1
|
Liu Y, Ma Y, Deng Z, Li P, Cui S, Zeng C, Mu R, Zhou Y, Qi X, Zhang Z. MoS 2 coupled with ball milling co-modified sludge biochar to efficiently activate peroxymonosulfate for neonicotinoids degradation: Dominant roles of SO 4•-, 1O 2 and surface-bound radicals. ENVIRONMENTAL RESEARCH 2024:119983. [PMID: 39270958 DOI: 10.1016/j.envres.2024.119983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
An efficient catalyst of molybdenum disulfide (MoS2) coupled with ball milling modified sludge biochar (BMSBC) was prepared to efficiently activate peroxymonosulfate (PMS) for neonicotinoids elimination. As expected, 95.1% of imidacloprid (IMI) was degraded by PMS/BMSBC system within 60 min and it was accompanied by the outstanding mineralization rate of 71.9%. The superior pore structures, rich defects, oxygen-containing functional groups and grafted MoS2 on BMSBC offered excellent activation performance for PMS. The influencing factor experiments demonstrated that PMS/BMSBC system performed high anti-interference to wide pH range and background constituents (e.g., inorganic ions and humic acid). Quenching experiments and electron paramagnetic resonance analysis revealed that SO4•-, 1O2, and surface-bound radicals played critical roles in IMI degradation. Electron donors on biochar activated PMS , producing surface radicals. The lone pair electrons within the Lewis basic site of C=O on BMSBC enhanced PMS decomposition by facilitating the cleavage of the -O-O- bond in PMS to release 1O2. The activation process of PMS by MoS2 accelerated the oxidation of Mo (IV) to Mo (VI) to generate SO4•-. Based on the transformed products (TPs), four degradation pathways of IMI in PMS/BMSBC system were suggested, and all TPs toxicity levels were lower than that of IMI by ECOSAR analysis. Additionally, BMSBC exhibited outstanding sustainable catalytic activity towards PMS activation with the well accepted degradation rate of 71.3% for IMI even after five reuse cycles. PMS/BMSBC system also exhibited satisfactory degradation rates (>71.8%) for IMI in various real waters (e.g., sewage effluent, and livestock wastewater). Furthermore, PMS/BMSBC system also offered a favorable broad-spectrum elimination performance for other typical neonicotinoids (e.g., thiamethoxam, clothianidin, thiacloprid) with the degradation rates over 98%. This study has developed a desirable neonicotinoids purification technology in view of its high degradation/mineralization rate, outstanding detoxification performance, satisfied anti-interference to ambient conditions and sustainable sludge management.
Collapse
Affiliation(s)
- Yifan Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yusheng Zhou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
2
|
Guateque-Londoño JF, Serna-Galvis EA, Lee J, Ávila-Torres YP, Torres-Palma RA. Intensifying the sonochemical degradation of hydrophilic organic contaminants by organic and inorganic additives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121930. [PMID: 39053376 DOI: 10.1016/j.jenvman.2024.121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The sonochemical system is highly effective at degrading hydrophobic substances but has limitations when it comes to eliminating hydrophilic compounds. This study examines the impact of organic and inorganic additives on improving the sonochemical degradation of hydrophilic pollutants in water. The effects of adding an organic substance (CCl4) and two inorganic ions (Fe2+ and HCO3-) were tested. The treatment was focused on a representative hydrophilic antibiotic, cefadroxil (CDX). Initially, the sonodegradation of CDX without additives was assessed and compared with two reference pollutants more hydrophobic than CDX: dicloxacillin (DCX) and methyl orange (MO). The results highlighted the limitations of ultrasound alone in degrading CDX. Subsequently, the impact of the additives on enhancing the removal of this recalcitrant pollutant was evaluated at two frequencies (375 and 990 kHz). A significant improvement in the CDX degradation was observed with the presence of CCl4 and Fe2+ at both frequencies. Increasing CCl4 concentration led to greater CDX elimination, whereas a high Fe2+ concentration had detrimental effects. To identify the reactive sites on CDX towards the species generated with the additives, theoretical calculations (i.e. Fukui indices and HOMO-LUMO gaps) were performed. These analyses indicated that the β-lactam and dihydrothiazine rings on CDX are highly reactive towards oxidizing species. This research enhances our understanding of the relationship between the structural characteristics of contaminants and the sonochemical frequency in the action of additives having diverse nature.
Collapse
Affiliation(s)
- John F Guateque-Londoño
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Judy Lee
- School of Chemistry and Chemical Process Engineering, University of Surrey, Guildford, U27XH, United Kingdom
| | - Yenny P Ávila-Torres
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
3
|
Na I, Son Y. Sonochemical oxidation activity in 20-kHz probe-type sonicator systems: The effects of probe positions and vessel sizes. ULTRASONICS SONOCHEMISTRY 2024; 108:106959. [PMID: 38896894 DOI: 10.1016/j.ultsonch.2024.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The 20-kHz probe-type sonicator systems were investigated for the enhancement of the cavitational oxidation activity under various geometric conditions including vertical and horizontal probe positions and vessel sizes/volumes as a following study to our previous study. The sonochemical oxidation activity (mass-based I3- ion generation rate) increased significantly for all vessel size conditions as the probe was placed close to the vessel bottom, owing to the expansion of the sonochemical active zone induced by the reflections of ultrasound at the bottom and the reactor wall. A concentric circular active zone is observed at positions close to the bottom. The highest sonochemical activity was obtained at 1 cm (vertical position) in the 20 cm vessels (input power: 50 %). At the vertical positions of 11 cm to 7 cm, no significant difference in the sonochemical activity was observed for all input power conditions (25, 50, and 75 %) because no meaningful reflections occurred. Higher sonochemical activities were obtained at an input power of 75 % owing to the increased power and strong reflection. The highest cavitational yield considering the energy efficiency was obtained at 6 cm (vertical position) for 75 % of all power and geometric conditions. Horizontal probe position tests showed that the asymmetric formation of the sonochemical active zone could significantly enhance the sonochemical activity. The highest activity was obtained at 1 cm (vertical position) and 2.5 cm (horizontal position) in the 20 cm vessel.
Collapse
Affiliation(s)
- Iseul Na
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
4
|
Rosales Pérez A, Esquivel Escalante K. The Evolution of Sonochemistry: From the Beginnings to Novel Applications. Chempluschem 2024; 89:e202300660. [PMID: 38369655 DOI: 10.1002/cplu.202300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Sonochemistry is the use of ultrasonic waves in an aqueous medium, to generate acoustic cavitation. In this context, sonochemistry emerged as a focal point over the past few decades, starting as a manageable process such as a cleaning technique. Now, it is found in a wide range of applications across various chemical, physical, and biological processes, creating opportunities for analysis between these processes. Sonochemistry is a powerful and eco-friendly technique often called "green chemistry" for less energy use, toxic reagents, and residues generation. It is increasing the number of applications achieved through the ultrasonic irradiation (USI) method. Sonochemistry has been established as a sustainable and cost-effective alternative compared to traditional industrial methods. It promotes scientific and social well-being, offering non-destructive advantages, including rapid processes, improved process efficiency, enhanced product quality, and, in some cases, the retention of key product characteristics. This versatile technology has significantly contributed to the food industry, materials technology, environmental remediation, and biological research. This review is created with enthusiasm and focus on shedding light on the manifold applications of sonochemistry. It delves into this technique's evolution and current applications in cleaning, environmental remediation, microfluidic, biological, and medical fields. The purpose is to show the physicochemical effects and characteristics of acoustic cavitation in different processes across various fields and to demonstrate the extending application reach of sonochemistry. Also to provide insights into the prospects of this versatile technique and demonstrating that sonochemistry is an adapting system able to generate more efficient products or processes.
