: 10.1002/advs.202412995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/26/2025] [Indexed: 02/21/2025]
Abstract
Non-surgical and safe prostate cancer (PCa) therapies are in demand. Soluble tumor necrosis factor (TNF-α) related apoptosis inducing ligand (TRAIL), a cancer-specific drug, shows preclinical efficacy but has a short circulation half-life. This research has shown that physiological fluid shear stress activates mechanosensitive ion channels (MSCs), such as Piezo1, enhancing TRAIL-mediated apoptosis in cancer cells. Herein, noninvasive, focal ultrasound (FUS) is implemented to augment the pro-apoptotic effects of TRAIL. Using thermally safe FUS parameters, it is observed that TRAIL sensitivity increases with higher FUS pressure in PCa cells, mediated by Piezo1. This is confirmed by examining the effects of calcium chelation, MSC inhibitors, and PIEZO knockdown. In vivo, a multi-dose study with 10 min FUS exposure shows that 0 and 4-h intervals between TRAIL and FUS significantly reduce tumor burden, with an increase in apoptosis evident by enhanced cleaved-caspase 3 expression. This mechanotherapy offers a clinically translatable approach by utilizing widely available FUS technology, applicable to treat additional cancer types.
Collapse
Affiliation(s)
- Abigail R Fabiano
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Malachy W Newman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jenna A Dombroski
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Schyler J Rowland
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Samantha V Knoblauch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jiro Kusunose
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | | | - Liqin Ren
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Charles F Caskey
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Michael R King
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
4
|
Lin ZH, Yu QL, Yi BH, Xu WC, He HL, Huang KY, Zheng C, Wu SJ, Lin JF. Protective Effects of Low-Intensity Pulsed Ultrasound on Cardiac Electrophysiological Function in a Rat Model of Ischemic Cardiomyopathy. J Am Heart Assoc 2025; 14:e037402. [PMID: 39950540 DOI: 10.1161/jaha.124.037402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Ischemic cardiomyopathy (ICM) is the end stage of ischemic heart disease, in which ventricular remodeling contributes to a fatal ventricular arrhythmia, worsens heart function and unfavorable outcomes, and is related to persistent chronic inflammation. Low-intensity pulsed ultrasound (LIPUS) is an effective treatment modality for osteoarthropathy and has been illustrated to regulate the overactive inflammatory response in various diseases. Here, we aim to investigate whether LIPUS can perform cardiac protective effects in ICM and explore its possible mechanism. METHODS The left anterior descending artery of adult male Sprague-Dawley rats was ligated for 4 weeks to develop ICM and then treated with LIPUS. Vagotomy was applied to suppress the cholinergic anti-inflammatory pathway. Cardiac-specific Cav-1 (caveolin-1) overexpression in ICM on arrhythmias, excitation-contraction coupling, and cardiac remodeling was investigated using the intramyocardial injection of an adeno-associated virus serotype 9 system. RESULTS The results showed that LIPUS alleviated ventricular remodeling, improved cardiac electrophysiological function, and reduced the cardiac expression of collagens and inflammatory cytokines. Vagotomy suppressed the improvement of LIPUS. The overexpression of Cav-1 reset the influence of vagotomy. CONCLUSIONS We found that LIPUS had a direct effect on regional anti-inflammation and antifibrosis, improved cardiac autonomic function and heart failure, protected the Cx43 (connexin-43) protein, and reduced the risk of malignant arrhythmia during ICM. The cholinergic anti-inflammatory pathway was one of the potential critical mechanisms involved, and Cav-1 might play an important role downstream. Our study provided a new, promising, and noninvasive strategy for treating ICM.
Collapse
Affiliation(s)
- Zhong-Hao Lin
- Department of Cardiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Key Laboratory of Panvascular Diseases of Wenzhou Wenzhou Zhejiang China
- Wenzhou Medical University Wenzhou China
| | - Qiu-Lu Yu
- Department of Cardiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Key Laboratory of Panvascular Diseases of Wenzhou Wenzhou Zhejiang China
- Wenzhou Medical University Wenzhou China
| | - Bing-Hua Yi
- Department of Cardiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Key Laboratory of Panvascular Diseases of Wenzhou Wenzhou Zhejiang China
- Wenzhou Medical University Wenzhou China
| | - Wen-Cai Xu
- Department of Cardiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Key Laboratory of Panvascular Diseases of Wenzhou Wenzhou Zhejiang China
- Wenzhou Medical University Wenzhou China
| | - Hua-Ling He
- Department of Cardiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Key Laboratory of Panvascular Diseases of Wenzhou Wenzhou Zhejiang China
- Wenzhou Medical University Wenzhou China
| | - Kai-Yu Huang
- Department of Cardiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Key Laboratory of Panvascular Diseases of Wenzhou Wenzhou Zhejiang China
- Wenzhou Medical University Wenzhou China
| | - Cheng Zheng
- Department of Cardiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Key Laboratory of Panvascular Diseases of Wenzhou Wenzhou Zhejiang China
- Wenzhou Medical University Wenzhou China
| | - Shu-Jie Wu
- Department of Cardiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Key Laboratory of Panvascular Diseases of Wenzhou Wenzhou Zhejiang China
- Wenzhou Medical University Wenzhou China
| | - Jia-Feng Lin
- Department of Cardiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Key Laboratory of Panvascular Diseases of Wenzhou Wenzhou Zhejiang China
- Wenzhou Medical University Wenzhou China
| |
Collapse
|
5
|
Udroiu I, Todaro F, Vitaliti A, Palmieri D, Guida E, Perilli G, Duranti L, D'Ottavi C, Mattei M, Dolci S, Paradossi G, Bedini A, Silvestri I, Sgura A, Domenici F. Low-intensity pulsed ultrasound induces multifaced alterations in chromosome segregation, cytoskeletal filaments and cell junctions. Sci Rep 2025; 15:4964. [PMID: 39929986 PMCID: PMC11811000 DOI: 10.1038/s41598-025-88569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a widely used non-invasive approach with therapeutic purposes since it provides physical stimulation with minimal thermal effects. The skin epithelium is the first barrier of the human body that interfaces with LIPUS and is subjected to the highest intensity. Little is known about the impact of LIPUS on the skin surface. This work investigates the biological effects of one-hour exposure to 1 MHz LIPUS on human keratinocytes HaCaT and tumoral SK-MEL-28 skin cells. Specifically, we evaluated the cellular state immediately after LIPUS treatment by analyzing cytogenetic endpoints and the response of cytoskeleton and cell junction proteins. Herein we demonstrate that LIPUS induces genomic damage as shown by an increase of chromosome malsegregation and a consequent decrease of cellular proliferation. The mechanical stimulus produced by LIPUS is also transmitted to the cytoskeletal compartment, inducing the expression and re-organization of junction proteins (i.e., E-cadherin and Desmosomes) and intermediate filaments (i.e., F-actin and Cytokeratins) with impact on cell morphology and cell adhesion. These in vitro results highlight the different outcomes following the cytogenetic damage and the resilience response exerted by the cytoskeleton upon mechanical stress, laying the foundation for future in vivo investigations.
Collapse
Affiliation(s)
- Ion Udroiu
- Department of Sciences, Università Roma Tre, Viale G. Marconi 446, Rome, 00146, Italy
| | - Federica Todaro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, 00133, Italy
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Alessandra Vitaliti
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Damiano Palmieri
- Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University Hospital of Rome "Tor Vergata", Rome, 00133, Italy
| | - Giulia Perilli
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Leonardo Duranti
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Cadia D'Ottavi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University Hospital of Rome "Tor Vergata", Rome, 00133, Italy
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Angelico Bedini
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), Italian National Institute for Insurance against Accidents at Work, Inail, Rome, 00144, Italy
| | - Ida Silvestri
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 324, Rome, 00161, Italy
| | - Antonella Sgura
- Department of Sciences, Università Roma Tre, Viale G. Marconi 446, Rome, 00146, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy.
| |
Collapse
|
6
|
Wang L, Cao L, Shao K, Su J, Li G, Wang C, Li Q, Sun J, Zhang H, Liu K, Zhao W. Phytochlorin-Based Sonosensitizers Combined with Free-Field Ultrasound for Immune-Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410559. [PMID: 39801156 DOI: 10.1002/adma.202410559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/28/2024] [Indexed: 02/26/2025]
Abstract
Phytochlorins, a class of plant-derived tetrapyrroles, show great potential as sonosensitizers in sonodynamic therapy (SDT). The development of new phytochlorin-based sonosensitizers has significantly improved SDT, yet the absence of specialized sonodynamic systems limits their clinical translation. Herein, a dedicated ultrasound system along with a detailed step-by-step sonodynamic process from in vitro to in vivo is developed to activate phytochlorin-based sonosensitizers. Compared to standing-wave ultrasound, free-field ultrasound maintains stable acoustic pressure amplitudes and minimizes mechanical damage to cell membranes. In vitro experiments demonstrate that free-field ultrasound effectively activates naturally occurring phytochlorin, reducing the cavitation threshold for reactive oxygen species production and triggering immunogenic cell death. Furthermore, the intravenously injectable phytochlorin-based sonosensitizer (C34) enhances sonodynamic efficiency by reducing interfacial tension. Driven by in vivo free-field ultrasound, C34 effectively inhibits tumor growth in an orthotopic murine breast cancer model and elicits an immune response, preventing tumor metastasis. The reliable protocol provided by the free-field ultrasound system facilitates the activation of phytochlorin-based sonosensitizers while simultaneously stimulating the immune system, highlighting the potential of immune-sonodynamic therapy.
Collapse
Affiliation(s)
- Liu Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Cao
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiangan Su
- EEC Biotech Co., Ltd., Guangzhou, 510070, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chao Wang
- EEC Biotech Co., Ltd., Guangzhou, 510070, China
| | - Qing Li
- EEC Biotech Co., Ltd., Guangzhou, 510070, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Devos C, Bampouli A, Brozzi E, Stefanidis GD, Dusselier M, Van Gerven T, Kuhn S. Ultrasound mechanisms and their effect on solid synthesis and processing: a review. Chem Soc Rev 2025; 54:85-115. [PMID: 39439231 PMCID: PMC11496938 DOI: 10.1039/d4cs00148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 10/25/2024]
Abstract
Ultrasound proves to be an effective technique for intensifying a wide range of processes involving solids and, as such, is often used to improve control over both solids formation and post-treatment stages. The intensifying capabilities of ultrasonic processing are best interpreted in the context of the chemical, transport, and mechanical effects that occur during sonication. This review presents an overview of how ultrasound influences the processing and synthesis of solids across various material classes, contextualized within an ultrasound effect framework. By describing the mechanisms underlying the different effects of ultrasound on the solid synthesis and processing, this review aims to facilitate a deeper understanding of the current literature in the field and to promote more effective utilization of ultrasound technology in solid synthesis and processing.
