1
|
Liao N, Li F, Huang X, Zhang Y. Synthesis of ZIF-8/chitosan composites for Cu 2+ removal from water. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39258839 DOI: 10.1080/09593330.2024.2401158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
In this work, a kind of novel Chitosan (Cs)-doped zeolite imidazole framework (ZIF-8@Cs) with a larger surface area and a smaller pore size was synthesised via a facial solvothermal approach and applied to remove Cu2+ from mine wastewater. Compared to nondoped ZIF-8, ZIF-8@Cs exhibited a stronger adsorption performance and removal efficiency. The reason was that ZIF-8@Cs doped by the Cs could suppress the aggregation and increase the monodispersity of ZIF-8. Using the high-performance ZIF-8@Cs, as a novel adsorbent, was successfully developed for the efficient removal of Cu2+ from mine wastewater. Various parameters, such as contact time, initial Cu2+ concentration, adsorbent dosage, and pH, were investigated. The results showed that a removal efficiency of 85% was obtained at 4 h contact time for a Cu2+ concentration of 30 mg/L at the optimum pH of 6.0. Equilibrium data were analysed using different isothermal models and kinetic models, analytic results indicated that the capture of Cu2+ by ZIF-8@Cs could favourably comply with the pseudo-first-order kinetic model and Langmuir isotherm model. The single-layer adsorption of Cu2+ on ZIF-8@Cs was dominated by diffusional mass transfer. Additionally, the results of the thermodynamic analysis indicated that the adsorption of Cu2+ by ZIF-8/Cs was a spontaneous, exothermic, and ordered process. Overall, the results reported herein indicated that ZIF-8/Cs with high adsorption efficiency are very attractive and imply a potential practical application for the removal of potentially toxic elements in wastewater.
Collapse
Affiliation(s)
- Ni Liao
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, People's Republic of China
| | - Furong Li
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, People's Republic of China
| | - Xiuli Huang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, People's Republic of China
| | - Yi Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, People's Republic of China
| |
Collapse
|
2
|
Shaikh B, Bhatti MA, Shah AA, Tahira A, Shah AK, Usto A, Aftab U, Bukhari SI, Alshehri S, Shah Bukhari SNU, Tonezzer M, Vigolo B, Ibhupoto ZH. Mn 3O 4@ZnO Hybrid Material: An Excellent Photocatalyst for the Degradation of Synthetic Dyes including Methylene Blue, Methyl Orange and Malachite Green. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3754. [PMID: 36364529 PMCID: PMC9657031 DOI: 10.3390/nano12213754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, we synthesized hybrid systems based on manganese oxide@zinc oxide (Mn3O4@ZnO), using sol gel and hydrothermal methods. The hybrid materials exhibited hierarchical morphologies and structures characterized by the hexagonal phase of ZnO and the tetragonal phase of Mn3O4. The hybrid materials were tested for degradation of methylene blue (MB), methyl orange (MO), and malachite green (MG) under ultraviolet (UV) light illumination. The aim of this work was to observe the effect of various amounts of Mn3O4 in enhancing the photocatalytic properties of ZnO-based hybrid structures towards the degradation of MB, MO and MG. The ZnO photocatalyst showed better performance with an increasing amount of Mn3O4, and the degradation efficiency for the hybrid material containing the maximum amount of Mn3O4 was found to be 94.59%, 89.99%, and 97.40% for MB, MO and MG, respectively. The improvement in the performance of hybrid materials can be attributed to the high charge separation rate of electron-hole pairs, the co-catalytic role, the large number of catalytic sites, and the synergy for the production of high quantities of oxidizing radicals. The performance obtained from the various Mn3O4@ZnO hybrid materials suggest that Mn3O4 can be considered an effective co-catalyst for a wide range of photocatalytic materials such as titanium dioxide, tin oxide, and carbon-based materials, in developing practical hybrid photocatalysts for the degradation of dyes and for wastewater treatment.
Collapse
Affiliation(s)
- Benazir Shaikh
- Institute of Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Muhammad Ali Bhatti
- Institute of Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Abdul Karim Shah
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Azam Usto
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro 7680, Pakistan
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Nizam Uddin Shah Bukhari
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, School of Material Science, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Basic Science and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Matteo Tonezzer
- IMEM-CNR, Sede di Trento-FBK, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Brigitte Vigolo
- Institut Jean Lamour, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | | |
Collapse
|
3
|
Kinetics and Thermodynamics of β-Carotene Adsorption onto Acid-Activated Clays Modified by Zero Valent Iron. J CHEM-NY 2022. [DOI: 10.1155/2022/6505556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The adsorption of β-carotene from crude palm oil onto acid-activated clay and clay modified by zero valent iron (ZVI) was investigated in this work. Spectroscopic studies including FTIR, XRD, and SEM were used for its characterization. The adsorption characteristics such as kinetics, mechanism, isotherms, and thermodynamics of β-carotene were studied. The kinetic data were analyzed using the pseudo-first-order kinetic equation, pseudo-second-order kinetic equation, and intraparticle diffusion model. The pseudo-second-order kinetic model is the only one that describes the experimental data well (R2 ≥ 0.969). The chemical analysis of bulk clay showed that the predominant oxides are Al2O3 (57.91 wt%), Fe2O3 (32.54 wt%), SiO2 (3.09 wt%), K2O (2.37 wt%), and CaO2 (1.73 wt%). The adsorption capacity increases with an increase in temperature. The equilibrium data were described better by the Freundlich model for all clays. To determine the best fit kinetic model for each system, three error analysis methods, namely, chi-square (χ2), residual mean squared error (RMSE), and mean percent error (%APE) were used to evaluate the data. A thermodynamic study demonstrated that β-carotene adsorption is spontaneous, endothermic, and an entropy driven process for both forms of clay.
Collapse
|
4
|
A novel fabricated polyvinyl alcohol/ bentonite nanocomposite hydrogel generated into colloidal gas aphron. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Essawy AA, Abdel-Farid IB. Hybrid solvothermal/sonochemical-mediated synthesis of ZnO NPs generative of OH radicals: Photoluminescent approach to evaluate OH scavenging activity of Egyptian and Yemeni Punica granatum arils extract. ULTRASONICS SONOCHEMISTRY 2022; 89:106152. [PMID: 36055013 PMCID: PMC9445396 DOI: 10.1016/j.ultsonch.2022.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Zinc oxide NPs were synthesized solvothermally within sonochemical mediation and characterized by XRD, FTIR, SEM, EDX, elemental mapping, TEM and UV-vis. spectrophotometry. To evaluate the hydroxyl radicals (OH) scavenging activity of arils extract of Egyptian (EGY-PAM) and Yemeni Punica granatum (YEM-PAM), the developed zinc oxide nano particles (ZnO NPs) as a highly productive source of hydroxyl radicals (under Solar-illumination) was used. The yield of OH was trapped and probed via fluorimetric monitoring. This suits the first sensitive/selective photoluminescent avenue to evaluate the OH scavenging activity. The high percentage of DPPH radical scavenging reflected higher contents of phenolics, flavonoids, and anthocyanins that were found in EGY-PAM and YEM-PAM. Although, some secondary metabolites contents were significantly different in EGY-PAM and YEM-PAM, the traditional DPPH radical scavenging methodology revealed insignificant IC50. Unlike, the developed fluorimetric probing, sensitively discriminated the OH scavenging activity with IC50 (105.7 µg/mL) and lower rate of OH productivity (k = 0.031 min-1) in case of EGY-PAM in comparison to IC50 (153.4 µg/mL) and higher rate of OH productivity (k = 0.053 min-1) for YEM-PAM. Our findings are interestingly superior to the TBHQ that is synthetic antioxidant. Moreover, our developed methodology for fluorimetric probing of OH radicals scavenging, recommends EGY-PAM as OH radicals scavenger for diabetic patients while YEM-PAM exhibited a better OH radicals scavenging appropriate for high blood pressure patients. More interestingly, EGY-PAM and YEM-PAM exhibited high anticancer potentiality. The aforementioned OH and DPPH scavenging activities as well as the anticancer potentiality present EGY-PAM and YEM-PAM as promising sources of natural antioxidants, that may have crucial roles in some chronic diseases such as diabetics and hypertension in addition to cancer therapeutic protocols.