Collapse
Affiliation(s)
- Alicia Rosales Pérez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro Centro Universitario, Santiago de Querétaro, 76010, Mexico
| | - Karen Esquivel Escalante
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, 76010, Mexico
| |
Collapse
|
5
|
Halkijevic I, Licht K, Kosar V, Bogdan L. Degradation of the neonicotinoid pesticide imidacloprid by electrocoagulation and ultrasound. Sci Rep 2024; 14:8836. [PMID: 38632355 DOI: 10.1038/s41598-024-59568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Imidacloprid is still a widely used neonicotinoid insecticide that is banned in many countries because of the associated environmental risks. Due to the inefficiency of conventional wastewater treatments for pesticide removal, new treatment methods are being investigated. Electrochemical methods, including electrocoagulation (EC), seem to be promising alternatives considering their effectiveness in removing various pollutants from wastewater. The aim of this study was to investigate the effects of electrode material, current density, ultrasound, and operation time on the efficiency of imidacloprid removal from a model solution by EC. The combination of aluminum electrodes and 20 A of applied current for 20 min resulted in total imidacloprid degradation. A simplified energy balance was introduced as a form of process evaluation. Combining ultrasound with EC resulted in 7% to 12% greater efficacy than using only EC.
Collapse
Affiliation(s)
- Ivan Halkijevic
- Faculty of Civil Engineering, University of Zagreb, Kaciceva 6, Zagreb, Croatia
| | - Katarina Licht
- Faculty of Civil Engineering, University of Zagreb, Kaciceva 6, Zagreb, Croatia.
| | - Vanja Kosar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, Zagreb, Croatia
| | - Lucija Bogdan
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, Zagreb, Croatia
| |
Collapse
|
6
|
Kim SY, Kim IY, Park SH, Hwangbo M, Hwangbo S. Novel ultrasonic technology for advanced oxidation processes of water treatment. RSC Adv 2024; 14:11939-11948. [PMID: 38623292 PMCID: PMC11017266 DOI: 10.1039/d4ra01665c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Textile wastewater accounts for a significant proportion of industrial wastewater worldwide. In particular, dye wastewater accounts for a large proportion and consists of non-degradable dyes, which are substances resistant to biodegradation. Methylene blue is a representative example of such non-degradable dyes. It is not biologically degraded and exhibits toxicity. Various methods for their decomposition are currently being studied. Advanced oxidation processes (AOPs), which generate highly reactive hydroxyl radicals that oxidize and degrade pollutants, have been actively studied. Particularly, the photocatalytic degradation method using TiO2 nanoparticles is one of the most actively studied fields; however, there are still concerns regarding the toxicity of nanoparticles. Research is currently being conducted on AOPs using the cavitation phenomenon of ultrasonic waves. However, achieving high efficiency using existing ultrasonic equipment is difficult. Therefore, in this study, we evaluated a new water treatment technology through AOPs using a focused ultrasonic system with a cylindrical piezoelectric ceramic structure. After determining the optimal conditions for degradation, the degradation process was evaluated as a useful tool for mitigating the toxicity of methylene blue. We found that, under the optimal conditions of 100 W intensity at a frequency of 400 kHz, this system is a helpful instrument for degradation and a new water treatment technology suitable for removing ecotoxicity and genotoxicity.
Collapse
Affiliation(s)
- So Yul Kim
- R&D Center, Focused Ultra-Sonic Tech. Lab. (FUST Lab) 1 Techno-ro Yuseong-gu Daejeon 34015 Republic of Korea
| | - In Young Kim
- Nano-safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS) 267 Gajeong-ro Yuseong-gu Daejeon 34113 Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology 141 Gajeong-ro Yuseong-gu Daejeon 34114 Republic of Korea
| | - Minsung Hwangbo
- R&D Center, Focused Ultra-Sonic Tech. Lab. (FUST Lab) 1 Techno-ro Yuseong-gu Daejeon 34015 Republic of Korea
| | - Seonae Hwangbo
- R&D Center, Focused Ultra-Sonic Tech. Lab. (FUST Lab) 1 Techno-ro Yuseong-gu Daejeon 34015 Republic of Korea
| |
Collapse
|
7
|
Quynh PH, Trang HM, Trung NT, Dinh NN, Van Thanh D, Anh LP, Luyen NT, Van NTK. A novel sonoelectrochemical approach for preparing of ZnO nanoparticles. NANOTECHNOLOGY 2024; 35:265602. [PMID: 38527359 DOI: 10.1088/1361-6528/ad375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
A novel, rapid, and facile method for one-step sonoelectrochemical synthesis of zinc oxide nanoparticles (UEZ) was introduced in this study. The optimum operating parameters have been selected at a voltage of 7.5 V, KCl concentration of 0.5 M, and the reaction time of 60 min. The as-prepared UEZ were characterized by XRD, SEM, and HRTEM. It was found that the UEZ has a hexagonal wurtzite structure with high crystalline quality, good purity, a size range of 30-100 nm, and good photocatalytic degradation of methylene blue. This work provides a facile route for large-scale synthesizing ZnO nanoparticles via anodization.
Collapse
Affiliation(s)
- Pham Huong Quynh
- Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi 100000, Vietnam
| | - Hoang Minh Trang
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Hanoi 100000, Vietnam
| | - Nguyen Thanh Trung
- Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 100000, Vietnam
| | - Nguyen Nang Dinh
- University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy road, Cau Giay, Hanoi 100000, Vietnam
| | - Dang Van Thanh
- University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy road, Cau Giay, Hanoi 100000, Vietnam
- Faculty of Basic Science, TNU-University of Medicine and Pharmacy, 284 Luong Ngoc Quyen St., Thai Nguyen 24000, Vietnam
| | - Le Phuoc Anh
- College of Engineering and Computer Science, VinUniversity, Hanoi 100000, Vietnam
| | - Nguyen Thi Luyen
- Institute of Science and Technology, TNU-University of Sciences, Tan Thinh ward, Thai Nguyen 24000, Vietnam
| | - Nguyen Thi Khanh Van
- University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy road, Cau Giay, Hanoi 100000, Vietnam
- Institute of Science and Technology, TNU-University of Sciences, Tan Thinh ward, Thai Nguyen 24000, Vietnam
| |
Collapse
|
8
|
Thi Yein W, Wang Q, Kim DS. Piezoelectric catalytic driven advanced oxidation process using two-dimensional metal dichalcogenides for wastewater pollutants remediation. CHEMOSPHERE 2024; 353:141524. [PMID: 38403122 DOI: 10.1016/j.chemosphere.2024.141524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The public and society have increasingly recognized numerous grave environmental issues, including water pollution, attributed to the rapid expansion of industrialization and agriculture. Renewable energy-driven catalytic advanced oxidation processes (AOPs) represent a green, sustainable, and environmentally friendly approach to meet the demands of environmental remediation. In this context, 2D transition metal dichalcogenides (TMDCs) piezoelectric materials, with their non-centrosymmetric crystal structure, exhibit unique features. They create dipole polarization, inducing a built-in electric field that generates polarized holes and electrons and triggers redox reactions, thereby facilitating the generation of reactive oxygen species for wastewater pollutant remediation. A broad spectrum of 2D TMDCs piezoelectric materials have been explored in self-integrated Fenton-like processes and persulfate activation processes. These materials offer a more simplistic and practical method than traditional approaches. Consequently, this review highlights recent advancements in 2D TMDCs piezoelectric catalysts and their roles in wastewater pollutant remediation through piezocatalytic-driven AOPs, such as Fenton-like processes and sulfate radicals-based oxidation processes.
Collapse
Affiliation(s)
- Win Thi Yein
- Department of Environmental Science and Engineering, Ewha Womans University, New 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea; Department of Industrial Chemistry, University of Yangon, Republic of the Union of Myanmar, Myanmar
| | - Qun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, New 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
9
|
Liu P, Wu Z, Lee J, Cravotto G. Sonocatalytic degrading antibiotics over activated carbon in cow milk. Food Chem 2024; 432:137168. [PMID: 37659331 DOI: 10.1016/j.foodchem.2023.137168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Herein, an efficient, simple and economical approach to remove antibiotics (ABX), i.e. ceftiofur hydrochloride, sulfamonomethoxine sodium (SMM), marbofloxacin and oxytetracycline by sonication with activated carbon (AC) from cow milk has been successfully implemented. The pseudo-first-order kinetics constants for the sonolytic and sonocatalytic degrading SMM are 0.036 and 0.093 min-1, respectively. The synergistic efficiency of removing ABX by using sonocatalysis reached 1.8-4.0. Hydrophobic ABX underwent faster degradation than hydrophilic ABX in sonocatalytic systems. Adding 0.5 mmol L-1 H2O2, the optimal concentration, improved the sonocatalytic degradation rates of ABX by 9.1%-28.5%. Surface area and dose of AC play crucial roles in the sonocatalysis of ABX. By sonicating 50 mL of 5.52 μmol L-1 ABX in milk at 500 kHz and 259 W with 20 mg AC for 20-60 min resulted in residual ABX concentrations ranging from 42.6 to 95.1 μg L-1, which meet the relative maximum residue limits set by European Commission.