Collapse
Affiliation(s)
- Cedric Devos
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ariana Bampouli
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Elena Brozzi
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Georgios D Stefanidis
- School of Chemical Engineering, Department of Process Analysis and Plant Design, National Technical University of Athens, Iroon Polytecneiou 9, Zografou 15780, Athens, Greece
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, 3001 Heverlee, Belgium
| | - Tom Van Gerven
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
8
|
Hasani Z, Abedini R, Saber Jahromi M. Performance optimization of vessel sealing using a hemostatic ultrasonic scalpel. Proc Inst Mech Eng H 2025; 239:83-91. [PMID: 39589213 DOI: 10.1177/09544119241298544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Using ultrasound technology as one of the therapeutic methods, in which ultrasound waves of different frequencies and intensities are employed, has significantly contributed to enhancing and facilitating the treatment process of various diseases. A Hemostatic Ultrasonic Scalpel can entail considerable advantages by simultaneously performing two operations tissue cutting and coagulation of biological tissues. In the present study, employing experimental design through response surface methodology, the effect of ultrasonic power and the duration of vibration application on the tissue has been investigated. Two parameters, namely the burst pressure of the sealed vessel and the length of the thermal seal zone, were measured by pressure testing and analysis image of the thermal effect region at the sealed vessel area, respectively. The pressure test results demonstrated that an input power of 52 W and the application of vibrations for 8 s under a constant force of 10 N, showed the optimized maximum burst pressure equal to 1100 mmHg. Examination of the sealed vessel images revealed a linear increase in thermal damage with increasing input power.
Collapse
Affiliation(s)
- Zahra Hasani
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Rezvan Abedini
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Saber Jahromi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
9
|
Luengo Gómez D, Salmerón Ruiz Á, Romero Manjón MI, Medina Benítez A, Láinez Ramos-Bossini AJ. Telerobotic Versus Standard Ultrasound in the Assessment of the Abdomen and Pelvis: A Real-World Prospective Study. Int J Telemed Appl 2024; 2024:1482326. [PMID: 39713775 PMCID: PMC11663047 DOI: 10.1155/ijta/1482326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction: Telerobotic ultrasound has emerged as a promising technology in medicine, especially in settings with limited medical access or a lack of specialized personnel. However, there are very few studies evaluating its usefulness in real-world clinical practice. Objective: This study evaluates the usefulness of abdominopelvic telerobotic ultrasound in a real-world practice setting. Methods: A prospective study was performed in a cohort of adult patients who underwent abdominal ultrasound in a remote secondary hospital for suspected abdominal or pelvic pathology. Examinations were performed by an on-site technician and a remote abdominal radiologist. Satisfaction of patients and explorers, scan times, quality of visualization of anatomical structures, and ultrasound findings were measured and compared with standard ultrasound examinations performed by an on-site radiologist blinded to telerobotic ultrasound findings. Multivariate analyses were performed to predict variables related to the visualization quality of abdominopelvic organs. Results: The sample included 40 patients (60% women; mean age, 51.2 ± 16.1 years; 35% overweight and 17.5% obese). Significant differences in ultrasound duration were observed between telerobotic ultrasound and standard ultrasound (27.4 ± 8.3 and 12.7 ± 3.1 min, respectively; p < 0.001). The mean satisfaction of radiologists, technicians, and patients with telerobotic ultrasound was high (7.35 ± 1.14 for radiologists, 7.93 ± 0.83 for technicians, and 8.43 ± 1.38 for patients). Visualization of anatomical structures was acceptable for most organs on telerobotic ultrasound but significantly worse than conventional ultrasound when "excellent visualization" was the reference standard. In addition, telerobotic ultrasound did not identify potentially relevant findings in a significant (70%) proportion of patients. Conclusions: Telerobotic ultrasound offers acceptable results in the assessment of abdominopelvic organs and can help provide adequate healthcare to patients in locations with limited access to radiology specialists. However, there are significant limitations compared to standard ultrasound for their optimal evaluation.
Collapse
Affiliation(s)
- David Luengo Gómez
- Abdominal Radiology Unit, Department of Radiology, Hospital Universitario Virgen de las Nieves 18014, Granada, Spain
- Advanced Medical Imaging Group (TeCe-22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA) 18012, Granada, Spain
| | - Ángela Salmerón Ruiz
- Abdominal Radiology Unit, Department of Radiology, Hospital Universitario Virgen de las Nieves 18014, Granada, Spain
- Advanced Medical Imaging Group (TeCe-22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA) 18012, Granada, Spain
| | - María Isabel Romero Manjón
- Abdominal Radiology Unit, Department of Radiology, Hospital Universitario Virgen de las Nieves 18014, Granada, Spain
| | - Antonio Medina Benítez
- Abdominal Radiology Unit, Department of Radiology, Hospital Universitario Virgen de las Nieves 18014, Granada, Spain
| | - Antonio Jesús Láinez Ramos-Bossini
- Abdominal Radiology Unit, Department of Radiology, Hospital Universitario Virgen de las Nieves 18014, Granada, Spain
- Advanced Medical Imaging Group (TeCe-22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA) 18012, Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada 18071, Granada, Spain
| |
Collapse
|
10
|
Hsiao CH, Huang HL, Liu HL, Huang CC, Su JC, Chen YH, Lin YH. Combining ultrasound technology with targeted fucoidan/arginine-gelatin nanoparticles loaded with doxorubicin to enhance therapeutic efficacy and modulate bioeffects in drug-resistant triple-negative breast cancer. Int J Biol Macromol 2024; 283:137764. [PMID: 39557262 DOI: 10.1016/j.ijbiomac.2024.137764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Triple-negative breast cancer (TNBC) presents formidable challenges due to its aggressive nature and high recurrence rates, compounded by the involvement of epithelial-mesenchymal transition (EMT) in its progression and metastasis. Standard chemotherapy, which typically employs doxorubicin (DOX), remains a primary treatment approach. However, multidrug resistance (MDR) mechanisms, which include ATP-binding cassette transporters and EMT, contribute to treatment failures. Ultrasound has emerged as a promising modality among the various strategies explored to address MDR in TNBC. It serves as a diagnostic tool and holds therapeutic potential by inducing various biological effects depending on the exposure level. Targeted nanoparticles offer a means to enhance drug delivery efficiency. Our study aims to advance ultrasound technology combined with biocompatible nanoparticles using simplified preparation methods to improve treatment outcomes for drug-resistant TNBC. In particular, employing DOX-loaded fucoidan/arginine-gelatin nanoparticles facilitated the targeted delivery of chemotherapy drugs to tumors by effectively interacting with P-selectin, resulting in tumor growth inhibition. Furthermore, these nanoparticles mitigated MDR and EMT, particularly when combined with ultrasound treatment. This integrated approach of nanoparticle delivery with ultrasonography opens up a promising and innovative avenue for clinical cancer research.
Collapse
Affiliation(s)
- Chi-Huang Hsiao
- Division of Medical Oncology and Hematology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei 220216, Taiwan
| | - Hau-Lun Huang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Hsuan Chen
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan.
| |
Collapse
|
11
|
Król P, Łojewski B, Król T, Kuszewski M, Stania M. Focused shock wave and ultrasound therapies in the treatment of lateral epicondylitis - a randomized control trial. Sci Rep 2024; 14:26053. [PMID: 39472446 PMCID: PMC11522674 DOI: 10.1038/s41598-024-77410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Persistent symptoms of lateral epicondylitis prompt patients to seek effective conservative treatment. The study aimed to determine the effects of focused shock wave (FSWT) and ultrasound therapies for lateral epicondylitis. Sixty patients with tennis elbow were randomly divided into three equal groups: A, B, and C. Group A received a total of 3 FSWT sessions, with 7 days between treatments; Group B received ultrasound therapy in 10 sessions over 2 weeks, while patients in Group C were treated with placebo ultrasound. All patients were also given deep friction massage. Before the start of therapy, and at 1, 3, 6, and 12 weeks after its completion, pain intensity and function of the affected upper limb were assessed in all patients. Wrist extensor and flexor strength and grip strength were measured in the affected and unaffected limb. Significant reductions in pain and significant improvements in the function of the affected limb compared to baseline values were observed in all study groups at 6 and 12 weeks after the completion of therapy. Analysis of percentage changes in these variables showed significant differences between Groups A and B in favor of Group A. The strength of wrist extensors and grip strength of the affected limb at 6 and 12 weeks after treatment completion was significantly higher in Groups A and B compared to pre-therapy values. However, there were no statistically significant differences between the groups regarding percentage changes in muscle strength in the affected limb. Pain reduction and function improvement in patients with lateral epicondylitis were significantly greater after FSWT (0.2 mJ/mm2 / 4 Hz / 2000 shocks) than after sonotherapy (3 MHz / 0.5 W/cm2 / 20%). Increases in wrist extensor strength and grip strength of the affected limb were comparable after both therapies. Given the greater therapeutic effect in the subjective evaluation, we recommend a combination therapy of FSWT with deep friction massage.Trial registration The trial was prospectively registered in the ISRCTN registry (no. ISRCTN11907358 registration date 30.07.2020).
Collapse
Affiliation(s)
- Piotr Król
- Institute of Sport Sciences, Academy of Physical Education in Katowice, Katowice, Mikolowska 72A, 40-065, Poland
| | | | - Tomasz Król
- Department of Kinesitherapy and Special Methods, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, 40-055, Poland
| | - Michał Kuszewski
- Institute of Physioterapy and Health Sciences, Academy of Physical Education in Katowice, Katowice, 40- 065, Poland
| | - Magdalena Stania
- Institute of Sport Sciences, Academy of Physical Education in Katowice, Katowice, Mikolowska 72A, 40-065, Poland.
| |
Collapse
|
12
|
Martínez CM, LLontop P, Pérez-Sanz F, Asensio F, Montero de Espinosa F. Ultrasound Therapy With High-Pressure Pulses Is Effective to Reduce the Effects of Collagenase-Induced Tendinopathy in Rat's Achilles Tendon. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1415-1425. [PMID: 38879428 DOI: 10.1016/j.ultrasmedbio.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE We propose an ultrasonic treatment for collagenase-induced tendinopathy in rat's Achilles tendon using pulses with a low number of cycles, high acoustic pressure and very low duty cycle. METHODS Twenty rats were used to perform the experiment. Four experimental groups of calcaneal tendons were studied: control (n = 6), sham (n = 4), collagenase-induced tendinopathy (n = 8) and ultrasound-treated collagenase-induced tendinopathy (n = 8). Surgical intervention was performed to expose the tendons prior to collagenase injection. A 1 MHz ultrasonic tansducer with a focusing lens was used. Ultrasonic treatments were used with an average total treatment time of 2.5 min, 20-cycle pulses, pressure amplitude p = 7 MPa, and 0.02% duty cycle. Histopathology of the samples was performed to evaluate nuclear density, acute inflammation, and signs of neovascularization. Collagen (types I and III), elastic fibers, and glycosaminoglycans were also analyzed. RESULTS No tendon involvement was found by the surgical process. Ultrasonic treatment is safe, as it does not affect healthy tendons. When collagenase infiltrated animals were treated with US, a clear predominance of type I collagen fibers and a similar collagen ratio profile to that observed in the control and sham groups was observed, with a higher density of elastic fibers compared to the control and sham groups and a significant increase in the density of glycosaminoglycans. CONCLUSION The ultrasound treatment proposed reduces the effects of the artificial collagenase lesion to reach the basal level after 45 d.