Collapse
Affiliation(s)
- Amr A Essawy
- Chemistry Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia; Chemistry Department, Faculty of Science, Fayoum University, 63514 Fayoum, Egypt.
| | - Ibrahim B Abdel-Farid
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia; Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| |
Collapse
|
6
|
Ligustrum lucidum Leaf Extract-Assisted Green Synthesis of Silver Nanoparticles and Nano-Adsorbents Having Potential in Ultrasound-Assisted Adsorptive Removal of Methylene Blue Dye from Wastewater and Antimicrobial Activity. MATERIALS 2022; 15:ma15051637. [PMID: 35268867 PMCID: PMC8911476 DOI: 10.3390/ma15051637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 01/02/2023]
Abstract
Present study was conducted to investigate the adsorption and ultrasound-assisted adsorption potential of silver nanoparticles (AgNPs) and silver nanoparticles loaded on chitosan (AgCS composite) as nano-adsorbents for methylene blue (MB) removal. AgNPs were synthesized using leaf extract of Ligustrum lucidum, which were incorporated on the chitosan’s surface for modification. UV−Vis Spectroscopy, FTIR, XRD, SEM, and EDX techniques were used to confirm the synthesis and characterization of nanomaterials. Batch adsorption and sono-adsorption experiments for the removal of MB were executed under optimal conditions; for fitting the experimental equilibrium data, Langmuir and Freundlich’s isotherm models were adopted. In addition, the antimicrobial potential of the AgNPs and AgCS were examined against selected bacterial and fungal strains. UV−Vis spectroscopy confirmed AgNPs synthesis from the leaf extract of L. lucidum used as a reducer, which was spherical as exposed in the SEM analysis. The FTIR spectrum illustrated phytochemicals in the leaf extract of L. lucidum functioning as stabilizing agents around AgNPs and AgCS. Whereas, corresponding crystalline peaks of nanomaterial, including a signal peak at 3 keV indicating the presence of silver, were confirmed by XRD and EDX. The Langmuir model was chosen as an efficient model for adsorption and sono-adsorption, which exposed that under optimum conditions (pH = 6, dye initial concentration = 5 mg L−1, adsorbents dosage = 0.005 g, time = 120 min, US power 80 W), MB removal efficiency of AgNPs was >70%, using ultrasound-assisted adsorption compared to the non-sonicated adsorption. Furthermore, AgNPs exhibited promising antibacterial potential against Staphylococcus aureus with the maximum zone of inhibition (14.67 ± 0.47 mm). It was concluded that the green synthesis approach for the large-scale production of metallic nanoparticles is quite effective and can be recommended for efficient and cost-effective way to eradicate dyes, particularly from textile wastewater.
Collapse
|
7
|
Kaur Y, Jasrotia T, Kumar R, Chaudhary GR, Chaudhary S. Adsorptive removal of eriochrome black T (EBT) dye by using surface active low cost zinc oxide nanoparticles: A comparative overview. CHEMOSPHERE 2021; 278:130366. [PMID: 33831687 DOI: 10.1016/j.chemosphere.2021.130366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
The ecological toxicity imparted by non-biodegradable organic dyes has been considered as a major risk to handle in front of mankind. In this view, the low-cost zinc oxide nanoparticles (ZnO-NPs) were facially synthesized by coating the surface with surfactant (CTAB) and ionic liquid (BMTF) molecules for the effective removal of Eriochrome Black T (EBT) from aqueous media. Various advanced characterization techniques have given insight into the morphological features, crystalline structure and physio-chemical properties of as-synthesized ZnO-NPs. The systematic analysis of the adsorption isotherms and kinetics models specifies that the adsorption of EBT follow Freundlich model and pseudo-second-order kinetics. The intraparticle diffusion model displayed a linear relationship (R2 = 0.98, 0.97 and 0.94 for BMTF@ZnO, CTAB@ZnO and bare ZnO-NPs), which shows that pore diffusion rate is affected by surface modification and effects the overall EBT adsorption process. Furthermore, after the removal of 87% and 84% of EBT dye by BMTF@ZnO-NPs and CTAB@ZnO-NPs, the fabricated nanoadsorbents of ZnO were successfully regenerated and reused after the treatments up to four times. The adsorption aptitude of ZnO-NPs towards EBT dye was systematically explored in real wastewater samples and interference study of inorganic metallic salts was also performed. The toxicity estimations of the treated dye solutions were made using floral and fungal activities, to ascertain their non-toxic nature before releasing into the environment. These outcomes have supported the immense potential of ZnO-NPs towards the removal of EBT in a cost effective manner.
Collapse
Affiliation(s)
- Yesbinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Teenu Jasrotia
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Selvinsimpson S, Gnanamozhi P, Pandiyan V, Govindasamy M, Habila MA, AlMasoud N, Chen Y. Synergetic effect of Sn doped ZnO nanoparticles synthesized via ultrasonication technique and its photocatalytic and antibacterial activity. ENVIRONMENTAL RESEARCH 2021; 197:111115. [PMID: 33812877 DOI: 10.1016/j.envres.2021.111115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The current work reports the photocatalytic and antibacterial performance of tin (Sn) doped zinc oxide (ZnO) nanoparticles synthesized via ultrasonic aided co-precipitation technique. The increase of Sn concentration decreased the lattice parameter and increased the crystallite size without changing the ZnO structure. The hexagonal shaped particles and sheets obtained for 3% and 5% Sn substituted ZnO, respectively. The increase of dopant concentration reduced the reflectance and optical band gap energy of Sn doped ZnO. The vibrational band present at 1443 cm-1 confirmed the successful bond formation of Sn-O-Zn. The 5% Sn doped ZnO nanoparticles exhibited greater dye elimination rate of methylene blue compared to 3% Sn. The antibacterial activity of Sn doped ZnO showed the higher zone of inhibition about 14 mm against different pathogens. The 5% Sn doped ZnO photocatalyst improve the transfer rate of photo excite carrier and decrease the rate of recombination which greatly influence on the photocatalytic and antibacterial performance.
