1
|
Leng F, Wang Y, Zhu N, Guo X, Luo W, Wang Y. Development and mechanism exploration of a quantitative model for Escherichia coli transformation efficiency based on ultrasonic power. ULTRASONICS SONOCHEMISTRY 2024; 111:107132. [PMID: 39481288 DOI: 10.1016/j.ultsonch.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Ultrasonic-mediated plasmid transformation is a promising microbial transformation strategy with broad application prospects that has attracted interest across various fields. Limited research exists on developing a quantitative model to understand the relationship between transformation efficiency and ultrasonic power. Within the ultrasonic range that did not damage plasmids, the maximum transformation efficiency reached at 4.84 × 105 CFU/μg DNA. A kinetic model based on changes in membrane permeability was utilized to determine the membrane permeability at different power levels. The results indicated a linear correlation between ultrasonic power, transformation efficiency, and membrane permeability within a specific range. A quantitative relationship model was established based on ultrasonic power and transformation efficiency in E. coli. Electron microscopy revealed that E. coli cells subjected to ultrasonic treatment exhibited pore formation and cellular expansion. Furthermore, the integrity of the bacterial membrane was compromised as ultrasonic power increased. Nine genes associated with the functional terms of cell membrane components and transmembrane transport were identified in E. coli DH5α. According to qRT-PCR results, genes with these functions (including cusC, uidC, tolQ, tolA, ompC, yaiY) play crucial roles in ultrasound-mediated transformation of E. coli DH5α. This study suggested that ultrasound-mediated transformation in E. coli DH5α is not a simple physical-chemical process but rather involves the regulation of responsive membrane-related genes. This research establishes the groundwork for future comprehensive investigations into the molecular mechanism of ultrasound-mediated transformation and provides insights for the application of ultrasound technology in genetic engineering and related fields.
Collapse
Affiliation(s)
- Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yubo Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wen Luo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
2
|
Ding L, Liang X, Ma J, Liu X, Zhang Y, Long Q, Wen Z, Teng Z, Jiang L, Liu G. Sono-Triggered Biomimetically Nanoantibiotics Mediate Precise Sequential Therapy of MRSA-Induced Lung Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2403612. [PMID: 39344919 DOI: 10.1002/adma.202403612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/23/2024] [Indexed: 10/01/2024]
Abstract
Bacterial-induced lower respiratory tract infections are a growing global health concern, exacerbated by the inefficacy of conventional antibiotics and delivery methods to effectively target the lower respiratory tract, leading to suboptimal therapeutic outcomes. To address this challenge, this work engineers PBP2a antibody-presenting membrane nanovesicles (AMVs) specifically designed to target the penicillin-binding protein variant on the surface of methicillin-resistant Staphylococcus aureus (MRSA). Concurrently, this work develops pure ciprofloxacin nanoparticles (NanoCip) that, for the first time, exhibits exceptional self-generated sonodynamic properties, attributed to hydrogen-bond-driven self-assembly, while maintaining their inherent pharmacological efficacy. These NanoCip particles are integrated with AMVs to create a novel biomimetic nanomedicine, AMV@NanoCip. This formulation demonstrated remarkable MRSA-targeting affinity in both in vitro and in vivo models, significantly enhancing antibacterial activity. Upon ultrasound stimulation, AMV@NanoCip achieves over 99.99% sterilization of MRSA in vitro, with a reduction exceeding 5.14 Log CFU. Prokaryotic transcriptomic analysis further elucidates the synergistic mechanisms by which AMV@NanoCip, coupled with ultrasound, disrupts the MRSA exoskeleton. In a MRSA-induced pneumonia animal model, AMV@NanoCip+US results in a substantial bacterial load reduction in the lungs (99.99%, 4.02 Log CFU). This sequential treatment strategy (adhesion-membrane disruption-synergistic therapy) offers significant promise as an innovative therapeutic approach for combating bacterial infections.
Collapse
Affiliation(s)
- Linyu Ding
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Xiaoliu Liang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Jiaxin Ma
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Qiuyue Long
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Zihao Wen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Zihao Teng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Lai Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
3
|
Zou Z, Purnawan MA, Wang Y, Ismail BB, Zhang X, Yang Z, Guo M. A novel antimicrobial peptide WBp-1 from wheat bran: Purification, characterization and antibacterial potential against Listeria monocytogenes. Food Chem 2024; 463:141261. [PMID: 39321596 DOI: 10.1016/j.foodchem.2024.141261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
This study introduces a novel antimicrobial peptide (AMP), WBp-1, isolated from wheat bran and purified via reversed-phase high-performance liquid chromatography. The amino acid sequence, determined as IITGASSGIGKAIAKHFI by LC-MS/MS, was composed predominantly of alkaline and hydrophobic residues. WBp-1 was predicted to be a stable, hydrophobic, cationic peptide with an α-helical structure. Moreover, it displayed significant antibacterial efficacy against Listeria monocytogenes, with a minimum inhibitory concentration of 150 μg/mL. Further mechanistic studies suggest that WBp-1 exerts its bactericidal activity by disrupting cell membrane integrity, impeding peptidoglycan synthesis by binding to penicillin-binding protein 4 via hydrogen bonding, increasing cell permeability, altering membrane potential and fluidity, and altering surface hydrophobicity. Interestingly, WBp-1 showed minimal hemolytic activity and cytotoxicity against LO2 cells, even at 16× MIC. These findings highlight the strong potential of WBp-1 as a novel antibacterial agent and food preservative against Listeria monocytogenes.
Collapse
Affiliation(s)
- Zhipeng Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Michelle A Purnawan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yiming Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
4
|
Peng S, Yao L, Zhu X, Ge W, Deng J, Li H, Xu D, Hu L, Mo H. Ultrasound combined with FeSO 4 facilitated the occurrence of ferroptosis in Vibrio parahaemolyticus. ULTRASONICS SONOCHEMISTRY 2024; 111:107080. [PMID: 39321597 PMCID: PMC11462476 DOI: 10.1016/j.ultsonch.2024.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Ultrasound (US) as a sustainable non-thermal sterilization technology that is employed either independently alone or in combination with other processing methods to eliminate food-borne pathogens in the food industry. In the present study, the synergistic effects of US combined with FeSO4 against Vibrio parahaemolyticus were investigated. The results demonstrated that the combination of ultrasound and FeSO4 had an excellent bactericidal activity on V. parahaemolyticus. Treatment with US (100 W) and FeSO4 (8 μM) for 15 min could kill more than 99.9 % cells. Furthermore, the observed cell death was identified as classical ferroptosis, characterized by ferroptosis hallmarks including iron-dependent, ROS burst, membrane damage and lipid peroxide accumulation. Addition of ferroptosis inhibitor liproxstatin-1 alleviated the cell death induced by the combination treatment. Transcriptome analysis further revealed that the US-FeSO4 treatment significantly influenced pathways related to fatty acid metabolism, ferroptosis, biofilm formation, RNA degradation, oxidative phosphorylation and other key processes, which likely contributed to the occurrence of ferroptosis. Based on these findings, we speculated that cavitation effect of US promoted the entry of Fe2+, leading to the generation of free radicals primarily responsible for ferroptosis by US-FeSO4. Taken together, this study provides valuable insights into the biological pathway involved in ultrasound sterilization and presents an alternative strategy to eradicate microorganism in food products.
Collapse
Affiliation(s)
- Shurui Peng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lishan Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaolin Zhu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wei Ge
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiakun Deng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
5
|
Ding Y, Wen G, Wei X, Zhou H, Li C, Luo Z, Ou D, Yang J, Song X. Antibacterial activity and mechanism of luteolin isolated from Lophatherum gracile Brongn. against multidrug-resistant Escherichia coli. Front Pharmacol 2024; 15:1430564. [PMID: 38983919 PMCID: PMC11232434 DOI: 10.3389/fphar.2024.1430564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Infections caused by multidrug-resistant (MDR) bacteria have become a major challenge for global healthcare systems. The search for antibacterial compounds from plants has received increasing attention in the fight against MDR bacteria. As a medicinal and edible plant, Lophatherum gracile Brongn. (L. gracile) has favorable antibacterial effect. However, the main antibacterial active compound and its antimicrobial mechanism are not clear. Here, our study first identified the key active compound from L. gracile as luteolin. Meanwhile, the antibacterial effect of luteolin was detected by using the broth microdilution method and time-kill curve analysis. Luteolin can also cause morphological structure degeneration and content leakage, cell wall/membrane damage, ATP synthesis reduction, and downregulation of mRNA expression levels of sulfonamide and quinolones resistance genes in multidrug-resistant Escherichia coli (MDR E. coli). Furthermore, untargeted UPLC/Q-TOF-MS-based metabolomics analysis of the bacterial metabolites revealed that luteolin significantly changed riboflavin energy metabolism, bacterial chemotaxis cell process and glycerophospholipid metabolism of MDR E. coli. This study suggests that luteolin could be a potential new food additive or preservative for controlling MDR E. coli infection and spread.