Collapse
Affiliation(s)
- Carlos M Martínez
- Biomedical Research Institute of Murcia "Pascual Parrilla", Murcia, Spain
| | - Pedro LLontop
- Experimental Medicine and Surgery Unit, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | - Fernando Asensio
- Experimental Medicine and Surgery Unit, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | |
Collapse
|
13
|
Tang J, Feng M, Wang D, Zhang L, Yang K. Recent advancement of sonogenetics: A promising noninvasive cellular manipulation by ultrasound. Genes Dis 2024; 11:101112. [PMID: 38947740 PMCID: PMC11214298 DOI: 10.1016/j.gendis.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/02/2024] Open
Abstract
Recent advancements in biomedical research have underscored the importance of noninvasive cellular manipulation techniques. Sonogenetics, a method that uses genetic engineering to produce ultrasound-sensitive proteins in target cells, is gaining prominence along with optogenetics, electrogenetics, and magnetogenetics. Upon stimulation with ultrasound, these proteins trigger a cascade of cellular activities and functions. Unlike traditional ultrasound modalities, sonogenetics offers enhanced spatial selectivity, improving precision and safety in disease treatment. This technology broadens the scope of non-surgical interventions across a wide range of clinical research and therapeutic applications, including neuromodulation, oncologic treatments, stem cell therapy, and beyond. Although current literature predominantly emphasizes ultrasonic neuromodulation, this review offers a comprehensive exploration of sonogenetics. We discuss ultrasound properties, the specific ultrasound-sensitive proteins employed in sonogenetics, and the technique's potential in managing conditions such as neurological disorders, cancer, and ophthalmic diseases, and in stem cell therapies. Our objective is to stimulate fresh perspectives for further research in this promising field.
Collapse
Affiliation(s)
- Jin Tang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingxuan Feng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| |
Collapse
|
14
|
Imani IM, Kim HS, Shin J, Lee D, Park J, Vaidya A, Kim C, Baik JM, Zhang YS, Kang H, Hur S, Song H. Advanced Ultrasound Energy Transfer Technologies using Metamaterial Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401494. [PMID: 38889336 PMCID: PMC11336982 DOI: 10.1002/advs.202401494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Indexed: 06/20/2024]
Abstract
Wireless energy transfer (WET) based on ultrasound-driven generators with enormous beneficial functions, is technologically in progress by the valuation of ultrasonic metamaterials (UMMs) in science and engineering domains. Indeed, novel metamaterial structures can develop the efficiency of mechanical and physical features of ultrasound energy receivers (US-ETs), including ultrasound-driven piezoelectric and triboelectric nanogenerators (US-PENGs and US-TENGs) for advantageous applications. This review article first summarizes the fundamentals, classification, and design engineering of UMMs after introducing ultrasound energy for WET technology. In addition to addressing using UMMs, the topical progress of innovative UMMs in US-ETs is conceptually presented. Moreover, the advanced approaches of metamaterials are reported in the categorized applications of US-PENGs and US-TENGs. Finally, some current perspectives and encounters of UMMs in US-ETs are offered. With this objective in mind, this review explores the potential revolution of reliable integrated energy transfer systems through the transformation of metamaterials into ultrasound-driven active mediums for generators.
Collapse
Affiliation(s)
- Iman M. Imani
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Hyun Soo Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Joonchul Shin
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Dong‐Gyu Lee
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Jiwon Park
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Anish Vaidya
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Chowon Kim
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Jeong Min Baik
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital Harvard Medical SchoolCambridgeMA02139USA
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sunghoon Hur
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
| | - Hyun‐Cheol Song
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
15
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
16
|
Ma X, Yamaguchi A, Maeshige N, Tanida K, Uemura M, Lu F, Kondo H, Fujino H. Facilitatory effect of low-pulse repetition frequency ultrasound on release of extracellular vesicles from cultured myotubes. J Med Ultrason (2001) 2024; 51:397-405. [PMID: 38575766 PMCID: PMC11272820 DOI: 10.1007/s10396-024-01429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/11/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Extracellular vesicles (EVs) serve as carriers of intracellular factors with therapeutic effects, including tissue regeneration and attenuation of inflammatory responses. The majority of EVs in vivo are derived from skeletal muscle, which is reported to have anti-inflammatory effects. While high-intensity pulsed ultrasound (US) irradiation has been shown to promote EV secretion from myotubes, the impact of pulse repetition frequency, a US parameter affecting pulse length, on EV release remains unclear. This study aimed to investigate the impact of pulse repetition frequency of US on the release of EVs from myotubes. METHODS C2C12 myoblasts were used in this study. After differentiation into C2C12 myotubes, US was performed for 5 min at an intensity of 3.0 W/cm2, duty cycle of 20%, acoustic frequency of 1 MHz, and different pulse repetition frequencies (100 Hz, 10 Hz, or 1 Hz). After 12 h, EVs and cells were collected for subsequent analyses. RESULTS US did not cause a reduction in cell viability across all US groups compared to the control. The concentration of EVs was significantly higher in all US groups compared to the control group. In particular, the highest increase was observed in the 1-Hz group on EV concentration as well as intracellular Ca2+ level. CONCLUSION This study investigated the effect of three different pulse repetition frequencies of US on the release of EVs from cultured myotubes. It is concluded that a low-pulse repetition frequency of 1 Hz is the most effective for enhancing EV release from cultured myotubes with pulsed ultrasound.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| | - Kento Tanida
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Fuwen Lu
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, 2209 Guangxing Rd., Songjiang District, Shanghai, 201619, China
| | - Hiroyo Kondo
- Faculty of Health and Nutrition, Shubun University, 72 Momo Higashiyashiki, Yamato-cho, Ichinomiya, Aichi, 491-0932, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| |
Collapse
|
17
|
Xu H, Liu Z, Du M, Chen Z. Progression in low-intensity ultrasound-induced tumor radiosensitization. Cancer Med 2024; 13:e7332. [PMID: 38967145 PMCID: PMC11224918 DOI: 10.1002/cam4.7332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) is a widely utilized tumor treatment approach, while a significant obstacle in this treatment modality is the radioresistance exhibited by tumor cells. To enhance the effectiveness of RT, scientists have explored radiosensitization approaches, including the use of radiosensitizers and physical stimuli. Nevertheless, several approaches have exhibited disappointing results including adverse effects and limited efficacy. A safer and more effective method of radiosensitization involves low-intensity ultrasound (LIUS), which selectively targets tumor tissue and enhances the efficacy of radiation therapy. METHODS This review summarized the tumor radioresistance reasons and explored LIUS potential radiosensitization mechanisms. Moreover, it covered diverse LIUS application strategies in radiosensitization, including the use of LIUS alone, ultrasound-targeted intravascular microbubble destruction, ultrasound-mediated targeted radiosensitizers delivery, and sonodynamic therapy. Lastly, the review presented the limitations and prospects of employing LIUS-RT combined therapy in clinical settings, emphasizing the need to connect research findings with practical applications. RESULTS AND CONCLUSION LIUS employs cost-effective equipment to foster tumor radiosensitization, curtail radiation exposure, and elevate the quality of life for patients. This efficacy is attributed to LIUS's ability to utilize thermal, cavitation, and mechanical effects to overcome tumor cell resistance to RT. Multiple experimental analyses have underscored the effectiveness of LIUS in inducing tumor radiosensitization using diverse strategies. While initial studies have shown promising results, conducting more comprehensive clinical trials is crucial to confirm its safety and effectiveness in real-world situations.
Collapse
Affiliation(s)
- Haonan Xu
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| | - Zichao Liu
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
- Institute of Medical Imaging, Hengyang Medical School, University of South ChinaHengyangHunan ProvinceChina
| |
Collapse
|
18
|
Zhao P, Wu T, Tian Y, You J, Cui X. Recent advances of focused ultrasound induced blood-brain barrier opening for clinical applications of neurodegenerative diseases. Adv Drug Deliv Rev 2024; 209:115323. [PMID: 38653402 DOI: 10.1016/j.addr.2024.115323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
With the aging population on the rise, neurodegenerative disorders have taken center stage as a significant health concern. The blood-brain barrier (BBB) plays an important role to maintain the stability of central nervous system, yet it poses a formidable obstacle to delivering drugs for neurodegenerative disease therapy. Various methods have been devised to confront this challenge, each carrying its own set of limitations. One particularly promising noninvasive approach involves the utilization of focused ultrasound (FUS) combined with contrast agents-microbubbles (MBs) to achieve transient and reversible BBB opening. This review provides a comprehensive exploration of the fundamental mechanisms behind FUS/MBs-mediated BBB opening and spotlights recent breakthroughs in its application for neurodegenerative diseases. Furthermore, it addresses the current challenges and presents future perspectives in this field.
Collapse
Affiliation(s)
- Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Tiantian Wu
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Yu Tian
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai 200000, China
| | - Jia You
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
19
|
Zhu P, Simon I, Kokalari I, Kohane DS, Rwei AY. Miniaturized therapeutic systems for ultrasound-modulated drug delivery to the central and peripheral nervous system. Adv Drug Deliv Rev 2024; 208:115275. [PMID: 38442747 PMCID: PMC11031353 DOI: 10.1016/j.addr.2024.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Ultrasound is a promising technology to address challenges in drug delivery, including limited drug penetration across physiological barriers and ineffective targeting. Here we provide an overview of the significant advances made in recent years in overcoming technical and pharmacological barriers using ultrasound-assisted drug delivery to the central and peripheral nervous system. We commence by exploring the fundamental principles of ultrasound physics and its interaction with tissue. The mechanisms of ultrasonic-enhanced drug delivery are examined, as well as the relevant tissue barriers. We highlight drug transport through such tissue barriers utilizing insonation alone, in combination with ultrasound contrast agents (e.g., microbubbles), and through innovative particulate drug delivery systems. Furthermore, we review advances in systems and devices for providing therapeutic ultrasound, as their practicality and accessibility are crucial for clinical application.