Collapse
Affiliation(s)
- Pengyun Liu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy
| | - Zhilin Wu
- College of Chemistry and Chemical Engineering of Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, 515063 Shantou, PR China.
| | - Judy Lee
- School of Chemistry and Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
10
|
Preethi, Shanmugavel SP, Kumar G, N YK, M G, J RB. Recent progress in mineralization of emerging contaminants by advanced oxidation process: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122842. [PMID: 37940020 DOI: 10.1016/j.envpol.2023.122842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Emerging contaminants are chemicals generated due to the usage of pesticide, endocrine disrupting compounds, pharmaceuticals, and personal care products and are liberated into the environment in trace quantities. The emerging contaminants eventually become a greater menace to living beings owing to their wide range and inhibitory action. To diminish these emerging contaminants from the environment, an Advanced Oxidation Process was considered as an efficient option. The Advanced Oxidation Process is an efficient method for mineralizing fractional or generous contaminants due to the generation of reactive species. The primary aim of this review paper is to provide a thorough knowledge on different Advanced Oxidation Process methods and to assess their mineralization efficacy of emerging contaminants. This study indicates the need for an integrated process for enhancing the treatment efficiency and overcoming the drawbacks of the individual Advanced Oxidation Process. Further, its application concerning technical and economic aspects is reviewed. Until now, most of the studies have been based on lab or pilot scale and do not represent the actual scenario of the emerging contaminant mineralization. Thus, the scaling up of the process was discussed, and the major challenges in large scale implementation were pointed out.
Collapse
Affiliation(s)
- Preethi
- Department of Physics, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Surya Prakash Shanmugavel
- Department of Solid Waste Management and Health, Greater Chennai Corporation, Tamil Nadu, 600 003, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yogalakshmi K N
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Gunasekaran M
- Department of Physics, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India.
| |
Collapse
|
11
|
Poblete R, Cortes E, Pérez N, Rodríguez CA, Luna-Galiano Y. Treatment of landfill leachate by combined use of ultrasound and photocatalytic process using fly ash as catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119552. [PMID: 37948962 DOI: 10.1016/j.jenvman.2023.119552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Advanced oxidation processes, such as sonophotocatalysis and photocatalysis, have been proven to be interesting alternatives for the effective treatment of old landfill leachates. Since there is no specific information about which parameters help to improve the treatment efficiency when using fly ash (FA) in a sonophotoreactor, this research focuses on evaluating the use of an ultrasound process (US) combined with a photo-Fenton process, with FA as a catalyst for the first time. The removals of colour, chemical oxygen demand (COD), and aromatic compounds (UV 254) present in landfill leachates were studied using a factorial design, where the effect of different loads of FA (1, 1.5, and 2 g FA/L), pH (pH = 3, 6, and 8.9), and US frequency irradiation (576, 864, and 1138 kHz) on the efficiency of photo-Fenton was evaluated. The highest removals of COD (40.7%), colour (36.8%), and UV 254 (50.8%) were achieved adjusting the pH to 3, adding 2 g of FA/L, and applying 576 kHz of US frequency. It was found that pH is the parameter that has the highest effect on pollutant removal (95% confidence level). In addition, the removals of COD, colour, and UV 254 increased at lower pH values and US frequency. Also, the presence of Fe2O3, SiO2, and TiO2 in the FA under UV irradiation and ultrasound process, improved the removal of complex organic matter present in the landfill leachate, where HO• was the most important radical.
Collapse
Affiliation(s)
- Rodrigo Poblete
- Universidad Católica Del Norte, Facultad de Ciencias Del Mar, Escuela de Prevención de Riesgos y Medioambiente, 1780000, Coquimbo, Chile.
| | - Ernesto Cortes
- Universidad Católica Del Norte, Facultad de Ciencias Del Mar, Escuela de Prevención de Riesgos y Medioambiente, 1780000, Coquimbo, Chile
| | - Norma Pérez
- Universidad Católica Del Norte, Facultad de Ciencias Del Mar, Escuela de Prevención de Riesgos y Medioambiente, 1780000, Coquimbo, Chile
| | - C A Rodríguez
- Department of Chemistry, Faculty of Science, Universidad de La Serena, 1305 Raúl Bitrán Av., La Serena, 1700000, Chile
| | - Yolanda Luna-Galiano
- Departamento de Ingeniería Química y Ambiental, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de Los Descubrimientos S/n, 41092, Sevilla, Spain
| |
Collapse
|
12
|
Mohan H, Vadivel S, Shin T. Sonophotocatalytic water splitting by BaTiO 3@SrTiO 3 core shell nanowires. ULTRASONICS SONOCHEMISTRY 2023; 101:106650. [PMID: 37866137 PMCID: PMC10623364 DOI: 10.1016/j.ultsonch.2023.106650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Sonophotocatalysis has garnered significant attention due to its potential to enhance advanced oxidation processes, particularly water splitting, by employing materials with combined sonocatalytic and photocatalytic properties. In this study, we synthesized and investigated core-shell BaTiO3@SrTiO3 nanowires (BST NWs) with varying Sr/Ba molar ratios (2.5:7.5, 5.0:5.0, 7.5:2.5 mM, denoted as BST-1, BST-2, and BST-3, respectively) as catalysts for hydrogen production through water splitting. The piezoelectric nanowires demonstrated hydrogen evolution via both sonocatalysis and photocatalysis. In the sonophotocatalysis process, the ultrasonic vibration induced mechanical forces on the BST nanowires, thereby establishing a built-in electric field. This built-in electric field facilitated the effective separation of photo-generated charge carriers and prolonged their lifetimes, leading to a synergistic enhancement of hydrogen evolution. The pristine BaTiO3 and SrTiO3 nanowires exhibited relatively low hydrogen evolution rates (HER) of 7.0 and 6.0 µmol·g-1min-1, respectively. In contrast, the core-shell nanowires exhibited a substantial improvement in the hydrogen evolution rate. The HER increased with the addition of Sr, and BST-1, BST-2, and BST-3 achieved HERs of 12.0, 13.5, and 18.0 µmol·g-1min-1, respectively. The superior performance of BST-3 nanowires can be attributed to their highest piezoelectric potential and largest surface area. Additionally, BST-3 nanowires demonstrated remarkable stability over multiple cycles, validating their practical applicability as efficient photocatalysts.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sethumathavan Vadivel
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603202, India
| | - Taeho Shin
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
13
|
Li Y, Xiang L, Li L, Gu X, Dong W, Wu Y. Enhanced degradation of chloramphenicol via heterogeneous activation of peroxymonosulfate by Fe 3O 4 and gallic acid. CHEMOSPHERE 2023; 344:140376. [PMID: 37806327 DOI: 10.1016/j.chemosphere.2023.140376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
In this study, we demonstrated the effective degradation of wide-spectrum antibiotic chloramphenicol (CAP) by Fe3O4/peroxymonosulfate (PMS) system modified by gallic acid (GA). GA/Fe3O4/PMS showed a substantially higher degradation rate (77.6%) than Fe3O4/PMS (8.3%). The active components were detected by electron spin-resonance spectroscopy (ESR) and the quenching experiments. The results showed that the hydroxyl radical (HO•) was the main reason for the degradation of CAP. In the GA/Fe3O4/PMS system, the trace amount of dissolved iron ion were not the main species that activated PMS. Surface characterization and theoretical simulations showed that Fe atoms on Fe3O4 were responsible for PMS activation rather than a homogenous reaction. Five probable CAP degradation pathways were identified by density functional theory (DFT) calculations and liquid-phase mass spectrometry. Finally, the reusability of Fe3O4 was measured, and the GA/Fe3O4/PMS system maintained high efficiency after 5 times applications. The total organic carbon (TOC) removal rate reached 46.5% after reacting for 12 h. The gallic acid effectively promotes the circulation of Fe(II)/Fe(III) on solid surfaces and enhanced the degradation capacity of the original system. The research proposed a new way of directly employing plant polyphenols to boost the degradation ability of contaminants in heterogeneous systems.