Collapse
Affiliation(s)
- Yahao Ding
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Guilan Wen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xingke Wei
- College of Animal Science, Guizhou University, Guiyang, China
| | - Hao Zhou
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chunjie Li
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Zhengqin Luo
- College of Animal Science, Guizhou University, Guiyang, China
| | - Deyuan Ou
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xuqin Song
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
7
|
Brindhadevi K, Subramanian SA, Kim PT, Wadaan MA, Selvam DR, Kim SJ. Antimicrobial and anti-diabetic efficiency of Polyalthia longifolia leaf extracts and major compounds characterization. ENVIRONMENTAL RESEARCH 2024; 246:118061. [PMID: 38157967 DOI: 10.1016/j.envres.2023.118061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
This research was performed to investigate the bactericidal and fungicidal competence of extracts (methanol and petroleum ether extract) of Polyalthia longifolia leaf. Moreover, the major active compounds present in the effective crude extract (either methanol or petroleum ether extract) was determined through initially with UV-Vis spectra, FTIR, and GC-MS analyses. The methanol extract alone showed remarkable bactericidal and fungicidal activity against the bacterial (S. pyogenes > E. coli > S. aureus > S. pneumoniae > C. difficile > P. aeruginosa) and fungal (A. clavatus > C. albicans > A. niger > A. fumigatus > C. tropicalis > C. auris) pathogens at increased concentration (12.5 mg mL-1) than petroleum ether extract. The MIC and MBC values of methanol extract were found as 10-20 mg mL-1 and 30-40 mg mL-1 respectively. The MFC value of methanol extract was found as 10-20 mg mL-1. These MIC, MBC, and MFC values of methanol extract were considerably greater than petroleum ether extract. The FTIR and GC-MS characterization studies revealed that the presence of more acre functional groups belonging to bioactive compounds such as Z)-7-Hexadecenal, Aromandendrene, α-Curcumene, Caryophyllene, Methyl 14-methyl Pentadecanoat, Methyl trans-13-Octadecenoate, 9-Octadecenoic acid (Z)-, and 2-hydroxy-1- (hydroxymethyl)ethyl. As a result of these findings, it is possible that P. longifolia leaf methanol extract contains medicinally important bioactive substances with bactericidal and fungicidal properties.
Collapse
Affiliation(s)
- Kathirvel Brindhadevi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Sivakumar Allur Subramanian
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - P T Kim
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, Riyadh, P.O. Box. 2455, 11451, Saudi Arabia
| | - D Robert Selvam
- Department of Advanced Zoology and Biotechnology, Loyola Health Centre, Loyola College (Autonomous), Chennai, 600 034, Tamil Nadu, India.
| | - Sung Jae Kim
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea.
| |
Collapse
|
8
|
Kong Y, Cai X, Li Y, Sun R, Yang H, Jiang T, Cheng S, Song L, Yang B, Zhang C, Shi C. Synergistic bactericidal effect and mechanism of ultrasound combined with Lauroyl Arginate Ethyl against Salmonella Typhimurium and its application in the preservation of onions. Int J Food Microbiol 2024; 413:110611. [PMID: 38308880 DOI: 10.1016/j.ijfoodmicro.2024.110611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
In the present study, the synergistic bactericidal effect and mechanism of ultrasound (US) combined with Lauroyl Arginate Ethyl (LAE) against Salmonella Typhimurium were investigated. On this basis, the effect of US+LAE treatment on the washing of S. Typhimurium on the surface of onions and on the physical and chemical properties of onion during fresh-cutting and storage were studied. The results showed that treatment with US+LAE could significantly (P < 0.05) reduce the number of S. Typhimurium compared to US and LAE treatments alone, especially the treatment of US+LAE (230 W/cm2, 8 min, 71 μM) reduced S. Typhimurium by 8.82 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release and N-phenyl-l-naphthylamine (NPN) assays demonstrated that US+LAE disrupted the integrity and permeability of S. Typhimurium cell membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) assays indicated that US+LAE exacerbated oxidative stress and lipid peroxidation in cell membranes. Field emission scanning electron microscopy (FESEM) demonstrated that US+LAE treatment caused loss of cellular contents and led to cell crumpling and even lost the original cell morphology. US+LAE treatment caused a significant (P < 0.05) decrease in the number of S. Typhimurium on onions, but there was no significant (P > 0.05) effect on the color, hardness, weight and ascorbic acid content of onions. This study elucidated the synergistic antibacterial mechanism of US+LAE and verified the feasibility of bactericidal effect on the surface of onions, providing a theoretical basis for improving the safety of fresh produce in the food industry and to propose a new way to achieve the desired results.
Collapse
Affiliation(s)
- Yajing Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yimeng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Runyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Zhang L, Zhang M, Mujumdar AS, Ma Y. Intermittent high voltage electrostatic field and static magnetic field assisted modified atmosphere packaging alleviate mildew of postharvest strawberries after simulated transportation by activating the phenylpropanoid pathway. Food Chem 2024; 434:137444. [PMID: 37713754 DOI: 10.1016/j.foodchem.2023.137444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The mildew is a typical symptom of strawberries during storage. The effectiveness of intermittent high voltage electrostatic field combined with static magnetic field (HVEF-SMF) technique in inhibiting the mildew of strawberries (before and after simulation of transport vibrations) was investigated. Intermittent HVEF, SMF and HVEF-SMF treatments inhibited spoilage fungal growth on the surface of strawberries by increasing the membrane permeability and leakage of intracellular materials of spoilage fungal. The HVEF-SMF alleviated mildew in strawberries, which probably via the increase of antifungal compounds (total phenolics and lignin), phenylpropanoid biosynthetic enzyme activities (Phenylalanine ammonia-lyase, 4-coumarate-CoA ligase) and pathogenesis-related proteins enzymes activities (chitinase and β-1,3-glucanase). Overall, HVEF-SMF contributed to alleviating the mildew and disease incidence of strawberries, improving the levels of antimicrobial activity, as well as extending their shelf life from 6 d to 12 d. Therefore, HVEF-SMF treatment is a promising technology for alleviating postharvest mildew in strawberries after transportation.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Yamei Ma
- Jiangsu Gaode Food Co., 226500 Rugao, Jiangsu, China
| |
Collapse
|
10
|
Zhang X, Ma P, Ismail BB, Yang Z, Zou Z, Suo Y, Ye X, Liu D, Guo M. Chickpea-Derived Modified Antimicrobial Peptides KTA and KTR Inactivate Staphylococcus aureus via Disrupting Cell Membrane and Interfering with Peptidoglycan Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2727-2740. [PMID: 38289163 DOI: 10.1021/acs.jafc.3c08241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The widespread bacterial contamination caused by foodborne pathogens has continuously driven the development of advanced and potent food antimicrobial agents. In this study, two novel antimicrobial peptides (AMPs) named KTA and KTR were obtained by modifying a natural AMP, Leg2, from chickpea storage protein legumin hydrolysates. They were further predicted to be stable hydrophobic cationic AMPs of α-helical structure with no hemolytic toxicity by several online servers. Moreover, the AMPs exerted superior antibacterial activity against two representative Staphylococcus aureus strains thanks to the increased hydrophobicity and positive charge, with minimum inhibition concentration value (4.74-7.41 μM) significantly lower than that of Leg2 (>1158.70 μM). Further, this study sought to elucidate the specific antimicrobial mechanism against Gram-positive bacteria. It was found that the electrostatic interactions of the AMPs with peptidoglycan were vital for peptide activity in combating Gram-positive bacteria. Subsequently, the cell membrane of S. aureus cells was irreversibly disrupted by increasing permeability and impairing membrane components, which led to the massive release of intracellular substances and eventual cell death. Overall, this work demonstrated that KTA and KTR were active against Gram-positive bacteria via peptidoglycan targeting and membrane-disruptive mechanisms and paved the way for expanding their application potential to alleviate food contamination.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Peipei Ma
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Yujuan Suo
- Laboratory of Quality and Safety Risk Assessment for Agro-products of Ministry of Agriculture and Rural Affairs, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Bose S, Dahat Y, Kumar D, Haldar S, Das SK. A membrane targeted multifunctional cationic nanoparticle conjugated fusogenic nanoemulsion (CFusoN): induced membrane depolarization and lipid solubilization to accelerate the killing of Staphylococcus aureus. MATERIALS HORIZONS 2024; 11:661-679. [PMID: 37830433 DOI: 10.1039/d3mh01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Bacterial infections caused by Staphylococcus aureus are one of the growing concerns for human health care management globally. Antibiotic-associated adverse effects and the emergence of bacterial resistant strains necessitate the development of an alternative yet effective approach. Nanoemulsion-based therapy has emerged as a potential therapeutic strategy to combat bacterial infestation. Herein, we designed a cationic metal nanoparticle-conjugated fusogenic nanoemulsion (CFusoN) as a lipid solubilizing nanovesicle for the effective treatment of S. aureus infection with a killing efficiency of 99.999%. The cationic nanoparticle-conjugated nanoemulsion (viz. NECNP) (24.4 ± 2.9 mV) electrostatically bound with the negatively charged bacterial cell membrane (-10.2 ± 3.7 mV) causing alteration of the bacterial surface charge. The fluorometric and flow cytometry studies confirmed the bacterial membrane depolarization and altered cell membrane permeability leading to cell death. The atomic force microscopic studies further demonstrated the damage of the cellular ultrastructure, while the transmission electron microscopic image and membrane lipid solubilization analysis depicted the solubilization of the bacterial membrane lipid bilayer along with the leakage of the intracellular contents. The cell membrane fatty acid analysis revealed that the methyl esters of palmitic acid, stearic acid and octadecadienoic acid isomers were solubilized after the treatment of S. aureus with CFusoN. The bactericidal killing efficiency of CFusoN is proposed to occur through the synergistic efficacy of the targeted attachment of CNP to the bacterial cells along with the lipid solubilization property of NE. Interestingly, NECNP didn't elicit any in vitro hemolytic activity or cytotoxicity against red blood cells (RBCs) and L929 fibroblast cells, respectively, at its bactericidal concentration. Furthermore, a porcine skin wound infection model exhibited the enhanced wound cleansing potency of CFusoN in comparison to the commercially available wound cleansers. The obtained antibacterial activity, biocompatibility and skin wound disinfection efficacy of the NECNP demonstrated the formulation of a cell targeted CFusoN as a promising translatable strategy to combat bacterial infection.