Collapse
Affiliation(s)
- Pancheng Zhu
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands; State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics & Astronautics, 210016, Nanjing, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ignasi Simon
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Ida Kokalari
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Alina Y Rwei
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
20
|
Guo X, Lv M, Lin J, Guo J, Lin J, Li S, Sun Y, Zhang X. Latest Progress of LIPUS in Fracture Healing: A Mini-Review. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:643-655. [PMID: 38224522 DOI: 10.1002/jum.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024]
Abstract
The use of low-intensity pulsed ultrasound (LIPUS) for promoting fracture healing has been Food and Drug Administration (FDA)-approved since 1994 due to largely its non-thermal effects of sound flow sound radiation force and so on. Numerous clinical and animal studies have shown that LIPUS can accelerate the healing of fresh fractures, nonunions, and delayed unions in pulse mode regardless of LIPUS devices or circumstantial factors. Rare clinical studies show limitations of LIPUS for treating fractures with intramedullary nail fixation or low patient compliance. The biological effect is achieved by regulating various cellular behaviors involving mesenchymal stem/stromal cells (MSCs), osteoblasts, chondrocytes, and osteoclasts and with dose dependency on LIPUS intensity and time. Specifically, LIPUS promotes the osteogenic differentiation of MSCs through the ROCK-Cot/Tpl2-MEK-ERK signaling. Osteoblasts, in turn, respond to the mechanical signal of LIPUS through integrin, angiotensin type 1 (AT1), and PIEZO1 mechano-receptors, leading to the production of inflammatory factors such as COX-2, MCP-1, and MIP-1β fracture repair. LIPUS also induces CCN2 expression in chondrocytes thereby coordinating bone regeneration. Finally, LIPUS suppresses osteoclast differentiation and gene expression by interfering with the ERK/c-Fos/NFATc1 cascade. This mini-review revisits the known effects and mechanisms of LIPUS on bone fracture healing and strengthens the need for further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Xin Guo
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Maojiang Lv
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
- Zun Yi Medical University, Zhuhai, China
| | - Jie Lin
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Jiang Guo
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shun Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yi Sun
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Xintao Zhang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
21
|
Liu M, Zheng Q, Zheng Y, Yao Y, Wang R, Ta D, Jiang L. Combined Assessment of 2-D Ultrasound and Real-Time Shear Wave Elastography of Low-Intensity Pulsed Ultrasound Therapy Efficacy in Rabbits with Achilles Tendinopathy. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:407-413. [PMID: 38129224 DOI: 10.1016/j.ultrasmedbio.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Low-intensity pulsed ultrasound (LIPUS) has been gradually used to treat Achilles tendinopathy. However, there are limited non-invasive and efficient instruments for monitoring LIPUS efficacy in Achilles tendinopathy. The purpose of this study was to assess the therapeutic effectiveness of LIPUS after Achilles tendinopathy by 2-D ultrasound and real-time shear wave elastography (SWE). METHODS Ninety New Zealand white rabbits were divided into control, sham and LIPUS groups after tendinopathy modeling. On days 1, 4, 7, 14 and 28, the Achilles tendon thickness and SWE Young's modulus on the long axis were measured. The tissues of the Achilles tendon were then evaluated histologically. RESULTS The mean SWE values increased while the average thickness and histologic scores decreased, especially in the LIPUS group (9.5% and 80.7% on day 28, respectively). The SWE values in the LIPUS group were significantly lower than those in the control group on day 1 (121.0 kPa vs. 177.6 kPa) and peaked on day 7 (173.7 kPa, p < 0.001). By day 28, the SWE value had approached that of the control (191.2 kPa vs. 192.4 kPa), and had been significantly higher than that in the sham group since day 7. SWE values and histologic scores were correlated (r = -0.792, p < 0.01). The average thickness decreased in the three groups but did not differ significantly. CONCLUSION Two-dimensional ultrasound is beneficial to the diagnosis of Achilles tendinopathy. SWE could quantify changes in Achilles tendon stiffness non-invasively during LIPUS treatment, enabling the study of early Achilles tendon healing after LIPUS treatment.
Collapse
Affiliation(s)
- Mengyao Liu
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zheng
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yiwen Zheng
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijing Yao
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Wang
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lixin Jiang
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Fan CH, Tsai CY, Lai CY, Liou YF, Lee JK, Yeh CK. Feasibility of in vitro calcification plaque disruption using ultrasound-induced microbubble inertial cavitation. ULTRASONICS 2024; 138:107238. [PMID: 38183758 DOI: 10.1016/j.ultras.2023.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Percutaneous transluminal coronary angioplasty (PTCA) is a clinical method in which plaque-narrowed arteries are widened by inflating an intravascular balloon catheter. However, PTCA remains challenging to apply in calcified plaques since the high pressure required for achieving a therapeutic outcome can result in balloon rupture, vessel rupture, and intimal dissection. To address the problem with PTCA, we hypothesized that a calcified plaque can be disrupted by microbubbles (MBs) inertial cavitation induced by ultrasound (US). This study proposed a columnar US transducer with a novel design to generate inertial cavitation at the lesion site. Experiments were carried out using tubular calcification phantom to mimic calcified plaques. After different parameters of US + MBs treatment (four types of MBs concentration, five types of cycle number, and three types of insonication duration; n = 4 in each group), inflation experiments were performed to examine the efficacy of cavitation for a clinically used balloon catheter. Finally, micro-CT was used to investigate changes in the internal structure of the tubular plaster phantoms. The inflation threshold of the untreated tubular plaster phantoms was > 11 atm, and this was significantly reduced to 7.4 ± 0.7 atm (p = 5.2E-08) using US-induced MBs inertial cavitation at a treatment duration of 20 min with an acoustic pressure of 214 kPa, an MBs concentration of 4.0 × 108 MBs/mL, a cycle number of 100 cycles, and a pulse repetition frequency of 100 Hz. Moreover, micro-CT revealed internal damage in the tubular calcification phantom, demonstrating that US-induced MBs inertial cavitation can effectively disrupt calcified plaques and reduce the inflation threshold of PTCA. The ex vivo histopathology results showed that the endothelium of pig blood vessels remained intact after the treatment. In summary, the results show that US-induced MBs inertial cavitation can markedly reduce the inflation threshold in PTCA without damaging blood vessel endothelia, indicating the potential of the proposed treatment method.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Chieh-Yu Tsai
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yen Lai
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ya-Fu Liou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jen-Kuang Lee
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10617, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
23
|
Figueredo CA, Catunda RQ, Gibson MP, Major PW, Almeida FT. Use of ultrasound imaging for assessment of the periodontium: A systematic review. J Periodontal Res 2024; 59:3-17. [PMID: 37872805 DOI: 10.1111/jre.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
The objective of this study was to systematically review the literature regarding diagnostic applications of ultrasound imaging for evaluation of the periodontium in humans. The search was conducted on Medline, EMBASE, Web of Science, Scopus, Cochrane, and PubMed up to April 3, 2023. The studies included were exclusively human studies that assessed the periodontium with ultrasound (US) imaging (b-mode). Outcomes measured included alveolar bone level, alveolar bone thickness, gingival thickness, and blood flow quantification. References were imported to Covidence. Two reviewers conducted phases 1 and 2. The JBI risk assessment tool for cross-sectional studies was used. Extracted data included the transducer and measurements used and the study's outcomes. The search yielded 4892 studies after removing duplicates. From these, 25 studies were included and selected for extraction. Included studies retrieved outcomes from US examinations of the periodontal tissues. From the selected studies, 15 used US on natural teeth, 4 used US on implants, 2 used US on edentulous ridges, and 4 used color flow/power in US to evaluate the blood flow. The results of the present systematic review suggest that US might be a feasible and valuable diagnostic tool for the periodontium, with the potential to complement shortfalls of current radiographic technologies.
Collapse
Affiliation(s)
- Carlos Alberto Figueredo
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Raisa Queiroz Catunda
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Monica P Gibson
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W Major
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Fabiana T Almeida
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Del Campo Fonseca A, Ahmed D. Ultrasound robotics for precision therapy. Adv Drug Deliv Rev 2024; 205:115164. [PMID: 38145721 DOI: 10.1016/j.addr.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
In recent years, the application of microrobots in precision therapy has gained significant attention. The small size and maneuverability of these micromachines enable them to potentially access regions that are difficult to reach using traditional methods; thus, reducing off-target toxicities and maximizing treatment effectiveness. Specifically, acoustic actuation has emerged as a promising method to exert control. By harnessing the power of acoustic energy, these small machines potentially navigate the body, assemble at the desired sites, and deliver therapies with enhanced precision and effectiveness. Amidst the enthusiasm surrounding these miniature agents, their translation to clinical environments has proven difficult. The primary objectives of this review are threefold: firstly, to offer an overview of the fundamental acoustic principles employed in the field of microrobots; secondly, to assess their current applications in medical therapies, encompassing tissue targeting, drug delivery or even cell infiltration; and lastly, to delve into the continuous efforts aimed at integrating acoustic microrobots into in vivo applications.
Collapse
Affiliation(s)
- Alexia Del Campo Fonseca
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | - Daniel Ahmed
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| |
Collapse
|
25
|
Fu S, Guo Z, Xu X, Li Y, Choi S, Zhao P, Shen W, Gao F, Wang C, Chen S, Li Y, Tian J, Sun P. Protective effect of low-intensity pulsed ultrasound on immune checkpoint inhibitor-related myocarditis via fine-tuning CD4 + T-cell differentiation. Cancer Immunol Immunother 2024; 73:15. [PMID: 38236243 PMCID: PMC10796578 DOI: 10.1007/s00262-023-03590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) have transformed traditional cancer treatments. Specifically, ICI-related myocarditis is an immune-related adverse event (irAE) with high mortality. ICIs activate CD4+ T-lymphocyte reprogramming, causing an imbalance between Th17 and Treg cell differentiation, ultimately leading to myocardial inflammatory damage. Low-intensity pulsed ultrasound (LIPUS) can limit inflammatory responses, with positive therapeutic effects across various cardiovascular inflammatory diseases; however, its role in the pathogenesis of ICI-related myocarditis and CD4+ T-cell dysfunction remains unclear. Accordingly, this study investigated whether LIPUS can alleviate ICI-related myocarditis inflammatory damage and, if so, aimed to elucidate the beneficial effects of LIPUS and its underlying molecular mechanisms. METHODS An in vivo model of ICI-related myocarditis was obtained by intraperitonially injecting male A/J mice with an InVivoPlus anti-mouse PD-1 inhibitor. LIPUS treatment was performed via an ultrasound-guided application to the heart via the chest wall. The echocardiographic parameters were observed and cardiac function was assessed using an in vivo imaging system. The expression of core components of the HIPPO pathway was analyzed via western blotting. RESULTS LIPUS treatment reduced cardiac immune responses and inflammatory cardiac injury. Further, LIPUS treatment alleviated the inflammatory response in mice with ICI-related myocarditis. Mechanistically, in the HIPPO pathway, the activation of Mst1-TAZ axis improved autoimmune inflammation by altering the interaction between the transcription factors FOXP3 and RORγt and regulating the differentiation of Treg and Th17 cells. CONCLUSION LIPUS therapy was shown to reduce ICI-related myocarditis inflammatory damage and improve cardiac function, representing an exciting finding for irAEs treatment.