Collapse
Affiliation(s)
| | - P Gnanamozhi
- PG and Research Department of Physics, Nehru Memorial College, Tiruchirappalli, 620017, Tamil Nadu, India
| | - V Pandiyan
- PG and Research Department of Physics, Nehru Memorial College, Tiruchirappalli, 620017, Tamil Nadu, India
| | - Mani Govindasamy
- Advanced Materials Research Chair Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Advanced Materials Research Chair Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
García-Valdivieso G, Arenas-Sánchez E, Horta-Fraijo P, Simakov A, Navarro-Contreras HR, Acosta B. Ag@ZnO/MWCNT ternary nanocomposite as an active and stable catalyst for the 4-nitrophenol reduction in water. NANOTECHNOLOGY 2021; 32:315713. [PMID: 33873162 DOI: 10.1088/1361-6528/abf96b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The nitroaromatic compounds, known as organic pollutants, have arising attention due to their carcinogenic character, highly dangerous to human health. In this work, the Ag@ZnO/MWCNT ternary nanocomposite synthesized via conjugation of sonochemical and solvothermal treatments manifests high performance in the reduction of 4-nitrophenol in the aqueous media (TOF value of 246 min-1μmol metal-1). The incorporation of MWCNT onto the nanocomposite structure favored the reusing of the catalysts even after eight consecutive catalytic runs without catalysts cleaning nor product removal. Obtained samples were characterized by XRD, TEM, UV-vis, Raman and FTIR spectroscopies. It was found that ultrasonic treatment at relatively moderate conditions leads to functionalization of MWCNT, the appearance of C=C and OH groups and change of electronic properties of Ag@ZnO/MWCNT composite which provide its stable material dispersion in aqueous solution and high catalytic performance in the 4-nitrophenol reduction. This technique may be effectively applied for the functionalization of carbon including materials for their usage in an aqueous media.
Collapse
Affiliation(s)
- Guadalupe García-Valdivieso
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Eduardo Arenas-Sánchez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Patricia Horta-Fraijo
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Andrey Simakov
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana a Ensenada, C.P. 22860, Ensenada, Baja California, Mexico
| | - Hugo R Navarro-Contreras
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Brenda Acosta
- Cátedra-CONACYT, Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| |
Collapse
|
10
|
Długosz O, Banach M. Continuous synthesis of metal and metal oxide nanoparticles in microwave reactor. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
KARAKUŞ S, TÜZÜN E. Ultrasound-Assisted Adsorption of Basic Blue 41 onto Salda mud: Optimization and Error Analysis. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.795083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Shi X, Karachi A, Hosseini M, Yazd MS, Kamyab H, Ebrahimi M, Parsaee Z. Ultrasound wave assisted removal of Ceftriaxone sodium in aqueous media with novel nano composite g-C 3N 4/MWCNT/Bi 2WO 6 based on CCD-RSM model. ULTRASONICS SONOCHEMISTRY 2020; 68:104460. [PMID: 30712851 DOI: 10.1016/j.ultsonch.2019.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/05/2018] [Accepted: 01/16/2019] [Indexed: 05/27/2023]
Abstract
The aim of this study was ultrasound assisted removal of Ceftriaxone sodium (CS) based on CCD model. Using sonochemical synthesized Bi2WO6 implanted on graphitic carbon nitride/Multiwall carbon nanotube (g-C3N4/MWCNT/Bi2WO6). For this purpose g-C3N4/MWCNT/Bi2WO6 was synthesized and characterized using diverse approaches including XRD, FE-SEM, XPS, EDS, HRTEM, FT-IR. Then, the contribution of conventional variables including pH, CS concentration, adsorbent dosage and ultrasound contact time were studied by central composite design (CCD) under response surface methodology (RSM). ANOVA was employed to the variable factors, and the most desirable operational conditions mass provided. Drug adsorption yield of 98.85% obtained under these defined conditions. Through conducting five experiments, the proper prediction of the optimum point were examined. The respective results showed that RSD% was lower than 5% while the t-test confirmed the high quality of fitting. Langmuir isotherm equation fits the experimental data best and the removal followed pseudo-second order kinetics. The estimation of the experimentally obtained maximum adsorption capacities was 19.57 mg.g- of g-C3N4/MWCNT/Bi2WO6 for CS. Boundary layer diffusion explained the mechanism of removal via intraparticle diffusion.
Collapse
Affiliation(s)
- Xiaolong Shi
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
| | - Aida Karachi
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Mojgan Hosseini
- Department of Science, Islamshahr Branch, Islamic Azad University, Sayad Shirazi St., Islamshahr, Tehran, Iran.
| | - Masoud Safari Yazd
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Kamyab
- Engineering Department, Razak Faculty of Technology and Informatics, UniversitiTeknologi Malaysia, Jln Sultan Yahya Petra, 56100 Kuala Lumpur, Malaysia; Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA.
| | - Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Parsaee
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| |
Collapse
|
13
|
Mirsalari M, Elhami S. Colorimetric detection of insulin in human serum using GO/AuNPs/TX-100 nanocomposite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118617. [PMID: 32593845 DOI: 10.1016/j.saa.2020.118617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, graphene oxide/gold nanoparticles/Triton X-100 nanocomposites (GO/AuNPs/TX-100) were synthesized using the sonochemical method and their ability in ultrasound-assisted colorimetric detection of insulin was investigated. The synthesized GO/AuNPs/TX-100 nanocomposites were characterized by UV-visible absorption spectroscopy and TEM analysis. The interaction between the nanocomposites and insulin was observed by both naked eye and optical absorption spectroscopy. The GO/AuNPs/TX-100 nanocomposites displayed apparent color changes (red to blue) and absorption spectra changes (decreasing of the band around 528 nm and appearance of a new red-shifted band at 640 nm) in presence of insulin. The interaction mechanism of the nanocomposites and insulin was discussed. It is based on the special structure of insulin, that insulin can be easily self-assemble into the GO/AuNP/TX-100 nanocomposites and can also play the role of a bridge between two different GO/AuNPs/TX-100 nanocomposites by peptide chains. The effective parameters for insulin detection were optimized. The colorimetric method was used for quantification of insulin in the range of 2-300 ng mL-1 with a detection limit of 0.1 ng mL-1. Moreover, the relative standard deviation of the method was 3.1 and 2.7% (n = 10) at concentrations of 50 and 200 ng mL-1, respectively on the same day and 4.8% at a concentration (200.0 ng mL-1) on five consecutive days. The present method was utilized for insulin assay in human blood serums with satisfactory results.
Collapse
Affiliation(s)
- Marzieh Mirsalari
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Shahla Elhami
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| |
Collapse
|
14
|
Homaeigohar S. The Nanosized Dye Adsorbents for Water Treatment. NANOMATERIALS 2020; 10:nano10020295. [PMID: 32050582 PMCID: PMC7075180 DOI: 10.3390/nano10020295] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/14/2023]
Abstract
Clean water is a vital element for survival of any living creature and, thus, crucially important to achieve largely and economically for any nation worldwide. However, the astonishingly fast trend of industrialization and population growth and the arisen extensive water pollutions have challenged access to clean water across the world. In this regard, 1.6 million tons of dyes are annually consumed. Thereof, 10%–15% are wasted during use. To decolorize water streams, there is an urgent need for the advanced remediation approaches involving utilization of novel materials and technologies, which are cost and energy efficient. Nanomaterials, with their outstanding physicochemical properties, can potentially resolve the challenge of need to water treatment in a less energy demanding manner. In this review, a variety of the most recent (from 2015 onwards) opportunities arisen from nanomaterials in different dimensionalities, performances, and compositions for water decolorization is introduced and discussed. The state-of-the-art research studies are presented in a classified manner, particularly based on structural dimensionality, to better illustrate the current status of adsorption-based water decolorization using nanomaterials. Considering the introduction of many newly developed nano-adsorbents and their classification based on the dimensionality factor, which has never been employed for this sake in the related literature, a comprehensive review will be presented.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland
| |
Collapse
|
15
|
Photo catalytic degradation of methylene blue and methyl orange from aqueous solution using solar light onto chitosan bi-metal oxide composite. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-1980-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Hasankola ZS, Rahimi R, Safarifard V. Rapid and efficient ultrasonic-assisted removal of lead(II) in water using two copper- and zinc-based metal-organic frameworks. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Hu Y, Zhu Y, Zhang Y, Lin T, Zeng G, Zhang S, Wang Y, He W, Zhang M, Long H. An efficient adsorbent: Simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption. BIORESOURCE TECHNOLOGY 2019; 288:121511. [PMID: 31132594 DOI: 10.1016/j.biortech.2019.121511] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 05/27/2023]
Abstract
In this work, a novel magnetic biochar of camphor leaf with large micropore area was prepared for ciprofloxacin removal. Biochar show the advantage of resource utilization, as an adsorbent in pollutant removal, but limited by its relatively low specific surface area and poor adsorption capacity. An efficient method was formulated to prepare ZnO nanoparticle modified magnetic biochar to adsorb ciprofloxacin. The biochar with ZnCl2/biochar mass ratio of 2 at the calcination temperature of 650 °C was a typical microporous material with huge surface area (915 m2 g-1). The maximum ciprofloxacin adsorption capacity of the biochar reached 449.40 mg L-1. The adsorption mechanism was discussed in terms of physical adsorption and chemisorption involving intense π-π stacking interaction, electrostatic interaction, cation exchange interaction etc. The adsorption capacity of biochar did not decline adsorption capacity significantly after 3 times regeneration. It provides a recycle and reuse way for camphor leaves resource disposal.