Collapse
Affiliation(s)
- Yang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Liurui Xiang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Linyi Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Xinyi Gu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yanlin Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Jeyaprakash JS, Rajamani M, Bianchi CL, Ashokkumar M, Neppolian B. Highly efficient ultrasound-driven Cu-MOF/ZnWO 4 heterostructure: An efficient visible-light photocatalyst with robust stability for complete degradation of tetracycline. ULTRASONICS SONOCHEMISTRY 2023; 100:106624. [PMID: 37804558 PMCID: PMC10653955 DOI: 10.1016/j.ultsonch.2023.106624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Metal-organic frameworks (MOFs) are a significant class of porous, crystalline materials composed of metal ions (clusters) and organic ligands. The potential use of copper MOF (Cu-BTC) for the sonophotocatalytic degradation of Tetracycline (TC) antibiotic was investigated in this study. To enhance its catalytic efficiency, S-scheme heterojunction was created by combining Cu-BTC with Zinc tungstate (ZnWO4), employing an ultrasound-assisted hydrothermal method. The results demonstrated that the Cu-BTC/ZnWO4 heterojunction exhibited complete removal of TC within 60 min under simultaneous irradiation of visible light and ultrasound. Interestingly, the sonophotocatalytic degradation of TC using the Cu-BTC/ZnWO4 heterojunction showed superior efficiency (with a synergy index of ∼0.70) compared to individual sonocatalytic and photocatalytic degradation processes using the same heterojunction. This enhancement in sonophotocatalytic activity can be attributed to the formation of an S-scheme heterojunction between Cu-BTC and ZnWO4. Within this heterojunction, electrons migrated from Cu-BTC to ZnWO4, facilitated by the interface between the two materials. Under visible light irradiation, the built-in electric field, band edge bending, and coulomb interaction synergistically inhibited the recombination of electron-hole pairs. Consequently, the accumulated electrons in Cu-BTC and holes in ZnWO4 actively participated in the redox reactions, generating free radicals that effectively attacked the TC molecules. This study offers valuable perspectives on the application of a newly developed S-scheme heterojunction photocatalyst, demonstrating its effectiveness in efficiently eliminating diverse recalcitrant pollutants via sonophotocatalytic degradation.
Collapse
Affiliation(s)
- Jenson Samraj Jeyaprakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Manju Rajamani
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Claudia L Bianchi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Florence, Italy
| | - Muthupandian Ashokkumar
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bernaurdshaw Neppolian
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.
| |
Collapse
|
15
|
Liu P, Wu Z, Fang Z, Cravotto G. Sonolytic degradation kinetics and mechanisms of antibiotics in water and cow milk. ULTRASONICS SONOCHEMISTRY 2023; 99:106518. [PMID: 37572426 PMCID: PMC10433014 DOI: 10.1016/j.ultsonch.2023.106518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 08/14/2023]
Abstract
Antibiotics (ABX) residues frequently occurred in water and cow milk. This work aims to understand the kinetics and mechanisms of sonolytic degradation of four ABX, i.e. ceftiofur hydrochloride (CEF), sulfamonomethoxine sodium (SMM), marbofloxacin (MAR), and oxytetracycline (OTC) in water and milk. In both water and milk, the sonolytic degradation of ABX follows pseudo-first order (PFO) kinetics well (R2: 0.951-0.999), with significantly faster ABX degradation in water (PFO kinetics constants (k1): 1.5 × 10-3-1.2 × 10-1 min-1) than in milk (k1: 3.5 × 10-4-5.6 × 10-2 min-1). The k1 values for SMM degradation in water increased by 118% with ultrasonic frequency (40-120 kHz), 174% with ultrasonic frequency (80-500 kHz), 649% with ultrasonic power (73-259 W), 22% with bulk temperature (12-40℃), and by 68% with reaction volume (50-250 mL), respectively, in other things being equal. The relevant k1 values in milk increased by 326%, 231%, 122%, 10% as well as 82% with the above same effective factors, respectively. The oxidation by free radicals generated in situ dominates ABX degradation, and the hydrophobic CEF (54.0-971.7 nM min-1) and SMM (39.2-798.4 nM min-1) underwent faster degradation than the hydrophilic MAR (33.9-751.9 nM min-1) and OTC (33.8-545.3 nM min-1) in both water and milk. Adding an extra 0.5 mM H2O2 accelerated SMM degradation by 19% in water and 33% in milk. After 130-150 min sonication of 100 mL of 2.0 mg L-1 (6.62 μM) SMM in various milk with 500 kHz and 259 W, the residue concentrations (52.9-96.3 μg L-1) can meet the relevant maximum residue limit (100 μg L-1).
Collapse
Affiliation(s)
- Pengyun Liu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy
| | - Zhilin Wu
- College of Chemistry and Chemical Engineering of Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, 515063 Shantou, China.
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing 210031, China
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
16
|
Orudzhev FF, Sobola DS, Ramazanov SM, Častková K, Selimov DA, Rabadanova AA, Shuaibov AO, Gulakhmedov RR, Abdurakhmanov MG, Giraev KM. Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers. Polymers (Basel) 2023; 15:3252. [PMID: 37571146 PMCID: PMC10422511 DOI: 10.3390/polym15153252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, polyvinylidene fluoride (PVDF) fibers doped with hydrated calcium nitrate were prepared using electrospinning. The samples were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), optical spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), Raman, and photoluminescence (PL) spectroscopy. The results are complementary and confirm the presence of chemical hydrogen bonding between the polymer and the dopant. Additionally, there was a significant increase in the proportion of the electroactive polar beta phase from 72 to 86%. It was shown that hydrogen bonds acted as a transport pathway for electron capture by the conjugated salt, leading to more than a three-fold quenching of photoluminescence. Furthermore, the optical bandgap of the composite material narrowed to the range of visible light energies. For the first time, it the addition of the salt reduced the energy of the PVDF exciton by a factor of 17.3, initiating photocatalytic activity. The calcium nitrate-doped PVDF exhibited high photocatalytic activity in the degradation of methylene blue (MB) under both UV and visible light (89 and 44%, respectively). The reaction rate increased by a factor of 2.4 under UV and 3.3 under visible light during piezophotocatalysis. The catalysis experiments proved the efficiency of the membrane design and mechanisms of catalysis are suggested. This study offers insight into the nature of chemical bonds in piezopolymer composites and potential opportunities for their use.
Collapse
Affiliation(s)
- F. F. Orudzhev
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - D. S. Sobola
- Central European Institute of Technology BUT, Purkyňova 656/123, 61200 Brno, Czech Republic
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, Czech Republic
| | - Sh. M. Ramazanov
- Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences, 367003 Makhachkala, Russia
| | - K. Častková
- Central European Institute of Technology BUT, Purkyňova 656/123, 61200 Brno, Czech Republic
| | - D. A. Selimov
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - A. A. Rabadanova
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - A. O. Shuaibov
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - R. R. Gulakhmedov
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - M. G. Abdurakhmanov
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - K. M. Giraev
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| |
Collapse
|
17
|
Meng Z, Wang L, Mo R, Zheng K, Li W, Lu Y, Qin C. Nitrogen doped magnetic porous carbon derived from starch of oatmeal for efficient activation peroxymonosulfate to degradation sulfadiazine. Int J Biol Macromol 2023:125579. [PMID: 37379945 DOI: 10.1016/j.ijbiomac.2023.125579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Nitrogen doped magnetic porous carbon catalyst based on starch of oatmeal was obtained by mixing and pyrolysis process, and its catalytic activity of peroxymonosulfate activation for sulfadiazine degradation was evaluated. When ratio of oatmeal/urea/iron was 1: 2: 0.1, CN@Fe-10 had the best catalytic activity to degrade sulfadiazine. Around 97.8 % removal of 20 mg L-1 sulfadiazine was achieved under incorporating of 0.05 g L-1 catalyst and 0.20 g L-1 peroxymonosulfate. Good adaptability, stability and universality of CN@Fe-10 were verified under different conditions. Electron paramagnetic resonance and radical quenching test suggested that surface-bound reactive oxides species and singlet oxygen were the main reactive oxides species in this reaction. Electrochemical analysis indicated that CN@Fe-10 had a good electrical conductivity and electron transferred did occur among CN@Fe-10 surface, peroxymonosulfate and sulfadiazine. X-ray photoelectron spectroscopy suggested that Fe0, Fe3C, pyridine nitrogen and graphite nitrogen were the potential active sites for peroxymonosulfate activation. Therefore, the work provided a practical approach for recycling biomass.