Collapse
Affiliation(s)
- Somashree Bose
- Infectious Diseases and Immunology Division, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yogita Dahat
- Organic and Medicinal Chemistry, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division (ARDD), CSIR-North East Institute of Science and Technology (NEIST), NH37, Pulibor, Jorhat, Assam 785006, India
| | - Sujoy K Das
- Infectious Diseases and Immunology Division, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
12
|
Li Y, Sun R, Kong Y, Cai X, Jiang T, Cheng S, Yang H, Song L, Lü X, Wang X, Shi C. Antibacterial effect of ultrasound and β-citronellol against Listeria monocytogenes and its application in carrot preservation. ULTRASONICS SONOCHEMISTRY 2024; 102:106752. [PMID: 38211495 PMCID: PMC10788804 DOI: 10.1016/j.ultsonch.2023.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/16/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This study investigated the antibacterial effects of ultrasound (US), β-citronellol (CT), and a combination of the two treatments on Listeria monocytogenes. Results showed that US or CT alone did not show apparent antibacterial effect (0.02-0.76 log CFU/mL reduction). The combined treatment showed obviously inactivate effect of L. monocytogenes, the populations of L. monocytogenes decreased by 8.93 log CFU/mL after US (253 W/cm2, 20 kHz) + 0.8 mg/mL CT treatment. US + CT treatment also had a significant (P < 0.05) antibacterial effect on isolates of L. monocytogenes from three different serotypes. In this study, the damage of US + CT on cell morphology had been observed using field emission scanning electron microscopy, while the damage to cell membranes by US + CT was observed by confocal laser scanning microscopy and flow cytometry. Meanwhile, the uptake of N-phenyl-l-naphthylamine and the absorbance at 260 and 280 nm also indicated that the combined treatment disrupted the permeability and integrity of L. monocytogenes membranes. Reactive oxygen species and malondialdehyde assays showed that US + CT exacerbated cellular oxidative stress and lipid peroxidation. In addition, the US + CT treatment reduced L. monocytogenes by 3.14-4.24 log CFU/g on the surface of carrots. Total phenolic and carotenoid contents in carrots were elevated after US + CT treatment. During storage, compared to control, US + CT did not significantly (P > 0.05) change the surface color of carrots but significantly (P < 0.05) decreased both hardness and weight, and has an impact on the sensory. This study showed that US + CT is a promising cleaning method that will provide new ideas for the preservation of fresh agricultural produce.
Collapse
Affiliation(s)
- Yimeng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Runyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yajing Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
13
|
Zhang X, Qiu H, Ismail BB, He Q, Yang Z, Zou Z, Xiao G, Xu Y, Ye X, Liu D, Guo M. Ultrasonically functionalized chitosan-gallic acid films inactivate Staphylococcus aureus through envelope-disruption under UVA light exposure. Int J Biol Macromol 2024; 255:128217. [PMID: 37992932 DOI: 10.1016/j.ijbiomac.2023.128217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
The significant threat of foodborne pathogens contamination has continuously promoted the development of efficient antimicrobial food packaging materials. Here, an antimicrobial film was prepared with gallic acid-grafted-chitosan (CS/GA) that obtained by a two-step ultrasound method. The resultant films exhibited good transparency, improved UV barrier performance, and enhanced mechanical strength. Specifically, with the grafting of 1.2 % GA, the UV blocking ability of CS/GA film at 400 nm was significantly increased by 19.7 % and the tensile strength was nearly two times higher than that of CS film. Moreover, the CS/GA films exhibited an inspiring photoactivated bactericidal ability under 400 nm UVA light irradiation that eradicated almost 99.9 % of Staphylococcus aureus (S. aureus) cells within 60 min. To gain more insights into the antibacterial mechanism, the treated S. aureus cells were further investigated by visualizing bacterial ultrastructure and analyzing membrane properties. The results pointed to the peptidoglycan layer as the primary action target when bacteria come into contact with CS/GA films. Afterward, the intracellular oxidative lesions, disrupted bacterial integrity, and disordered membrane functional properties collectively resulted in eventual cell death. The findings revealed the unique peptidoglycan targeting and membrane disruptive mechanisms of CS/GA films, confirming the application values in controlling foodborne pathogens.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Han Qiu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Gengsheng Xiao
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Luo W, Tang J, Wang B, Wu D, Wang J, Cheng L, Geng F. The potential mechanism of low-power water bath ultrasound to enhance the effectiveness of low-concentration chlorine dioxide in inhibiting Salmonella Typhimurium. Food Chem X 2023; 20:100901. [PMID: 38144795 PMCID: PMC10740011 DOI: 10.1016/j.fochx.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 12/26/2023] Open
Abstract
This chapter presents a systematic study of the inhibition effect of chlorine dioxide treatment alone and in combination with ultrasound treatment of Salmonella and the physiological metabolic processes within the treated cells. The low-power ultrasound (0.03 W/mL) significantly enhanced the effectiveness (110.00 %) of low concentrations of chlorine dioxide (0.25 mg/L) in inhibiting Salmonella, which, in turn, would significantly reduce the potential environmental impact. In addition, further studies found that low-power ultrasound may enhance the structural and functional damage of chlorine dioxide on Salmonella cell membranes (significant increase in permeability of the outer and inner cell membranes) and disrupt intracellular substance metabolism (small molecule and nucleotide metabolism) and energy metabolism (significant reduction in ATP content and ATPase activity) balance to improve the bacterial inhibitory effect of chlorine dioxide. The results of the study will provide a theoretical basis and methodological guidance for the implementation of "cleaner production" in the food industry.
Collapse
Affiliation(s)
- Wei Luo
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jie Tang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Beibei Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Di Wu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Lei Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| |
Collapse
|
15
|
Hou W, Ma Y, Zhang C, Zhao W, Zhao S, Wang P, Zhao X, Wang D. Investigation on the inactivation effect and mechanism of Listeria monocytogenes in fresh-cut cucumber during storage by ultrasound combined with sodium hypochlorite. ULTRASONICS SONOCHEMISTRY 2023; 101:106706. [PMID: 38007894 PMCID: PMC10767631 DOI: 10.1016/j.ultsonch.2023.106706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Fresh agricultural products are frequently contaminated with Listeria monocytogenes (L. monocytogenes), which threatens consumer health. The mechanism of the inhibitory effect of ultrasound and sodium hypochlorite (US-NaClO) on L. monocytogenes on fresh-cut cucumber remains poorly understood. Therefore, the bactericidal ability and mechanism of US-NaClO treatment on L. monocytogenes were studied on fresh-cut cucumber during storage using various approaches such as determination of intracellular material leakage, scanning electron microscopy, flow cytometry, and expression analysis of virulence genes. The results showed that the number of L. monocytogenes on fresh-cut cucumber was significantly reduced after ultrasound treatment for 5 min in combined with 75 ppm sodium hypochlorite treatment(P < 0.05). The US-NaClO treatment affected cell morphology, impaired cell membrane integrity, increased cell membrane permeability, and reduced the concentration of K+, inorganic phosphate, ATP, proteins, and DNA in bacterial cells, leading to the inactivation of microorganisms. In addition, the US-NaClO treatment downregulated expression of the virulence genes actA, hly, inlA, mpl, pclA, and plcB, thus decreasing the pathogenicity of bacteria. It can avoid contamination by pathogenic bacteria during the production of fresh-cut cucumber, while providing safety assurance for production.
Collapse
Affiliation(s)
- Wanfu Hou
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China; College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China
| | - Chunhong Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China
| | - Shuang Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China
| | - Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China.
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China.
| |
Collapse
|
16
|
Shao WB, Luo RS, Meng J, Lv XK, Xiang HM, Xiao WL, Zhou X, Liu LW, Wu ZB, Yang S. Engineering Phenothiazine-Based Functional Mimics of Host Defense Peptides as New Agrochemical Candidates: Design, Synthesis, and Antibacterial Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906428 DOI: 10.1021/acs.jafc.3c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In the protracted "arms race" between host and plant pathogenic bacteria, host organisms have evolved powerful weapons known as host defense peptides (HDPs). However, natural HDPs are not suitable for large-scale applications; therefore, researchers have chosen to develop bespoke small-molecule functional mimics. Phenothiazine derivatives were developed as functional HDPs mimics, owing to their broad biological activity and high lipophilicity. The phenothiazine analogues designed in this study exhibited excellent in vitro bioactivity against the three Gram-negative bacteria Xanthomonas oryzae pv oryzae, Xanthomonas axonopodis pv citri, and Pseudomonas syringae pv actinidiae, with optimal EC50 values of 0.80, 0.31, and 1.91 μg/mL, respectively. Preliminary evidence suggests that compound C2 may act on bacterial cell membranes and interact with bacterial Deoxyribonucleic acid in the groove binding mode. In vivo trials showed that compound C2 was highly effective against rice leaf blight (51.97-56.69%), with activity superior to those of bismerthiazol (40.7-43.4%) and thiodiazole copper (30.2-37.1%). Our study provides strong evidence to support the development of phenothiazine derivatives into pesticide candidates.
