1
|
Nazir M, Jhan F, Gani A, Gani A. Fabrication of millet starch nanocapsules loaded with beta carotene using acid hydrolysis and ultrasonication: Characterisation, release behaviour and bioactivity retention. ULTRASONICS SONOCHEMISTRY 2024; 111:107112. [PMID: 39447532 PMCID: PMC11539498 DOI: 10.1016/j.ultsonch.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The acid hydrolysis process was used to create novel millet starch-based nanoparticles from three different sources: sorghum, foxtail millet and pearl millet. An environment-friendly, risk-free ultrasonication technique was used for encapsulating beta carotene in starch nanoparticles to create nanocapsules that will shield the bioactivity of beta carotene in gastrointestinal conditions and increase its accessibility after consumption. Formulated nanocapsules were examined for zeta potential, particle size and encapsulation efficiency. The particle dimensions of beta carotene-loaded sorghum (SSB), foxtail millet (FSB), and pearl millet (PSB) starch nanoparticles were 416, 399 and 587 nm with zeta potential of -17.98, -19.03 and -22.31 mV respectively. Encapsulation efficiencies of nanocapsules were found to be 85.83, 89.65 and 78.32 % for SSB, FSB and PSB respectively. Scanning electron microscopy (SEM) was also harnessed as a confirmatory tests towards the presence of beta carotene in nanocapsules. Beta carotene encapsulation in starch nanoparticles was also demonstrated using ATR-FTIR which revealed broad characteristic peaks at 3000, 1086 and 885 cm-1 that occur without any discernible interaction. Intestinal juice with higher beta carotene content ensured controlled release in the intestine. Encapsulated beta carotene showed more bioactive properties in terms of antioxidant activity as compared to free beta carotene form.
Collapse
Affiliation(s)
- Mehak Nazir
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Faiza Jhan
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Asir Gani
- School of Bioengineering and Food Technology, Shoolni University, Solan, Himachal Pradesh 173229, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
2
|
Zheng D, Yu D, Lin S, Ji L, Sun Y, Liu C, Zhang X, Yu Z. Enhancing salt-induced gelation of egg yolk granules through pH-ultrasound combined treatment: A physicochemical and microstructural analysis. ULTRASONICS SONOCHEMISTRY 2024; 111:107101. [PMID: 39426028 PMCID: PMC11513849 DOI: 10.1016/j.ultsonch.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Salted duck eggs are a popular food product, but their high salt content and uneven salt distribution can reduce acceptability. This study investigated the effects of pH-high-intensity ultrasound combined treatment on the salt-induced gelation properties of egg yolk granules. The results showed that the pH5 + 150 W treatment group exhibited the best physical and gelation properties, with the smallest particle size (1597.33 nm), optimal dispersibility (PDI 0.29), and good stability. The gelation properties of this group also demonstrated excellent springiness (0.30 mm), cohesiveness (0.56), and gumminess (0.05 N). Furthermore, the pH5 + 150 W group had the highest water holding capacity of 97.42 % and relatively high hydrophobicity (173.39 μg). Notably, it also showed high oil exudation (2.83 %) and good sandiness (62.07 %). The pH5 + 150 W led to a significant redshift of the fluorescence peak at 335 nm and an enhancement of the peak intensity at 562 nm compared to the control group. Structural characterization revealed a more ordered protein structure and a uniform gel structure with enhanced electrostatic repulsion between oil droplets. Secondary structure analysis of the proteins showed a significant reduction in α-helix and β-sheet, while β-turn and random coil increased. In summary, the pH5 + 150 W treatment displayed the best gelation properties, providing theoretical guidance for enhancing the processing performance of yolk and expanding their application in the food industry.
Collapse
Affiliation(s)
- Dan Zheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Danrong Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Shuai Lin
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Liting Ji
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yaogui Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Chunyou Liu
- Department of Food Science and Technology, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Xiaoyu Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Zhihui Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
3
|
Yamanaka T, Hayashi Y, Takizawa H. Sustainable sonoprocess for synthesizing γ-Ga 2O 3/In 3Sn core-shell submicron particles via acoustic emulsification and oxidation of molten EGaInSn at room temperature. ULTRASONICS SONOCHEMISTRY 2024; 109:106995. [PMID: 39029211 PMCID: PMC11295616 DOI: 10.1016/j.ultsonch.2024.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
This study investigated the sustainable room-temperature synthesis of In3Sn/γ-Ga2O3 core-shell particles via an acoustic route using molten eutectic Ga-In-Sn alloy (EGaInSn). Sonication was used for the emulsification and oxidation steps. During the emulsification step, the sonication of molten EGaInSn in ethanol (EtOH) at 45 kHz facilitated the formation of the smallest EGaInSn particles (average diameter, Dav = 782 nm). In terms of EGaInSn particle size, 45 kHz sonication was suitable for emulsification of molten EGaInSn and ethanol system than 24 kHz sonication. During the oxidation step, the preferential oxidation of Ga in the EGaInSn particles occurred via sonication in a solution of EtOH and hydrazine monohydrate (N2H4·H2O). This selective oxidation of Ga on the surface of the EGaInSn particles resulted in the formation of In3Sn/γ-Ga2O3 core-shell particles via sonication at 45 kHz and room temperature. The entire process eliminated the need for dispersants and high-temperature treatments. Additionally, the process did not generate waste fluid containing counter anions, such as chloride anions. This sustainable sonochemical method offers a carbon-neutral approach for synthesizing functional nanocomposites with improved safety, simplicity, and energy efficiency.
Collapse
Affiliation(s)
- Toshiki Yamanaka
- Graduate School of Engineering, Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan
| | - Yamato Hayashi
- Graduate School of Engineering, Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan.
| | - Hirotsugu Takizawa
- Graduate School of Engineering, Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan
| |
Collapse
|
4
|
Bashir I, Wani SM, Jan N, Ali A, Rouf A, Sidiq H, Masood S, Mustafa S. Optimizing ultrasonic parameters for development of vitamin D3-loaded gum arabic nanoemulsions - An approach for vitamin D3 fortification. Int J Biol Macromol 2024; 278:134894. [PMID: 39168215 DOI: 10.1016/j.ijbiomac.2024.134894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Vitamin D encapsulation can significantly improve its bioavailability, stability, and solubility. Various biopolymers viz. whey protein isolate, carboxymethyl cellulose, alginate and gum arabic were studied for their potential to be used as wall material and gum arabic was selected for encapsulating vitamin D3 as it possesses lesser particle size, apparent viscosity and better stability in terms of zeta potential. Box Behnken design was employed for optimizing the process conditions for developing vitamin D3 nanoemulsion. Box Behnken design was constructed using ultrasonic amplitude, sonication time and vitamin D3/wall material percent as independent factors. The optimum conditions obtained were ultrasonic amplitude (80 %), sonication time (12 min) and vitamin D3/wall material percent (5). The designed nanoemulsion showed a particle size of 20.04 nm, zeta potential of -28.2 mV, and encapsulation efficiency of 71.9 %. Chemical interactions were observed in the developed nanoemulsion as demonstrated by Differential scanning calorimeter thermograms and Fourier transform infrared spectra of the nanoemulsion. The Korsmeyer-Peppas model was the most suitable for describing the release of vitamin D3 from the nanoemulsion. Fabricated nanoemulsion has the potential to be used in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Iqra Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Jammu and Kashmir 190025, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Jammu and Kashmir 190025, India.