Collapse
Affiliation(s)
- Zhifei Meng
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Liqiang Wang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Ruixing Mo
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Kewang Zheng
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China; Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan, China.
| | - Wei Li
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China.
| | - Yunlai Lu
- Hubei Yunlai Plastic Technology Co., Ltd., Xiaogan, China
| | - Caiqin Qin
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China; Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Feizpoor S, Habibi-Yangjeh A, Luque R. Preparation of TiO 2/Fe-MOF n‒n heterojunction photocatalysts for visible-light degradation of tetracycline hydrochloride. CHEMOSPHERE 2023:139101. [PMID: 37290505 DOI: 10.1016/j.chemosphere.2023.139101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Visible-light-assisted photocatalysis has been recognized as an effective solution to the degradation of various pollutants including antibiotics, pesticides, herbicides, microplastics, and organic dyes. Herein, an n-n heterojunction TiO2/Fe-MOF photocatalyst is reported, designed via hydrothermal synthesis route. TiO2/Fe-MOF photocatalyst was characterized by XPS, BET, EIS, EDS, DRS, PL, FTIR, XRD, TEM, SEM and HRTEM techniques. Inspired by XRD, FTIR, XPS, EDS, TEM, SEM, and HRTEM analyses, the successful synthesis of n-n heterojunction TiO2/Fe-MOF photocatalysts was proved. The migration efficiency of the light-induced electron-hole pairs was confirmed by the PL and EIS tests. TiO2/Fe-MOF exhibited a significant performance for tetracycline hydrochloride (TC) removal under visible light irradiation. TC removal efficiency for TiO2/Fe-MOF (15%) nanocomposite reached 97% within 240 min, ca. 11 times higher than pure TiO2. The photocatalytic enhancement of TiO2/Fe-MOF could be attributed to the broadening the light response range, forming an n-n junction between Fe-MOF and TiO2 components, suppressing charge recombination. Based on recycling experiments, TiO2/Fe-MOF had a good potential to be used in consecutive TC degradation tests.
Collapse
Affiliation(s)
- Solmaz Feizpoor
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Rafael Luque
- Departamento de Química Organica, Campus de Rabanales, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra. N-IV Km. 396, Cordoba, 14014, Spain; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
19
|
Dhull P, Sudhaik A, Raizada P, Thakur S, Nguyen VH, Van Le Q, Kumar N, Parwaz Khan AA, Marwani HM, Selvasembian R, Singh P. An overview on ZnO-based sonophotocatalytic mitigation of aqueous phase pollutants. CHEMOSPHERE 2023; 333:138873. [PMID: 37164195 DOI: 10.1016/j.chemosphere.2023.138873] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Over the past several decades, the increase in industrialization provoked the discharge of harmful pollutants into the environment, affecting human beings and ecosystems. ZnO-based photocatalysts seem to be the most promising photocatalysts for treating harmful pollutants. However, fast charge carrier recombination, photo corrosion, and long reaction time are the significant factors that reduce the photoactivity of ZnO-based photocatalysts. In order to enhance the photoactivity of such photocatalysts, a combined process i.e., sonocatalysis + photocatalysis = sonophotocatalysis was used. Sonophotocatalysis is one of several different AOP methods that have recently drawn considerable interest, as it produces high reactive oxygen species (ROS) which helps in the oxidation of pollutants by acoustic cavitation. This combined technique enhanced the overall efficiency of the individual method by overcoming its limiting factors. The current review aims to present the theoretical and fundamental aspects of sonocatalysis and photocatalysis along with a detailed discussion on the benefits that can be obtained by the combined process i.e., US + UV (sonophotocatalysis). Also, we have provided a comparison of the excellent performance of ZnO to that of the other metal oxides. The purpose of this study is to discuss the literature concerning the potential applications of ZnO-based sonophotocatalysts for the degradation of pollutants i.e., dyes, antibiotics, pesticides, phenols, etc. That are carried out for future developments. The role of the produced ROS under light and ultrasound stimulation and the degradation mechanisms that are based on published literature are also discussed. In the end, future perspectives are suggested, that are helpful in the development of the sonophotocatalysis process for the remediation of wastewater containing various pollutants.
Collapse
Affiliation(s)
- Priya Dhull
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam13 Ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Naveen Kumar
- Department of Chemistry Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India.
| |
Collapse
|
20
|
Li Q, Cui H, Li Y, Song X, Liu W, Wang Y, Hou H, Zhang H, Li Y, Wang F, Song J, Ye H, Song S, Che T, Shao S, Kong D, Liang B. Challenges and engineering application of landfill leachate concentrate treatment. ENVIRONMENTAL RESEARCH 2023; 231:116028. [PMID: 37150383 DOI: 10.1016/j.envres.2023.116028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
Landfill leachate concentrate (LLC) is a concentrated waste stream from landfill leachate treatment systems and has been recognized as a key challenge due to its high concentration of salts, heavy metals, organic matters, etc. Improper management of LLC (e.g. reinjection) would exacerbate the performance of upstream treatment processes and pose risks to the surrounding environments near landfill sites. Addressing the challenge and recovering resources from LLC have thus been attracting considerable attention. Although many LLC treatment technologies have been developed, a comprehensive discussion about the challenges still lacks. This review critically evaluates mainstream LLC treatment technologies, namely incineration, coagulation, advanced oxidation, evaporation and solidification/stabilization. We then introduce a geopolymer-based solidification (GS) process as a promising technology owning to its simple casting process and reusable final product and summarizes engineering applications in China. Finally, we suggest investigating hybrid systems to minimize LLC production and achieve the on-site reuse of LLC. Collectively, this review provides useful information to guide the selection of LLC treatment technologies and suggests a sustainable alternative for large-scale application, while also highlighting the need of joint efforts in the industry to achieve efficient, ecofriendly and economical on-site management of landfill waste streams.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yihao Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Xin Song
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing, 100029, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yongxuan Wang
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Haimeng Hou
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Hongbo Zhang
- Everbright Environmental Protection (China) Co. Ltd., Shenzhen, 518000, China
| | - You Li
- Everbright Environmental Protection (China) Co. Ltd., Shenzhen, 518000, China
| | - Fan Wang
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Jun Song
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Hanfeng Ye
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Sirui Song
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Tong Che
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Shuai Shao
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Deyong Kong
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China; Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China.
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Pereira TC, Flores EMM, Abramova AV, Verdini F, Calcio Gaudino E, Bucciol F, Cravotto G. Simultaneous hydrodynamic cavitation and glow plasma discharge for the degradation of metronidazole in drinking water. ULTRASONICS SONOCHEMISTRY 2023; 95:106388. [PMID: 37011519 PMCID: PMC10457580 DOI: 10.1016/j.ultsonch.2023.106388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
In this study, a novel hydrodynamic cavitation unit combined with a glow plasma discharge system (HC-GPD) was proposed for the degradation of pharmaceutical compounds in drinking water. Metronidazole (MNZ), a commonly used broad-spectrum antibiotic, was selected to demonstrate the potential of the proposed system. Cavitation bubbles generated by hydrodynamic cavitation (HC) can provide a pathway for charge conduction during glow plasma discharge (GPD). The synergistic effect between HC and GPD promotes the production of hydroxyl radicals, emission of UV light, and shock waves for MNZ degradation. Sonochemical dosimetry provided information on the enhanced formation of hydroxyl radicals during glow plasma discharge compared to hydrodynamic cavitation alone. Experimental results showed a MNZ degradation of 14% in 15 min for the HC alone (solution initially containing 300 × 10-6 mol L-1 MNZ). In experiments with the HC-GPD system, MNZ degradation of 90% in 15 min was detected. No significant differences were observed in MNZ degradation in acidic and alkaline solutions. MNZ degradation was also studied in the presence of inorganic anions. Experimental results showed that the system is suitable for the treatment of solutions with conductivity up to 1500 × 10-6 S cm-1. The results of sonochemical dosimetry showed the formation of oxidant species of 0.15 × 10-3 mol H2O2 L-1 in the HC system after 15 min. For the HC-GPD system, the concentration of oxidant species after 15 min reached 13 × 10-3 molH2O2L-1. Based on these results, the potential of combining HC and GPD systems for water treatment was demonstrated. The present work provided useful information on the synergistic effect between hydrodynamic cavitation and glow plasma discharge and their application for the degradation of antibiotics in drinking water.