Collapse
Affiliation(s)
- Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Kang Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong-Mei Xiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhi-Bing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Chen J, Wang Q, Wu Y, Wu Y, Sun Y, Ding Y, Wei Z, Manickam S, Pan S, Yang J, Tao Y. Ultrasound-assisted fermentation of ginkgo kernel juice by Lactiplantibacillus plantarum: Microbial response and juice composition development. ULTRASONICS SONOCHEMISTRY 2023; 99:106587. [PMID: 37683418 PMCID: PMC10495669 DOI: 10.1016/j.ultsonch.2023.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
This study is aimed to explore the feasibility of ultrasound on enhancing the fermentation properties of ginkgo kernel juice by Lactiplantibacillus plantarum Y2. Specifically, ultrasound at 20 kHz and different intensities (mild ultrasound intensity-84.42 W/L, moderate ultrasound intensity-115.50 W/L, high ultrasound intensity-173.88 W/L) with a pulse mode were applied to facilitate the fermentation process. The number of viable cells of Lactiplantibacillus plantarum Y2 increased by 5.06, 5.05 and 2.19% in the sonicated groups at 173.88, 115.50 and 84.42 W/L, compared with the non-sonicated juice after 24-h fermentation. Furthermore, mild intensity ultrasonication improved the permeability of the cell membrane, which is beneficial for the metabolism of phenolics, amino acids and organic acids. Ultrasonication increased in-vitro antioxidant activity of fermented ginkgo kernel juice by promoting the metabolism of phenolic acids, such as ferulic acid, chlorogenic and caffeic acids. At the end of fermentation, the sonicated group at 84.42 W/L has the maximum consumptions of total sugars and proteins (increased by 12.52 and 18.73%). Moreover, the reduction rate of the poison material 4'-O-methylpyridoxine (MPN) in ginkgo kernel juice increased by more than 16.40% with ultrasound treatment at 173.88 W/L after the fermentation for 48 h. Overall, ultrasound can improve the metabolizations of Lactobacillus plantarum and reduce the toxic substances, which promoted the nutritional value and flavors of ginkgo kernel juice.
Collapse
Affiliation(s)
- Jinling Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiqi Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuting Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yue Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yunfei Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Sivakumar Manickam
- Department of Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Guo M, Zhang X, Ismail BB, He Q, Yang Z, Xianyu Y, Liu W, Zhou J, Ye X, Liu D. Super Antibacterial Capacity and Cell Envelope-Disruptive Mechanism of Ultrasonically Grafted N-Halamine PBAT/PBF Films against Escherichia coli. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38910-38929. [PMID: 37550824 DOI: 10.1021/acsami.3c05378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Antibacterial materials are urgently needed to combat bacterial contamination, growth, or attachment on contact surfaces, as bacterial infections remain a public health crisis worldwide. Here, a novel ultrasound-assisted method is utilized for the first time to fabricate oxidative chlorine-loaded AH@PBAT/PBF-Cl films with more superior grafting efficiency and rechargeable antibacterial effect than those from conventional techniques. The films remarkably inactivate 99.9999% Escherichia coli and Staphylococcus aureus cells, inducing noticeable cell deformations and mechanical instability. The specific antibacterial mechanism against E. coli used as a model organism is unveiled using several cell envelope structural and functional analyses combined with proteomics, peptidoglycomics, and fluorescence probe techniques. Film treatment partially neutralizes the bacterial surface charge, induces oxidative stress and cytoskeleton deformity, alters membrane properties, and disrupts the expression of key proteins involved in the synthesis and transport of the lipopolysaccharide and peptidoglycan, indicating the cell envelope as the primary target. The films specifically target lipopolysaccharides, resulting in structural impairment of the polysaccharide and lipid A components, and inhibit peptidoglycan precursor synthesis. Together, these lead to metabolic disorders, membrane dysfunction, structural collapse, and eventual death. Given the films' antibacterial effects via the disruption of key cell envelope components, they can potentially combat a wide range of bacteria. These findings lay a theoretical basis for developing efficient antibacterial materials for food safety or biomedical applications.
Collapse
Affiliation(s)
- Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianwei Zhou
- School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
19
|
Beitia E, Gkogka E, Chanos P, Hertel C, Heinz V, Valdramidis V, Aganovic K. Microbial decontamination assisted by ultrasound-based processing technologies in food and model systems: A review. Compr Rev Food Sci Food Saf 2023; 22:2802-2849. [PMID: 37184058 DOI: 10.1111/1541-4337.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Ultrasound (US) technology is recognized as one of the emerging technologies that arise from the current trends for improving nutritional and organoleptic properties while providing food safety. However, when applying the US alone, higher power and longer treatment times than conventional thermal treatments are needed to achieve a comparable level of microbial inactivation. This results in risks, damaging food products' composition, structure, or sensory properties, and can lead to higher processing costs. Therefore, the US has often been investigated in combination with other approaches, like heating at mild temperatures and/or treatments at elevated pressure, use of antimicrobial substances, or other emerging technologies (e.g., high-pressure processing, pulsed electric fields, nonthermal plasma, or microwaves). A combination of US with different approaches has been reported to be less energy and time consuming. This manuscript aims to provide a broad review of the microbial inactivation efficacy of US technology in different food matrices and model systems. In particular, emphasis is given to the US in combination with the two most industrially viable physical processes, that is, heating at mild temperatures and/or treatments at elevated pressure, resulting in techniques known as thermosonication, manosonication, and manothermosonication. The available literature is reviewed, and critically discussed, and potential research gaps are identified. Additionally, discussions on the US's inactivation mechanisms and lethal effects are included. Finally, mathematical modeling approaches of microbial inactivation kinetics due to US-based processing technologies are also outlined. Overall, this review focuses only on the uses of the US and its combinations with other processes relevant to microbial food decontamination.
Collapse
Affiliation(s)
- Enrique Beitia
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis Chanos
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Christian Hertel
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Volker Heinz
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Vasilis Valdramidis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kemal Aganovic
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| |
Collapse
|
20
|
An B, Chen P, Tao Y. The roles of membrane permeability and efflux pumps in the toxicity of bisphenol S analogues (2,4-bisphenol S and bis-(3-allyl-4-hydroxyphenyl) sulfone) to Escherichia coli K12. CHEMOSPHERE 2023; 329:138697. [PMID: 37062394 DOI: 10.1016/j.chemosphere.2023.138697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Bisphenol S (BPS) analogues are a group of recently reported emerging contaminants in the environment. Bacteria are important components of food webs. However, the potential risks of BPS analogues in bacteria have not been fully addressed. The toxicity effects and related mechanisms of two BPS analogues with different molecular weights (2,4-bisphenol S (2,4-BPS) and bis-(3-allyl-4-hydroxyphenyl) sulfone (TGSA)) on Escherichia coli K12 were compared. The minimum inhibitory concentration (MIC) of 2,4-BPS in the wild-type of E. coli K12 was lower than that of TGSA. The membrane permeability of the wild-type increased significantly after exposed to the same concentrations (0.5-50 nmol L-1) of 2,4-BPS and TGSA. In addition, 2,4-BPS induced more significant changes in membrane permeability than TGSA. Hormetic effects of 2,4-BPS and TGSA in the wild-type strain were noted in the levels of outer membrane proteins (ompC and ompF), multidrug efflux pump acriflavine resistance B (acrB) and type II topoisomerases. Transcriptomic results indicated these two BPS analogues inhibited the function of ABC transporters. In contrast to TGSA, 2,4-BPS affected DNA replication, tricarboxylic acid cycle, oxidative phosphorylation, and inhibited energy metabolism. Compared with wild-type strain, the ΔacrB mutant strain showed enhanced susceptibility to 2,4-BPS and TGSA with their MICs reduced by 20% and 11%, respectively. Deletion of the acrB affected the growth characteristics and induced stronger oxidative stress than the wild-type strain when exposed to 2,4-BPS or TGSA. The results suggested that 2,4-BPS were more toxic to E. coli K12 than TGSA in the concentration range of 0.5-50 nmol L-1, which was supported by the evidence from their impacts on membrane permeability and efflux pumps.
Collapse
Affiliation(s)
- Baihui An
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Pengyu Chen
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Yuqiang Tao
- College of Oceanography, Hohai University, Nanjing, 210024, China.
| |
Collapse
|
21
|
Su R, Guo X, Cheng S, Zhang Z, Yang H, Wang J, Song L, Liu Z, Wang Y, Lü X, Shi C. Inactivation of Salmonella using ultrasound in combination with Litsea cubeba essential oil nanoemulsion and its bactericidal application on cherry tomatoes. ULTRASONICS SONOCHEMISTRY 2023; 98:106481. [PMID: 37336076 PMCID: PMC10300259 DOI: 10.1016/j.ultsonch.2023.106481] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The presence of Salmonella in nature poses a significant and unacceptable threat to the human public health domain. In this study, the antibacterial effect and mechanism of ultrasound (US) combined with Litsea cubeba essential oil nanoemulsion (LEON) on Salmonella. LEON + US treatment has a significant bactericidal effect on Salmonella. Reactive oxygen species (ROS), malondialdehyde (MDA) detection, N-phenyl-l-naphthylamine (NPN) uptake and nucleic acid release assays showed that LEON + US exacerbated cell membrane lipid peroxidation and increased the permeability of the cell membrane. The results of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) showed that LEON + US treatment was able to alter cell morphology. It can be observed by flow cytometry (FCM) that LEON + US treatment can cause cell apoptosis. In addition, bacterial counts of cherry tomatoes treated with LEON (0.08 μL/mL) + US (345 W/cm2) for 9 min were reduced by 6.50 ± 0.20 log CFU/mL. This study demonstrates that LEON + US treatment can be an effective way to improve the safety of fruits and vegetables in the food industry.