| | - Nusrat Jan
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Jammu and Kashmir 190025, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Abdul Rouf
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Jammu and Kashmir 190025, India
| | - Haamiyah Sidiq
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Jammu and Kashmir 190025, India
| | - Saima Masood
- Division of Basic Science & Humanities, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Jammu and Kashmir 190025, India
| | - Sehrish Mustafa
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Jammu and Kashmir 190025, India
| |
Collapse
|
5
|
Zhuang X, Zhu H, Wang F, Hu X. Revolutionizing wild silk fibers: Ultrasound enhances structure, properties, and regenerability of protein biomaterials in ionic liquids. ULTRASONICS SONOCHEMISTRY 2024; 109:107018. [PMID: 39128406 DOI: 10.1016/j.ultsonch.2024.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Ultrasound-assisted regulation of biomaterial properties has attracted increasing attention due to the unique reaction conditions induced by ultrasound cavitation. In this study, we explored the fabrication of wild tussah silk nanofiber membranes via ultrasound spray spinning from an ionic liquid system, characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), water contact angle, cytocompatibility tests, and enzymatic degradation studies. We investigated the effects of ultrasound propagation in an ionic liquid on the morphology, structure, thermal and mechanical properties, surface hydrophilicity, biocompatibility, and biodegradability of the fabricated fibers. The results showed that as ultrasound treatment time increased from 0 to 60 min, the regenerated silk fiber diameter decreased by 0.97 μm and surface area increased by 30.44 μm2, enhancing the fiber surface smoothness and uniformity. Ultrasound also promoted the rearrangement of protein molecular chains and transformation of disordered protein structures into β-sheets, increasing the β-sheet content to 54.32 %, which significantly improved the materials' thermal stability (with decomposition temperatures rising to 256.38 °C) and mechanical properties (elastic modulus reaching 0.75 GPa). In addition, hydrophilicity, cytocompatibility, and biodegradability of the fiber membranes all improved with longer ultrasound exposure, highlighting the potential of ultrasound technology in advancing the properties of natural biopolymers for applications in sustainable materials science and tissue regeneration.
Collapse
Affiliation(s)
- Xincheng Zhuang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Haomiao Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
6
|
Yu Y, Wang Y, Okonkwo CE, Chen L, Zhou C. Multimode ultrasonic-assisted decontamination of fruits and vegetables: A review. Food Chem 2024; 450:139356. [PMID: 38643647 DOI: 10.1016/j.foodchem.2024.139356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Fruits and vegetables (F&V) are a significant part of our diet consumption. Microbial and pesticide residues are the predominant safety hazards of F&V consumption. Ordinary water washing has a very limited effect on removing microorganisms and pesticide residues and requires high water usage. Ultrasound, as an environmentally friendly technology, shows excellent potential for reducing microbial contamination and pesticide residue. This paper summarizes the research on ultrasound application in F&V washing, including the removal of microbial and pesticide residues and the comprehensive effect on their physicochemical characteristics. Furthermore, multimode ultrasonic-assisted techniques like multi-frequency and sequential ultrasound, combined with novel and conventional methods, can enhance the ultrasound-based effect and be more effective and sustainable in preventing F&V from microbial contamination. Overall, this work explicitly establishes the background on the potential for ultrasound cleaning and disinfection in the food industry as a green, effective, and ultimate method of preventing foodborne illnesses.
Collapse
Affiliation(s)
- Yanhua Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates; Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
| | - Li Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Wang X, Wang N, Wu D, Wang L, Zhang N, Yu D. Effect of ultrasonic power on delivery of quercetin in emulsions stabilized using octenyl succinic anhydride (OSA) modified broken japonica rice starch. Int J Biol Macromol 2024; 267:131557. [PMID: 38614171 DOI: 10.1016/j.ijbiomac.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
In this study, emulsions stabilized by octenyl succinic anhydride-modified broken japonica rice starch (OSA-BJRS) were prepared at different ultrasonic power intensities for the delivery, controlled release, and improved bioavailability of quercetin. The OSA-BJRS emulsions ultrasonicated at 400 W exhibited the highest encapsulation efficiency (89.37 %) and loading efficiency (58.34 %) of quercetin, the smallest volume-average droplet diameter (0.51 μm) and polydispersity index (0.19), the highest absolute value of the ζ-potential (26.73 mV), and the highest apparent viscosity and viscoelasticity. The oxidation stability, storage stability, thermal stability, and salt ion stability of the emulsions were also notably improved by the ultrasonication treatment. In addition, the results of the simulated in vitro digestion demonstrated that the ultrasonicated OSA-BJRS emulsions had an enhanced quercetin delivery performance and could stably transport quercetin to the small intestine for digestion. The OSA-BJRS emulsion ultrasonicated at 400 W exhibited the highest cumulative release rate (95.91 %) and the highest bioavailability (30.48 %) of quercetin. This suggests that OSA-BJRS emulsions prepared by ultrasonication can be considered effective delivery systems for hydrophobic functional components.
Collapse
Affiliation(s)
- Xue Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ning Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Dandan Wu
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Liqi Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Na Zhang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Rajasekaran SP, Huynh B, Fugolin APP. Tailoring Microemulsification Techniques for the Encapsulation of Diverse Cargo: A Systematic Analysis of Poly (Urea-Formaldehyde) Microcapsules. J Funct Biomater 2024; 15:117. [PMID: 38786629 PMCID: PMC11122521 DOI: 10.3390/jfb15050117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Cargo encapsulation through emulsion-based methods has been pondered over the years. Although several microemulsification techniques have been employed for the microcapsule's synthesis, there are still no clear guidelines regarding the suitability of one technique over the others or the impacts on the morphological and physicochemical stability of the final particles. Therefore, in this systematic study, we investigated the influence of synthesis parameters on the fabrication of emulsion-based microcapsules concerning morphological and physicochemical properties. Using poly(urea-formaldehyde) (PUF) microcapsules as a model system, and after determining the optimal core/shell ratio, we tested three different microemulsification techniques (magnetic stirring, ultrasonication, and mechanical stirring) and two different cargo types (100% TEGDMA (Triethylene glycol dimethacrylate) and 80% TEGDMA + 20% DMAM (N,N-Dimethylacrylamide)). The resulting microcapsules were characterized via optical and scanning electron microscopies, followed by size distribution analysis. The encapsulation efficiency was obtained through the extraction method, and the percentage reaction yield was calculated. Physicochemical properties were assessed by incubating the microcapsules under different osmotic pressures for 1 day and 1, 2, or 4 weeks. The data were analyzed statistically with one-way ANOVA and Tukey's tests (α = 0.05). Overall, the mechanical stirring resulted in the most homogeneous and stable microcapsules, with an increased reaction yield from 100% to 50% in comparison with ultrasonication and magnetic methods, respectively. The average microcapsule diameter ranged from 5 to 450 µm, with the smallest ones in the ultrasonication and the largest ones in the magnetic stirring groups. The water affinities of the encapsulated cargo influenced the microcapsule formation and stability, with the incorporation of DMAM leading to more homogeneous and stable microcapsules. Environmental osmotic pressure led to cargo loss or the selective swelling of the shells. In summary, this systematic investigation provides insights and highlights commonly overlooked factors that can influence microcapsule fabrication and guide the choice based on a diligent analysis of therapeutic niche requirements.