Collapse
Affiliation(s)
| | | | - Anna V Abramova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Federico Verdini
- Department of Drug Science and Technology, Turin University, Turin, Italy
| | | | - Fabio Bucciol
- Department of Drug Science and Technology, Turin University, Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, Turin University, Turin, Italy
| |
Collapse
|
22
|
Wang G, Cheng H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023; 28:molecules28093706. [PMID: 37175115 PMCID: PMC10180204 DOI: 10.3390/molecules28093706] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Organic dyes play vital roles in the textile industry, while the discharge of organic dye wastewater in the production and utilization of dyes has caused significant damage to the aquatic ecosystem. This review aims to summarize the mechanisms of photocatalysis, sonocatalysis, and sonophotocatalysis in the treatment of organic dye wastewater and the recent advances in catalyst development, with a focus on the synergistic effect of ultrasound and light in the catalytic degradation of organic dyes. The performance of TiO2-based catalysts for organic dye degradation in photocatalytic, sonocatalytic, and sonophotocatalytic systems is compared. With significant synergistic effect of ultrasound and light, sonophotocatalysis generally performs much better than sonocatalysis or photocatalysis alone in pollutant degradation, yet it has a much higher energy requirement. Future research directions are proposed to expand the fundamental knowledge on the sonophotocatalysis process and to enhance its practical application in degrading organic dyes in wastewater.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Wang P, Xu C, Zhang X, Yuan Q, Shan S. Effect of photocatalysis on the physicochemical properties of liquid digestate. ENVIRONMENTAL RESEARCH 2023; 223:115467. [PMID: 36775086 DOI: 10.1016/j.envres.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic residues pose a risk to the agricultural application of liquid digestate. In our previous study, photocatalysis was employed to degrade the antibiotics in liquid digestate and observed that the removal efficiency of TC, OTC, and CTC was up to 94.99%, 88.92%, and 95.52%, respectively, at the optimal experimental level, demonstrating the feasibility of this technology. In this study, the liquid digestate after photocatalysis was analyzed to evaluate the effect of photocatalysis on the nutrients, phytotoxicity, and bacterial community of liquid digestate. The results showed that photocatalysis had little effect on the major nutrients TN, TP, and TK in liquid digestate. However, photocatalysis could cause an increase in tryptophan substances as well as soluble microbial by-products and a decrease in humic acid substances in the liquid digestate. The toxicity of liquid digestate after photocatalysis exhibited an increasing trend followed by a decreasing trend, and the liquid digestate after photocatalysis for 2 h had a promoting effect on seed germination and root growth. The richness, diversity, and evenness of bacterial communities in liquid digestate were decreased as a result of photocatalysis. The dominant species in the liquid digestate was dramatically changed by photocatalysis, and the antibiotic concentration also had a major effect on the dominant species in the liquid digestate after photocatalysis. After photocatalysis for 2 h, the dominant species in the liquid digestate changed from Firmicutes to Proteobacteria.
Collapse
Affiliation(s)
- Panpan Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| |
Collapse
|
24
|
Zare M, Alfonso-Muniozguren P, Bussemaker MJ, Sears P, Serna-Galvis EA, Torres-Palma RA, Lee J. A fundamental study on the degradation of paracetamol under single- and dual-frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 94:106320. [PMID: 36780809 PMCID: PMC9925978 DOI: 10.1016/j.ultsonch.2023.106320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The degradation of paracetamol, a widely found emerging pharmaceutical contaminant, was investigated under a wide range of single-frequency and dual-frequency ultrasonic irradiations. For single-frequency ultrasonic irradiation, plate transducers of 22, 98, 200, 300, 400, 500, 760, 850, 1000, and 2000 kHz were employed and for dual-frequency ultrasonic irradiation, the plate transducers were coupled with a 20 kHz ultrasonic horn in opposing configuration. The sonochemical activity was quantified using two dosimetry methods to measure the yield of HO• and H2O2 separately, as well as sonochemiluminescence measurement. Moreover, the severity of the bubble collapses as well as the spatial and size distribution of the cavitation bubbles were evaluated via sonoluminescence measurement. The paracetamol degradation rate was maximised at 850 kHz, in both single and dual-frequency ultrasonic irradiation. A synergistic index higher than 1 was observed for all degrading frequencies (200 - 1000 kHz) under dual-frequency ultrasound irradiation, showing the capability of dual-frequency system for enhancing pollutant degradation. A comparison of the results of degradation, dosimetry, and sonoluminescence intensity measurement revealed the stronger dependency of the degradation on the yield of HO• for both single and dual-frequency systems, which confirms degradation by HO• as the main removal mechanism. However, an enhanced degradation for frequencies higher than 500 kHz was observed despite a lower HO• yield, which could be attributed to the improved mass transfer of hydrophilic compounds at higher frequencies. The sonoluminescence intensity measurements showed that applying dual-frequency ultrasonic irradiation for 200 and 400 kHz made the bubbles larger and less uniform in size, with a portion of which not contributing to the yield of reactive oxidant species, whereas for the rest of the frequencies, dual-frequency ultrasound irradiation made the cavitation bubbles smaller and more uniform, resulting in a linear correlation between the overall sonoluminescence intensity and the yield of reactive oxidant species.
Collapse
Affiliation(s)
- Mehrdad Zare
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Pello Alfonso-Muniozguren
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Madeleine J Bussemaker
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Patrick Sears
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia; Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Judy Lee
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
25
|
Lima JPP, Tabelini CHB, Aguiar A. A Review of Gallic Acid-Mediated Fenton Processes for Degrading Emerging Pollutants and Dyes. Molecules 2023; 28:molecules28031166. [PMID: 36770833 PMCID: PMC9921589 DOI: 10.3390/molecules28031166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Diverse reducing mediators have often been used to increase the degradation of emerging pollutants (EPs) and dyes through the Fenton reaction (Fe2+ + H2O2 → Fe3+ + HO● + HO-). Adding reductants can minimize the accumulation of Fe3+ in a solution, leading to accelerated Fe2+ regeneration and the enhanced generation of reactive oxygen species, such as the HO● radical. The present study consisted in reviewing the effects of gallic acid (GA), a plant-extracted reductant, on the Fenton-based oxidation of several EPs and dyes. It was verified that the pro-oxidant effect of GA was not only reported for soluble iron salts as a catalyst (homogeneous Fenton), but also iron-containing solid materials (heterogeneous Fenton). The most common molar proportion verified in the studies was catalyst:oxidant:GA equal to 1:10-20:1. This shows that the required amount of both catalyst and GA is quite low in comparison with the oxidant, which is generally H2O2. Interestingly, GA has proven to be an effective mediator at pH values well above the ideal range of 2.5-3.0 for Fenton processes. This allows treatments to be carried out at the natural pH of the wastewater. The use of plant extracts or wood barks containing GA and other reductants is suggested to make GA-mediated Fenton processes easier to apply for treating real wastewater.