Collapse
Affiliation(s)
- Shuai Fu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Zihong Guo
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Yifei Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Stephen Choi
- SXULTRASONIC Ltd. Kerry Rehabilitation Medicine Research Institute, Shenzhen, Guangdong Province, China
| | - Peng Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Wenqian Shen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fei Gao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shuang Chen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - You Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China.
| |
Collapse
|
26
|
Rusetsky YY, Miroshnichenko AP, Elovikov VA, Kogan MA, Haddadin DT. [The normal sonographic picture of the paratonsillar region and the prerequisites for ultrasound diagnosis of purulent pathology of the pharynx]. Vestn Otorinolaringol 2024; 89:4-9. [PMID: 38506018 DOI: 10.17116/otorino2024890114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Paratonsillar abscess (PTA) stands out among all otorhinolaryngological diseases, since it can cause life-threatening complications that develop in the shortest possible time due to the close connection of the cellular spaces of the head, neck and mediastinum. In addition to physical examination, computed tomography and magnetic resonance imaging are routinely used to diagnose PTA, sonography is less often used. With the help of the latter, it is possible to reliably distinguish PTA from both paratonsillitis and a number of other diseases, including an aneurysm of the internal carotid artery, using the Doppler mode. However, there are significant gaps in the ultrasound diagnosis of PTA and paratonsillitis: the use of a percutaneous convex sensor is not described, there is no description of clear anatomical landmarks for reliable and rapid recognition of PTA, and diagnostically complete algorithms for verification and visualization of paratonsillitis and PTA using sonographic examination have not been developed. Our work is aimed at filling these gaps.
Collapse
Affiliation(s)
- Yu Yu Rusetsky
- Central State Medical Academy of Administrative Directorate of the President of the Russian Federation, Moscow, Russia
| | | | - V A Elovikov
- Central State Medical Academy of Administrative Directorate of the President of the Russian Federation, Moscow, Russia
- Inozemtsev City Clinical Hospital, Moscow, Russia
| | - M A Kogan
- Inozemtsev City Clinical Hospital, Moscow, Russia
| | - D T Haddadin
- Central State Medical Academy of Administrative Directorate of the President of the Russian Federation, Moscow, Russia
| |
Collapse
|
27
|
Ortiz R, Motyka T, Petterson S, Krystofiak J. Sustained acoustic medicine treatment of discogenic chronic low back pain: A randomized, multisite, double-blind, placebo-controlled trial. J Back Musculoskelet Rehabil 2024; 37:1321-1332. [PMID: 38905030 PMCID: PMC11492000 DOI: 10.3233/bmr-230402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Sustained acoustic medicine (SAM) is a noninvasive long-term treatment that provides essential mechanical and thermal stimulus to accelerate soft tissue healing, alleviate pain, and improve physical activity. SAM increases localized deep tissue temperature, blood flow, cellular proliferation, migration, and nutrition exchange, resulting in reduced inflammation and an increased rate of tissue regeneration. OBJECTIVE To assess the efficacy of SAM treatment of discogenic back pain in the lower spinal column to reduce pain, improve quality of life, and lower pharmacotherapy use. METHODS Sixty-five subjects with chronic low back pain were randomly assigned to SAM (N= 33) or placebo (N= 32) groups. Subjects self-applied SAM device bilaterality on the lower lumbar region for 4 hours daily for 8 weeks and completed daily pain diaries before, during, and after treatment. Subjects recorded pain reduction using a numeric rating scale (NRS), medication use, and physical activity using the Global Rating of Change (GROC) and Oswestry Disability Index (ODI). RESULTS SAM treatment significantly reduced chronic lower back pain from baseline relative to placebo treatment (p< 0.0001). SAM treated subjects reported significantly lower back pain at 4 weeks, with the highest pain reduction (-2.58 points NRS, p< 0.0001) reported at 8 weeks. Similar trends were observed in improved physical activity (3.48 GROC, p< 0.0001, 69-88% ODI, p< 0.0001) and 22.5% (15.2 morphine milligram equivalent) reduction in the use of opioid medication from baseline to 8 weeks. CONCLUSION Daily, home-use SAM treatment significantly improves the clinical symptoms of chronic lower back pain, improves physical mobility, and reduces daily medication use. SAM treatment is well-tolerated by patients and may be considered a safe, non-invasive treatment option for chronic discogenic, lower back pain.
Collapse
Affiliation(s)
- Ralph Ortiz
- Department of Pain Management, Cayuga Medical Center, Ithaca, NY, USA
| | - Thomas Motyka
- Department of Osteopathic Medicine, Campbell University, Buies Creek, NC, USA
| | | | - Jason Krystofiak
- Department of Orthopedics, Rutgers University, Barnabas Health, New Brunswick, NJ, USA
| |
Collapse
|
28
|
Racca L, Rosso G, Carofiglio M, Fagoonee S, Mesiano G, Altruda F, Cauda V. Effective combination of biocompatible zinc oxide nanocrystals and high-energy shock waves for the treatment of colorectal cancer. Cancer Nanotechnol 2023; 14:37. [DOI: 10.1186/s12645-023-00195-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/08/2023] [Indexed: 03/10/2025] Open
Abstract
Abstract
Background
Colorectal cancer (CRC) is the third most diagnosed tumor worldwide, with a very high mortality rate, second only to lung cancer. Current treatments, such as surgery, chemotherapy or radiotherapy, are not effective enough and show several limitations. Among the emerging strategies, nanomedicine offers very powerful tools in cancer treatment. Recently, the combination of nanoparticle antitumor effect with a triggering external stimulation was formulated to boost up the cytotoxic activity.
Results
In this work, we show the synergistic effect of oleic acid-capped zinc oxide nanocrystals (ZnO NCs) and mechanical high-energy shock waves (SW) in the treatment for CRC cells, in vitro. We tested two different types of ZnO NCs synthetized in our laboratory, the basal undoped ZnO NCs and the iron-doped ones (Fe:ZnO NCs). The presence of the oleic acid capping and the further amino-propyl functionalization guarantee a high colloidal stability to both NCs, while the iron doping confers to Fe:ZnO NCs interesting magnetic properties useful for imaging applications in a clinical perspective. Thus, the iron-doped ZnO NCs are very attractive as potentially theranostic nanoparticles, allowing both stimuli-responsive therapy and magnetic resonance imaging.
Importantly, two colon adenocarcinoma cell lines, the HT-29 and the Dukes’ type C Colo 320DM cells were tested, both showing a good bio-tolerance and internalization rates of NCs. With the aim of eradicating the CRC cells, the possible synergism between the undoped/iron-doped ZnO NCs and an external physical stimulus, i.e., high-energy SW, was then here investigated in vitro. We demonstrated that the combined treatment resulted in an augmentation of the antitumor activity, especially for Colo 320DM cells, when compared to controls. Moreover, a repeated and sequenced SW treatment (three times/day, 3SW) after ZnO NCs exposure resulted in a further increased mortality of CRC cells.
Conclusion
Our work proposes the combination of the cytotoxic activity of ZnO NCs with the SW external stimulation to obtain a booster of the antitumor activity, which warrants further investigation in vivo on CRC as well as on other tumors.
Graphical Abstract
Collapse
|
29
|
Siebenmorgen C, Poortinga A, van Rijn P. Sono-processes: Emerging systems and their applicability within the (bio-)medical field. ULTRASONICS SONOCHEMISTRY 2023; 100:106630. [PMID: 37826890 PMCID: PMC10582584 DOI: 10.1016/j.ultsonch.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Sonochemistry, although established in various fields, is still an emerging field finding new effects of ultrasound on chemical systems and are of particular interest for the biomedical field. This interdisciplinary area of research explores the use of acoustic waves with frequencies ranging from 20 kHz to 1 MHz to induce physical and chemical changes. By subjecting liquids to ultrasonic waves, sonochemistry has demonstrated the ability to accelerate reaction rates, alter chemical reaction pathways, and change physical properties of the system while operating under mild reaction conditions. It has found its way into diverse industries including food processing, pharmaceuticals, material science, and environmental remediation. This review provides an overview of the principles, advancements, and applications of sonochemistry with a particular focus on the domain of (bio-)medicine. Despite the numerous benefits sonochemistry has to offer, most of the research in the (bio-)medical field remains in the laboratory stage. Translation of these systems into clinical practice is complex as parameters used for medical ultrasound are limited and toxic side effects must be minimized in order to meet regulatory approval. However, directing attention towards the applicability of the system in clinical practice from the early stages of research holds significant potential to further amplify the role of sonochemistry in clinical applications.
Collapse
Affiliation(s)
- Clio Siebenmorgen
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| | - Albert Poortinga
- Technical University Eindhoven, Department of Mechanical Engineering, Gemini Zuid, de Zaale, Eindhoven 5600 MB, The Netherlands.
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
30
|
Moura SO, Borges LCDC, Carneiro TMDA, Silva APSD, Araújo RMD, Ferreira GLC, Morais SDC, De Matheo LL, Andrade PRD, Pereira WCDA, Maggi LE. Therapeutic Ultrasound Alone and Associated with Lymphatic Drainage in Women with Breast Engorgement: A Clinical Trial. Breastfeed Med 2023; 18:881-887. [PMID: 37971376 DOI: 10.1089/bfm.2022.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Introduction: Breast engorgement (BE) is a problem that affects many women, especially in the first days of breastfeeding, producing inflammatory symptoms. Nonpharmacological therapies are inexpensive, safe, and can produce symptom relief. Objective: This study aims to analyze the safety of therapeutic ultrasound regarding possible risks of overheating and the effects of its use alone and associated with lymphatic drainage (LD) in women. Material and Methods: Effectiveness is measured through thermography, visual analog scale, and six-point scale of BE. This is a nonrandomized clinical trial with a sample of 34 in the ultrasound group (G1), 28 in the ultrasound and LD group (G2), and 37 in the control group (G3). Results: The mean reduction for engorgement was 1.3 ± 0.8 to G1, 1.4 ± 1.0 to G2, and 1.2 ± 0.9 to G3 according to the six-point scale. The mean reduction for pain level was 3.6 ± 2.1 to G1, 4.0 ± 3.1 to G2, and 4.0 ± 2.2 to G3 according to the visual analogue scale. Conclusion: It was observed that all therapies were effective in reducing the level of engorgement, according to the six-point scale. However, combined ultrasound and LD therapy has been shown to be more effective in reducing the level of pain. Brazilian Registry of Clinical Trials (RBR-6btb6zz).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucas Lobianco De Matheo
- Laboratório de Ultrassom/PEB/COOPE/Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wagner Coelho de Albuquerque Pereira
- PPGCSAO, CCBN, Universidade Federal do Acre, Rio Branco, Brazil
- Laboratório de Ultrassom/PEB/COOPE/Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Eduardo Maggi
- PPGCSAO, CCBN, Universidade Federal do Acre, Rio Branco, Brazil
- Laboratório de Biofísica/CCBN/Universidade Federal do Acre, Rio Branco, Brazil
| |
Collapse
|
31
|
Jiang Z, Salcudean SE, Navab N. Robotic ultrasound imaging: State-of-the-art and future perspectives. Med Image Anal 2023; 89:102878. [PMID: 37541100 DOI: 10.1016/j.media.2023.102878] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/27/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023]
Abstract
Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques. Additionally, we present the challenges that the scientific community needs to face in the coming years in order to achieve its ultimate goal of developing intelligent robotic sonographer colleagues. These colleagues are expected to be capable of collaborating with human sonographers in dynamic environments to enhance both diagnostic and intraoperative imaging.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany.