Collapse
Affiliation(s)
| | | | - Ana Paula P. Fugolin
- Division of Biomaterials & Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA; (S.P.R.); (B.H.)
| |
Collapse
|
9
|
Qu W, Feng Y, Xiong T, Qayum A, Ma H. Preparation, structural and functional characterization of corn peptide-chelated calcium microcapsules using synchronous dual frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 102:106732. [PMID: 38150958 PMCID: PMC10765482 DOI: 10.1016/j.ultsonch.2023.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
The utilization of peptide-chelated calcium is low due to the influence of factors such as solubility, heat and digestive environmental conditions; therefore, it is crucial to protect, prolong and stabilize this nutrient in order to enhance its efficacy. This study was conducted to prepare corn peptide-chelated calcium microcapsules using β-cyclodextrin (β-CD) as the wall material through an improved ultrasonic-assisted method. The structure, solubility, thermal stability, and in vitro gastrointestinal digestion of these microcapsules were thoroughly investigated and analyzed. The microcapsules were prepared using the following recommended conditions: a chelate concentration of 5 mg/mL, a mass ratio of chelate to β-CD of 1:8 g/g, and a synchronous dual-frequency ultrasound (20/28 kHz) at a power of 75 W, a duty ratio of 20/5 s/s, and a time of 20 min. These specific parameters were carefully selected to ensure the optimal fabrication of the microcapsules. The results showed that the utilization of dual-frequency ultrasound resulted in a significant increase in both the encapsulation rate and yield, which were enhanced by 15.84 % and 15.68 %, respectively, reaching impressive values of 79.17 % and 90.60 %. Moreover, the results of the structure index analysis provided further confirmation that ultrasonic treatment had a significant impact on the structure of the microcapsules, leading to a noticeable reduction in particle size and transformation into nanoparticles. Furthermore, the microcapsules demonstrated excellent solubility within a wide pH range of 2 to 10, with solubility ranging from 93.54 % to 88.68 %. Additionally, these microcapsules exhibited remarkable thermal stability, retaining a minimum of 84.8 % of their stability when exposed to temperatures ranging from 40 to 80 °C. Moreover, during gastric and intestinal digestion, these microcapsules exhibited a high slow-release rate of 44.66 % and 51.6 %, indicating their ability to gradually release calcium contents. The inclusion of dual-frequency ultrasound in the preparation of high calcium microcapsules yielded promising outcomes. Overall, our work presents a novel method for synthesizing corn peptide-chelated calcium microcapsules with desirable properties such as good solubility, excellent thermal stability, and a significant slow-release effect. These microcapsules have the potential to serve as fortified high calcium supplements.
Collapse
Affiliation(s)
- Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yuhang Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Shah R, Phatak N, Choudhary A, Gadewar S, Ajazuddin, Bhattacharya S. Exploring the Theranostic Applications and Prospects of Nanobubbles. Curr Pharm Biotechnol 2024; 25:1167-1181. [PMID: 37861011 DOI: 10.2174/0113892010248189231010085827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
Anticancer medications as well as additional therapeutic compounds, have poor clinical effectiveness due to their diverse distribution, non-selectivity for malignant cells, and undesirable off-target side effects. As a result, ultrasound-based targeted delivery of therapeutic compounds carried in sophisticated nanocarriers has grown in favor of cancer therapy and control. Nanobubbles are nanoscale bubbles that exhibit unique physiochemical properties in both their inner core and outer shell. Manufacturing nanobubbles primarily aims to enhance therapeutic agents' bioavailability, stability, and targeted delivery. The small size of nanobubbles allows for their extravasation from blood vessels into surrounding tissues and site-specific release through ultrasound targeting. Ultrasound technology is widely utilized for therapy due to its speed, safety, and cost-effectiveness, and micro/nanobubbles, as ultrasound contrast agents, have numerous potential applications in disease treatment. Thus, combining ultrasound applications with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side effects on other non-cancerous tissues. This paper provides a brief overview of the production processes for nanobubbles, along with their key characteristics and potential therapeutic uses.
Collapse
Affiliation(s)
- Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Niraj Phatak
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ashok Choudhary
- Department of Quality Assurance, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sakshi Gadewar
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
11
|
Abdurashitov AS, Proshin PI, Sukhorukov GB. Template-Free Manufacturing of Defined Structure and Size Polymeric Microparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2976. [PMID: 37999330 PMCID: PMC10674349 DOI: 10.3390/nano13222976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Complex-structured polymeric microparticles hold significant promise as an advance in next-generation medicine mostly due to demand from developing targeted drug delivery. However, the conventional methods for producing these microparticles of defined size, shape, and sophisticated composition often face challenges in scalability, reliance on specialized components such as micro-patterned templates, or limited control over particle size distribution and cargo (functional payload) release kinetics. In this study, we introduce a novel and reliably scalable approach for manufacturing microparticles of defined structures and sizes with variable parameters. The concept behind this method involves the deposition of a specific number of polymer layers on a substrate with low surface energy. Each layer can serve as either the carrier for cargo or a programmable shell-former with predefined permeability. Subsequently, this layered structure is precisely cut into desired-size blanks (particle precursors) using a laser. The manufacturing process is completed by applying heat to the substrate, which results in sealing the edges of the blanks. The combination of the high surface tension of the molten polymer and the low surface energy of the substrate enables the formation of discrete particles, each possessing semi-spherical or other designed geometries determined by their internal composition. Such anisotropic microparticles are envisaged to have versatile applications.
Collapse
Affiliation(s)
- Arkady S. Abdurashitov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, p.1, 121205 Moscow, Russia;
| | - Pavel I. Proshin
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, p.1, 121205 Moscow, Russia;
| | - Gleb B. Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, p.1, 121205 Moscow, Russia;
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
| |
Collapse
|
12
|
Wang N, Wang D, Xing K, Han X, Gao S, Wang T, Yu D, Elfalleh W. Ultrasonic treatment of rice bran protein-tannic acid stabilized oil-in-water emulsions: Focus on microstructure, rheological properties and emulsion stability. ULTRASONICS SONOCHEMISTRY 2023; 99:106577. [PMID: 37678064 PMCID: PMC10495670 DOI: 10.1016/j.ultsonch.2023.106577] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Rice bran protein (RBP)-tannic acid (TA) complex was prepared and the RBP-TA emulsions were subjected to ultrasonic treatment with different powers. Ultrasonic treatment has a positive effect on improving the properties of RBP-TA emulsion. This study investigated the influence of different ultrasonic power levels on the physicochemical properties, microstructure, rheological properties, and stability of emulsions containing RBP-TA. Under the ultrasonic treatment of 400 W, the particle size, zeta potential, and adsorbed protein content of the RBP-TA emulsion were 146.86 nm, -20.7 eV, and 61.91%, respectively. At this time, the emulsion had the best emulsifying properties, apparent viscosity, energy storage modulus and loss modulus. In addition, the POV and TBARS values of RBP-TA emulsions were 6.12 and 7.60 mmol/kg, respectively. The thermal, salt ion, pH and oxidative stability of the emulsions were investigated, and it was shown that ultrasonic treatment was effective in improving the stability of RBP-TA emulsions.
Collapse
Affiliation(s)
- Ning Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Donghua Wang
- The University of Sheffield, Sheffield S10 2TNc, United Kingdom
| | - Kaiwen Xing
- Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Han
- Northeast Agricultural University, Harbin 150030, China
| | - Shan Gao
- Heilongjiang Academy of Green Food Science, Harbin 150028, China.
| | - Tong Wang
- Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- Northeast Agricultural University, Harbin 150030, China
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, National Engineering School of Gabes, University of Gabes, Zrig, 6072 Gabes, Tunisia
| |
Collapse
|
13
|
Nugroho RWN, Tardy BL, Eldin SM, Ilyas RA, Mahardika M, Masruchin N. Controlling the critical parameters of ultrasonication to affect the dispersion state, isolation, and chiral nematic assembly of cellulose nanocrystals. ULTRASONICS SONOCHEMISTRY 2023; 99:106581. [PMID: 37690260 PMCID: PMC10498310 DOI: 10.1016/j.ultsonch.2023.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Cellulose nanocrystals (CNCs) are typically extracted from plants and present a range of opto-mechanical properties that warrant their use for the fabrication of sustainable materials. While their commercialization is ongoing, their sustainable extraction at large scale is still being optimized. Ultrasonication is a well-established and routinely used technology for (re-) dispersing and/or isolating plant-based CNCs without the need for additional reagents or chemical processes. Several critical ultrasonication parameters, such as time, amplitude, and energy input, play dominant roles in reducing the particle size and altering the morphology of CNCs. Interestingly, this technology can be coupled with other methods to generate moderate and high yields of CNCs. Besides, the ultrasonics treatment also has a significant impact on the dispersion state and the surface chemistry of CNCs. Accordingly, their ability to self-assemble into liquid crystals and subsequent superstructures can, for example, imbue materials with finely tuned structural colors. This article gives an overview of the primary functions arising from the ultrasonication parameters for stabilizing CNCs, producing CNCs in combination with other promising methods, and highlighting examples where the design of photonic materials using nanocrystal-based celluloses is substantially impacted.