Collapse
Affiliation(s)
- Yi Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China.
| | - Tang Lin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Siyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Yingrong Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Wenze He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Mingjuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Huai Long
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| |
Collapse
|
18
|
Deb A, Kanmani M, Debnath A, Bhowmik KL, Saha B. Ultrasonic assisted enhanced adsorption of methyl orange dye onto polyaniline impregnated zinc oxide nanoparticles: Kinetic, isotherm and optimization of process parameters. ULTRASONICS SONOCHEMISTRY 2019; 54:290-301. [PMID: 30712853 DOI: 10.1016/j.ultsonch.2019.01.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 05/26/2023]
Abstract
The fabrication of novel functionalized composite materials as adsorbent is considered to be the core research area in adsorption technology for environmental applications. Indiscriminate disposal of industrial effluents containing toxic dyes has become a serious environmental issue across the globe since last few decades. In view of above, this study focused on the performance evaluation of ZnO/polyaniline nanocomposite (ZnO-PANI-NC) for quick ultrasonic assisted adsorptive remediation of methyl orange dye from aqua matrix. ZnO nanoparticles were fabricated by a simple co-precipitation method and ZnO-PANI-NC was synthesized by in situ oxidative polymerization of aniline monomer in presence of ZnO nanoparticles. The nanocomposite was extensively characterized for its crystalline nature, morphological characteristics, surface chemical bonding, specific surface area and pore volume by employing XRD, SEM, TEM, FTIR, and BET analysis. The ZnO-PANI-NC has shown superior adsorptive performance as compared to pure PANI as well as ZnO nanoparticles and the maximum monolayer adsorption capacity of 240.84 mg/g was obtained for the ZnO-PANI-NC. Under ultrasonic environment the adsorption reaction reached to equilibrium (more than 98% MO dye removal) within 15 min of reaction. Adsorption process followed Langmuir isotherm model and second order kinetic model strictly and contribution of intra-particle diffusion was also observed. The ZnO-PANI-NC has shown its high regeneration ability (more than 86%) even after 5th consecutive cycles of adsorption-desorption. Response surface methodology based optimization was used to optimize the adsorption experimental data and maximum MO removal of 99.12% was observed at optimum sonication time 13 min, adsorbent dose 0.38 g/L and initial MO concentration at 28 mg/L.
Collapse
Affiliation(s)
- Akash Deb
- Department of Civil Engineering, National Institute of Technology Agartala, Jiania, Tripura(W) 799046, India
| | - M Kanmani
- Department of Civil Engineering, National Institute of Technology Agartala, Jiania, Tripura(W) 799046, India
| | - Animesh Debnath
- Department of Civil Engineering, National Institute of Technology Agartala, Jiania, Tripura(W) 799046, India.
| | - Kartick Lal Bhowmik
- Department of Physics, National Institute of Technology Agartala, Jiania, West Tripura 799046, India
| | - Biswajit Saha
- Department of Physics, National Institute of Technology Agartala, Jiania, West Tripura 799046, India
| |
Collapse
|
19
|
Chaudhry SA, Khan TA, Ali I. Adsorptive removal of Pb(II) and Zn(II) from water onto manganese oxide-coated sand: Isotherm, thermodynamic and kinetic studies. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2016.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Saif A. Chaudhry
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | | | | |
Collapse
|
20
|
Removal of Rhodamine B (A Basic Dye) and Acid Yellow 17 (An Acidic Dye) from Aqueous Solutions by Ordered Mesoporous Carbon and Commercial Activated Carbon. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3010030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, adsorption of rhodamine B (RB) and acid yellow 17 (AY17) was investigated on ordered mesoporous carbon material obtained by soft-templating method with hydrochloric acid (ST-A). For comparison, the adsorption process on commercial activated carbon CWZ-22 was also carried out. The sorbents were characterized by nitrogen adsorption/desorption isotherms and scanning electron microscopy. Langmuir and Freundlich adsorption isotherm models were applied to simulate the equilibrium data of RB and AY17. Adsorption isotherm data could be better described by the Langmuir model than the Freundlich model. The adsorption kinetics of RB and AY17 on studied carbons could be well depicted by using pseudo-second-order kinetic modeling. The adsorption capacity increased with temperature increase in the range of 298–315 K. In the whole diffusion process, the intraparticle diffusion was involved, but not the whole rate-controlling step. The calculated thermodynamic parameters, including Gibbs free energy (∆G), enthalpy (∆H), and entropy (ΔS) suggested that adsorption processes of RB and AY17 on ST-A and CWZ-22 were endothermic and spontaneous.
Collapse
|
21
|
Low SK, Tan MC, Chin NL. Effect of ultrasound pre-treatment on adsorbent in dye adsorption compared with ultrasound simultaneous adsorption. ULTRASONICS SONOCHEMISTRY 2018; 48:64-70. [PMID: 30080587 DOI: 10.1016/j.ultsonch.2018.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Ultrasound was applied simultaneously with adsorption process in most of the previous studies. However, this method is not practical to treat huge amounts of coloured wastewater effluent. In this study, the efficiency of ultrasound pre-treated peanut husk powder at different power levels (1.5-3.5 W) in dye adsorption with several conditions of initial dye concentration (20-100 mg/L), contact time (0.5-5 h), solution pH (2-8), and dosage (0.1-0.3 g) was studied and compared with ultrasound simultaneous adsorption process and the control. Adsorption efficiency of indirect ultrasound pre-treated peanut husk powder has increased 25.78%, 13.64% and 1.5% compared with the control, ultrasound simultaneous adsorption and direct ultrasound pre-treated sample respectively at 60 mg/L of initial dye concentration. Indirect ultrasound pre-treated sample at 3.5 W has achieved the highest adsorption efficiency of 89.96% at solution pH 8 and 94.83% at 0.3 g dose for 3 h. The surface feature and textural properties of samples were characterized by using scanning electron microscopy and surface characterization analyser. The result indicated that more porous structure was created on the ultrasound pre-treated sample at increasing power levels.