Collapse
Affiliation(s)
- Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziruo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingzi Wang
- School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Wang Y, Shen J, Meng F, Lu Z, Lv F, Zhou L, Zhao H. Effects of monolauroyl-galactosylglycerol on membrane fatty acids and properties of Bacillus cereus. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12567-4. [PMID: 37204449 DOI: 10.1007/s00253-023-12567-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
The purpose of this study was to provide new ideas for the antibacterial mechanism of monolauroyl-galactosylglycerol (MLGG) from the perspective of cell membranes. The changes in cell membrane properties of Bacillus cereus (B. cereus) CMCC 66,301 exposed to different concentrations (1 × MIC (minimum inhibitory concentration), 2 × MIC, 1 × MBC (minimum bacterial concentration)) of MLGG were evaluated. It was found that the lag phase of B. cereus cells was prolonged at low concentration MLGG (1 × MIC and 2 × MIC), while about 2 log CFU/mL reduction in B. cereus populations were observed when exposed to high concentration MLGG (1 × MBC). MLGG treated B. cereus displayed obvious membrane depolarization, while membrane permeability had no change using PI (propidium iodide) staining. Significant increase in the membrane fluidity in response to MLGG exposure occurred, which was consistent with the modification of membrane fatty acids compositions, where the relative content of straight-chain fatty acids (SCFAs) and unsaturated fatty acids (UFAs) increased, while branched-chain fatty acids (BCFAs) decreased significantly. The decreased transition Tm value and cell surface hydrophobicity was also observed. Additionally, effect of MLGG on bacterial membrane compositions were explored at the submolecular level by infrared spectroscopy. Resistance tests of B. cereus to MLGG had demonstrated the advantages of MLGG as a bacteriostatic agent. Collectively, these studies indicate that modifying the fatty acid composition and properties of cellular membranes through MLGG exposure is crucial for inhibiting bacteria growth, providing new insights into the antimicrobial mechanisms of MLGG. KEY POINTS: • Monolauroyl-galactosylglycerol inserted into B. cereus lipid bilayer membrane • Monolauroyl-galactosylglycerol treatment caused B. cereus membrane depolarization • Monolauroyl-galactosylglycerol resulted in B. cereus membrane fatty acids alteration.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
23
|
Brito-Bazán E, Ascanio G, Iñiguez-Moreno M, Calderón-Santoyo M, Córdova-Aguilar MS, Brito-de la Fuente E, Ragazzo-Sánchez JA. High-pressure pulses for Aspergillus niger spore inactivation in a model pharmaceutical lipid emulsion. Int J Food Microbiol 2023; 399:110255. [PMID: 37210954 DOI: 10.1016/j.ijfoodmicro.2023.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/09/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
High hydrostatic pressure (HHP) is a non-thermal process widely used in the food industry to reduce microbial populations. However, rarely its effect has been assessed in products with high oil content. This study evaluated the efficacy of HHP (200, 250, and 300 MPa) at different temperatures (25, 35, and 45 °C) by cycles (1, 2, or 3) of 10 min in the inactivation of Aspergillus niger spores in a lipid emulsion. After treatments at 300 MPa for 1 cycle at 35 or 45 °C, no surviving spores were recovered. All treatments were modeled by the linear and Weibull models. The presence of shoulders and tails in the treatments at 300 MPa at 35 or 45 °C resulted in sigmoidal curves which cannot be described by the linear model, hence the Weibull + Tail, Shoulder + Log-lin + Tail, and double Weibull models were evaluated to elucidate the inactivation kinetics. The tailing formation could be related to the presence of resistance subpopulations. The double Weibull model showed better goodness of fit (RMSE <0.2) to describe the inactivation kinetics of the treatments with the higher spore reductions. HHP at 200-300 MPa and 25 °C did not reduce the Aspergillus niger spores. The combined HHP and mild temperatures (35-45 °C) favored fungal spore inactivation. Spore inactivation in lipid emulsions by HHP did not follow a linear inactivation. HHP at mild temperatures is an alternative to the thermal process in lipid emulsions.
Collapse
Affiliation(s)
- Estefanía Brito-Bazán
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico
| | - Gabriel Ascanio
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico
| | - Maricarmen Iñiguez-Moreno
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico; Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Tecnológico Nacional de México, Av. Tecnológico # 2595, Lagos del Country, Tepic, Nayarit C.P. 63175, Mexico
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Tecnológico Nacional de México, Av. Tecnológico # 2595, Lagos del Country, Tepic, Nayarit C.P. 63175, Mexico
| | - Maria Soledad Córdova-Aguilar
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico
| | | | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Tecnológico Nacional de México, Av. Tecnológico # 2595, Lagos del Country, Tepic, Nayarit C.P. 63175, Mexico.
| |
Collapse
|
24
|
Yang SR, Wang R, Yan CJ, Lin YY, Yeh YJ, Yeh YY, Yeh YC. Ultrasonic interfacial crosslinking of TiO 2-based nanocomposite hydrogels through thiol-norbornene reactions for sonodynamic antibacterial treatment. Biomater Sci 2023. [PMID: 37128891 DOI: 10.1039/d2bm01950g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanocomposite (NC) hydrogels used for sonodynamic therapy (SDT) face challenges such as lacking interfacial interactions between the polymers and nanomaterials as well as presenting uneven dispersion of nanomaterials in the hydrogel network, reducing their mechanical properties and treatment efficiency. Here, we demonstrate a promising approach of co-engineering nanomaterials and interfacial crosslinking to expand the materials construction and biomedical applications of NC hydrogels in SDT. In this work, mesoporous silica-coated titanium dioxide nanoparticles with thiolated surface functionalization (TiO2@MS-SH) are utilized as crosslinkers to react with norbornene-functionalized dextran (Nor-Dex) through ultrasound-triggered thiol-norbornene reactions, forming TiO2@MS-SH/Nor-Dex NC hydrogels. The TiO2@MS-SH nanoparticles act not only as multivalent crosslinkers to improve the mechanical properties of hydrogels under ultrasound irradiation but also as reactive oxygen species (ROS) generators to allow the use of TiO2@MS-SH/Nor-Dex NC hydrogels in SDT applications. Particularly, the TiO2@MS-SH/Nor-Dex NC hydrogels present tailorable microstructures, properties, and sonodynamic killing of bacteria through the modulation of the ultrasound frequency. Taken together, a versatile TiO2-based NC hydrogel platform prepared under ultrasonic interfacial crosslinking reactions is developed for advancing the applications in SDT.
Collapse
Affiliation(s)
- Su-Rung Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, National Taiwan University, Taipei, Taiwan
- GIP-TRIAD Master's Degree in Agro-Biomedical Science, National Taiwan University, Taipei, Taiwan
| | - Chen-Jie Yan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Yun Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yu-Jia Yeh
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Yu Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
Yang H, Zhan X, Song L, Cheng S, Su R, Zhang Y, Guo D, Lü X, Xia X, Shi C. Synergistic antibacterial and anti-biofilm mechanisms of ultrasound combined with citral nanoemulsion against Staphylococcus aureus 29213. Int J Food Microbiol 2023; 391-393:110150. [PMID: 36870235 DOI: 10.1016/j.ijfoodmicro.2023.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
This study investigated the antibacterial and antibiofilm mechanism of ultrasound (US) combined with citral nanoemulsion (CLNE) against Staphylococcus aureus and mature biofilm. Combined treatments resulted in greater reductions in bacterial numbers compared to ultrasound or CLNE treatments alone. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein nucleic acid leakage, and N-phenyl-l-naphthylamine (NPN) uptake analysis showed that the combined treatment disrupted cell membrane integrity and permeability. Reactive oxygen species (ROS) and malondialdehyde (MDA) assays indicated that US+CLNE exacerbated cellular oxidative stress and membrane lipid peroxidation. Field emission scanning electron microscopy (FESEM) revealed that the synergistic processing of ultrasound and CLNE resulted in cell rupture and collapse. In addition, US+CLNE showed a more pronounced removal effect than both alone in the biofilm on the stainless steel sheet. US+CLNE reduced biomass, the number of viable cells in the biofilm, cell viability and EPS polysaccharide contents. The results of CLSM also showed that US+CLNE disrupted the structure of the biofilm. This research elucidates the synergistic antibacterial and anti-biofilm mechanism of ultrasound combined citral nanoemulsion, which provides a safe and efficient sterilization method for the food industry.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116304, Liaoning, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
26
|
Jia B, Li G, Cao E, Luo J, Zhao X, Huang H. Recent progress of antibacterial hydrogels in wound dressings. Mater Today Bio 2023; 19:100582. [PMID: 36896416 PMCID: PMC9988584 DOI: 10.1016/j.mtbio.2023.100582] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Hydrogels are essential biomaterials due to their favorable biocompatibility, mechanical properties similar to human soft tissue extracellular matrix, and tissue repair properties. In skin wound repair, hydrogels with antibacterial functions are especially suitable for dressing applications, so novel antibacterial hydrogel wound dressings have attracted widespread attention, including the design of components, optimization of preparation methods, strategies to reduce bacterial resistance, etc. In this review, we discuss the fabrication of antibacterial hydrogel wound dressings and the challenges associated with the crosslinking methods and chemistry of the materials. We have investigated the advantages and limitations (antibacterial effects and antibacterial mechanisms) of different antibacterial components in the hydrogels to achieve good antibacterial properties, and the response of hydrogels to stimuli such as light, sound, and electricity to reduce bacterial resistance. Conclusively, we provide a systematic summary of antibacterial hydrogel wound dressings findings (crosslinking methods, antibacterial components, antibacterial methods) and an outlook on long-lasting antibacterial effects, a broader antibacterial spectrum, diversified hydrogel forms, and the future development prospects of the field.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Guowei Li
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ertai Cao
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518063, China
| |
Collapse
|
27
|
Approaches for a more microbiologically and chemically safe dried fruit supply chain. Curr Opin Biotechnol 2023; 80:102912. [PMID: 36841150 DOI: 10.1016/j.copbio.2023.102912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/27/2023]
Abstract
Global production of dried fruits has increased significantly in the past decade. Both the increased consumer acceptance of nutritious packaged food and the broad use of dried fruits in products such as confectionery and bakery goods have fueled the dried fruit demand. Unfortunately, outbreaks and recalls due to contamination by pathogenic bacteria and viruses as well as the detection of mycotoxins highlight the need for optimizing current approaches, and evaluating and adopting newer interventions to protect the microbial and chemical safety of dried fruits. Drying processes alone are inadequate to control these hazards. Pre- and post-drying treatments serve as promising opportunities, with or without combination with the drying step, to achieve the goals of efficient hazard control.