Collapse
Affiliation(s)
- Robertus Wahyu N Nugroho
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Collaborative Research Center for Nanocellulose between BRIN and Andalas University, Padang 25163, Indonesia.
| | - Blaise L Tardy
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt.
| | - R A Ilyas
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia; Center for Advanced Composite Materials, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia; Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; Center of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Malaysia.
| | - Melbi Mahardika
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Collaborative Research Center for Nanocellulose between BRIN and Andalas University, Padang 25163, Indonesia
| | - Nanang Masruchin
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Collaborative Research Center for Nanocellulose between BRIN and Andalas University, Padang 25163, Indonesia
| |
Collapse
|
14
|
Ozkan A, Esmeli K. Use of ultrasonic treatment as a pre-phase in the shear flocculation process. ULTRASONICS 2023; 134:107052. [PMID: 37295220 DOI: 10.1016/j.ultras.2023.107052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/04/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The use of ultrasonic energy has mostly been investigated for the flotation process in mineral processing, but its application to flocculation with collectors is extremely limited. Therefore, in this study, the effect of ultrasound in the shear flocculation technique, was intended to be revealed by using a celestite sample. The initial studies carried out for this purpose showed that in the absence of any reagent, the ultrasonication decreased the surface charge of the mineral, which caused the coagulation of the celestite suspension. In this scope, the short application of ultrasound at high power (i.e., 2 min batch regime and 150 W) provided a more positive effect. In the flocculation process carried out with collectors, the use of ultrasonic energy as a pre-phase for the suspension enhanced the aggregation of celestite particles. This result also fits well with the rise in the contact angle and the decrease in the zeta potential of the mineral due to the ultrasound. However, when the ultrasound was applied directly to the flocculation phase (ultrasound-induced flocculation only), the aggregation of celestite particles was affected adversely. Consequently, it can be said that in the shear flocculation process, the ultrasonic treatment should be used as a pre-phase for mineral suspensions. In this case, the flocculation of fine mineral particles in suspensions with surfactants can be improved by ultrasonic processing.
Collapse
Affiliation(s)
- Alper Ozkan
- Department of Mining Engineering, Konya Technical University, Konya, Turkey
| | - Kiraz Esmeli
- Department of Mining Engineering, Konya Technical University, Konya, Turkey.
| |
Collapse
|
15
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
16
|
Saeed PA, Juraij K, Saharuba PM, Sujith A. A one-pot water mediated process for developing conductive composites with segregated network of poly(3,4-ethylenedioxythiophene) on spherical poly(methyl methacrylate) particles. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
17
|
Ultrasound-Assisted Encapsulation of Citronella Oil in Alginate/Carrageenan Beads: Characterization and Kinetic Models. CHEMENGINEERING 2023. [DOI: 10.3390/chemengineering7010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of this research was to investigate the effect of ultrasonication on citronella oil encapsulation using alginate/carrageenan (Alg/Carr) in the presence of sodium dodecyl sulfate (SDS). The functional groups of microparticles were characterized using Fourier transform infrared spectroscopy (FTIR), and the beads’ morphologies were observed using a scanning electron microscope (SEM). The FTIR results showed that the ultrasonication process caused the C-H bonds (1426 cm−1) to break down, resulting in polymer degradation. The SEM results showed that the ultrasonication caused the presence of cavities or pores in the cracked wall and a decrease in the beads’ size. In this study, the use of ultrasound during the encapsulation of citronella oil in Alg/Carr enhanced the encapsulation efficiency up to 95–97%. The kinetic evaluation of the oil release of the beads treated with ultrasound (UTS) showed a higher k1 value of the Ritger–Peppas model than that without ultrasonication (non-UTS), indicating that the oil release rate from the beads was faster. The R/F value from the Peppas–Sahlin model of the beads treated with UTS was smaller than that of the non-UTS model, revealing that the release of bioactive compounds from the UTS-treated beads was diffusion-controlled rather than due to a relaxation mechanism. This study suggests the potential utilization of UTS for controlling the bioactive compound release rate.
Collapse
|
18
|
Jadhav HB, Raina I, Gogate PR, Annapure US, Casanova F. Sonication as a Promising Technology for the Extraction of Triacylglycerols from Fruit Seeds—A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Lin L, Mahdi AA, Li C, Al-Ansi W, Al-Maqtari QA, Hashim SB, Cui H. Enhancing the properties of Litsea cubeba essential oil/peach gum/polyethylene oxide nanofibers packaging by ultrasonication. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Rashid R, Wani SM, Manzoor S, Masoodi F, Altaf A. Nanoencapsulation of pomegranate peel extract using maltodextrin and whey protein isolate. Characterisation, release behaviour and antioxidant potential during simulated invitro digestion. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Effects of High-Intensity Ultrasound Treatments on the Physicochemical and Structural Characteristics of Sodium Caseinate (SC) and the Stability of SC-Coated Oil-in-Water (O/W) Emulsions. Foods 2022; 11:foods11182817. [PMID: 36140961 PMCID: PMC9498016 DOI: 10.3390/foods11182817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of high-intensity ultrasound treatment (0, 3, 6, 9 min) on physicochemical and structural characteristics of SC and the storage, thermal and freeze–thaw stability of SC O/W emulsions were investigated. The results showed that ultrasound treatment reduced the particle size of SC, although there were no obvious changes in zeta potential, profiles and weights. Ultrasound treatment improved surface hydrophobicity and fluorescence intensity of SC and changed ultraviolet–visible (UV–Vis) spectroscopy but had no influence on the secondary structure of SC. This indicates that ultrasounds might destroy the tertiary structure but leave most of the integral secondary structure. A scanning electron microscope (SEM) also showed that ultrasound-treated SC presented small aggregates and a loose structure. The physicochemical and structural changes of SC benefited the ability of protein adsorbing oil droplets and emulsion stability. Under stresses such as storage, thermal and freeze–thawing, the oil droplets of treated emulsions were still uniform and stable, especially at 6 min and 9 min. Overall, the high-intensity ultrasounds made the SC present small aggregates and a loose structure improving the SC O/W emulsions stability under storage, thermal and freeze–thawing environment and have great potential to stabilize the SC prepared O/W emulsions.