Collapse
Affiliation(s)
- Suk Khe Low
- Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Mei Ching Tan
- Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Nyuk Ling Chin
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, 43000 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
22
|
Jiang X, Xia H, Zhang L, Peng J, Cheng S, Shu J, Li C, Zhang Q. Ultrasound and microwave-assisted synthesis of copper-activated carbon and application to organic dyes removal. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.07.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Naseri H, Sharifi A, Ghaedi M, Dashtian K, Khoramrooz SS, Manzouri L, Khosravani SA, Pezeshkpour V, Sadri F, Askarinia M. Sonochemical incorporated of cytosine in Cu-H 2bpdc as an antibacterial agent against standard and clinical strains of Proteus mirabilis with rsbA gene. ULTRASONICS SONOCHEMISTRY 2018; 44:223-230. [PMID: 29680606 DOI: 10.1016/j.ultsonch.2018.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/09/2018] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
The cytosine embedded copper based metal-organic framework (Bio-MOF) was synthesized by facile one-step sonochemical method by simply mixing of 4-4, biphenyldicarboxylic, cytosine and copper nitrate (Bio-Cu-H2bpdc-Cy). The prepared bio-MOF was characterized by XRD, FTIR and FE-SEM techniques. The effect of Cu-H2bpdc-Cy on the expression of the rsbA gene was evaluated in the clinical and standard Proteus mirabilis and study of MIC of Cu-H2bpdc-Cy by microdilution against them that have the rsbA gene. According to different concentrations of MIC, MBC concentrations was cultured on blood agar culture medium. Regarding to the concentration of MIC, gene expression changes were obtained by real-time PCR. MIC for standard and clinical strains of Proteus mirabilis was 1.6 and 1.8 mg/ml, and also MBC was obtained to be 1.8 and 2.0 mg/ml, respectively. Finally, in the real time PCR method, expression of the rsbA gene in presences of bio-Cu-H2bpdc-Cy was reduced, but has no effect on the gene expression of the Housekeeping DNA Gyrase-B gene. Considering the effect of Cu-H2bpdc-Cy on the rsbA gene in Proteus mirabilis bacteria, it is possible to use of Cu-H2bpdc-Cy agent as a therapeutic supplement against this bacterium.
Collapse
Affiliation(s)
- Hajar Naseri
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR, Iran; Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Asghar Sharifi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR, Iran.
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Seyed Sajad Khoramrooz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR, Iran
| | - Leila Manzouri
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Vahid Pezeshkpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR, Iran; Department of Biotechnology and Microbial Nanotechnology, Dena Pathobiology Laboratory, Yasuj, IR, Iran
| | - Farzad Sadri
- Department of Molecular Microbiology, Dena Pathobiology Laboratory, Yasouj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Marzieh Askarinia
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR, Iran; Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
24
|
Adsorption of semisoft pollutants onto Bi 2 S 3 /Ag 2 S-AC under the influence of ultrasonic waves as external filed. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.11.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Abbasloo F, Khosravani SA, Ghaedi M, Dashtian K, Hosseini E, Manzouri L, Khorramrooz SS, Sharifi A, Jannesar R, Sadri F. Sonochemical-solvothermal synthesis of guanine embedded copper based metal-organic framework (MOF) and its effect on oprD gene expression in clinical and standard strains of Pseudomonas aeruginosa. ULTRASONICS SONOCHEMISTRY 2018; 42:237-243. [PMID: 29429665 DOI: 10.1016/j.ultsonch.2017.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 06/08/2023]
Abstract
The guanine incropped Cu based metal-organic framework (Guanine-Cu-MOF) was synthesized by facile one-step sonochemical method by simply mixing of 4-4, biphenyldicarboxylic, guanine and copper nitrate (Bio-Cu-H2bpdc-Gu). The prepared guanine-MOF was characterized by using X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Field emission scanning electron microscopy (FE-SEM) techniques. The morphology of prepared material was sponge-shaped which it was well documented, together with the presence of existing functional groups. The effect of prepared material on oprD Gene Expression was investigated in Clinical and Standard Strains of Pseudomonas aeruginosa (PAO-1) and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of prepared samples against P. aeruginosa strains were determined through the broth micro-dilution method. The expression of oprD gene in strains affected by Cu-H2bpdc-Gu was quantitatively investigated through real-time PCR. MIC of Bio-Cu-H2bpdc-Gu was 400 μg/mL for the standard and clinical strains of P. aeruginosa, while, MBC of this compound was 700 μg/mL for standard strain and 800 μg/mL for clinical strains. The highest and the lowest rate of oprD gene expression were found to be 3.6 and 1.1 fold in the strains, respectively.
Collapse
Affiliation(s)
- Farideh Abbasloo
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Mehrorang Ghaedi
- Department of chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Department of chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Ebrahim Hosseini
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Leila Manzouri
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Asghar Sharifi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ramin Jannesar
- Department of Molecular Microbiology, Dena Pathobiology Laboratory, Yasouj, Iran
| | - Farzad Sadri
- Department of Molecular Microbiology, Dena Pathobiology Laboratory, Yasouj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
26
|
Golda-Cepa M, Chytrosz P, Chorylek A, Kotarba A. One-step sonochemical fabrication and embedding of gentamicin nanoparticles into parylene C implant coating: towards controlled drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:941-950. [DOI: 10.1016/j.nano.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 01/05/2023]
|
27
|
Yi J, Song J, Mo H, Yang Y. One step pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/AgVO 3. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2017.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Yuvaraja G, Prasad C, Vijaya Y, Subbaiah MV. Application of ZnO nanorods as an adsorbent material for the removal of As(III) from aqueous solution: kinetics, isotherms and thermodynamic studies. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2018. [DOI: 10.1007/s40090-018-0136-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Pourebrahim F, Ghaedi M, Dashtian K, Kheirandish S, Goudarzi A. Optimization of solid phase dispersive field‐assisted ultrasonication for the extraction of auramine O and crystal violet dyes using central composite design. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Mehrorang Ghaedi
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| | - Kheibar Dashtian
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| | | | - Alireza Goudarzi
- Department of Polymer EngineeringGolestan University Gorgan 49188‐88369 Iran
| |
Collapse
|
30
|
Sharifpour E, Ghaedi M, Nasiri Azad F, Dashtian K, Hadadi H, Purkait M. Zinc oxide nanorod‐loaded activated carbon for ultrasound‐assisted adsorption of safranin O: Central composite design and genetic algorithm optimization. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- E. Sharifpour
- Medicinal Plants Research CenterYasuj University of Medical Sciences Yasuj Iran
| | - M. Ghaedi
- Chemistry DepartmentYasouj University Yasouj 75914‐35 Iran
| | - F. Nasiri Azad
- Chemistry DepartmentYasouj University Yasouj 75914‐35 Iran
| | - K. Dashtian
- Chemistry DepartmentYasouj University Yasouj 75914‐35 Iran
| | - H. Hadadi
- Department of Chemistry, Faculty of SciencesShahrekord University P.O. Box 115 Shahrekord Iran
- Nanotechnology Research CenterShahrekord University 8818634141 Shahrekord Iran
| | - M.K. Purkait
- Department of Chemical EngineeringIndian Institute of Technology Guwahati Guwahati 781039 Assam India
| |
Collapse
|
31
|
Mahdavi R, Ashraf Talesh SS. The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method. ULTRASONICS SONOCHEMISTRY 2017; 39:504-510. [PMID: 28732974 DOI: 10.1016/j.ultsonch.2017.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
In this research, the effect of ultrasonic irradiation power (0, 75, 150 and 200W) and time (0, 5, 15 and 20min) on the structure, morphology and photocatalytic activity of zinc oxide nanoparticles synthesized by sol-gel method was investigated. Crystallographic structures and the morphologies of the resultant powders were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns showed that ZnO samples were crystallized in their pure phase. The purity of samples was increased by increasing the ultrasonic irradiation power and time. Not only did ultrasonic irradiation unify both the structure and the morphology, but also it reduced the size and prohibited particles from aggregation. The optical behavior of the samples was studied by UV-vis spectroscopy. Photocatalytic activity of particles was measured by degradation of methyl orange under radiation of ultraviolet light. Ultrasound nanoparticles represented higher degradation compared to non-ultrasound ones.