Collapse
|
26
|
Meng Z, Mo R, Wang Q, Zheng K, Li W, Qin C. Nitrogen-doped porous carbon derived from graphite of solid waste for activating peroxymonosulfate to degradation tetracycline. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Falyouna O, Maamoun I, Ghosh S, Malloum A, Othmani A, Eljamal O, Amen TW, Oroke A, Bornman C, Ahmadi S, Hadi Dehghani M, Hossein Mahvi A, Nasseri S, Tyagi I, Suhas, Reddy Koduru J. Sustainable Technologies for the Removal of Chloramphenicol from Pharmaceutical Industries Effluent: A critical review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Ciğeroğlu Z, Sena Kazan-Kaya E, El Messaoudi N, Fernine Y, Heloisa Pinê Américo-Pinheiro J, Jada A. Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: optimization, modeling, and theoretical calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Dal Conti-Lampert A, Testolin RC, Somensi CA, Almerindo GI, Wagner TM, Gerlach OMS, Sanches-Simões E, Ariente-Neto R, González SYG, Radetski CM. Antibiotic degradation and mineralization: efficiency increase on combining different chemical treatment processes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:987-996. [PMID: 36281981 DOI: 10.1080/10934529.2022.2135343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The goal of this study was to assess the efficiency of antibiotic degradation applying different chemical treatment methods and their combinations. Thus, improvement in the efficiency of these methods when combined was quantified. The methods tested to degrade/mineralize the antibiotics amoxicillin (AMX) and ciprofloxacin (CIP) under different pH conditions (4, 7 and 10) were ultra-violet irradiation (UV254 nm), ultrasound (US), hydrogen peroxide (H2O2) and ozone (O3) alone and in combination. The results showed that individual methods were only partially efficient in the degradation/mineralization of antibiotics, except for ozonation at alkaline pH. In the combined methods, the best performance was obtained with US/UV/H2O2/O3 (pH 10, 20-min treatment), where the degradation rates for the antibiotics were 99.8% for CIP and 99.9% for AMX. For the mineralization efficiency the values obtained were 71.3% for CIP and 79.2% for AMX. The results of this study could contribute to the development and improvement of wastewater treatment aimed at avoiding the presence of residual antibiotics in the environment.
Collapse
Affiliation(s)
- Aline Dal Conti-Lampert
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Renan C Testolin
- Laboratório de Remediação Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Cleder A Somensi
- Curso de Mestrado Profissional em Tecnologia e Ambiente, Instituto Federal Catarinense (IFC), Campus Araquari, Araquari, SC, Brazil
| | - Gizelle I Almerindo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Theodoro M Wagner
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Otto M S Gerlach
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Eric Sanches-Simões
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Rafael Ariente-Neto
- Universidade Federal do Paraná (UFPR), Campus Jandaia do Sul, Curso de Engenharia de Produção, Jandaia do Sul, PR, Brazil
| | - Sergio Y G González
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Claudemir M Radetski
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| |
Collapse
|
30
|
Hu Z, Wu H, Zhu F, Komarneni S, Ma J. Activation of Na2S2O8 by MIL-101(Fe)/Co3O4 composite for degrading tetracycline with visible light assistance. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022; 27:molecules27144436. [PMID: 35889311 PMCID: PMC9319608 DOI: 10.3390/molecules27144436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The first traces of Tetracycline (TE) were detected in human skeletons from Sudan and Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable of producing antibiotics. However, most people only recognise authors dating between 1904 and 1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless infections treatment; unfortunately, they are the second most common group of drugs in wastewaters worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences) and their irrational use in humans and animals. The main antibiotics problem lies in delivered and non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides (regulated activities that have not complied in some places). This practice has led to the toxicity of the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global wastewater treatment standards. This review aims to raise awareness of the negative impact of antibiotics as residues and physical, chemical, and biological treatments for their degradation. We discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen the situation, and the fact that each antibiotic class can be transformed differently with each of these treatments and generate new compounds that could be more toxic than the original ones; also, we discuss the use of enzymes for antibiotic degradation, with emphasis on laccases.
Collapse
|
32
|
Luo J, Lin P, Zheng P, Zhou X, Ning X, Zhan L, Wu Z, Liu X, Zhou X. In suit constructing S-scheme FeOOH/MgIn 2S 4 heterojunction with boosted interfacial charge separation and redox activity for efficiently eliminating antibiotic pollutant. CHEMOSPHERE 2022; 298:134297. [PMID: 35283143 DOI: 10.1016/j.chemosphere.2022.134297] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic elimination of antibiotic pollutant is an appealing avenue in response to the water contamination, but it still suffers from sluggish charge detachment, limited redox capacity as well as poor visible light utilization. Herein, a particular S-scheme FeOOH/MgIn2S4 heterojunction with wide visible light absorption was triumphantly constructed by in-situ growth of MgIn2S4 nanoparticles onto the surface of FeOOH nanorods, and employed as a high-efficiency visible light driven photocatalyst for removing tetracycline (TC). Conspicuously, the as-obtained FeOOH(15 wt%)/MgIn2S4 elucidated the optimal TC removal rate of 0.01258 min-1 after 100 min of visible light illumination, which was almost 33.1 and 6.6 times larger than those of neat FeOOH and MgIn2S4, separately. The exceptional degradation performance was principally put down to the establishment of S-scheme heterojunction between FeOOH and MgIn2S4, which could not merely accelerate the detachment of photogenerated carriers, but also retain the powerful reducing ability of photoinduced electrons for MgIn2S4 and high oxidizing capacity of photoexcited holes for FeOOH, strongly driving the generation of plentiful active species including holes, superoxide and hydroxyl radicals. Additionally, the possible degradation mechanism and pathways of TC were also speculated. This work offers a valuable perspective for constructing high-efficiency S-scheme heterojunction photocatalysts for eradicating antibiotics.
Collapse
Affiliation(s)
- Jin Luo
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Pingping Lin
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Pilang Zheng
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Xunfu Zhou
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Xiaomei Ning
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Liang Zhan
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Zhijun Wu
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China
| | - Xiangning Liu
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong, 510632, China
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering, Innovation team of Photocatalytic Technology, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
33
|
Bustos E, Sandoval-González A, Martínez-Sánchez C. Detection and Treatment of Persistent Pollutants in Water: General Review of Pharmaceutical Products. ChemElectroChem 2022. [DOI: 10.1002/celc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erika Bustos
- Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Centro de Investigación y Desarrollo Tecnológico en Electroq76703México 76703 Pedro Escobedo MEXICO
| | - Antonia Sandoval-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| | - Carolina Martínez-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| |
Collapse
|
34
|
Zhang Y, Xu M, He R, Zhao J, Kang W, Lv J. Effect of pyrolysis temperature on the activated permonosulfate degradation of antibiotics in nitrogen and sulfur-doping biochar: Key role of environmentally persistent free radicals. CHEMOSPHERE 2022; 294:133737. [PMID: 35090846 DOI: 10.1016/j.chemosphere.2022.133737] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/28/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Because of the increasingly widespread contamination of antibiotics, the preparation of biochar by heteroatom doping to further improve the catalytic degradation efficiency of antibiotics has become a major focus of research. In this study, N-doped (NBC), S-doped (SBC), and NS-doped (NSBC) moso bamboo biochar were obtained at preparation temperatures of 300-700 °C. The concentration of environmentally persistent free radicals (EPFRs) in all biochars peaked when the preparation temperature was 500 °C: 2.45 × 1019 spins·g-1 (BC), 9.23 × 1019 spins·g-1 (NBC), 6.10 × 1019 spins·g-1 (SBC), and 4.36 × 1019 spins·g-1 (NSBC). After heteroatom doping, EPFR species were more abundant, and the distribution of three types of EPFRs (oxygen-centered (g > 2.0040), carbon-centered (g < 2.0030), and carbon-centered radicals with oxygen atom free radicals (2.0030 < g < 2.0040) varied with the preparation temperature. In the process of antibiotic degradation, both NBC and SBC increased the degradation rate of antibiotics, whereas NSBC reduced the degradation rate. Compared with the degradation rate of antibiotics of biochar (79.86%), the degradation rate of antibiotics by NBC, SBC, and NSBC via PMS activation was 92.23%, 88.86%, and 70.97% on average in 30 min, respectively. The greatest contributors to the catalytic degradation were SO4•-, followed by 1O2, •OH, and O2•-. EPFRs and 1O2 might be the main contributors to the free radical and non-free radical pathways. The enhancement of EPFRs following the N doping or S doping of biochar is the key factor underlying PMS activation. Therefore, changes in the structure of biochar can better activate PMS to produce reactive oxygen species-degrading antibiotics. The mineralization rate of antibiotics by BC, NBC, SBC, and NSBC was 42.12%, 47.06%, 44.99%, and 39.01%, respectively. This means that a small portion of the antibiotics was completely decomposed into CO2, H2O, and inorganic substances after degradation. Cyclic experiments showed that heteroatom-doped biochar had higher reusability, and the degradation rate decreased less than 15%.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Mengqi Xu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Rui He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jing Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Wei Kang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jinghua Lv
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
35
|
Solar Light-Assisted Oxidative Degradation of Ciprofloxacin in Aqueous Solution by Iron(III) Chelated Cross-Linked Chitosan Immobilized on a Glass Plate. Catalysts 2022. [DOI: 10.3390/catal12050475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The massive worldwide use of antibiotics leads to water pollution and increasing microbial resistance. Hence, the removal of antibiotic residues is a key issue in water remediation. Here, we report the solar light-assisted oxidative degradation of ciprofloxacin (CPF), using H2O2 in aqueous solution, catalyzed by iron(III) chelated cross-linked chitosan (FeIII-CS-GLA) immobilized on a glass plate. The FeIII-CS-GLA catalyst was characterized by FTIR and 57Fe-Mössbauer spectroscopies as well as X-ray diffraction, revealing key structural motifs and a high-spin ferric character of the metal. Catalytic degradation of CPF was investigated as a function of solar light irradiation time, solution pH, concentration of H2O2 and CPF, as well as cross-linker dosage and iron(III) content in FeIII-CS-GLA. The system was found to serve as an efficient catalyst with maximum CPF degradation at pH 3. The specific ·OH scavenger mannitol significantly reduces the degradation rate, indicating that hydroxyl radicals play a key role. The mechanism of catalytic CPF degradation was evaluated in terms of pseudo-first-order and Langmuir-Hinshelwood kinetic models; adsorption of CPF onto the FeIII-CS-GLA surface was evidenced by field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. FeIII-CS-GLA can be reused multiple times with only minor loss of catalytic efficiency. Antimicrobial activity tests performed against both Gram-negative (Escherichia coli DH5α, Salmonella typhi AF4500) and Gram-positive bacteria (Bacillus subtilis RBW) before and after treatment confirmed complete degradation of CPF. These results establish the immobilized FeIII-CS-GLA as a rugged catalyst system for efficient photo-Fenton type degradation of antibiotics in aqueous solutions.