Collapse
|
22
|
Wang S, Wang T, Li X, Cui Y, Sun Y, Yu G, Cheng J. Fabrication of emulsions prepared by rice bran protein hydrolysate and ferulic acid covalent conjugate: Focus on ultrasonic emulsification. ULTRASONICS SONOCHEMISTRY 2022; 88:106064. [PMID: 35749957 PMCID: PMC9234231 DOI: 10.1016/j.ultsonch.2022.106064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 05/07/2023]
Abstract
The aim of the paper was to investigate the effect of ultrasonic emulsification treatment on the fabrication mechanism and stability of the emulsion. The covalent conjugate made with rice bran protein hydrolysate (RBPH) and ferulic acid (FA) was used as the emulsifier. The effects of high intensity ultrasound (HIU) power with different level (0 W, 150 W, 300 W, 450 W and 600 W) on the stability of emulsion were evaluated. The results showed that ultrasonic emulsification can significantly improve the stability of the emulsions (p < 0.05). The emulsion gained better stability and emulsifying property at 300 W. It was able to fabricate emulsion with smaller particle size, more uniform distribution and higher interfacial protein content. It was confirmed by fluorescent microscopy and cryo-scanning electron microscopy (cryo-SEM) furtherly. And it was also proved that the emulsion treated by proper HIU treatment at 300 W had better storage stability. Excessive HIU treatment (450 W, 600 W) had negative effects on the stability of emulsion. The stability of emulsion (300 W) against different environmental stresses was further explored, which established a theoretical basis for the industrial application of emulsion in food industry.
Collapse
Affiliation(s)
- Shirang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tengyu Wang
- School of Grain Engineering, Heilongjiang Communications Polytechnic, Harbin 150025, China
| | - Xiaoyi Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingju Cui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guoping Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
23
|
Neekhra S, Pandith JA, Mir NA, Manzoor A, Ahmad S, Ahmad R, Sheikh RA. Innovative approaches for microencapsulating bioactive compounds and probiotics: An updated review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Somya Neekhra
- Department of Food Engineering and Technology, Institute of Engineering and Technology Bundelkhand University Jhansi India
| | - Junaid Ahmad Pandith
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Nisar A. Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering Chandigarh University Mohali Punjab India
| | - Arshied Manzoor
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Saghir Ahmad
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Rizwan Ahmad
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Rayees Ahmad Sheikh
- Department of Chemistry government Degree College Pulwama Jammu and Kashmir India
| |
Collapse
|
24
|
Rosales TKO, Fabi JP. Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives. Colloids Surf B Biointerfaces 2022; 218:112707. [PMID: 35907354 DOI: 10.1016/j.colsurfb.2022.112707] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants, and regular consumption is associated with a reduced risk of several diseases. However, the application of anthocyanins in foods represents a challenge due to molecular instability. The encapsulation of anthocyanins in nanostructures is a viable way to protect from the factors responsible for degradation and enable the industrial application of these compounds. Nanoencapsulation is a set of techniques in which the bioactive molecules are covered by resistant biomaterials that protect them from chemical and biological factors during processing and storage. This review comprehensively summarizes the existing knowledge about the structure of anthocyanins and molecular stability, with a critical analysis of anthocyanins' nanoencapsulation, the main encapsulating materials (polysaccharides, proteins, and lipids), and techniques used in the formation of nanocarriers to protect anthocyanins. Some studies point to the effectiveness of nanostructures in maintaining anthocyanin stability and antioxidant activity. The main advantages of the application of nanoencapsulated anthocyanins in foods are the increase in the nutritional value of the food, the addition of color, the increase in food storage, and the possible increase in bioavailability after oral ingestion. Nanoencapsulation improves stability for anthocyanin, thus demonstrating the potential to be included in foods or used as dietary supplements, and current limitations, challenges, and future directions of anthocyanins' have also been discussed.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
25
|
Yao C, Zhao S, Liu L, Liu Z, Chen G. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Rashid R, Wani SM, Manzoor S, Masoodi F, Dar MM. Improving oxidative stability of edible oils with nanoencapsulated orange peel extract powder during accelerated shelf life storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Dong J, Wang Z, Yang F, Wang H, Cui X, Li Z. Update of ultrasound-assembling fabrication and biomedical applications for heterogeneous polymer composites. Adv Colloid Interface Sci 2022; 305:102683. [PMID: 35523099 DOI: 10.1016/j.cis.2022.102683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/24/2022] [Accepted: 04/23/2022] [Indexed: 01/24/2023]
Abstract
As a power-driving approach, ultrasound irradiation is very appealing to the preparation or modification of new materials. In the review, we overviewed the latest development of ultrasound-mediated effects or reactions in polymer composites, and demonstrated its unique and powerful aspects on the polymerization or aggregation. The review generalized the different categories of heterogeneous polymer composites by defining the constituents, and described the shapes, sizes and basic properties of various purpose-specific or site-specific products. Importantly, the review paid more attention to the main biomedicine applications of heterogeneous polymer composites, such as drug or bioactive substance entrapment, delivery, release, imaging, and therapy, and emphasized many advantages of ultrasound-assembling approaches and heterogeneous polymer composites in biology and medicine fields. In addition, the review also indicated the prospective challenges of heterogeneous polymer composites both in ultrasound-assembling designs and in biomedical applications.
Collapse
|
28
|
Raj GVSB, Dash KK. Microencapsulation of Dragon Fruit Peel Extract by Freeze-Drying Using Hydrocolloids: Optimization by Hybrid Artificial Neural Network and Genetic Algorithm. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Improvements in the Microstructure and Mechanical Properties of Aluminium Alloys Using Ultrasonic-Assisted Laser Welding. METALS 2022. [DOI: 10.3390/met12061041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Welding high-strength aluminium alloys is generally a delicate operation due to the degradation of mechanical properties in the thermally affected zone (TAZ) and the presence of porosities in the molten metal. Furthermore, aluminium alloys contain compounds that solidify before the rest of the base alloy, therefore acting as stress concentration points that lead to the phenomenon of hot cracking. This paper investigates the process of applying ultrasonic vibrations to the molten pool aluminium alloy AA6082 to improve both its microstructure and mechanical properties. We analysed conventional and ultrasonic-assisted laser welding processes to assess the sonication effect in the ultrasonic band 20–40 kHz. Destructive and nondestructive tests were used to compare ultrasonically processed samples to baseline samples. We achieved a 26% increase in the tensile and weld yield strengths of laser welds in the aluminium plates via the power ultrasonic irradiation of the welds under optimum ultrasonic variable values during welding. It is estimated that the ultrasound intensity in the weld melt, using a maximum power of 160 W from a pair of 28 kHz transducers, was 35.5 W/cm2 as a spatial average and 142 W/cm2 at the antinodes. Cavitation activity was significant and sometimes a main contributor to the achieved improvements in weld quality.
Collapse
|
30
|
Cai B, Mazahreh J, Ma Q, Wang F, Hu X. Ultrasound-assisted fabrication of biopolymer materials: A review. Int J Biol Macromol 2022; 209:1613-1628. [PMID: 35452704 DOI: 10.1016/j.ijbiomac.2022.04.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
There is an urgent need to develop technologies that can physically manipulate the structure of biocompatible and green polymer materials in order to tune their performance in an efficient, repeatable, easy-to-operate, chemical-free, non-contact, and highly controllable manner. Ultrasound technology produces a cavitation effect that promotes the generation of free radicals, the fracture of chemical chain segments and a rapid change of morphology. The cavitation effects are accompanied by thermal, chemical, and biological effects that interact with the material being studied. With its high efficiency, cleanliness, and reusability applications, ultrasound has a vast range of opportunity within the field of natural polymer-based materials. This work expounds the basic principle of ultrasonic cavitation and analyzes the influence that ultrasonic strength, temperature, frequency and induced liquid surface tension on the physical and chemical properties of biopolymer materials. The mechanism and the influence that ultrasonic modification has on materials is discussed, with highlighted details on the agglomeration, degradation, morphology, structure, and the mechanical properties of these novel materials from naturally derived polymers.