Collapse
Affiliation(s)
- Reza Mahdavi
- Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - S Siamak Ashraf Talesh
- Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
| |
Collapse
|
32
|
Kheirandish S, Ghaedi M, Dashtian K, Pourebrahim F. Design of a new technique based on combination of ultrasound waves via magnetite solid phase and cloud point microextraction for determination of Cr(III) ions. ULTRASONICS SONOCHEMISTRY 2017; 39:798-809. [PMID: 28733009 DOI: 10.1016/j.ultsonch.2017.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 05/21/2023]
Abstract
In this work, we focused on development of a new techniques by coupling of ultrasound irradiation, cloud point method and magnetite solid phase microextraction for the extraction and preconcentration of Cr(III) ions from aqueous solutions. In order to reduce cost and improve practicability of proposed process a new efficient and regenerable magnetite sorbent (functionalized chitosan grafted-amino graphene oxide (GO) decorated by zinc ferrite nanoparticles (CS-GO-Zn: Fe2O4)) was synthesized through hydrothermal method and then characterized by FT-IR, FE-SEM, EDS and XRD analysis. Effect of initial sample volume and type, volume and concentration of eluent on the ER%Cr(III) were investigated and optimized using one at a time method. Correlation between the main and interaction effects of other operational parameters such as Cr(III) ion concentration, CS-GO-Zn: Fe2O4 mass, sonication time, pH and solution temperature on the ER%Cr(III) were investigated and optimized by central composite design coupled with desirability function approach. The results revealed that there were significant effects for most investigated terms on the ER%Cr(III) and maximum ER% of 88.09% was obtained in desirability value of 1.0. This maximum efficiency was obtained at 0.035µg/mL Cr(III) ion concentration, 40.16°C temperature, 0.016g of CS-GO-Zn: Fe2O4, pH 6.36 and 9.20min sonication time. In addition, under the optimal conditions the linear range, limit of detection, enrichment factor and relative standard deviation were found to be 0.02-4.4µg/mL, 0.002µg/mL, 23.23 and 1.68% respectively. Finally, the method was successfully applied to the separation and preconcentration of Cr(III) ion from tap, river and mineral waters.
Collapse
Affiliation(s)
- Shadi Kheirandish
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | | |
Collapse
|
33
|
Baghdadi M, Alipour Soltani B, Nourani M. Malachite green removal from aqueous solutions using fibrous cellulose sulfate prepared from medical cotton waste: Comprehensive batch and column studies. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Hassanpour A, Guo P, Shen S, Bianucci P. The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method. NANOTECHNOLOGY 2017; 28:435707. [PMID: 28786398 DOI: 10.1088/1361-6528/aa849d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Undoped and C-doped (C: Mg2+, Ni2+, Mn2+, Co2+, Cu2+, Cr3+) ZnO nanorods were synthesized by a hydrothermal method at temperatures as low as 60 °C. The effect of doping on the morphology of the ZnO nanorods was visualized by taking their cross section and top SEM images. The results show that the size of nanorods was increased in both height and diameter by cation doping. The crystallinity change of the ZnO nanorods due to each doping element was thoroughly investigated by an x-ray diffraction (XRD). The XRD patterns show that the wurtzite crystal structure of ZnO nanorods was maintained after cation addition. The optical Raman-active modes of undoped and cation-doped nanorods were measured with a micro-Raman setup at room temperature. The surface chemistry of samples was investigated by x-ray photoelectron spectroscopy and energy-dispersive x-ray spectroscopy. Finally, the effect of each cation dopant on band-gap shift of the ZnO nanorods was investigated by a photoluminescence setup at room temperature. Although the amount of dopants (Mg2+, Ni2+, and Co2+) was smaller than the amount of Mn2+, Cu2+, and Cr3+ in the nanorods, their effect on the band structure of the ZnO nanorods was profound. The highest band-gap shift was achieved for a Co-doped sample, and the best crystal orientation was for Mn-doped ZnO nanorods. Our results can be used as a comprehensive reference for engineering of the morphological, structural and optical properties of cation-doped ZnO nanorods by using a low-temperature synthesis as an economical mass-production approach.
Collapse
Affiliation(s)
- A Hassanpour
- Department of Physics, Concordia University, Montreal, QC, Canada. International Research Center for Renewable Energy (IRCRE), School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Kheirandish S, Ghaedi M, Dashtian K, Jannesar R, Montazerozohori M, Pourebrahim F, Zare MA. Simultaneous removal of Cd(II), Ni(II), Pb(II) and Cu(II) ions via their complexation with HBANSA based on a combined ultrasound-assisted and cloud point adsorption method using CSG-BiPO 4 /FePO 4 as novel adsorbent: FAAS detection and optimization process. J Colloid Interface Sci 2017; 500:241-252. [DOI: 10.1016/j.jcis.2017.03.070] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
|
36
|
Simultaneous removal of Cu2+
and Cr3+
ions from aqueous solution based on Complexation with Eriochrome cyanine-R and derivative spectrophotometric method. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0157-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Nano-sized molecularly imprinted polymer for selective ultrasound-assisted microextraction of pesticide Carbaryl from water samples: Spectrophotometric determination. J Colloid Interface Sci 2017; 498:313-322. [DOI: 10.1016/j.jcis.2017.03.076] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/17/2022]
|
39
|
Rezaei AA, Hossein Beyki M, Shemirani F. Fast sono assisted ferrofluid mediated silver super - Adsorption over magnesium ferrite-copper sulfide chalcogenide with the aid of multivariate optimization. ULTRASONICS SONOCHEMISTRY 2017; 37:509-517. [PMID: 28427663 DOI: 10.1016/j.ultsonch.2017.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/17/2017] [Accepted: 02/01/2017] [Indexed: 06/07/2023]
Abstract
This research focuses on the development of a fast ultrasonic assisted ferrofluid mediated methodology to obtain the optimum conditions for silver adsorption from aqueous solutions. For this purpose magnesium ferrite-copper sulfide chalcogenide was synthesized and employed as an efficient nanosorbent. The sorbent was characterized with energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD) and vibrational sample magnetometry (VSM) techniques. For obtaining the optimal operating conditions of silver adsorption, response surface methodology (RSM) was used. Tests were performed by Box-Behnken design (BBD). The value of optimum conditions for silver adsorption include pH=2.5, adsorbent dosage=10.0mg, sonicating time=1min and ionic strength=2.2%. According optimum conditions, percentage of removal should be 99.34%. With replication of similar experiment (n=6) average percentage of 100±0.95% was obtained for Ag+ adsorption which shows good agreement between predicted and experimental results. Silver ion adsorption follow Langmuir model with maximum sorption capacity of 2113mgg-1. Ultrasonic power helped to prepare ferrofluid and demonstrated that had an important role in better dispersing of it in solution and efficient adsorption of analyte.