Collapse
|
36
|
Hydrogen-based sono-hybrid catalytic degradation and mitigation of industrially-originated dye-based pollutants. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2022. [DOI: 10.1016/j.ijhydene.2022.03.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Sidirokastritis ND, Tsiantoulas I, Tananaki C, Vareltzis P. The effect of high hydrostatic pressure on tetracycline hydrochloride and sulfathiazole residues in various food matrices - comparison with ultrasound and heat treatment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:687-698. [PMID: 35302918 DOI: 10.1080/19440049.2022.2036820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Antibiotic residues in food pose serious direct and indirect risks for consumers. The aim of this study was to investigate the effect of High Hydrostatic Pressure (HHP) on tetracycline hydrochloride (TCH) and sulfathiazole (STZ) residues in honey, milk, and water. Three different pressures were tested for their efficiency and treatment at 580 MPa for 6 min was finally selected. Qualitative and quantitative determination of antibiotics were performed with HPLC and LC-MS. HHP treatment was compared to ultrasound and heat treatment. HHP treatment was found to be more effective than the other two methods for both antibiotics in water and milk. The reduction of STZ in honey was over 90%, while no reduction was observed for TCH. The highest TCH reduction was recorded after HHP treatment in water (76.4%) and the highest STZ reduction after ultrasound treatment in honey (94.3%). Reduction of the two antibiotics in different matrices did not follow a similar pattern. For the HHP treatment, the effect of the initial concentration of the two antibiotics was studied under two different storage conditions (refrigerated and frozen storage). The effectiveness of the method was found to be affected by the initial concentration, in both storage conditions for STZ, while for TCH significant differences were observed only for refrigerated storage.
Collapse
Affiliation(s)
| | - Ioannis Tsiantoulas
- Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysoula Tananaki
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Patroklos Vareltzis
- Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
38
|
Superoxide radical mediated persulfate activation by nitrogen doped bimetallic MOF (FeCo/N-MOF) for efficient tetracycline degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6010008] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Advanced oxidation procedures (AOPs) refer to a variety of technical procedures that produce OH radicals to sufficiently oxidize wastewater, organic pollutant streams, and toxic effluents from industrial, hospital, pharmaceutical and municipal wastes. Through the implementation of such procedures, the (post) treatment of such waste effluents leads to products that are more susceptible to bioremediation, are less toxic and possess less pollutant load. The basic mechanism produces free OH radicals and other reactive species such as superoxide anions, hydrogen peroxide, etc. A basic classification of AOPs is presented in this short review, analyzing the processes of UV/H2O2, Fenton and photo-Fenton, ozone-based (O3) processes, photocatalysis and sonolysis from chemical and equipment points of view to clarify the nature of the reactive species in each AOP and their advantages. Finally, combined AOP implementations are favored through the literature as an efficient solution in addressing the issue of global environmental waste management.
Collapse
|
40
|
Yi L, Qin J, Sun H, Ruan Y, Zhao L, Xiong Y, Wang J, Fang D. Improved hydrodynamic cavitation device with expanded orifice plate for effective chlorotetracycline degradation: Optimization of device and operation parameters. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Su K, Wu J, Xia D, Zhang X. Clarification of regimes determining sonochemical reactions in solid particle suspensions. ULTRASONICS SONOCHEMISTRY 2022; 82:105910. [PMID: 35016056 PMCID: PMC8799742 DOI: 10.1016/j.ultsonch.2022.105910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 05/21/2023]
Abstract
Although there has been extensive research on the factors that influence sonochemical reactions in solid particle suspensions, the role that solid particles play in the process remains unclear. Herein, the effect of monodisperse silica particles (10-100 μm, 0.05-10 vol%) on the sonochemical activity (20 kHz) was investigated using triiodide formation monitoring and luminol tests. The results demonstrate that, in the particle size range considered, the sonochemical yields were enhanced in dilute suspensions (0.05-1 vol%), while further particle addition in semi-dilute suspensions (1-10 vol%) decreased the yields. Two regimes, namely the site-increasing regime and sound-damping regime, are identified in respect of the enhancing and inhibiting effects of the particles, respectively, and their dependence on particle characteristics is analyzed. Both regimes are confirmed based on the cavitation erosion test results or cavitation noise analysis. The clarification of the two regimes provides a better understanding of the dominant factors controlling sonochemistry in the presence of solid particles, as well as a guide for sonochemical efficiency prediction.
Collapse
Affiliation(s)
- Kunpeng Su
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China
| | - Jianhua Wu
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China.
| | - Dingkang Xia
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China
| | - Xinming Zhang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
42
|
Serna-Galvis EA, Porras J, Torres-Palma RA. A critical review on the sonochemical degradation of organic pollutants in urine, seawater, and mineral water. ULTRASONICS SONOCHEMISTRY 2022; 82:105861. [PMID: 34902815 PMCID: PMC8669455 DOI: 10.1016/j.ultsonch.2021.105861] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 05/21/2023]
Abstract
Substances such as pharmaceuticals, pesticides, dyes, synthetic and natural hormones, plasticizers, and industrial chemicals enter the environment daily. Many of them are a matter of growing concern worldwide. The use of ultrasound to eliminate these compounds arises as an interesting alternative for treating mineral water, seawater, and urine. Thereby, this work presents a systematic and critical review of the literature on the elimination of organic contaminants in these particular matrices, using ultrasound-based processes. The degradation efficiency of the sonochemical systems, the influence of the nature of the pollutant (volatile, hydrophobic, or hydrophilic character), matrix effects (enhancement or detrimental ability compared to pure water), and the role of the contaminant concentration were considered. The combinations of ultrasound with other degradation processes, to overcome the intrinsic limitations of the sonochemical process, were considered. Also, energy consumptions and energy costs associated with pollutants degradation in the target matrices were estimated. Moreover, the gaps that should be developed in future works, on the sonodegradation of organic contaminants in mineral water, seawater, and urine, were discussed.
Collapse
Affiliation(s)
- Efraím A Serna-Galvis
- Grupo de Investigaciones Biomédicas Uniremington, Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia; Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas Uniremington, Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|