Collapse
Affiliation(s)
- Bowen Cai
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Janine Mazahreh
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qingyu Ma
- School of Computer and Electrical Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
31
|
Santos MA, Okuro PK, Fonseca LR, Cunha RL. Protein-based colloidal structures tailoring techno- and bio-functionality of emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Deng Y, Wang W, Zhao S, Yang X, Xu W, Guo M, Xu E, Ding T, Ye X, Liu D. Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Misra S, Pandey P, Dalbhagat CG, Mishra HN. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. FOOD BIOPROCESS TECH 2022; 15:998-1039. [PMID: 35126801 PMCID: PMC8800850 DOI: 10.1007/s11947-021-02753-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
From the past few decades, consumers' demand for probiotic-based functional and healthy food products is rising exponentially. Encapsulation is an emerging field to protect probiotics from unfavorable conditions and to deliver probiotics at the target place while maintaining the controlled release in the colon. Probiotics have been encapsulated for decades using different encapsulation methods to maintain their viability during processing, storage, and digestion and to give health benefits. This review focuses on novel microencapsulation techniques of probiotic bacteria including vacuum drying, microwave drying, spray freeze drying, fluidized bed drying, impinging aerosol technology, hybridization system, ultrasonication with their recent advancement, and characteristics of the commonly used polymers have been briefly discussed. Other than novel techniques, characterization of microcapsules along with their mechanism of release and stability have shown great interest recently in developing novel functional food products with synergetic effects, especially in COVID-19 outbreak. A thorough discussion of novel processing technologies and applications in food products with the incorporation of recent research works is the novelty and highlight of this review paper.
Collapse
Affiliation(s)
- Sourav Misra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| |
Collapse
|
34
|
Ahn GY, Choi I, Song M, Han SK, Choi K, Ryu YH, Oh DH, Kang HW, Choi SW. Fabrication of Microfiber-Templated Microfluidic Chips with Microfibrous Channels for High Throughput and Continuous Production of Nanoscale Droplets. ACS Macro Lett 2022; 11:127-134. [PMID: 35574793 DOI: 10.1021/acsmacrolett.1c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A polydimethylsiloxane (PDMS) microfluidic chip with well-interconnected microfibrous channels was fabricated by using an electrospun poly(ε-caprolactone) (PCL) microfibrous matrix and 3D-printed pattern as templates. The microfiber-templated microfluidic chip (MTMC) was used to produce nanoscale emulsions and spheres through multiple emulsification at many small micro-orifice junctions among microfibrous channels. The emulsion formation mechanisms in the MTMC were the cross-junction dripping or Y-junction splitting at the micro-orifice junctions. We demonstrated the high throughput and continuous production of water-in-oil emulsions and polyethylene glycol-diacrylate (PEG-DA) spheres with controlled size ranges from 2.84 μm to 83.6 nm and 1.03 μm to 45.7 nm, respectively. The average size of the water droplets was tuned by changing the micro-orifice diameter of the MTMC and the flow rate of the continuous phase. The MTMC theoretically produced 58 trillion PEG-DA nanospheres per hour without high shear force. In addition, we demonstrated the higher encapsulation efficiency of the PEG-DA microspheres in the MTMC than that of the microspheres fabricated by ultrasonication. The MTMC can be used as a powerful platform for the large-scale and continuous productions of emulsions and spheres.
Collapse
Affiliation(s)
- Guk-Young Ahn
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Inseong Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Minju Song
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Soo Kyung Han
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kangho Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Young-Hyun Ryu
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Do-Hyun Oh
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hye-Won Kang
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Sung-Wook Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
35
|
Chavan P, Sharma P, Sharma SR, Mittal TC, Jaiswal AK. Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods 2022; 11:122. [PMID: 35010248 PMCID: PMC8750622 DOI: 10.3390/foods11010122] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by reducing loss and controlling spoilage. Among the several non-thermal processing methods, ultrasound technology has shown to be very beneficial. Ultrasound processing, whether used alone or in combination with other methods, improves food quality significantly and is thus considered beneficial. Cutting, freezing, drying, homogenization, foaming and defoaming, filtration, emulsification, and extraction are just a few of the applications for ultrasound in the food business. Ultrasounds can be used to destroy germs and inactivate enzymes without affecting the quality of the food. As a result, ultrasonography is being hailed as a game-changing processing technique for reducing organoleptic and nutritional waste. This review intends to investigate the underlying principles of ultrasonic generation and to improve understanding of their applications in food processing to make ultrasonic generation a safe, viable, and innovative food processing technology, as well as investigate the technology's benefits and downsides. The breadth of ultrasound's application in the industry has also been examined. This will also help researchers and the food sector develop more efficient strategies for frequency-controlled power ultrasound in food processing applications.
Collapse
Affiliation(s)
- Prasad Chavan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144402, India;
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Pallavi Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Sajeev Rattan Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Tarsem Chand Mittal
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin—City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
36
|
Araújo M, Marques AC, Lobo JMS, Amaral MH. Semisolid formulations based on solid-in-oil-in-water systems containing proteins. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mónica Araújo
- University of Porto, Portugal; University of Porto, Portugal
| | | | | | | |
Collapse
|
37
|
Chen H, Xu B, Zhou C, Yagoub AEGA, Cai Z, Yu X. Multi-frequency ultrasound-assisted dialysis modulates the self-assembly of alcohol-free zein-sodium caseinate to encapsulate curcumin and fabricate composite nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Ahmed Wani T, Masoodi FA, Akhter R, Akram T, Gani A, Shabir N. Nanoencapsulation of hydroxytyrosol in chitosan crosslinked with sodium bisulfate tandem ultrasonication: Techno-characterization, release and antiproliferative properties. ULTRASONICS SONOCHEMISTRY 2022; 82:105900. [PMID: 34972072 PMCID: PMC8799616 DOI: 10.1016/j.ultsonch.2021.105900] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 05/11/2023]
Abstract
This research includes production of chitosan nanocapsules through ionic gelation with sodium bisulfate for nanoencapsulation of hydroxytyrosol (HT) using ultrasonication in tandem. The resulting nanocapsules encapsulating HT were analyzed for particle size, ζ-potential, packaging characteristics, FESEM, ATR-FTIR, XRD, DSC, in vitro release, antioxidant potential and antiproliferative properties. The nanocapsules (size 119.50-365.21 nm) were spherical to irregular shaped with positive ζ-potential (17.50-18.09 mV). The encapsulation efficiency of 5 mg/g HT (HTS1) and 20 mg/g HT (HTS2) was 77.13% and 56.30%, respectively. The nanocapsules were amorphous in nature with 12.34% to 15.48% crystallinity and crystallite size between 20 nm and 27 nm. Formation of nanocapsules resulted in increasing the glass transition temperature. HTS2 delivered 67.12% HT (HTS1 58.89%) at the end of the simulated gastrointestinal digestion. The nanoencapsulated HT showed higher antioxidant and antiproliferative (against A549 and MDA-MB-231 cancer cell lines) properties than the free HT.