Collapse
Affiliation(s)
- Ali Asghar Rezaei
- School of Chemistry, University College of Science, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mostafa Hossein Beyki
- School of Chemistry, University College of Science, University of Tehran, Tehran, Islamic Republic of Iran.
| | - Farzaneh Shemirani
- School of Chemistry, University College of Science, University of Tehran, Tehran, Islamic Republic of Iran.
| |
Collapse
|
40
|
Ravanipour M, Kafaei R, Keshtkar M, Tajalli S, Mirzaei N, Ramavandi B. Fluoride ion adsorption onto palm stone: Optimization through response surface methodology, isotherm, and adsorbent characteristics data. Data Brief 2017; 12:471-479. [PMID: 28508026 PMCID: PMC5423305 DOI: 10.1016/j.dib.2017.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/22/2017] [Accepted: 04/20/2017] [Indexed: 11/20/2022] Open
Abstract
In some part of the world, groundwater source can become unsafe for drinking due to the high concentration of fluoride ions [1]. The low cost and facile-produced adsorbent like palm stone could effectively removed fluoride ions through adsorption process. In this dataset, the influence of fluoride ion concentration, solution pH, adsorbent dosage, and contact time on fluoride ion adsorption by palm stones was tested by central composite design (CCD) under response surface methodology (RSM). The data stone carbonized adsorbent was prepared by a simple and facile method at relatively low temperature of 250 °C during 3 h. The adsorbent had the main functional groups of O–H, –OH, Si–H, C=O, N=O, C–C, C–OR, C–H, and C–Br on its surface. At the optimized conditions obtained by RSM, about 84.78% of fluoride ion was removed using the adsorbent. The Langmuir isotherm was suitable for correlation of equilibrium data (maximum adsorption capacity= 3.95 mg/g). Overall, the data offer a facile adsorbent to water and wastewater works which face to high level of fluoride water/ wastewater content.
Collapse
Affiliation(s)
- Masoumeh Ravanipour
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Raheleh Kafaei
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mozhgan Keshtkar
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Soghra Tajalli
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narjes Mirzaei
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
41
|
Solaymani E, Ghaedi M, Karimi H, Ahmadi Azqhandi MH, Asfaram A. Intensified removal of Malachite green by AgOH-AC nanoparticles combined with ultrasound: Modeling and optimization. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ehsan Solaymani
- Chemical Engineering Department; Yasouj University; Yasouj 75918-74831 Iran
| | - Mehrorang Ghaedi
- Chemistry Department; Yasouj University; Yasouj 75918-74831 Iran
| | - Hajir Karimi
- Chemical Engineering Department; Yasouj University; Yasouj 75918-74831 Iran
| | | | - Arash Asfaram
- Chemistry Department; Yasouj University; Yasouj 75918-74831 Iran
| |
Collapse
|
42
|
Optimization of cellulose and sugarcane bagasse oxidation: Application for adsorptive removal of crystal violet and auramine-O from aqueous solution. J Colloid Interface Sci 2017; 494:223-241. [PMID: 28160707 DOI: 10.1016/j.jcis.2017.01.085] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 11/22/2022]
Abstract
Cellulose (Cel) and sugarcane bagasse (SB) were oxidized with an H3PO4-NaNO2 mixture to obtain adsorbent materials with high contents of carboxylic groups. The oxidation reactions of Cel and SB were optimized using design of experiments (DOE) and response surface methodology (RSM). The optimized synthesis conditions yielded Cox and SBox with 4.8mmol/g and 4.5mmol/g of carboxylic acid groups, respectively. Cox and SBox were characterized by FTIR, TGA, PZC and solid-state 13C NMR. The adsorption of the model cationic dyes crystal violet (CV) and auramine-O (AO) on Cox and SBox in aqueous solution was investigated as a function of the solution pH, the contact time and the initial dye concentration. The adsorption of CV and AO on Cox was described by the Elovich equation and the pseudo-first-order kinetic model respectively, while the adsorption of CV and AO on SBox was described by the pseudo-second-order kinetic model. Adsorption isotherms were well fitted by the Langmuir and Konda models, with maximum adsorption capacities (Qmax) of 1117.8mg/g of CV and 1223.3mg/g of AO on Cox and 1018.2mg/g of CV and 682.8mg/g of AO on SBox. Desorption efficiencies were in the range of 50-52% and re-adsorption capacities varied from 65 to 81%, showing the possibility of reuse of both adsorbent materials.
Collapse
|
43
|
Babar AA, Peerzada MH, Jhatial AK, Bughio NUA. Pad ultrasonic batch dyeing of causticized lyocell fabric with reactive dyes. ULTRASONICS SONOCHEMISTRY 2017; 34:993-999. [PMID: 27773332 DOI: 10.1016/j.ultsonch.2016.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/23/2016] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
Conventionally, cellulosic fabric dyed with reactive dyes requires significant amount of salt. However, the dyeing of a solvent spun regenerated cellulosic fiber is a critical process. This paper presents the dyeing results of lyocell fabrics dyed with conventional pad batch (CPB) and pad ultrasonic batch (PUB) processes. The dyeing of lyocell fabrics was carried out with two commercial dyes namely Drimarine Blue CL-BR and Ramazol Blue RGB. Dyeing parameters including concentration of sodium hydroxide, sodium carbonate and dwell time were compared for the two processes. The outcomes show that PUB dyed samples offered reasonably higher color yield and dye fixation than CPB dyed samples. A remarkable reduction of 12h in batching time, 18ml/l in NaOH and 05g/l in Na2CO3 quantity was observed for PUB processed samples producing similar results compared to CPB process, making PUB a more economical, productive and an environment friendly process. Color fastness examination witnessed identical results for both PUB and CPB methods. No significant change in surface morphology of PUB processed samples was observed through scanning electron microscope (SEM) analysis.
Collapse
Affiliation(s)
- Aijaz Ahmed Babar
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan.
| | - Mazhar Hussain Peerzada
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan.
| | - Abdul Khalique Jhatial
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan
| | - Noor-Ul-Ain Bughio
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan.
| |
Collapse
|
44
|
Bahrani S, Ghaedi M, Mansoorkhani MJK, Asfaram A, Bazrafshan AA, Purkait MK. Ultrasonic assisted dispersive solid-phase microextraction of Eriochrome Cyanine R from water sample on ultrasonically synthesized lead (II) dioxide nanoparticles loaded on activated carbon: Experimental design methodology. ULTRASONICS SONOCHEMISTRY 2017; 34:317-324. [PMID: 27773252 DOI: 10.1016/j.ultsonch.2016.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
The present research focus on designing an appropriate dispersive solid-phase microextraction (UA-DSPME) for preconcentration and determination of Eriochrome Cyanine R (ECR) in aqueous solutions with aid of sonication using lead (II) dioxide nanoparticles loaded on activated carbon (PbO-NPs-AC). This material was fully identified with XRD and SEM. Influence of pH, amounts of sorbent, type and volume of eluent, and sonication time on response properties were investigated and optimized by central composite design (CCD) combined with surface response methodology using STATISTICA. Among different solvents, dimethyl sulfoxide (DMSO) was selected as an efficient eluent, which its combination by present nanoparticles and application of ultrasound waves led to enhancement in mass transfer. The predicted maximum extraction (100%) under the optimum conditions of the process variables viz. pH 4.5, eluent 200μL, adsorbent dosage 2.5mg and 5min sonication was close to the experimental value (99.50%). at optimum conditions some experimental features like wide 5-2000ngmL-1 ECR, low detection limit (0.43ngmL-1, S/N=3:1) and good repeatability and reproducibility (relative standard deviation, <5.5%, n=12) indicate versatility in successful applicability of present method for real sample analysis. Investigation of accuracy by spiking known concentration of ECR over 200-600ngmL-1 gave mean recoveries from 94.850% to 101.42% under optimal conditions. The procedure was also applied for the pre-concentration and subsequent determination of ECR in tap and waste waters.