Collapse
|
28
|
Lauteri C, Ferri G, Piccinini A, Pennisi L, Vergara A. Ultrasound Technology as Inactivation Method for Foodborne Pathogens: A Review. Foods 2023; 12:foods12061212. [PMID: 36981137 PMCID: PMC10048265 DOI: 10.3390/foods12061212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
An efficient microbiological decontamination protocol is required to guarantee safe food products for the final consumer to avoid foodborne illnesses. Ultrasound and non-thermal technology combinations represent innovative methods adopted by the food industry for food preservation and safety. Ultrasound power is commonly used with a frequency between 20 and 100 kHz to obtain an “exploit cavitation effect”. Microbial inactivation via ultrasound derives from cell wall damage, the oxidation of intracellular amino acids and DNA changing material. As an inactivation method, it is evaluated alone and combined with other non-thermal technologies. The evidence shows that ultrasound is an important green technology that has a good decontamination effect and can improve the shelf-life of products. This review aims to describe the applicability of ultrasound in the food industry focusing on microbiological decontamination, reducing bacterial alterations caused by food spoilage strains and relative foodborne intoxication/infection.
Collapse
|
29
|
Xi M, Hou Y, Cai Y, Shen H, Ao J, Li M, Wang J, Luo A. Antioxidant and antimicrobial characteristics of ethyl acetate polar fractions from walnut green husk. J Food Sci 2023; 88:1060-1074. [PMID: 36695779 DOI: 10.1111/1750-3841.16473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Walnut green husk (WGH) is rich in natural compounds and is valued as a potential source of antioxidant and antimicrobial properties. In this study, the antioxidant and antimicrobial activities of petroleum ether polar fraction, dichloromethane polar fraction, ethyl acetate polar fraction (EAPF), and n-butanol polar fraction from WGH were analyzed. The results showed that EAPF exhibited the highest total flavonoid content (65.74 ± 1.01 mg rutin equivalents [RE]/g dry weight [DW]) and total phenol content (48.73 ± 1.09 mg gallic acid equivalent [GAE]/g DW), with the highest 2,2-diphenyl-1-picrylhydrazyl, hydroxyl radical (•OH), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonate scavenging activity compared with other fractions. EAPF also showed good antibacterial activity against Escherichia coli and Bacillus cereus vegetative cells, with a diameter of inhibition zones of 33.5 and 37.6 mm, respectively, a minimum inhibitory concentration of 31.25 mg/ml and a minimum bactericidal concentration of 62.5 mg/ml, which inhibited the growth of both bacteria. Analysis of the antibacterial mechanism demonstrated that EAPF damaged the integrity of the cell membrane, increased the membrane permeability, and triggered the leakage of intracellular material. In addition, ultrahigh performance liquid chromatography-tandem with mass spectrometry analysis revealed that 8 polyphenols and 14 flavonoids were mainly present in EAPF, such as chlorogenic acid (C16 H18 O9 ), gallic acid (C7 H6 O5 ), vanillic acid (C8 H8 O4 ), ferulic acid (C10 H10 O4 ), epicatechin (C15 H14 O6 ), catechin (C15 H14 O6 ), hesperetin (C16 H14 O6 ), naringenin (C15 H12 O5 ), hyperin (C21 H20 O12 ), luteolin (C15 H10 O6 ), and so on. Therefore, WGH had the potential to be developed as a natural antioxidant and antibacterial material. PRACTICAL APPLICATION: Our work indicates that WGH contains abundant flavonoids and polyphenols compounds. Therefore, the plant byproducts like WGH may have a promising application as a source of antimicrobial and antioxidant additives.
Collapse
Affiliation(s)
- Meihua Xi
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yujie Hou
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yingying Cai
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Heyu Shen
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jingfang Ao
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
30
|
Shao L, Sun Y, Zou B, Zhao Y, Li X, Dai R. Sublethally injured microorganisms in food processing and preservation: Quantification, formation, detection, resuscitation and adaption. Food Res Int 2023; 165:112536. [PMID: 36869540 DOI: 10.1016/j.foodres.2023.112536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
Sublethally injured state has been recognized as a survival strategy for microorganisms suffering from stressful environments. Injured cells fail to grow on selective media but can normally grow on nonselective media. Numerous microorganism species can form sublethal injury in various food matrices during processing and preservation with different techniques. Injury rate was commonly used to evaluate sublethal injury, but mathematical models for the quantification and interpretation of sublethally injured microbial cells still require further study. Injured cells can repair themselves and regain viability on selective media under favorable conditions when stress is removed. Conventional culture methods might underestimate microbial counts or present a false negative result due to the presence of injured cells. Although the structural and functional components may be affected, the injured cells pose a great threat to food safety. This work comprehensively reviewed the quantification, formation, detection, resuscitation and adaption of sublethally injured microbial cells. Food processing techniques, microbial species, strains and food matrix all significantly affect the formation of sublethally injured cells. Culture-based methods, molecular biological methods, fluorescent staining and infrared spectroscopy have been developed to detect the injured cells. Cell membrane is often repaired first during resuscitation of injured cells, meanwhile, temperature, pH, media and additives remarkably influence the resuscitation. The adaption of injured cells negatively affects the microbial inactivation during food processing.