Collapse
Affiliation(s)
- Touseef Ahmed Wani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - F A Masoodi
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| | - Rehana Akhter
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Towseef Akram
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Shuhama 191202, Jammu and Kashmir, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Nadeem Shabir
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Shuhama 191202, Jammu and Kashmir, India
| |
Collapse
|
39
|
Liu Y, Liang Q, Liu X, Raza H, Ma H, Ren X. Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112331] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Liang Q, Sun X, Raza H, Aslam Khan M, Ma H, Ren X. Fabrication and characterization of quercetin loaded casein phosphopeptides-chitosan composite nanoparticles by ultrasound treatment: Factor optimization, formation mechanism, physicochemical stability and antioxidant activity. ULTRASONICS SONOCHEMISTRY 2021; 80:105830. [PMID: 34800840 PMCID: PMC8605428 DOI: 10.1016/j.ultsonch.2021.105830] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 05/30/2023]
Abstract
Ultrasound treatment was used to successfully prepare Quercetin (Qu)-loaded Casein phosphopeptides (CPP)/chitosan (CS) nanoparticles. Compared with the control, the above ternary nanoparticles with the smallest size (241.27 nm, decreased by 34.32%), improved encapsulation efficiency of Qu (78.55%, increased by 22.12%) when prepared under following conditions: ultrasonic frequency, 20/35/50 kHz; the power density, 80 W/L; the time, 20 min, and the intermittent ratio, 20 s/5s. Electrostatic interactions, hydrogen bonding, and hydrophobic interactions were the main driving forces for nanoparticles formulation, which were strengthened by ultrasound treatment. The compact, homogeneous and spherical composite nanoparticles obtained by sonication were clearly observed by scanning electron microscope and atomic force microscope. The environmental stability (NaCl, pH, exposure time, storage time, and simulated gastrointestinal digestion) and antioxidant activity of the ternary nanoparticles were remarkably enhanced after ultrasonic treatment. Furthermore, the ternary nanoparticles prepared by ultrasound exhibited excellent stability in simulated gastrointestinal digestion. The above results indicate that ultrasound not only increases the loading of the nanoparticles on bioactive substances but also improves the environmental stability and antioxidant activity of the formed nanoparticles. Ultrasound-assisted preparation of nanoparticles loaded with bioactive substances could be well used in the functional food and beverage industry.
Collapse
Affiliation(s)
- Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China
| | - Xinru Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Husnain Raza
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Muhammad Aslam Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
41
|
Meroni D, Djellabi R, Ashokkumar M, Bianchi CL, Boffito DC. Sonoprocessing: From Concepts to Large-Scale Reactors. Chem Rev 2021; 122:3219-3258. [PMID: 34818504 DOI: 10.1021/acs.chemrev.1c00438] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensification of ultrasonic processes for diversified applications, including environmental remediation, extractions, food processes, and synthesis of materials, has received attention from the scientific community and industry. The mechanistic pathways involved in intensification of ultrasonic processes that include the ultrasonic generation of cavitation bubbles, radical formation upon their collapse, and the possibility of fine-tuning operating parameters for specific applications are all well documented in the literature. However, the scale-up of ultrasonic processes with large-scale sonochemical reactors for industrial applications remains a challenge. In this context, this review provides a complete overview of the current understanding of the role of operating parameters and reactor configuration on the sonochemical processes. Experimental and theoretical techniques to characterize the intensity and distribution of cavitation activity within sonoreactors are compared. Classes of laboratory and large-scale sonoreactors are reviewed, highlighting recent advances in batch and flow-through reactors. Finally, examples of large-scale sonoprocessing applications have been reviewed, discussing the major scale-up and sustainability challenges.
Collapse
Affiliation(s)
- Daniela Meroni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Ridha Djellabi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | | | - Claudia L Bianchi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daria C Boffito
- Département de Génie Chimique, C.P. 6079, Polytechnique Montréal, Montréal H3C 3A7, Canada.,Canada Research Chair in Intensified Mechanochemical Processes for Sustainable Biomass Conversion, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec Canada
| |
Collapse
|
42
|
Gausterer JC, Schüßler C, Gabor F. The impact of calcium phosphate on FITC-BSA loading of sonochemically prepared PLGA nanoparticles for inner ear drug delivery elucidated by two different fluorimetric quantification methods. ULTRASONICS SONOCHEMISTRY 2021; 79:105783. [PMID: 34653915 PMCID: PMC8527049 DOI: 10.1016/j.ultsonch.2021.105783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Although therapeutically active proteins are highly efficacious, their content in protective nanoparticles is often too low to elicit adequate plasma levels. A strategy to increase protein loading is the in-situ generation of calcium phosphate as a protein adsorbent. To verify this approach, a highly sensitive and reliable fluorimetric method for quantification of incorporated fluorescein-labelled bovine serum albumin (FITC-BSA) as a model protein drug was developed. Dequenching the fluorescein label by pronase E, which digests the protein backbone, and dissolving the nanoparticle matrix in acetonitrile enabled FITC-BSA quantification in the nanogram per milliliter range. This test was confirmed by a second assay involving alkaline hydrolysis of FITC-BSA and the matrix. Nanoparticles prepared with calcium phosphate contained 40 µg FITC-BSA/mg and nanoparticles without calcium phosphate only 15 µg FITC-BSA/mg, representing a 2.7-fold increase in model protein loading. In this work the nanoparticle preparation procedure was optimized in terms of size for administration in the inner ear, but the range of applications is not limited.
Collapse
Affiliation(s)
- Julia Clara Gausterer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
| | - Clara Schüßler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
Cai B, Gu H, Wang F, Printon K, Gu Z, Hu X. Ultrasound regulated flexible protein materials: Fabrication, structure and physical-biological properties. ULTRASONICS SONOCHEMISTRY 2021; 79:105800. [PMID: 34673337 PMCID: PMC8560629 DOI: 10.1016/j.ultsonch.2021.105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 05/03/2023]
Abstract
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
Collapse
Affiliation(s)
- Bowen Cai
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Kyle Printon
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
44
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
45
|
Omer N, Choo YM, Ahmad N, Mohd Yusof NS. Ultrasound-assisted encapsulation of Pandan (Pandanus amaryllifolius) extract. ULTRASONICS SONOCHEMISTRY 2021; 79:105793. [PMID: 34673338 PMCID: PMC8560631 DOI: 10.1016/j.ultsonch.2021.105793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 05/14/2023]
Abstract
Pandan (Pandanus amaryllifolius) is commonly used as a food ingredient in Southeast Asia due to its delicious flavor, appetizing aroma and bright green colour. Pandan plant is uniquely found only in certain parts of the world. Despite its increasing popularity worldwide, its export market is limited by practical issues. One of the main problems for exporting Pandan to global market is its stability during transport. Due to the volatility of its active constituent, the functional properties of Pandan are lost during storage and shipment. In this study, we explored the ability of ultrasound processing technology to encapsulate the aromatic Pandan extract using lysozyme or chitosan as a shell material. 20 kHz ultrasonicator was used to encapsulate the pandan extract at 150 W of applied power. Two parameters, the ultrasonic probe tip and the core-to-shell ratio were varied to control the properties of the encapsulates. The diameters of the probe tip used were 0.3 and 1.0 cm. The core-to-shell volume ratios used were 1:160 and 1:40. The size distribution and the stability of the synthesized microspheres were characterized to understand and explore the possible parameters variation impact. Both size and size distribution of the microspheres were found to be influenced by the parameters varied to certain extent. The results showed that the mean size of the microspheres was generally smallest when using 1 cm probe tip with lower core-to-shell volume ratio but largest when using the 3 mm tip with higher core-to-shell volume ratio. This indicates that the sonication parameters could be fine-tuned to achieve the encapsulation of Pandan extract for storage and export. The pandan-encapsulated microspheres were also found to be stable during storage at least for one month.