| | - Septimiu E Salcudean
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nassir Navab
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany; Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
32
|
Xin J, Zhan X, Zheng F, Li H, Wang Y, Li C, Jiang J. The effect of low-frequency high-intensity ultrasound combined with aspirin on tooth movement in rats. BMC Oral Health 2023; 23:642. [PMID: 37670292 PMCID: PMC10478369 DOI: 10.1186/s12903-023-03359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/26/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Given the difficulties or incapacity of teeth movement in orthodontic treatment, the ways to speed tooth movement must be investigated. Besides, nonsteroidal anti-inflammatory drugs (NSAIDs) were utilized to treat pain caused by tooth movement during orthodontic treatment. The purpose of this study is to examine the impact of aspirin and low-frequency high-intensity ultrasound (LFHIU) on rat orthodontic tooth movement in rats. METHODS Thirty-six male Sprague-Dawley rats were divided into three groups: orthodontic (O), ultrasound-treated orthodontic (OU), and ultrasound-treated orthodontic with aspirin gavage (OUA) group. In the OU and OUA group, LFHIU (44 W/cm2, 28 kHz) was applied to the buccal side of the maxillary first molar alveolar bone for 10 s every day. In the OUA group, aspirin was given by gavage every day. The rats were sacrificed on days 1, 3, 7, and 14. RESULTS After ultrasonic treatment, the speed of tooth movement was increased by about 1.5 times. And the number of osteoclasts considerably increased by about 2 times. However, they decreased slightly after aspirin gavage. By Applying ultrasound therapy, Receptor Activator for Nuclear Factor-κ B Ligand (RANKL) levels in periodontal tissue were elevated. Aspirin was able to reduce these increases. Results from Micro Computed Tomography (Micro-CT) revealed that bone mineral density decreased by about 1/5 after ultrasound treatment on the compression side. The rate of bone mineral apposition indicated that bone was forming under tension, and that of the OU group increased by about 1.3 times that O group. CONCLUSIONS Although aspirin slowed this trend, LFHIU still enhanced overall tooth mobility in orthodontic treatment.
Collapse
Affiliation(s)
- Jiao Xin
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xinxin Zhan
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Huazhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yixiang Wang
- Central Laboratory, Department of Oral and Maxillofacial Surgery, Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School, Beijing, China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
33
|
Honari A, Sirsi SR. The Evolution and Recent Trends in Acoustic Targeting of Encapsulated Drugs to Solid Tumors: Strategies beyond Sonoporation. Pharmaceutics 2023; 15:1705. [PMID: 37376152 DOI: 10.3390/pharmaceutics15061705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite recent advancements in ultrasound-mediated drug delivery and the remarkable success observed in pre-clinical studies, no delivery platform utilizing ultrasound contrast agents has yet received FDA approval. The sonoporation effect was a game-changing discovery with a promising future in clinical settings. Various clinical trials are underway to assess sonoporation's efficacy in treating solid tumors; however, there are disagreements on its applicability to the broader population due to long-term safety issues. In this review, we first discuss how acoustic targeting of drugs gained importance in cancer pharmaceutics. Then, we discuss ultrasound-targeting strategies that have been less explored yet hold a promising future. We aim to shed light on recent innovations in ultrasound-based drug delivery including newer designs of ultrasound-sensitive particles specifically tailored for pharmaceutical usage.
Collapse
Affiliation(s)
- Arvin Honari
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shashank R Sirsi
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
34
|
Stania M, Pawłowski M, Marszałek W, Juras G, Słomka KJ, Król P. A preliminary investigation into the impact of shock wave therapy and sonotherapy on postural control of stepping tasks in patients with Achilles tendinopathy. Front Neurol 2023; 14:1157335. [PMID: 37332988 PMCID: PMC10272772 DOI: 10.3389/fneur.2023.1157335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Objective The outcomes of physical therapy are commonly assessed with subjective scales and questionnaires. Hence, a continuous search to identify diagnostic tests that would facilitate objective assessment of symptom reduction in those patients with Achilles tendinopathy who undergo mechanotherapy. The main aim of this study was to evaluate and compare the effectiveness of shock wave and ultrasound treatments, using objective posturographic assessment during step-up and step-down initiation. Materials and methods The patients with non-insertional Achilles tendinopathy and pain lasting for more than 3 months were randomly assigned to one of the experimental groups, i.e., radial shock wave therapy (RSWT), ultrasound therapy, or placebo ultrasound. All groups also received deep friction massage as the primary therapy. The transitional locomotor task was performed with the affected and unaffected limb in random order, on two force platforms under two conditions (step-up and step-down). The recording of center of foot pressure displacements was divided into three phases: quiet standing before step-up/step-down, transit, and quiet standing until measurement completion. Pre-intervention measurements were performed and then short-term follow-ups at weeks 1 and 6 post-therapy. Results The three-way repeated measures ANOVA showed few statistically significant two-factor interactions between therapy type, time point of measurement and the type of the locomotor task. Significant increases in postural sway were observed in the entire study population throughout the follow-up period. Three-way ANOVAs revealed a group effect (shock wave vs. ultrasound) on almost all variables of the quiet standing phase prior to step-up/step-down initiation. Overall, postural stability before the step-up and step-down tasks appeared to be more efficient in patients who had undergone RSWT compared to the ultrasound group. Conclusion Objective posturographic assessment during step-up and step-down initiation did not demonstrate therapeutic superiority of any of the three therapeutic interventions used in patients with non-insertional Achilles tendinopathy.Clinical Trial Registration: The trial was prospectively registered in the Australian and New Zealand Clinical Trials Registry (no. ACTRN12617000860369; registration date: 9.06.2017).
Collapse
|
35
|
Xiao X, Meng X, Kim D, Jeon S, Park BJ, Cho DS, Lee DM, Kim SW. Ultrasound-Driven Injectable and Fully Biodegradable Triboelectric Nanogenerators. SMALL METHODS 2023; 7:e2201350. [PMID: 36908016 DOI: 10.1002/smtd.202201350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Indexed: 06/09/2023]
Abstract
Implantable medical devices (IMDs) provide practical approaches to monitor physiological parameters, diagnose diseases, and aid treatment. However, device installation, maintenance, and long-term implantation increase the risk of infection with conventional IMDs. Therefore, medical devices with biocompatibility, controllability, and miniaturization are highly demandable. An ultrasound-driven, biodegradable, and injectable triboelectric nanogenerator (I-TENG) is demonstrated to reduce the risks of implant-related injuries and infections. The injection can be given by subcutaneous injection with a needle to minimize the implantation incision. The stable output of I-TENG is driven by ultrasound (20 kHz, 1 W cm-2 ), with a voltage of 356.8 mV and current of 1.02 µA during in vivo studies and an electric field of about 0.92 V mm-1 during ex vivo experiments. The cell scratch and proliferation assays showed that the delivered electric field effectively increased cell migration and proliferation, indicating a significant potential to accelerate healing with electricity.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xiangchun Meng
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dabin Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sera Jeon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byung-Joon Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Daniel Sanghyun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dong-Min Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sang-Woo Kim
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
36
|
Wang Y, Zhang Z, Ren L, Luo Y, Wang Q, Zou J. Dual mode imaging guided multi-functional bio-targeted oxygen production probes for tumor therapy. J Nanobiotechnology 2023; 21:142. [PMID: 37120558 PMCID: PMC10148460 DOI: 10.1186/s12951-023-01901-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
Focused ultrasound ablation surgery (FUAS) is a novel therapy with a wide range of potential applications. However, synergists are crucial to the therapy process due to the ultrasonic energy's attenuation properties. As a result of the complex hypoxic environment in the tumor area and many factors, the existing synergists have limitations such as weak targeting, single imaging mode, and easy tumor recurrence after treatment. Because of the above deficiencies, this study intends to construct bio-targeted oxygen production probes consisting of Bifidobacterium that naturally target the hypoxia region of the tumor and multi-functional oxygen-producing nanoparticles equipped with IR780, perfluorohexane (PFH), CBP (carboplatin), and oxygen. The probes are expected to achieve targeted and synergistic FUAS therapy and dual-mode imaging to mediate tumor diagnosis and treatment. The oxygen and drugs carried in it are accurately released after FUAS stimulation, which is expected to alleviate tumor hypoxia, avoid tumor drug resistance, improve the effect of chemotherapy, and realize FUAS combined with chemotherapy antitumor therapy. This strategy is expected to make up for the deficiencies of existing synergists, improve the effectiveness and safety of treatment, and provide the foundation for future tumor therapy progress.