Collapse
Affiliation(s)
- Lele Shao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yingying Sun
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Bo Zou
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yijie Zhao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xingmin Li
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Ruitong Dai
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
31
|
He Q, Yang Z, Zou Z, Qian M, Wang X, Zhang X, Yin Z, Wang J, Ye X, Liu D, Guo M. Combating Escherichia coli O157:H7 with Functionalized Chickpea-Derived Antimicrobial Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205301. [PMID: 36563134 PMCID: PMC9951321 DOI: 10.1002/advs.202205301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The rapid dissemination of antibiotic resistance accelerates the desire for new antibacterial agents. Here, a class of antimicrobial peptides (AMPs) is designed by modifying the structural parameters of a natural chickpea-derived AMP-Leg2, termed "functionalized chickpea-derived Leg2 antimicrobial peptides" (FCLAPs). Among the FCLAPs, KTA and KTR show superior antibacterial efficacy against the foodborne pathogen Escherichia coli (E. coli) O157:H7 (with MICs in the range of 2.5-4.7 µmol L-1 ) and demonstrate satisfactory feasibility in alleviating E. coli O157:H7-induced intestinal infection. Additionally, the low cytotoxicity along with insusceptibility to antimicrobial resistance increases the potential of FCLAPs as appealing antimicrobials. Combining the multi-omics profiling andpeptide-membrane interaction assays, a unique dual-targeting mode of action is characterized. To specify the antibacterial mechanism, microscopical observations, membrane-related physicochemical properties studies, and mass spectrometry assays are further performed. Data indicate that KTA and KTR induce membrane damage by initially targeting the lipopolysaccharide (LPS), thus promoting the peptides to traverse the outer membrane. Subsequently, the peptides intercalate into the peptidoglycan (PGN) layer, blocking its synthesis, and causing a collapse of membrane structure. These findings altogether imply the great potential of KTA and KTR as promising antibacterial candidates in combating the growing threat of E. coli O157:H7.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhehao Yang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mengyan Qian
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xiaolei Wang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional FoodsJiangxi Agricultural UniversityNanchangJiangxi Province330045P. R. China
| | - Jinhai Wang
- Department of Colorectal SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mingming Guo
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| |
Collapse
|
32
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
33
|
Yang H, Song L, Sun P, Su R, Wang S, Cheng S, Zhan X, Lü X, Xia X, Shi C. Synergistic bactericidal effect of ultrasound combined with citral nanoemulsion on Salmonella and its application in the preservation of purple kale. ULTRASONICS SONOCHEMISTRY 2023; 92:106269. [PMID: 36571884 PMCID: PMC9800203 DOI: 10.1016/j.ultsonch.2022.106269] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 05/28/2023]
Abstract
In this study, a novel citral nanoemulsion (CLNE) was prepared by ultrasonic emulsification. The synergistic antibacterial mechanism of ultrasound combined with CLNE against Salmonella Typhimurium and the effect on the physicochemical properties of purple kale were investigated. The results showed that the combined treatment showed obviously inactivate effect of S. Typhimurium. Treatment with 0.3 mg/mL CLNE combined with US (20 kHz, 253 W/cm2) for 8 min reduced S. Typhimurium populations in phosphate-buffered saline (PBS) by 9.05 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release assays showed that the US combination CLNE disrupt the integrity of S. Typhimurium membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) detection indicated that US+CLNE exacerbated oxidative stress and lipid peroxidation in cell membranes. The morphological changes of cells after different treatments by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) illustrated that the synergistic effect of US+CLNE treatment changed the morphology and internal microstructure of the bacteriophage cells. Application of US+CLNE on purple kale leaves for 6 min significantly (P < 0.05) reduced the number of S. Typhimurium, but no changes in the physicochemical properties of the leaves were detected. This study elucidates the synergistic antibacterial mechanism of ultrasound combined with CLNE and provides a theoretical basis for its application in food sterilization.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiwen Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
34
|
Combination of Cetylpyridinium Chloride and Chlorhexidine Acetate: A Promising Candidate for Rapid Killing of Gram-Positive/Gram-Negative Bacteria and Fungi. Curr Microbiol 2023; 80:97. [PMID: 36738393 PMCID: PMC9899061 DOI: 10.1007/s00284-023-03198-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
Combined use of the present antimicrobial drugs has been proved to be an alternative approach for antimicrobial agents' development since the co-existed of the drugs working in different mechanism have been demonstrated potentially enhance their antimicrobial activity. In this work, antibacterial and antifungal activity of the cetylpyridinium chloride (CPC)/chlorhexidine acetate (CHA) combination was evaluated for the first time, while a universal concentration for the rapid killing of gram-positive/gram-negative bacteria and fungi was also proposed. The minimum inhibitory concentrations (MIC) of CPC and CHA used alone or in combination were first measured, showing that the combined treatment decreased the MIC against tested gram-positive/gram-negative bacteria and fungi to 1/8-1/2. Growth curve assays demonstrated CPC and CHA had dynamic combined effects against the tested microorganisms at the concentration equal to MIC. Besides, combined use of these two drugs could also enhance their biocidal activity, which was illustrated by fluorescence microscopy and SEM images, as well as soluble protein measurement. More importantly, in vitro acute eye and skin irritation tests showed short-term contact with CPC/CHA combination would not cause any damage to mammalian mucosa and skin. In a word, CPC/CHA combination exhibited broad-spectrum antibacterial and antifungal activity against tested gram-positive/gram-negative bacteria and fungi while without any acute irritation to mammalian mucosa and skin, providing a new perspective on the selection of personal disinfectants.
Collapse
|
35
|
Zheng ZY, Feng CH, Xie G, Liu WL, Zhu XL. Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on Saccharomyces cerevisiae: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis. Foods 2022; 11:3883. [PMID: 36496692 PMCID: PMC9735630 DOI: 10.3390/foods11233883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/17/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from S. cerevisiae was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when S. cerevisiae was stimulated by ultrasound + 0.1 mg/mL nano-Se@PC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered.
Collapse
Affiliation(s)
- Zi-Yi Zheng
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China
| | | | | | | | | |
Collapse
|
36
|
Yoon JH, Kim JY, Bae YM, Lee SY. Control of Salmonella enterica serovar Typhimurium and Listeria monocytogenes on lettuce and radish sprouts by combined treatments with thymol, acetic acid, and ultrasound. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Ultrasound-assisted probiotics fermentation suspension treatment under mild heat to improve the storage quality of freshly cut lotus root. Food Chem 2022; 397:133823. [DOI: 10.1016/j.foodchem.2022.133823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 01/01/2023]
|
38
|
Alotaibi B, Negm WA, Elekhnawy E, El-Masry TA, Elharty ME, Saleh A, Abdelkader DH, Mokhtar FA. Antibacterial activity of nano zinc oxide green-synthesised from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: in vitro and in vivo study. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:96-106. [PMID: 35361019 DOI: 10.1080/21691401.2022.2056191] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The increasing emergence of bacterial resistance is a challenge for the research community, thus novel antibacterial agents should be developed. Metal nanoparticles are promising antibacterial agents and could solve the problem of antibiotic resistance. Herein, we used Gardenia thailandica methanol extract (GTME) to biogenically synthesise zinc oxide nanoparticles (ZnO-NPs). The characterisation of ZnO-NPs was performed by UV spectroscopy, FTIR, scanning and transmission electron microscopes, dynamic light scattering, and X-ray diffraction. The antibacterial activity of ZnO-NPs was studied both in vitro and in vivo against Pseudomonas aeruginosa clinical isolates. Its minimum inhibitory concentration values ranged from 2 to 64 µg/mL, and it significantly decreased the membrane integrity and resulted in a significant increase in the inner and outer membrane permeability. Also, the ZnO-NPs treated cells possessed a distorted and deformed shape when examined by scanning electron microscope. The in vivo study (biochemical parameters and histological investigation) was conducted and it revealed a protective effect of ZnO-NPs against the deleterious influences of P. aeruginosa bacteria on lung, liver, and kidney tissues. LC-ESI-MS/MS revealed a phytochemical tentative identification of 57 compounds for the first time. We propose that GTME is a useful source for ZnO-NPs which has a promising antibacterial activity.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed E Elharty
- Study Master in Pharmaceutical Science at the Institute of Research and Environmental Studies, Al Sadat, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, Al Salam University, Al Gharbia, Egypt
| |
Collapse
|
39
|
Luo W, Wang J, Sun L, Li R, Wu D, Tang J, Zhang J, Geng F. Metabolome analysis shows that ultrasound enhances the lethality of chlorine dioxide against Salmonella enterica subsp. Enterica by disrupting its material and energy metabolism. Food Res Int 2022; 162:112135. [DOI: 10.1016/j.foodres.2022.112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
40
|
Bernardo YAA, do Rosario DKA, Mutz YS, Castro VS, Conte‐Junior CA. Optimizing
Escherichia coli
O157
:
H7
inactivation in goat's milk by thermosonication. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yago A. A. Bernardo
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine Fluminense Federal University (UFF), Vital Brazil Filho Niterói Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| | - Denes K. A. do Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Department of Food Engineering, Center for Agrarian Sciences and Engineering Federal University of Espírito Santo (UFES), Alto Universitário, S/N, Guararema Alegre Brazil
| | - Yhan S. Mutz
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| | - Vinícius S. Castro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| | - Carlos A. Conte‐Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine Fluminense Federal University (UFF), Vital Brazil Filho Niterói Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| |
Collapse
|
41
|
Zhang L, Zhang M, Mujumdar AS, Liu K. Antibacterial mechanism of ultrasound combined with sodium hypochlorite and their application in pakchoi (Brassica campestris L. ssp. chinensis). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4685-4696. [PMID: 35191049 DOI: 10.1002/jsfa.11829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In order to prolong the storage and inhibit microorganisms of pakchoi, the antibacterial activity and mechanism of ultrasound combined with sodium hypochlorite (NaClO-US), the efficiency of NaClO-US in reducing Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa as well as preserving quality of pakchoi were investigated. RESULTS Ultrasound treatment could significantly reduce the usage of NaClO solution from 800 ppm to 500 ppm. NaClO-US decreased the counts of E. coli, S. aureus and P. aeruginosa, which disrupted the bacterial cell membrane with cytoplasmic leakage. In addition, NaClO-US significantly increased cell membrane permeability, while cell membrane integrity decreased, the secondary structure of bacterial proteins showed several obvious changes, such as the increase of random coil content, as well as the decrease of α-helix content. The bacterial counts, E. coli, S. aureus and P. aeruginosa population in pakchoi treated with NaClO-US reduced by 1.89, 1.40, 1.60, 1.72 log CFU g-1 , respectively compared to control sample after storage for 15 days. NaClO-US resulted in minimum chlorophyll depletion, flavor and sensory deterioration. CONCLUSION NaClO-US solution treatment inhibited microorganisms and prolonged storage of pakchoi. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Kun Liu
- Sichuan Tianwei Food Group Co., Ltd, Chengdu, China
| |
Collapse
|
42
|
Cai Y, Zou G, Xi M, Hou Y, Shen H, Ao J, Li M, Wang J, Luo A. Juglone Inhibits Listeria monocytogenes ATCC 19115 by Targeting Cell Membrane and Protein. Foods 2022; 11:foods11172558. [PMID: 36076744 PMCID: PMC9455723 DOI: 10.3390/foods11172558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Foodborne disease caused by Listeria monocytogenes is a major global food safety problem. A potential solution is the antimicrobial development of the highly bioactive natural product juglone, yet few studies exist on its antibacterial mechanism against L. monocytogenes. Thus, we aimed to elucidate the antibacterial mechanism of action of juglone against L. monocytogenes by determining the resultant cell morphology, membrane permeability, membrane integrity, and proteome changes. The minimum inhibitory concentration of juglone against L. monocytogenes was 50 μg/mL, and L. monocytogenes treated with juglone had longer lag phases compared to controls. Juglone induced L. monocytogenes cell dysfunction, leakage of potassium ions, and membrane potential hyperpolarization. Confocal laser scanning microscopy and field-emission-gun scanning electron microscope assays revealed clear membrane damage due to juglone treatment. Fourier transform infrared analyses showed that L. monocytogenes responded to juglone by some conformational and compositional changes in the molecular makeup of the cell membrane. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that juglone either destroyed proteins or inhibited proteins synthesis in L. monocytogenes. Therefore, our findings established juglone as a natural antibacterial agent with potential to control foodborne L. monocytogenes infections.