Collapse
Affiliation(s)
- Sonia Bahrani
- Departmentof Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Departmentof Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | | | - Arash Asfaram
- Departmentof Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | | | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
45
|
|
46
|
Asfaram A, Ghaedi M, Dashtian K. Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe 3O 4-GA-MIP-NPs: UV-vis detection and optimization study. ULTRASONICS SONOCHEMISTRY 2017; 34:561-570. [PMID: 27773281 DOI: 10.1016/j.ultsonch.2016.06.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 05/21/2023]
Abstract
Magnetite (Fe3O4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe3O4-GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe3O4-NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV-Vis (UA-DMSPME-UV-Vis) detection method. Plackett-Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe3O4-NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe3O4-NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6mg, 4.0min and 180μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8-6000ngmL-1 with a Limit of detection (LOD) of 1.377ngmL-1, limit of quantification (LOQ) 4.591ngmL-1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3-100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application.
Collapse
Affiliation(s)
- Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
47
|
Babaee S, Daneshfar A, Khezeli T. Determination of carboxylic acids in non-alcoholic beer samples by an ultrasonic-assisted dispersive micro-solid phase extraction based on Ni/Cu-Al layered double hydroxide nanocomposites followed by gas chromatography. ULTRASONICS SONOCHEMISTRY 2017; 34:847-855. [PMID: 27773312 DOI: 10.1016/j.ultsonch.2016.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Magnetically separable layered double hydroxide Ni/CuAl-LDH nanocomposites were synthesized and employed as ultrasonic-assisted dispersive micro-solid phase extraction (UA-D-μSPE) sorbent to extract several carboxylic acids (namely propionic, butyric, pentanoic, hexanoic, heptanoic, octanoic, and decanoic) from non-alcoholic beer samples. Ni/CuAl-LDH sorbent was characterized by Fourier transform-infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). Effective variables such as amount of sorbent (mg), pH and ionic strength of sample solution, volume of eluent solvent (μL), vortex, and ultrasonic times (min) were investigated via fractional factorial design (FFD). The significant variables were optimized by a Box-Behnken design and combined by a desirability function (DF). Under optimized conditions, the calibration graphs of analytes were linear in a concentration range of 0.05-100μg/mL and had correlation coefficients more than 0.997. The limits of detection and quantification were in the ranges of 16-40μg/L and 53-133μg/L, respectively. This procedure was successfully employed in the determination of target analytes in spiked beer samples, and the relative mean recoveries ranged from 87 to 110%.
Collapse
Affiliation(s)
- Shirin Babaee
- Department of Chemistry, Faculty of Science, Ilam University, Ilam 69315-516, Iran
| | - Ali Daneshfar
- Department of Chemistry, Faculty of Science, Ilam University, Ilam 69315-516, Iran.
| | - Tahere Khezeli
- Department of Chemistry, Faculty of Science, Ilam University, Ilam 69315-516, Iran
| |
Collapse
|
48
|
Li G, Zhang H, Wei C, Huang Y, Dou X, Wang Y, Wang J, Song Y. Preparation of (5.0%)Er 3+:Y 3Al 5O 12/Pt-(TiO 2-Ta 2O 5) nanocatalysts and application in sonocatalytic decomposition of ametryn in aqueous solution. ULTRASONICS SONOCHEMISTRY 2017; 34:763-773. [PMID: 27773303 DOI: 10.1016/j.ultsonch.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
(5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, as a high effective sonocatalyst, was prepared using sol-gel and calcination method. Then it was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, the sonocatalytic decomposition of ametryn was studied. In addition, some influencing factors such as different Ti/Ta molar ratios on the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, catalyst added amount with ultrasonic irradiation time and used times on the sonocatalytic decomposition efficiency were examined by using ion chromatogram determination. The experimental results showed that the best sonocatalytic decomposition ratio of ametryn were 77.50% based on the N atom calculation and 95.00% based on the S atom calculation, respectively, when the conditions of 10.00mg/L initial concentration, 1.00g/L prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder (Ti/Ta=1.00:0.25 heat-treated at 550°C for 3.0h) added amount, 150min ultrasonic irradiation (40kHz frequency and 300W output power), 100mL total volume and 25-28°C temperature were adopted. Therefore, the (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) composite nanoparticles could be considered as an effective sonocatalyst for decomposition of ametryn in aqueous solution.
Collapse
Affiliation(s)
- Guanshu Li
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Hongbo Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Chunsheng Wei
- College of Chemistry, Liaoning University, Shenyang 110036, PR China; National Police University of China, Shenyang 110854, PR China
| | - Yingying Huang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Xuekai Dou
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Yidi Wang
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Jun Wang
- College of Environment, Liaoning University, Shenyang 110036, PR China; College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Youtao Song
- College of Environment, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
49
|
Tadjarodi A, Moazen Ferdowsi S, Zare-Dorabei R, Barzin A. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies. ULTRASONICS SONOCHEMISTRY 2016; 33:118-128. [PMID: 27245963 DOI: 10.1016/j.ultsonch.2016.04.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications.
Collapse
Affiliation(s)
- Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Somayeh Moazen Ferdowsi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ahmad Barzin
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
50
|
Ansari F, Ghaedi M, Taghdiri M, Asfaram A. Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: Experimental design and derivative spectrophotometry method. ULTRASONICS SONOCHEMISTRY 2016; 33:197-209. [PMID: 27245971 DOI: 10.1016/j.ultsonch.2016.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 05/15/2023]
Abstract
A method based on application of ZnO nanorods loaded on activated carbon (ZnO-NRs-AC) for adsorption of Bromocresol Green (BCG) and Eosin Y (EY) accelerated by ultrasound was described. The present material was synthesized under ultrasound assisted wet-chemical method and subsequently was characterized by FE-SEM, TEM, BET and XRD analysis. The extent of contribution of conventional variables like pH (2.0-10.0), BCG concentration (4-20mgL(-1)), EY concentration (3-23mgL(-1)), adsorbent dosage (0.01-0.03g), sonication time (1-5min) and centrifuge time (2-6min) as main and interaction part were investigated by central composite design under response surface methodology. Analysis of variance (ANOVA) was adapted to experimental data and guide the best operational conditions mass by set at 6.0, 9mgL(-1), 10mgL(-1), 0.02g, 4 and 4min for pH, BCG concentration, EY concentration, adsorbent dosage, sonication and centrifuge time, respectively. At these specified conditions dye adsorption efficiency was higher than 99.5%. The suitability and well prediction of optimum point was tested by conducting five experiments and respective results revel that RSD% was lower than 3% and high quality of fitting was confirmed by t-test. The experimental data were best fitted in Langmuir isotherm equation and the removal followed pseudo second order kinetics. The experimentally obtained maximum adsorption capacities were estimated as 57.80 and 61.73mgg(-1) of ZnO-NRs-AC for BCG and EY respectively from binary dye solutions. The mechanism of removal was explained by boundary layer diffusion via intraparticle diffusion.
Collapse
Affiliation(s)
- Fatemeh Ansari
- Department of Chemistry, Payame Noor University, 19395-3697 Tehran, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Mehdi Taghdiri
- Department of Chemistry, Payame Noor University, 19395-3697 Tehran, Iran
| | - Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|