Collapse
Affiliation(s)
- Yaotai Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhong Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Li Ren
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
37
|
Hu S, Zhang X, Melzer A, Landgraf L. Ultrasound-induced cavitation renders prostate cancer cells susceptible to hyperthermia: Analysis of potential cellular and molecular mechanisms. Front Genet 2023; 14:1122758. [PMID: 37152995 PMCID: PMC10154534 DOI: 10.3389/fgene.2023.1122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Focused ultrasound (FUS) has become an important non-invasive therapy for prostate tumor ablation via thermal effects in the clinic. The cavitation effect induced by FUS is applied for histotripsy, support drug delivery, and the induction of blood vessel destruction for cancer therapy. Numerous studies report that cavitation-induced sonoporation could provoke multiple anti-proliferative effects on cancer cells. Therefore, cavitation alone or in combination with thermal treatment is of great interest but research in this field is inadequate. Methods: Human prostate cancer cells (LNCap and PC-3) were exposed to 40 s cavitation using a FUS system, followed by water bath hyperthermia (HT). The clonogenic assay, WST-1 assay, and Transwell® invasion assay, respectively, were used to assess cancer cell clonogenic survival, metabolic activity, and invasion potential. Fluorescence microscopy using propidium iodide (PI) as a probe of cell membrane integrity was used to identify sonoporation. The H2A.X assay and Nicoletti test were conducted in the mechanism investigation to detect DNA double-strand breaks (DSBs) and cell cycle arrest. Immunofluorescence microscopy and flow cytometry were performed to determine the distribution and expression of 5α-reductase (SRD5A). Results: Short FUS shots with cavitation (FUS-Cav) in combination with HT resulted in, respectively, a 2.2, 2.3, and 2.8-fold decrease (LNCap) and a 2.0, 1.5, and 1.6-fold decrease (PC-3) in the clonogenic survival, cell invasiveness and metabolic activity of prostate cancer cells when compared to HT alone. FUS-Cav immediately induced sonoporation in 61.7% of LNCap cells, and the combination treatment led to a 1.4 (LNCap) and 1.6-fold (PC-3) increase in the number of DSBs compared to HT alone. Meanwhile, the combination therapy resulted in 26.68% of LNCap and 31.70% of PC-3 with cell cycle arrest in the Sub-G1 phase and 35.37% of PC-3 with cell cycle arrest in the G2/M phase. Additionally, the treatment of FUS-Cav combined with HT block the androgen receptor (AR) signal pathway by reducing the relative Type I 5α-reductase (SRD5A1) level to 38.28 ± 3.76% in LNCap cells, and decreasing the relative Type III 5α-reductase 3 (SRD5A3) level to 22.87 ± 4.88% in PC-3 cells, in contrast, the relative SRD5A level in untreated groups was set to 100%. Conclusion: FUS-induced cavitation increases the effects of HT by interrupting cancer cell membranes, inducing the DSBs and cell cycle arrest, and blocking the AR signal pathway of the prostate cancer cells, with the potential to be a promising adjuvant therapy in prostate cancer treatment.
Collapse
Affiliation(s)
- Shaonan Hu
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Xinrui Zhang
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
- Institute for Medical Science and Technology (IMSaT), University of Dundee, Dundee, United Kingdom
| | - Lisa Landgraf
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Rousso B, Winetraub N, Rippin B, Albrecht M, Butter C. Prolonged Low-Intensity Ultrasound Delivery as Potential Kidneys Treatment for Acutely Decompensated Heart Failure Patients. JACC Basic Transl Sci 2023; 8:389-391. [PMID: 37138810 PMCID: PMC10149647 DOI: 10.1016/j.jacbts.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Benny Rousso
- Renal Innovation Ltd, 1 Hamada Street, Rehovot 7670301, Israel
| | | | | | | | | |
Collapse
|
39
|
Edwards IA, De Carlo F, Sitta J, Varner W, Howard CM, Claudio PP. Enhancing Targeted Therapy in Breast Cancer by Ultrasound-Responsive Nanocarriers. Int J Mol Sci 2023; 24:ijms24065474. [PMID: 36982548 PMCID: PMC10053544 DOI: 10.3390/ijms24065474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Currently, the response to cancer treatments is highly variable, and severe side effects and toxicity are experienced by patients receiving high doses of chemotherapy, such as those diagnosed with triple-negative breast cancer. The main goal of researchers and clinicians is to develop new effective treatments that will be able to specifically target and kill tumor cells by employing the minimum doses of drugs exerting a therapeutic effect. Despite the development of new formulations that overall can increase the drugs’ pharmacokinetics, and that are specifically designed to bind overexpressed molecules on cancer cells and achieve active targeting of the tumor, the desired clinical outcome has not been reached yet. In this review, we will discuss the current classification and standard of care for breast cancer, the application of nanomedicine, and ultrasound-responsive biocompatible carriers (micro/nanobubbles, liposomes, micelles, polymeric nanoparticles, and nanodroplets/nanoemulsions) employed in preclinical studies to target and enhance the delivery of drugs and genes to breast cancer.
Collapse
Affiliation(s)
- Isaiah A. Edwards
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William Varner
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| |
Collapse
|
40
|
Hersey E, Rodriguez M, Johnsen E. Dynamics of an oscillating microbubble in a blood-like Carreau fluid. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1836. [PMID: 37002083 DOI: 10.1121/10.0017342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/03/2023] [Indexed: 06/19/2023]
Abstract
A numerical model for cavitation in blood is developed based on the Keller-Miksis equation for spherical bubble dynamics with the Carreau model to represent the non-Newtonian behavior of blood. Three different pressure waveforms driving the bubble oscillations are considered: a single-cycle Gaussian waveform causing free growth and collapse, a sinusoidal waveform continuously driving the bubble, and a multi-cycle pulse relevant to contrast-enhanced ultrasound. Parameters in the Carreau model are fit to experimental measurements of blood viscosity. In the Carreau model, the relaxation time constant is 5-6 orders of magnitude larger than the Rayleigh collapse time. As a result, non-Newtonian effects do not significantly modify the bubble dynamics but do give rise to variations in the near-field stresses as non-Newtonian behavior is observed at distances 10-100 initial bubble radii away from the bubble wall. For sinusoidal forcing, a scaling relation is found for the maximum non-Newtonian length, as well as for the shear stress, which is 3 orders of magnitude larger than the maximum bubble radius.
Collapse
Affiliation(s)
- Eric Hersey
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mauro Rodriguez
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
41
|
Figueredo CA, Le LH, Nguyen KC, La TG, Lou EHM, Kaipatur NR, Lai H, Gibson MP, Flores-Mir C, Major PW, Almeida FT. Ultrasound Imaging of the Periodontium Complex: A Reliability Study. Int J Dent 2023; 2023:5494429. [PMID: 36845629 PMCID: PMC9949946 DOI: 10.1155/2023/5494429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background Ultrasonography is a noninvasive, low-cost diagnostic tool widely used in medicine. Recent studies have demonstrated that ultrasound imaging might have the potential to be used intraorally to assess periodontal biomarkers. Objectives To evaluate the reliability of interlandmark distance measurements on intraoral ultrasound images of the periodontal tissues. Materials and Methods Sixty-four patients from the graduate periodontics (n = 33) and orthodontics (n = 31) clinics were recruited. A 20 MHz handheld intraoral ultrasound transducer was used to scan maxillary and mandibular incisors, canines, and premolars. Distances between the alveolar bone crest and cementoenamel junction (ABC-CEJ), gingival thickness (GT), and alveolar bone thickness (ABT) were measured by 3 raters. The intercorrelation coefficient (ICC) and mean absolute deviation (MAD) were calculated among and between the raters. Raters also scored images according to quality. Results The ICC scores for intrarater reliability were 0.940 (0.932-0.947), 0.953 (0.945-0.961), and 0.859 (0.841-0.876) for ABC-CEJ, GT, and ABT, respectively. The intrarater MAD values were 0.023 (±0.019) mm, 0.014 (±0.005) mm, and 0.005 (±0.003) mm, respectively. The ICC scores for interrater reliability were 0.872 (95% CI: 0.836-0.901), 0.958 (95% CI: 0.946-0.968), and 0.836 (95% CI: 0.789-0.873) for ABC-CEJ, GT, and ABT, respectively. The interrater MAD values were 0.063 (±0.029) mm, 0.023 (±0.018) mm, and 0.027 (±0.012) mm, respectively. Conclusions The present study showed the high reliability of ultrasound in both intrarater and interrater assessments. Results suggest there might be a potential use of intraoral ultrasound to assess periodontium.
Collapse
Affiliation(s)
- Carlos Alberto Figueredo
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lawrence H. Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Kim Cuong Nguyen
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Thanh-Giang La
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Edmond H. M. Lou
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Neelambar R. Kaipatur
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hollis Lai
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Monica P. Gibson
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Carlos Flores-Mir
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul W. Major
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Fabiana T. Almeida
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
42
|
Reza MT, Moubarak NNI, Islam MR, Khan MRH, Nishat MM. Optimization of breast cancer ablation volume by ultrasonic pressure field characterization. SENSING AND BIO-SENSING RESEARCH 2023. [DOI: 10.1016/j.sbsr.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
43
|
An J, Hong H, Won M, Rha H, Ding Q, Kang N, Kang H, Kim JS. Mechanical stimuli-driven cancer therapeutics. Chem Soc Rev 2023; 52:30-46. [PMID: 36511945 DOI: 10.1039/d2cs00546h] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mechanical stimulation utilizing deep tissue-penetrating and focusable energy sources, such as ultrasound and magnetic fields, is regarded as an emerging patient-friendly and effective therapeutic strategy to overcome the limitations of conventional cancer therapies based on fundamental external stimuli such as light, heat, electricity, radiation, or microwaves. Recent efforts have suggested that mechanical stimuli-driven cancer therapy (henceforth referred to as "mechanical cancer therapy") could provide a direct therapeutic effect and intelligent control to augment other anti-cancer systems as a synergistic combinational cancer treatment. This review article highlights the latest advances in mechanical cancer therapy to present a novel perspective on the fundamental principles of ultrasound- and magnetic field-mediated mechanical forces, including compression, tension, shear force, and torque, that can be generated in a cellular microenvironment using mechanical stimuli-activated functional materials. Additionally, this article will shed light on mechanical cancer therapy and inspire future research to pursue the development of ultrasound- and magnetic-field-activated materials and their applications in this field.
Collapse
Affiliation(s)
- Jusung An
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
44
|
Effect of Therapeutic Ultrasound on the Mechanical and Biological Properties of Fibroblasts. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
This paper explores the effect of therapeutic ultrasound on the mechanical and biological properties of ligament fibroblasts.
Methods and Results
We assessed pulsed ultrasound doses of 1.0 and 2.0 W/cm2 at 1 MHz frequency for five days on ligament fibroblasts using a multidisciplinary approach. Atomic force microscopy showed a decrease in cell elastic modulus for both doses, but the treated cells were still viable based on flow cytometry. Finite element method analysis exhibited visible cytoskeleton displacements and decreased harmonics in treated cells. Colorimetric assay revealed increased cell proliferation, while scratch assay showed increased migration at a low dose. Enzyme-linked immunoassay detected increased collagen and fibronectin at a high dose, and immunofluorescence imaging technique visualized β-actin expression for both treatments.
Conclusion
Both doses of ultrasound altered the fibroblast mechanical properties due to cytoskeletal reorganization and enhanced the regenerative and remodeling stages of cell repair.
Lay Summary
Knee ligament injuries are a lesion of the musculoskeletal system frequently diagnosed in active and sedentary lifestyles in young and older populations. Therapeutic ultrasound is a rehabilitation strategy that may lead to the regenerative and remodeling of ligament wound healing. This research demonstrated that pulsed therapeutic ultrasound applied for 5 days reorganized the ligament fibroblasts structure to increase the cell proliferation and migration at a low dose and to increase the releasing proteins that give the stiffness of the healed ligament at a high dose.