Collapse
|
43
|
Zhao X, Lan W, Yang X, Xie J. Inactivation effect and protective barriers damage caused to
Shewanella putrefaciens
by stable chlorine dioxide combined with slightly acidic electrolyzed water. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyu Zhao
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
| | - Xin Yang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
44
|
Sun J, Sun Z, Wang D, Liu F, Wang D. Contribution of ultrasound in combination with chlorogenic acid against Salmonella enteritidis under biofilm and planktonic condition. Microb Pathog 2022; 165:105489. [DOI: 10.1016/j.micpath.2022.105489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
|
45
|
Ultrasonication induced nano-emulsification of thyme essential oil: Optimization and antibacterial mechanism against Escherichia coli. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Pandur Ž, Dular M, Kostanjšek R, Stopar D. Bacterial cell wall material properties determine E. coli resistance to sonolysis. ULTRASONICS SONOCHEMISTRY 2022; 83:105919. [PMID: 35077964 PMCID: PMC8789596 DOI: 10.1016/j.ultsonch.2022.105919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 05/02/2023]
Abstract
The applications of bacterial sonolysis in industrial settings are plagued by the lack of the knowledge of the exact mechanism of action of sonication on bacterial cells, variable effectiveness of cavitation on bacteria, and inconsistent data of its efficiency. In this study we have systematically changed material properties of E. coli cells to probe the effect of different cell wall layers on bacterial resistance to ultrasonic irradiation (20 kHz, output power 6,73 W, horn type, 3 mm probe tip diameter, 1 ml sample volume). We have determined the rates of sonolysis decay for bacteria with compromised major capsular polymers, disrupted outer membrane, compromised peptidoglycan layer, spheroplasts, giant spheroplasts, and in bacteria with different cell physiology. The non-growing bacteria were 5-fold more resistant to sonolysis than growing bacteria. The most important bacterial cell wall structure that determined the outcome during sonication was peptidoglycan. If peptidoglycan was remodelled, weakened, or absent the cavitation was very efficient. Cells with removed peptidoglycan had sonolysis resistance equal to lipid vesicles and were extremely sensitive to sonolysis. The results suggest that bacterial physiological state as well as cell wall architecture are major determinants that influence the outcome of bacterial sonolysis.
Collapse
Affiliation(s)
- Žiga Pandur
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia; University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, SI-Slovenia
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, SI-Slovenia
| | - Rok Kostanjšek
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia
| | - David Stopar
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia.
| |
Collapse
|
47
|
He Q, Zhang L, Yang Z, Ding T, Ye X, Liu D, Guo M. Antibacterial mechanisms of thyme essential oil nanoemulsions against Escherichia coli O157:H7 and Staphylococcus aureus: Alterations in membrane compositions and characteristics. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Zhao X, Lan W, Zhai Y, Xie J. Multi-frequency ultrasound:A potential method to improve the effects of surface decontamination and structural characteristics on large yellow croaker (Pseudosciaena crocea) during refrigerated storage. ULTRASONICS SONOCHEMISTRY 2021; 79:105787. [PMID: 34634550 PMCID: PMC8515294 DOI: 10.1016/j.ultsonch.2021.105787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 05/04/2023]
Abstract
The effects of multi-frequency ultrasound on surface decontamination and structural characteristics of large yellow croaker (Pseudosciaena crocea) during refrigerated storage were evaluated. The results of total viable counts (TVCs) and psychrophilic bacteria counts (PBCs) demonstrated that multi-frequency ultrasound retarded the growth of microorganisms. The bacteriostatic effect was positively correlated with the increase of ultrasound frequencies. However, compared with triple-frequency ultrasound (TUS, 20/28/40 kHz) treatment, dual-frequency ultrasound (DUS, 20/28 kHz) treatment had higher water-holding capacity (WHC) and immobilized water content, better texture characteristics, lower pH and total volatile basic nitrogen (TVB-N). Through the results of myofibrillar fragmentation index (MFI), intrinsic fluorescence intensity (IFI) and atomic force microscope (AFM), multi-frequency ultrasound could effectively stabilize the myofibrillar protein structure of refrigerated large yellow croaker, which could maintain better texture characteristics. The effects of DUS were the most significant. Therefore, multi-frequency ultrasound treatment could inhibit the growth of microorganisms and improve the structural characteristics of large yellow croaker during refrigerated storage.
Collapse
Affiliation(s)
- Xinyu Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Yuting Zhai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
49
|
Costello KM, Velliou E, Gutierrez-Merino J, Smet C, Kadri HE, Impe JFV, Bussemaker M. The effect of ultrasound treatment in combination with nisin on the inactivation of Listeria innocua and Escherichia coli. ULTRASONICS SONOCHEMISTRY 2021; 79:105776. [PMID: 34662803 PMCID: PMC8560821 DOI: 10.1016/j.ultsonch.2021.105776] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 05/21/2023]
Abstract
Ultrasound, alone or in combination with natural antimicrobials, is a novel food processing technology of interest to replace traditional food decontamination methods, as it is milder than classical sterilisation (heat treatment) and maintains desirable sensory characteristics. However, ultrasound efficacy can be affected by food structure/composition, as well as the order in which combined treatments are applied. More specifically, treatments which target different cell components could result in enhanced inactivation if applied in the appropriate order. The microbial properties i.e. Gram positive/Gram negative can also impact the treatment efficacy. This work presents a systematic study of the combined effect of ultrasound and nisin on the inactivation of the bacteria Listeria innocua (Gram positive) and Escherichia coli (Gram negative), at a range of cavitation conditions (44, 500, 1000 kHz). The order of treatment application was varied, and the impact of system structure was also investigated by varying the concentration of Xanthan gum used to create the food model systems (0 - 0.5% w/v). Microbial inactivation kinetics were monitored, and advanced microscopy and flow cytometry techniques were utilised to quantify the impact of treatment on a cellular level. Ultrasound was shown to be effective against E. coli at 500 kHz only, with L. innocua demonstrating resistance to all frequencies studied. Enhanced inactivation of E. coli was observed for the combination of nisin and ultrasound at 500 kHz, but only when nisin was applied before ultrasound treatment. The system structure negatively impacted the inactivation efficacy. The combined effect of ultrasound and nisin on E. coli was attributed to short-lived destabilisation of the outer membrane as a result of sonication, allowing nisin to penetrate the cytoplasmic membrane and facilitate cell inactivation.
Collapse
Affiliation(s)
- Katherine M Costello
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| | - Eirini Velliou
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK
| | | | - Cindy Smet
- BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven Campus Gent, Gent, Belgium
| | - Hani El Kadri
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Jan F Van Impe
- BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven Campus Gent, Gent, Belgium
| | - Madeleine Bussemaker
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
50
|
He Q, Liu Y, Liu D, Guo M. Integration of transcriptomic and proteomic approaches unveils the molecular mechanism of membrane disintegration in Escherichia coli O157:H7 with ultrasonic treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148366. [PMID: 34139494 DOI: 10.1016/j.scitotenv.2021.148366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Ultrasonic disinfection in wastewater treatment has been studied for years at the phenotypic level, while the understanding of the molecular inactivation mechanism is still not clear. Here, the responses of Escherichia coli O157:H7 to ultrasound treatment were investigated using RNA sequencing (RNA-Seq) and tandem mass tags (TMT) based quantitative proteomics methods. The analyses revealed that 770 genes and 201 proteins were significantly changed upon ultrasound treatment. Moreover, the integrated transcriptomic and proteomic analyses uncovered a set of 59 genes or proteins were differentially expressed in ultrasound-treated cells, providing an overview of the cellular responses to ultrasonic field. According to the bioinformatic analyses, genes and proteins that may be involved in lipid asymmetry preservation and outer membrane homeostasis maintenance (including phospholipid metabolism, lipopolysaccharide biosynthesis and transport, and fatty acid metabolism) were specifically up-regulated. Therefore, we proposed that the metabolism disorder of cellular membrane lipids (lipopolysaccharide, phospholipid, and fatty acid included) was one of the main challenges for the bacteria upon ultrasonic stress. In this study, we initially proposed a novel mechanism regarding the ultrasound-induced membrane disintegration from a multi-omics perspective, which may present an important step toward deciphering the molecular inactivation mechanism of ultrasonic field and provide a theoretical foundation for the application of ultrasound technology for the control of waterborne pathogens.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Liu
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|