Collapse
Affiliation(s)
- Noridayu Omer
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nor Saadah Mohd Yusof
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; University Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
46
|
Munekata PES, Pateiro M, Bellucci ERB, Domínguez R, da Silva Barretto AC, Lorenzo JM. Strategies to increase the shelf life of meat and meat products with phenolic compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:171-205. [PMID: 34507642 DOI: 10.1016/bs.afnr.2021.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Oxidative reactions and microbial growth are the main processes involved in the loss of quality in meat products. Although the use of additives to improve the shelf life is a common practice in the meat industry, the current trends among consumers are pushing the researchers and professionals of the meat industry to reformulate meat products. Polyphenols are compounds with antioxidant and antimicrobial activity naturally found in several plants, fruits, and vegetables that can be used in the production of extracts and components in active packaging to improve the shelf life of meat products. This chapter aims to discuss the advances in terms of (1) encapsulation techniques to protect phenolic compounds; (2) production of active and edible packages rich on phenolic compounds; (3) use of phenolic-rich additives (free or encapsulated form) with non-thermal technologies to improve the shelf life of meat products; and (4) use of active packaging rich on phenolic compounds on meat products. Innovative strategies to encapsulated polyphenols and produce films are mainly centered in the use of innovative and emerging technologies (such as ultrasound and supercritical fluids). Moreover, the combined use of polyphenols and non-thermal technologies is a relevant approach to improve the shelf life of meat products, especially using high pressure processing. In terms of application of innovative films, nanomaterials have been largely explored and indicated as relevant strategy to preserve meat and meat products.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | | | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain; Facultad de Ciencias de Ourense, Área de Tecnología de los Alimentos, Universidad de Vigo, Ourense, Spain.
| |
Collapse
|
47
|
Microfluidics for Multiphase Mixing and Liposomal Encapsulation of Nanobioconjugates: Passive vs. Acoustic Systems. FLUIDS 2021. [DOI: 10.3390/fluids6090309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the main routes to ensure that biomolecules or bioactive agents remain active as they are incorporated into products with applications in different industries is by their encapsulation. Liposomes are attractive platforms for encapsulation due to their ease of synthesis and manipulation and the potential to fuse with cell membranes when they are intended for drug delivery applications. We propose encapsulating our recently developed cell-penetrating nanobioconjugates based on magnetite interfaced with translocating proteins and peptides with the purpose of potentiating their cell internalization capabilities even further. To prepare the encapsulates (also known as magnetoliposomes (MLPs)), we introduced a low-cost microfluidic device equipped with a serpentine microchannel to favor the interaction between the liposomes and the nanobioconjugates. The encapsulation performance of the device, operated either passively or in the presence of ultrasound, was evaluated both in silico and experimentally. The in silico analysis was implemented through multiphysics simulations with the software COMSOL Multiphysics 5.5® (COMSOL Inc., Stockholm, Sweden) via both a Eulerian model and a transport of diluted species model. The encapsulation efficiency was determined experimentally, aided by spectrofluorimetry. Encapsulation efficiencies obtained experimentally and in silico approached 80% for the highest flow rate ratios (FRRs). Compared with the passive mixer, the in silico results of the device under acoustic waves led to higher discrepancies with respect to those obtained experimentally. This was attributed to the complexity of the process in such a situation. The obtained MLPs demonstrated successful encapsulation of the nanobioconjugates by both methods with a 36% reduction in size for the ones obtained in the presence of ultrasound. These findings suggest that the proposed serpentine micromixers are well suited to produce MLPs very efficiently and with homogeneous key physichochemical properties.
Collapse
|
48
|
Cimino R, Bhangu SK, Baral A, Ashokkumar M, Cavalieri F. Ultrasound-Assisted Microencapsulation of Soybean Oil and Vitamin D Using Bare Glycogen Nanoparticles. Molecules 2021; 26:molecules26175157. [PMID: 34500590 PMCID: PMC8434121 DOI: 10.3390/molecules26175157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/27/2023] Open
Abstract
Ultrasonically synthesized core-shell microcapsules can be made of synthetic polymers or natural biopolymers, such as proteins and polysaccharides, and have found applications in food, drug delivery and cosmetics. This study reports on the ultrasonic synthesis of microcapsules using unmodified (natural) and biodegradable glycogen nanoparticles derived from various sources, such as rabbit and bovine liver, oyster and sweet corn, for the encapsulation of soybean oil and vitamin D. Depending on their source, glycogen nanoparticles exhibited differences in size and 'bound' proteins. We optimized various synthetic parameters, such as ultrasonic power, time and concentration of glycogens and the oil phase to obtain stable core-shell microcapsules. Particularly, under ultrasound-induced emulsification conditions (sonication time 45 s and sonication power 160 W), native glycogens formed microcapsules with diameter between 0.3 μm and 8 μm. It was found that the size of glycogen as well as the protein component play an important role in stabilizing the Pickering emulsion and the microcapsules shell. This study highlights that native glycogen nanoparticles without any further tedious chemical modification steps can be successfully used for the encapsulation of nutrients.
Collapse
Affiliation(s)
- Rita Cimino
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | | | - Anshul Baral
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence: (M.A.); (F.C.)
| | - Francesca Cavalieri
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
- School of Science, RMIT University, Melbourne, VIC 3000, Australia;
- Correspondence: (M.A.); (F.C.)
| |
Collapse
|
49
|
Riquelme N, Laguna L, Tárrega A, Robert P, Arancibia C. Oral behavior of emulsified systems with different particle size and thickening agents under simulated conditions. Food Res Int 2021; 147:110558. [PMID: 34399535 DOI: 10.1016/j.foodres.2021.110558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
Food behavior during oral processing plays an essential role in the perception of texture. It depends on different factors, including food structure and composition, as well as its behavior when interacting with saliva. This study aimed to investigate the effect of particle size and thickener type of emulsified systems on physical, rheological, tribological, and oral oily coating properties under oral conditions. Six matrices based on oil-in-water emulsions with different particle sizes (NE-nanoemulsion and CE-conventional emulsions) were prepared using a mixture of emulsifiers (10% w/w) and sunflower oil (10% w/w). Thickened agents were added to the matrices (NE and CE) at different concentrations (3-4.5% w/w of starch-ST or 0.4-0.8% w/w xanthan gum-XG) to obtain equi-viscous samples (NE-EV) with their CE-based counterpart. Results showed a decrease in apparent viscosity values under oral conditions (saliva and shearing at 10 s-1) during the shear time, but this behavior was more evident in starch-based matrices. The lubrication properties of the different matrices depended mainly on the thickener concentration since equi-viscous samples (NE-ST-EV and NE-XG-EV) showed higher coefficient of friction (CoF) values. Finally, oral oily coating was more related to the oil droplets size than to the type of thickener since all NE-based matrices showed a higher amount of coating retained compared to the CE-based ones. Therefore, NE-based matrices could be used as an alternative to increase mouthfeel sensations in food emulsions.
Collapse
Affiliation(s)
- Natalia Riquelme
- Universidad de Santiago de Chile (USACH), Facultad Tecnológica, Departamento de Ciencia y Tecnología de los Alimentos, Obispo Umaña 050, Estación Central, Chile; Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Ciencia de los Alimentos y Tecnología Química, Santos Dumont 964, Independencia, Chile
| | - Laura Laguna
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), C/Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Spain
| | - Amparo Tárrega
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), C/Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Spain
| | - Paz Robert
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Ciencia de los Alimentos y Tecnología Química, Santos Dumont 964, Independencia, Chile
| | - Carla Arancibia
- Universidad de Santiago de Chile (USACH), Facultad Tecnológica, Departamento de Ciencia y Tecnología de los Alimentos, Obispo Umaña 050, Estación Central, Chile.
| |
Collapse
|
50
|
Tahir A, Shabir Ahmad R, Imran M, Ahmad MH, Kamran Khan M, Muhammad N, Nisa MU, Tahir Nadeem M, Yasmin A, Tahir HS, Zulifqar A, Javed M. Recent approaches for utilization of food components as nano-encapsulation: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1953067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ali Tahir
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Shabir Ahmad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Imran
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Haseeb Ahmad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Kamran Khan
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Niaz Muhammad
- National Agriculture Education College, Kabul, Afghanistan
| | - Mahr Un Nisa
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad
| | - Muhammad Tahir Nadeem
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Adeela Yasmin
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hafiza Saima Tahir
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Aliza Zulifqar
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Miral Javed
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|