Future Works
Future research should further develop and confirm that therapeutic ultrasound may improve the regenerative and remodeling stages of the ligament healing process applied in clinical trials in active and sedentary lifestyles in young and older populations.
Graphical abstract
Collapse
|
45
|
Moussadikine I, Nguyễn MV, Nich C, Arrigoni PP, Quinette Y, Crenn V. MRI Bone Abnormality of the Knee following Ultrasound Therapy: Case Report and Short Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14202. [PMID: 36361081 PMCID: PMC9654887 DOI: 10.3390/ijerph192114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound (US) therapy in sports and medical pathologies is widely used by many physiotherapists and sports medicine clinicians; however, data regarding their potential side effects remain rare. We report a case of a 21-year-old woman with iliotibial band (ITB) syndrome treated with a physiotherapy session combined with US therapy. She had twenty 7 min US sessions on the knee, for 3 months (US at 1 Mhz with an intensity between 1 and 2 W/cm2). Due to persistence of the ITB syndrome's symptomatology after the 3 months of physiotherapy sessions, an MRI (magnetic resonance imaging) was carried out and revealed osteonecrosis-like bone abnormalities on the external femoral condyle, the external tibial plateau, and the proximal fibula. In view of these lesions, the ultrasonic therapy was stopped, and a repeat MRI demonstrated the progressive disappearance of these imaging abnormalities one year after the last US (ultrasound) treatment. In light of this case, we propose here a short review of reported osseous "osteonecrosis" abnormalities associated with US therapies.
Collapse
Affiliation(s)
- Ismaël Moussadikine
- Orthopedic and Traumatology Unit, Nantes University Hospital, 1 Place Alexis Ricordeau, 44000 Nantes, France
| | - Mỹ-Vân Nguyễn
- Orthopedic and Traumatology Unit, Nantes University Hospital, 1 Place Alexis Ricordeau, 44000 Nantes, France
| | - Christophe Nich
- Orthopedic and Traumatology Unit, Nantes University Hospital, 1 Place Alexis Ricordeau, 44000 Nantes, France
- INSERM, UMRS 1229, Regenerative Medicine and Skeleton (RMeS), Nantes Université, ONIRIS, 44042 Nantes, France
| | - Pierre-Paul Arrigoni
- Radiology Department, Nantes University Hospital, 1 Place Alexis Ricordeau, 44000 Nantes, France
| | - Yonis Quinette
- Orthopedic and Traumatology Unit, Nantes University Hospital, 1 Place Alexis Ricordeau, 44000 Nantes, France
| | - Vincent Crenn
- Orthopedic and Traumatology Unit, Nantes University Hospital, 1 Place Alexis Ricordeau, 44000 Nantes, France
- CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers), INSERM UMR 1307, CNRS UMR 6075-Team 9 CHILD (Chromatin and Transcriptional Deregulation in Pediatric Bone Sarcoma), Nantes Université, 1 rue Gaston Veil, 44035 Nantes, France
| |
Collapse
|
46
|
Du M, Li Y, Zhang Q, Zhang J, Ouyang S, Chen Z. The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:41-49. [PMID: 35764177 DOI: 10.1016/j.pbiomolbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Li
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuming Ouyang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
47
|
Sotiriou M, Yiannakou M, Damianou C. Investigating atherosclerotic plaque phantoms for ultrasound therapy. J Ultrasound 2022; 25:709-720. [PMID: 35098435 PMCID: PMC9402861 DOI: 10.1007/s40477-022-00658-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of the proposed study was to conduct a feasibility study using a flat rectangular (2 × 10 mm2) transducer operating at 4.0 MHz for creating thermal lesions in an arterial atherosclerotic plaque phantom. The proposed method can be used in the future for treating atherosclerotic plaques in human arteries. MATERIALS AND METHODS The flat rectangular transducer was firstly assessed in agar/silica evaporated milk phantom, polyacrylamide phantom and freshly excised turkeytissue phantom. Then, the same transducer was assessed in an arterial atherosclerotic plaque phantom which was created in the laboratory with a very low cost. The recipe of the atherosclerotic plaque phantom was 4% w/v agar, 1% w/v gypsum, 2% w/v butter and 93% water. The amount of plaque removal was evaluated visually and using an X-Ray system. RESULTS It was shown that the flat rectangular transducer can create thermal lesions on the agar/silica evaporated milk phantom, polyacrylamide phantom and in excised tissue. The size of the lesions matches the geometry of the transducer. Moreover, this transducer destroyed 27.1% of the atherosclerotic plaque phantom with 8 W acoustical power and 30 s duration. CONCLUSIONS This feasibility study demonstrated that atherosclerotic plaque can be destroyed using a very small flat rectangular (2 × 10 mm2) transducer in a very small time interval of 30 s. In future clinical trials the transducer will be incorporated in a catheter which will be inserted intravascular (1-3 mm) wide and can be used to treat atherosclerotic plaques in the coronary arteries.
Collapse
Affiliation(s)
- Michalis Sotiriou
- Electrical Engineering Department, Cyprus University of Technology, 30 Archbishop Kyprianos Street, 3036 Limassol, Cyprus
| | - Marinos Yiannakou
- Electrical Engineering Department, Cyprus University of Technology, 30 Archbishop Kyprianos Street, 3036 Limassol, Cyprus
| | - Christakis Damianou
- Electrical Engineering Department, Cyprus University of Technology, 30 Archbishop Kyprianos Street, 3036 Limassol, Cyprus
| |
Collapse
|
48
|
Yang J, Li Y, Sun J, Zou H, Sun Y, Luo J, Xie Q, A R, Wang H, Li X, Wang K, Yang L, Ma T, Wu L, Sun X. An Osimertinib-Perfluorocarbon Nanoemulsion with Excellent Targeted Therapeutic Efficacy in Non-small Cell Lung Cancer: Achieving Intratracheal and Intravenous Administration. ACS NANO 2022; 16:12590-12605. [PMID: 35863049 DOI: 10.1021/acsnano.2c04159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low accumulation of anticancer drugs in tumors and serious systemic toxicity remain the main challenges to the clinical efficiency of pharmaceuticals. Pulmonary delivery of nanoscale-based drug delivery systems offered a strategy to increase antitumor activity with minimal adverse exposure. Herein, we report an osimertinib-loaded perfluoro-15-crown-5-ether (AZD9291-PFCE) nanoemulsion, through intratracheal and intravenous delivery, synergizes with 19F magnetic resonance imaging (19F MRI)-guided low-intensity focused ultrasound (LIFU) for lung cancer therapy. Pulmonary delivery of AZD9291-PFCE nanoemulsion in orthotopic lung carcinoma models achieves quick distribution of the nanoemulsion in lung tissues and tumors without short-term and long-term toxic effects. Furthermore, LIFU can trigger drug release from the AZD9291-PFCE nanoemulsion and specifically increases tumor vascular and tumor tissue permeability. 19F MRI was applied to quantify nanoemulsion accumulation in tumors in real time after LIFU irradiation. We validate the treatment effect of AZD9291-PFCE nanoemulsion in resected human lung cancer tissues, proving the translational potential to enhance clinical outcomes of lung cancer therapy. Thus, this work presents a promising pulmonary nanoemulsion delivery system of osimertinib (AZD9291) for targeted therapy of lung cancer without severe side effects.
Collapse
Affiliation(s)
- Jie Yang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Yingbo Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Jiemei Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Hongyan Zou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Yige Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Jing Luo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Qian Xie
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Rong A
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Xiaona Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Lili Yang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Teng Ma
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, Guangdong, China
| | - Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 150028 Harbin, Heilongjiang, China
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 150028 Harbin, Heilongjiang, China
| |
Collapse
|
49
|
Man VH, He X, Wang J. Stable Cavitation Interferes with Aβ 16-22 Oligomerization. J Chem Inf Model 2022; 62:3885-3895. [PMID: 35920625 DOI: 10.1021/acs.jcim.2c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrasound and microbubbles are used for many medical applications nowadays. Scanning ultrasound can remove amyloid-β (Aβ) aggregates in the mouse brain and restores memory in an Alzheimer's disease mouse model. In vitro studies showed that amyloid fibrils are fragmented due to the ultrasound-induced bubble inertial cavitation, and ultrasonic pulses accelerate the depolymerization of Aβ fibrils into monomers at 1 μM of concentration. Under applied ultrasound, microbubbles can be in a stable oscillating state or unstable inertial cavitation state. The latter occurs when ultrasound causes a dramatic change of bubble sizes above a certain acoustic pressure. We have developed and implemented a nonequilibrium molecular dynamics simulation algorithm to the AMBER package, to facilitate the investigation of the molecular mechanism of Aβ oligomerization under stable cavitation. Our results indicated that stable cavitation not only inhibited oligomeric formation, but also prevented the formation of β-rich oligomers. The network analysis of state transitions revealed that stable cavitation altered the oligomerization pathways of Aβ16-22 peptides. Our simulation tool may be applied to optimize the experimental conditions to achieve the best therapeutical effect.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
50
|
Smith M, Khan S, Curiel L. Investigation of hardware and software techniques to enhance the characteristics of focused ultrasound (FUS) spectra. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Microbubble cavitation generated by focused ultrasound (FUS) can induce safe blood-brain-barrier (BBB) opening allowing therapeutic drug passage. Spectral changes in the hydrophone sensor signal are currently used to distinguish stable cavitation from inertial cavitation that can damage the BBB. Gibbs’ ringing, peak intensity loss and peak width increase are well-known distortions evident when using the discrete Fourier transform (DFT) to transform data containing a few hundred points. We investigate overcoming the fact that FUS time signals (10 ms providing 312 500 points sampled at 32 ns intervals) can generate such sharp spectral peaks that variations in their DFT-related distortions can significantly impact the values of the key metrics used for cavitation characterization. Approach. We introduce low-pass filter hardware to improve how the analogue to digital convertor handles high-frequency noise components and the orders of magnitude differences between FUS harmonic intensities. We investigate the enhanced FUS spectral stability and resolution obtained from a new technique, physical sparsification (PH-SP), customized to the a-priori information that all key FUS components are harmonically related. Results are compared with standard DFT optimizations involving time data windowing and Fourier interpolation. Main results. A new simulation model showed peak intensity, widths and metrics modified by small changes in the transformed signal’s length when removing the noisy starting transient of the FUS hydrophone signal or following minor excitation frequency or sampling rate adjustments. 25%–60% area-under-the-curve changes occurred in phantom studies at different pressure levels. Spectral peak sharpness was best optimized and stabilized with PH-SP. Significance. Special FUS characteristics mean starting transients and minor variations in experimental procedures lead to significant changes in the spectral metrics used to monitor cavitation levels. Customizing PH-SP to these characteristics led to sharper, more stable spectra with the potential to track the impact of microbubble environment changes.
Collapse
|